hme.c revision 1.30 1 /* $NetBSD: hme.c,v 1.30 2002/08/29 14:33:03 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.30 2002/08/29 14:33:03 martin Exp $");
45
46 #define HMEDEBUG
47
48 #include "opt