hme.c revision 1.28 1 /* $NetBSD: hme.c,v 1.28 2001/11/26 10:39:29 tron Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.28 2001/11/26 10:39:29 tron Exp $");
45
46 #define HMEDEBUG
47
48 #include "opt_inet.h"
49 #include "opt_ns.h"
50 #include "bpfilter.h"
51 #include "rnd.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/socket.h>
59 #include <sys/device.h>
60 #include <sys/malloc.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #if NRND > 0
64 #include <sys/rnd.h>
65 #endif
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_inarp.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #endif
79
80 #ifdef NS
81 #include <netns/ns.h>
82 #include <netns/ns_if.h>
83 #endif
84
85 #if NBPFILTER > 0
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #endif
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92
93 #include <machine/bus.h>
94
95 #include <dev/ic/hmereg.h>
96 #include <dev/ic/hmevar.h>
97
98 void hme_start __P((struct ifnet *));
99 void hme_stop __P((struct hme_softc *));
100 int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
101 void hme_tick __P((void *));
102 void hme_watchdog __P((struct ifnet *));
103 void hme_shutdown __P((void *));
104 void hme_init __P((struct hme_softc *));
105 void hme_meminit __P((struct hme_softc *));
106 void hme_mifinit __P((struct hme_softc *));
107 void hme_reset __P((struct hme_softc *));
108 void hme_setladrf __P((struct hme_softc *));
109
110 /* MII methods & callbacks */
111 static int hme_mii_readreg __P((struct device *, int, int));
112 static void hme_mii_writereg __P((struct device *, int, int, int));
113 static void hme_mii_statchg __P((struct device *));
114
115 int hme_mediachange __P((struct ifnet *));
116 void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
117
118 struct mbuf *hme_get __P((struct hme_softc *, int, int));
119 int hme_put __P((struct hme_softc *, int, struct mbuf *));
120 void hme_read __P((struct hme_softc *, int, int));
121 int hme_eint __P((struct hme_softc *, u_int));
122 int hme_rint __P((struct hme_softc *));
123 int hme_tint __P((struct hme_softc *));
124
125 static int ether_cmp __P((u_char *, u_char *));
126
127 /* Default buffer copy routines */
128 void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
129 void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
130 void hme_zerobuf_contig __P((struct hme_softc *, int, int));
131
132
133 void
134 hme_config(sc)
135 struct hme_softc *sc;
136 {
137 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
138 struct mii_data *mii = &sc->sc_mii;
139 struct mii_softc *child;
140 bus_dma_tag_t dmatag = sc->sc_dmatag;
141 bus_dma_segment_t seg;
142 bus_size_t size;
143 int rseg, error;
144
145 /*
146 * HME common initialization.
147 *
148 * hme_softc fields that must be initialized by the front-end:
149 *
150 * the bus tag:
151 * sc_bustag
152 *
153 * the dma bus tag:
154 * sc_dmatag
155 *
156 * the bus handles:
157 * sc_seb (Shared Ethernet Block registers)
158 * sc_erx (Receiver Unit registers)
159 * sc_etx (Transmitter Unit registers)
160 * sc_mac (MAC registers)
161 * sc_mif (Managment Interface registers)
162 *
163 * the maximum bus burst size:
164 * sc_burst
165 *
166 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
167 * rb_membase, rb_dmabase)
168 *
169 * the local Ethernet address:
170 * sc_enaddr
171 *
172 */
173
174 /* Make sure the chip is stopped. */
175 hme_stop(sc);
176
177
178 /*
179 * Allocate descriptors and buffers
180 * XXX - do all this differently.. and more configurably,
181 * eg. use things as `dma_load_mbuf()' on transmit,
182 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
183 * all the time) on the reveiver side.
184 *
185 * Note: receive buffers must be 64-byte aligned.
186 * Also, apparently, the buffers must extend to a DMA burst
187 * boundary beyond the maximum packet size.
188 */
189 #define _HME_NDESC 128
190 #define _HME_BUFSZ 1600
191
192 /* Note: the # of descriptors must be a multiple of 16 */
193 sc->sc_rb.rb_ntbuf = _HME_NDESC;
194 sc->sc_rb.rb_nrbuf = _HME_NDESC;
195
196 /*
197 * Allocate DMA capable memory
198 * Buffer descriptors must be aligned on a 2048 byte boundary;
199 * take this into account when calculating the size. Note that
200 * the maximum number of descriptors (256) occupies 2048 bytes,
201 * so we allocate that much regardless of _HME_NDESC.
202 */
203 size = 2048 + /* TX descriptors */
204 2048 + /* RX descriptors */
205 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
206 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
207
208 /* Allocate DMA buffer */
209 if ((error = bus_dmamem_alloc(dmatag, size,
210 2048, 0,
211 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
212 printf("%s: DMA buffer alloc error %d\n",
213 sc->sc_dev.dv_xname, error);
214 return;
215 }
216
217 /* Map DMA memory in CPU addressable space */
218 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
219 &sc->sc_rb.rb_membase,
220 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
221 printf("%s: DMA buffer map error %d\n",
222 sc->sc_dev.dv_xname, error);
223 bus_dmamap_unload(dmatag, sc->sc_dmamap);
224 bus_dmamem_free(dmatag, &seg, rseg);
225 return;
226 }
227
228 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
229 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
230 printf("%s: DMA map create error %d\n",
231 sc->sc_dev.dv_xname, error);
232 return;
233 }
234
235 /* Load the buffer */
236 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
237 sc->sc_rb.rb_membase, size, NULL,
238 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
239 printf("%s: DMA buffer map load error %d\n",
240 sc->sc_dev.dv_xname, error);
241 bus_dmamem_free(dmatag, &seg, rseg);
242 return;
243 }
244 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
245
246 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
247 ether_sprintf(sc->sc_enaddr));
248
249 /* Initialize ifnet structure. */
250 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
251 ifp->if_softc = sc;
252 ifp->if_start = hme_start;
253 ifp->if_ioctl = hme_ioctl;
254 ifp->if_watchdog = hme_watchdog;
255 ifp->if_flags =
256 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
257 IFQ_SET_READY(&ifp->if_snd);
258
259 /* Initialize ifmedia structures and MII info */
260 mii->mii_ifp = ifp;
261 mii->mii_readreg = hme_mii_readreg;
262 mii->mii_writereg = hme_mii_writereg;
263 mii->mii_statchg = hme_mii_statchg;
264
265 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
266
267 hme_mifinit(sc);
268
269 mii_attach(&sc->sc_dev, mii, 0xffffffff,
270 MII_PHY_ANY, MII_OFFSET_ANY, 0);
271
272 child = LIST_FIRST(&mii->mii_phys);
273 if (child == NULL) {
274 /* No PHY attached */
275 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
276 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
277 } else {
278 /*
279 * Walk along the list of attached MII devices and
280 * establish an `MII instance' to `phy number'
281 * mapping. We'll use this mapping in media change
282 * requests to determine which phy to use to program
283 * the MIF configuration register.
284 */
285 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
286 /*
287 * Note: we support just two PHYs: the built-in
288 * internal device and an external on the MII
289 * connector.
290 */
291 if (child->mii_phy > 1 || child->mii_inst > 1) {
292 printf("%s: cannot accomodate MII device %s"
293 " at phy %d, instance %d\n",
294 sc->sc_dev.dv_xname,
295 child->mii_dev.dv_xname,
296 child->mii_phy, child->mii_inst);
297 continue;
298 }
299
300 sc->sc_phys[child->mii_inst] = child->mii_phy;
301 }
302
303 /*
304 * XXX - we can really do the following ONLY if the
305 * phy indeed has the auto negotiation capability!!
306 */
307 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
308 }
309
310 /* claim 802.1q capability */
311 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
312
313 /* Attach the interface. */
314 if_attach(ifp);
315 ether_ifattach(ifp, sc->sc_enaddr);
316
317 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
318 if (sc->sc_sh == NULL)
319 panic("hme_config: can't establish shutdownhook");
320
321 #if 0
322 printf("%s: %d receive buffers, %d transmit buffers\n",
323 sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
324 sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
325 M_WAITOK);
326 sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
327 M_WAITOK);
328 #endif
329
330 #if NRND > 0
331 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
332 RND_TYPE_NET, 0);
333 #endif
334
335 callout_init(&sc->sc_tick_ch);
336 }
337
338 void
339 hme_tick(arg)
340 void *arg;
341 {
342 struct hme_softc *sc = arg;
343 int s;
344
345 s = splnet();
346 mii_tick(&sc->sc_mii);
347 splx(s);
348
349 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
350 }
351
352 void
353 hme_reset(sc)
354 struct hme_softc *sc;
355 {
356 int s;
357
358 s = splnet();
359 hme_init(sc);
360 splx(s);
361 }
362
363 void
364 hme_stop(sc)
365 struct hme_softc *sc;
366 {
367 bus_space_tag_t t = sc->sc_bustag;
368 bus_space_handle_t seb = sc->sc_seb;
369 int n;
370
371 callout_stop(&sc->sc_tick_ch);
372 mii_down(&sc->sc_mii);
373
374 /* Reset transmitter and receiver */
375 bus_space_write_4(t, seb, HME_SEBI_RESET,
376 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
377
378 for (n = 0; n < 20; n++) {
379 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
380 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
381 return;
382 DELAY(20);
383 }
384
385 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
386 }
387
388 void
389 hme_meminit(sc)
390 struct hme_softc *sc;
391 {
392 bus_addr_t txbufdma, rxbufdma;
393 bus_addr_t dma;
394 caddr_t p;
395 unsigned int ntbuf, nrbuf, i;
396 struct hme_ring *hr = &sc->sc_rb;
397
398 p = hr->rb_membase;
399 dma = hr->rb_dmabase;
400
401 ntbuf = hr->rb_ntbuf;
402 nrbuf = hr->rb_nrbuf;
403
404 /*
405 * Allocate transmit descriptors
406 */
407 hr->rb_txd = p;
408 hr->rb_txddma = dma;
409 p += ntbuf * HME_XD_SIZE;
410 dma += ntbuf * HME_XD_SIZE;
411 /* We have reserved descriptor space until the next 2048 byte boundary.*/
412 dma = (bus_addr_t)roundup((u_long)dma, 2048);
413 p = (caddr_t)roundup((u_long)p, 2048);
414
415 /*
416 * Allocate receive descriptors
417 */
418 hr->rb_rxd = p;
419 hr->rb_rxddma = dma;
420 p += nrbuf * HME_XD_SIZE;
421 dma += nrbuf * HME_XD_SIZE;
422 /* Again move forward to the next 2048 byte boundary.*/
423 dma = (bus_addr_t)roundup((u_long)dma, 2048);
424 p = (caddr_t)roundup((u_long)p, 2048);
425
426
427 /*
428 * Allocate transmit buffers
429 */
430 hr->rb_txbuf = p;
431 txbufdma = dma;
432 p += ntbuf * _HME_BUFSZ;
433 dma += ntbuf * _HME_BUFSZ;
434
435 /*
436 * Allocate receive buffers
437 */
438 hr->rb_rxbuf = p;
439 rxbufdma = dma;
440 p += nrbuf * _HME_BUFSZ;
441 dma += nrbuf * _HME_BUFSZ;
442
443 /*
444 * Initialize transmit buffer descriptors
445 */
446 for (i = 0; i < ntbuf; i++) {
447 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
448 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
449 }
450
451 /*
452 * Initialize receive buffer descriptors
453 */
454 for (i = 0; i < nrbuf; i++) {
455 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
456 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
457 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
458 }
459
460 hr->rb_tdhead = hr->rb_tdtail = 0;
461 hr->rb_td_nbusy = 0;
462 hr->rb_rdtail = 0;
463 }
464
465 /*
466 * Initialization of interface; set up initialization block
467 * and transmit/receive descriptor rings.
468 */
469 void
470 hme_init(sc)
471 struct hme_softc *sc;
472 {
473 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
474 bus_space_tag_t t = sc->sc_bustag;
475 bus_space_handle_t seb = sc->sc_seb;
476 bus_space_handle_t etx = sc->sc_etx;
477 bus_space_handle_t erx = sc->sc_erx;
478 bus_space_handle_t mac = sc->sc_mac;
479 bus_space_handle_t mif = sc->sc_mif;
480 u_int8_t *ea;
481 u_int32_t v;
482
483 /*
484 * Initialization sequence. The numbered steps below correspond
485 * to the sequence outlined in section 6.3.5.1 in the Ethernet
486 * Channel Engine manual (part of the PCIO manual).
487 * See also the STP2002-STQ document from Sun Microsystems.
488 */
489
490 /* step 1 & 2. Reset the Ethernet Channel */
491 hme_stop(sc);
492
493 /* Re-initialize the MIF */
494 hme_mifinit(sc);
495
496 /* Call MI reset function if any */
497 if (sc->sc_hwreset)
498 (*sc->sc_hwreset)(sc);
499
500 #if 0
501 /* Mask all MIF interrupts, just in case */
502 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
503 #endif
504
505 /* step 3. Setup data structures in host memory */
506 hme_meminit(sc);
507
508 /* step 4. TX MAC registers & counters */
509 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
510 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
511 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
512 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
513 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
514 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
515 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
516 ETHER_MAX_LEN);
517
518 /* Load station MAC address */
519 ea = sc->sc_enaddr;
520 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
521 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
522 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
523
524 /*
525 * Init seed for backoff
526 * (source suggested by manual: low 10 bits of MAC address)
527 */
528 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
529 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
530
531
532 /* Note: Accepting power-on default for other MAC registers here.. */
533
534
535 /* step 5. RX MAC registers & counters */
536 hme_setladrf(sc);
537
538 /* step 6 & 7. Program Descriptor Ring Base Addresses */
539 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
540 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
541
542 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
543 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
544 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
545 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
546 ETHER_MAX_LEN);
547
548
549 /* step 8. Global Configuration & Interrupt Mask */
550 bus_space_write_4(t, seb, HME_SEBI_IMASK,
551 ~(
552 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
553 HME_SEB_STAT_HOSTTOTX |
554 HME_SEB_STAT_RXTOHOST |
555 HME_SEB_STAT_TXALL |
556 HME_SEB_STAT_TXPERR |
557 HME_SEB_STAT_RCNTEXP |
558 HME_SEB_STAT_ALL_ERRORS ));
559
560 switch (sc->sc_burst) {
561 default:
562 v = 0;
563 break;
564 case 16:
565 v = HME_SEB_CFG_BURST16;
566 break;
567 case 32:
568 v = HME_SEB_CFG_BURST32;
569 break;
570 case 64:
571 v = HME_SEB_CFG_BURST64;
572 break;
573 }
574 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
575
576 /* step 9. ETX Configuration: use mostly default values */
577
578 /* Enable DMA */
579 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
580 v |= HME_ETX_CFG_DMAENABLE;
581 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
582
583 /* Transmit Descriptor ring size: in increments of 16 */
584 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
585
586
587 /* step 10. ERX Configuration */
588 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
589
590 /* Encode Receive Descriptor ring size: four possible values */
591 switch (_HME_NDESC /*XXX*/) {
592 case 32:
593 v |= HME_ERX_CFG_RINGSIZE32;
594 break;
595 case 64:
596 v |= HME_ERX_CFG_RINGSIZE64;
597 break;
598 case 128:
599 v |= HME_ERX_CFG_RINGSIZE128;
600 break;
601 case 256:
602 v |= HME_ERX_CFG_RINGSIZE256;
603 break;
604 default:
605 printf("hme: invalid Receive Descriptor ring size\n");
606 break;
607 }
608
609 /* Enable DMA */
610 v |= HME_ERX_CFG_DMAENABLE;
611 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
612
613 /* step 11. XIF Configuration */
614 v = bus_space_read_4(t, mac, HME_MACI_XIF);
615 v |= HME_MAC_XIF_OE;
616 /* If an external transceiver is connected, enable its MII drivers */
617 if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
618 v |= HME_MAC_XIF_MIIENABLE;
619 bus_space_write_4(t, mac, HME_MACI_XIF, v);
620
621
622 /* step 12. RX_MAC Configuration Register */
623 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
624 v |= HME_MAC_RXCFG_ENABLE;
625 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
626
627 /* step 13. TX_MAC Configuration Register */
628 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
629 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
630 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
631
632 /* step 14. Issue Transmit Pending command */
633
634 /* Call MI initialization function if any */
635 if (sc->sc_hwinit)
636 (*sc->sc_hwinit)(sc);
637
638 /* Start the one second timer. */
639 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
640
641 ifp->if_flags |= IFF_RUNNING;
642 ifp->if_flags &= ~IFF_OACTIVE;
643 ifp->if_timer = 0;
644 hme_start(ifp);
645 }
646
647 /*
648 * Compare two Ether/802 addresses for equality, inlined and unrolled for
649 * speed.
650 */
651 static __inline__ int
652 ether_cmp(a, b)
653 u_char *a, *b;
654 {
655
656 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
657 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
658 return (0);
659 return (1);
660 }
661
662
663 /*
664 * Routine to copy from mbuf chain to transmit buffer in
665 * network buffer memory.
666 * Returns the amount of data copied.
667 */
668 int
669 hme_put(sc, ri, m)
670 struct hme_softc *sc;
671 int ri; /* Ring index */
672 struct mbuf *m;
673 {
674 struct mbuf *n;
675 int len, tlen = 0;
676 caddr_t bp;
677
678 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
679 for (; m; m = n) {
680 len = m->m_len;
681 if (len == 0) {
682 MFREE(m, n);
683 continue;
684 }
685 memcpy(bp, mtod(m, caddr_t), len);
686 bp += len;
687 tlen += len;
688 MFREE(m, n);
689 }
690 return (tlen);
691 }
692
693 /*
694 * Pull data off an interface.
695 * Len is length of data, with local net header stripped.
696 * We copy the data into mbufs. When full cluster sized units are present
697 * we copy into clusters.
698 */
699 struct mbuf *
700 hme_get(sc, ri, totlen)
701 struct hme_softc *sc;
702 int ri, totlen;
703 {
704 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 struct mbuf *m, *m0, *newm;
706 caddr_t bp;
707 int len;
708
709 MGETHDR(m0, M_DONTWAIT, MT_DATA);
710 if (m0 == 0)
711 return (0);
712 m0->m_pkthdr.rcvif = ifp;
713 m0->m_pkthdr.len = totlen;
714 len = MHLEN;
715 m = m0;
716
717 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
718
719 while (totlen > 0) {
720 if (totlen >= MINCLSIZE) {
721 MCLGET(m, M_DONTWAIT);
722 if ((m->m_flags & M_EXT) == 0)
723 goto bad;
724 len = MCLBYTES;
725 }
726
727 if (m == m0) {
728 caddr_t newdata = (caddr_t)
729 ALIGN(m->m_data + sizeof(struct ether_header)) -
730 sizeof(struct ether_header);
731 len -= newdata - m->m_data;
732 m->m_data = newdata;
733 }
734
735 m->m_len = len = min(totlen, len);
736 memcpy(mtod(m, caddr_t), bp, len);
737 bp += len;
738
739 totlen -= len;
740 if (totlen > 0) {
741 MGET(newm, M_DONTWAIT, MT_DATA);
742 if (newm == 0)
743 goto bad;
744 len = MLEN;
745 m = m->m_next = newm;
746 }
747 }
748
749 return (m0);
750
751 bad:
752 m_freem(m0);
753 return (0);
754 }
755
756 /*
757 * Pass a packet to the higher levels.
758 */
759 void
760 hme_read(sc, ix, len)
761 struct hme_softc *sc;
762 int ix, len;
763 {
764 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
765 struct mbuf *m;
766
767 if (len <= sizeof(struct ether_header) ||
768 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
769 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
770 ETHERMTU + sizeof(struct ether_header))) {
771 #ifdef HMEDEBUG
772 printf("%s: invalid packet size %d; dropping\n",
773 sc->sc_dev.dv_xname, len);
774 #endif
775 ifp->if_ierrors++;
776 return;
777 }
778
779 /* Pull packet off interface. */
780 m = hme_get(sc, ix, len);
781 if (m == 0) {
782 ifp->if_ierrors++;
783 return;
784 }
785
786 ifp->if_ipackets++;
787
788 #if NBPFILTER > 0
789 /*
790 * Check if there's a BPF listener on this interface.
791 * If so, hand off the raw packet to BPF.
792 */
793 if (ifp->if_bpf)
794 bpf_mtap(ifp->if_bpf, m);
795 #endif
796
797 /* Pass the packet up. */
798 (*ifp->if_input)(ifp, m);
799 }
800
801 void
802 hme_start(ifp)
803 struct ifnet *ifp;
804 {
805 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
806 caddr_t txd = sc->sc_rb.rb_txd;
807 struct mbuf *m;
808 unsigned int ri, len;
809 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
810
811 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
812 return;
813
814 ri = sc->sc_rb.rb_tdhead;
815
816 for (;;) {
817 IFQ_DEQUEUE(&ifp->if_snd, m);
818 if (m == 0)
819 break;
820
821 #if NBPFILTER > 0
822 /*
823 * If BPF is listening on this interface, let it see the
824 * packet before we commit it to the wire.
825 */
826 if (ifp->if_bpf)
827 bpf_mtap(ifp->if_bpf, m);
828 #endif
829
830 /*
831 * Copy the mbuf chain into the transmit buffer.
832 */
833 len = hme_put(sc, ri, m);
834
835 /*
836 * Initialize transmit registers and start transmission
837 */
838 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
839 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
840 HME_XD_ENCODE_TSIZE(len));
841
842 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
843 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
844 HME_ETX_TP_DMAWAKEUP);
845
846 if (++ri == ntbuf)
847 ri = 0;
848
849 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
850 ifp->if_flags |= IFF_OACTIVE;
851 break;
852 }
853 }
854
855 sc->sc_rb.rb_tdhead = ri;
856 }
857
858 /*
859 * Transmit interrupt.
860 */
861 int
862 hme_tint(sc)
863 struct hme_softc *sc;
864 {
865 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
866 bus_space_tag_t t = sc->sc_bustag;
867 bus_space_handle_t mac = sc->sc_mac;
868 unsigned int ri, txflags;
869
870 /*
871 * Unload collision counters
872 */
873 ifp->if_collisions +=
874 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
875 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
876 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
877 bus_space_read_4(t, mac, HME_MACI_LTCNT);
878
879 /*
880 * then clear the hardware counters.
881 */
882 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
883 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
884 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
885 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
886
887 /* Fetch current position in the transmit ring */
888 ri = sc->sc_rb.rb_tdtail;
889
890 for (;;) {
891 if (sc->sc_rb.rb_td_nbusy <= 0)
892 break;
893
894 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
895
896 if (txflags & HME_XD_OWN)
897 break;
898
899 ifp->if_flags &= ~IFF_OACTIVE;
900 ifp->if_opackets++;
901
902 if (++ri == sc->sc_rb.rb_ntbuf)
903 ri = 0;
904
905 --sc->sc_rb.rb_td_nbusy;
906 }
907
908 /* Update ring */
909 sc->sc_rb.rb_tdtail = ri;
910
911 hme_start(ifp);
912
913 if (sc->sc_rb.rb_td_nbusy == 0)
914 ifp->if_timer = 0;
915
916 return (1);
917 }
918
919 /*
920 * Receive interrupt.
921 */
922 int
923 hme_rint(sc)
924 struct hme_softc *sc;
925 {
926 caddr_t xdr = sc->sc_rb.rb_rxd;
927 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
928 unsigned int ri, len;
929 u_int32_t flags;
930
931 ri = sc->sc_rb.rb_rdtail;
932
933 /*
934 * Process all buffers with valid data.
935 */
936 for (;;) {
937 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
938 if (flags & HME_XD_OWN)
939 break;
940
941 if (flags & HME_XD_OFL) {
942 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
943 sc->sc_dev.dv_xname, ri, flags);
944 } else {
945 len = HME_XD_DECODE_RSIZE(flags);
946 hme_read(sc, ri, len);
947 }
948
949 /* This buffer can be used by the hardware again */
950 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
951 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
952
953 if (++ri == nrbuf)
954 ri = 0;
955 }
956
957 sc->sc_rb.rb_rdtail = ri;
958
959 return (1);
960 }
961
962 int
963 hme_eint(sc, status)
964 struct hme_softc *sc;
965 u_int status;
966 {
967 char bits[128];
968
969 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
970 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
971 return (1);
972 }
973
974 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
975 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
976 return (1);
977 }
978
979 int
980 hme_intr(v)
981 void *v;
982 {
983 struct hme_softc *sc = (struct hme_softc *)v;
984 bus_space_tag_t t = sc->sc_bustag;
985 bus_space_handle_t seb = sc->sc_seb;
986 u_int32_t status;
987 int r = 0;
988
989 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
990
991 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
992 r |= hme_eint(sc, status);
993
994 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
995 r |= hme_tint(sc);
996
997 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
998 r |= hme_rint(sc);
999
1000 return (r);
1001 }
1002
1003
1004 void
1005 hme_watchdog(ifp)
1006 struct ifnet *ifp;
1007 {
1008 struct hme_softc *sc = ifp->if_softc;
1009
1010 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1011 ++ifp->if_oerrors;
1012
1013 hme_reset(sc);
1014 }
1015
1016 /*
1017 * Initialize the MII Management Interface
1018 */
1019 void
1020 hme_mifinit(sc)
1021 struct hme_softc *sc;
1022 {
1023 bus_space_tag_t t = sc->sc_bustag;
1024 bus_space_handle_t mif = sc->sc_mif;
1025 u_int32_t v;
1026
1027 /* Configure the MIF in frame mode */
1028 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1029 v &= ~HME_MIF_CFG_BBMODE;
1030 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1031 }
1032
1033 /*
1034 * MII interface
1035 */
1036 static int
1037 hme_mii_readreg(self, phy, reg)
1038 struct device *self;
1039 int phy, reg;
1040 {
1041 struct hme_softc *sc = (void *)self;
1042 bus_space_tag_t t = sc->sc_bustag;
1043 bus_space_handle_t mif = sc->sc_mif;
1044 int n;
1045 u_int32_t v;
1046
1047 /* Select the desired PHY in the MIF configuration register */
1048 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1049 /* Clear PHY select bit */
1050 v &= ~HME_MIF_CFG_PHY;
1051 if (phy == HME_PHYAD_EXTERNAL)
1052 /* Set PHY select bit to get at external device */
1053 v |= HME_MIF_CFG_PHY;
1054 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1055
1056 /* Construct the frame command */
1057 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1058 HME_MIF_FO_TAMSB |
1059 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1060 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1061 (reg << HME_MIF_FO_REGAD_SHIFT);
1062
1063 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1064 for (n = 0; n < 100; n++) {
1065 DELAY(1);
1066 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1067 if (v & HME_MIF_FO_TALSB)
1068 return (v & HME_MIF_FO_DATA);
1069 }
1070
1071 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1072 return (0);
1073 }
1074
1075 static void
1076 hme_mii_writereg(self, phy, reg, val)
1077 struct device *self;
1078 int phy, reg, val;
1079 {
1080 struct hme_softc *sc = (void *)self;
1081 bus_space_tag_t t = sc->sc_bustag;
1082 bus_space_handle_t mif = sc->sc_mif;
1083 int n;
1084 u_int32_t v;
1085
1086 /* Select the desired PHY in the MIF configuration register */
1087 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1088 /* Clear PHY select bit */
1089 v &= ~HME_MIF_CFG_PHY;
1090 if (phy == HME_PHYAD_EXTERNAL)
1091 /* Set PHY select bit to get at external device */
1092 v |= HME_MIF_CFG_PHY;
1093 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1094
1095 /* Construct the frame command */
1096 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1097 HME_MIF_FO_TAMSB |
1098 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1099 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1100 (reg << HME_MIF_FO_REGAD_SHIFT) |
1101 (val & HME_MIF_FO_DATA);
1102
1103 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1104 for (n = 0; n < 100; n++) {
1105 DELAY(1);
1106 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1107 if (v & HME_MIF_FO_TALSB)
1108 return;
1109 }
1110
1111 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1112 }
1113
1114 static void
1115 hme_mii_statchg(dev)
1116 struct device *dev;
1117 {
1118 struct hme_softc *sc = (void *)dev;
1119 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1120 int phy = sc->sc_phys[instance];
1121 bus_space_tag_t t = sc->sc_bustag;
1122 bus_space_handle_t mif = sc->sc_mif;
1123 bus_space_handle_t mac = sc->sc_mac;
1124 u_int32_t v;
1125
1126 #ifdef HMEDEBUG
1127 if (sc->sc_debug)
1128 printf("hme_mii_statchg: status change: phy = %d\n", phy);
1129 #endif
1130
1131 /* Select the current PHY in the MIF configuration register */
1132 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1133 v &= ~HME_MIF_CFG_PHY;
1134 if (phy == HME_PHYAD_EXTERNAL)
1135 v |= HME_MIF_CFG_PHY;
1136 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1137
1138 /* Set the MAC Full Duplex bit appropriately */
1139 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1140 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1141 v |= HME_MAC_TXCFG_FULLDPLX;
1142 else
1143 v &= ~HME_MAC_TXCFG_FULLDPLX;
1144 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1145
1146 /* If an external transceiver is selected, enable its MII drivers */
1147 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1148 v &= ~HME_MAC_XIF_MIIENABLE;
1149 if (phy == HME_PHYAD_EXTERNAL)
1150 v |= HME_MAC_XIF_MIIENABLE;
1151 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1152 }
1153
1154 int
1155 hme_mediachange(ifp)
1156 struct ifnet *ifp;
1157 {
1158 struct hme_softc *sc = ifp->if_softc;
1159
1160 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1161 return (EINVAL);
1162
1163 return (mii_mediachg(&sc->sc_mii));
1164 }
1165
1166 void
1167 hme_mediastatus(ifp, ifmr)
1168 struct ifnet *ifp;
1169 struct ifmediareq *ifmr;
1170 {
1171 struct hme_softc *sc = ifp->if_softc;
1172
1173 if ((ifp->if_flags & IFF_UP) == 0)
1174 return;
1175
1176 mii_pollstat(&sc->sc_mii);
1177 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1178 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1179 }
1180
1181 /*
1182 * Process an ioctl request.
1183 */
1184 int
1185 hme_ioctl(ifp, cmd, data)
1186 struct ifnet *ifp;
1187 u_long cmd;
1188 caddr_t data;
1189 {
1190 struct hme_softc *sc = ifp->if_softc;
1191 struct ifaddr *ifa = (struct ifaddr *)data;
1192 struct ifreq *ifr = (struct ifreq *)data;
1193 int s, error = 0;
1194
1195 s = splnet();
1196
1197 switch (cmd) {
1198
1199 case SIOCSIFADDR:
1200 ifp->if_flags |= IFF_UP;
1201
1202 switch (ifa->ifa_addr->sa_family) {
1203 #ifdef INET
1204 case AF_INET:
1205 hme_init(sc);
1206 arp_ifinit(ifp, ifa);
1207 break;
1208 #endif
1209 #ifdef NS
1210 case AF_NS:
1211 {
1212 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1213
1214 if (ns_nullhost(*ina))
1215 ina->x_host =
1216 *(union ns_host *)LLADDR(ifp->if_sadl);
1217 else {
1218 memcpy(LLADDR(ifp->if_sadl),
1219 ina->x_host.c_host, sizeof(sc->sc_enaddr));
1220 }
1221 /* Set new address. */
1222 hme_init(sc);
1223 break;
1224 }
1225 #endif
1226 default:
1227 hme_init(sc);
1228 break;
1229 }
1230 break;
1231
1232 case SIOCSIFFLAGS:
1233 if ((ifp->if_flags & IFF_UP) == 0 &&
1234 (ifp->if_flags & IFF_RUNNING) != 0) {
1235 /*
1236 * If interface is marked down and it is running, then
1237 * stop it.
1238 */
1239 hme_stop(sc);
1240 ifp->if_flags &= ~IFF_RUNNING;
1241 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1242 (ifp->if_flags & IFF_RUNNING) == 0) {
1243 /*
1244 * If interface is marked up and it is stopped, then
1245 * start it.
1246 */
1247 hme_init(sc);
1248 } else if ((ifp->if_flags & IFF_UP) != 0) {
1249 /*
1250 * Reset the interface to pick up changes in any other
1251 * flags that affect hardware registers.
1252 */
1253 /*hme_stop(sc);*/
1254 hme_init(sc);
1255 }
1256 #ifdef HMEDEBUG
1257 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1258 #endif
1259 break;
1260
1261 case SIOCADDMULTI:
1262 case SIOCDELMULTI:
1263 error = (cmd == SIOCADDMULTI) ?
1264 ether_addmulti(ifr, &sc->sc_ethercom) :
1265 ether_delmulti(ifr, &sc->sc_ethercom);
1266
1267 if (error == ENETRESET) {
1268 /*
1269 * Multicast list has changed; set the hardware filter
1270 * accordingly.
1271 */
1272 hme_setladrf(sc);
1273 error = 0;
1274 }
1275 break;
1276
1277 case SIOCGIFMEDIA:
1278 case SIOCSIFMEDIA:
1279 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1280 break;
1281
1282 default:
1283 error = EINVAL;
1284 break;
1285 }
1286
1287 splx(s);
1288 return (error);
1289 }
1290
1291 void
1292 hme_shutdown(arg)
1293 void *arg;
1294 {
1295
1296 hme_stop((struct hme_softc *)arg);
1297 }
1298
1299 /*
1300 * Set up the logical address filter.
1301 */
1302 void
1303 hme_setladrf(sc)
1304 struct hme_softc *sc;
1305 {
1306 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1307 struct ether_multi *enm;
1308 struct ether_multistep step;
1309 struct ethercom *ec = &sc->sc_ethercom;
1310 bus_space_tag_t t = sc->sc_bustag;
1311 bus_space_handle_t mac = sc->sc_mac;
1312 u_char *cp;
1313 u_int32_t crc;
1314 u_int32_t hash[4];
1315 u_int32_t v;
1316 int len;
1317
1318 /* Clear hash table */
1319 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1320
1321 /* Get current RX configuration */
1322 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1323
1324 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1325 /* Turn on promiscuous mode; turn off the hash filter */
1326 v |= HME_MAC_RXCFG_PMISC;
1327 v &= ~HME_MAC_RXCFG_HENABLE;
1328 ifp->if_flags |= IFF_ALLMULTI;
1329 goto chipit;
1330 }
1331
1332 /* Turn off promiscuous mode; turn on the hash filter */
1333 v &= ~HME_MAC_RXCFG_PMISC;
1334 v |= HME_MAC_RXCFG_HENABLE;
1335
1336 /*
1337 * Set up multicast address filter by passing all multicast addresses
1338 * through a crc generator, and then using the high order 6 bits as an
1339 * index into the 64 bit logical address filter. The high order bit
1340 * selects the word, while the rest of the bits select the bit within
1341 * the word.
1342 */
1343
1344 ETHER_FIRST_MULTI(step, ec, enm);
1345 while (enm != NULL) {
1346 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1347 /*
1348 * We must listen to a range of multicast addresses.
1349 * For now, just accept all multicasts, rather than
1350 * trying to set only those filter bits needed to match
1351 * the range. (At this time, the only use of address
1352 * ranges is for IP multicast routing, for which the
1353 * range is big enough to require all bits set.)
1354 */
1355 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1356 ifp->if_flags |= IFF_ALLMULTI;
1357 goto chipit;
1358 }
1359
1360 cp = enm->enm_addrlo;
1361 crc = 0xffffffff;
1362 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1363 int octet = *cp++;
1364 int i;
1365
1366 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1367 for (i = 0; i < 8; i++) {
1368 if ((crc & 1) ^ (octet & 1)) {
1369 crc >>= 1;
1370 crc ^= MC_POLY_LE;
1371 } else {
1372 crc >>= 1;
1373 }
1374 octet >>= 1;
1375 }
1376 }
1377 /* Just want the 6 most significant bits. */
1378 crc >>= 26;
1379
1380 /* Set the corresponding bit in the filter. */
1381 hash[crc >> 4] |= 1 << (crc & 0xf);
1382
1383 ETHER_NEXT_MULTI(step, enm);
1384 }
1385
1386 ifp->if_flags &= ~IFF_ALLMULTI;
1387
1388 chipit:
1389 /* Now load the hash table into the chip */
1390 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1391 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1392 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1393 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1394 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1395 }
1396
1397 /*
1398 * Routines for accessing the transmit and receive buffers.
1399 * The various CPU and adapter configurations supported by this
1400 * driver require three different access methods for buffers
1401 * and descriptors:
1402 * (1) contig (contiguous data; no padding),
1403 * (2) gap2 (two bytes of data followed by two bytes of padding),
1404 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1405 */
1406
1407 #if 0
1408 /*
1409 * contig: contiguous data with no padding.
1410 *
1411 * Buffers may have any alignment.
1412 */
1413
1414 void
1415 hme_copytobuf_contig(sc, from, ri, len)
1416 struct hme_softc *sc;
1417 void *from;
1418 int ri, len;
1419 {
1420 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1421
1422 /*
1423 * Just call memcpy() to do the work.
1424 */
1425 memcpy(buf, from, len);
1426 }
1427
1428 void
1429 hme_copyfrombuf_contig(sc, to, boff, len)
1430 struct hme_softc *sc;
1431 void *to;
1432 int boff, len;
1433 {
1434 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1435
1436 /*
1437 * Just call memcpy() to do the work.
1438 */
1439 memcpy(to, buf, len);
1440 }
1441 #endif
1442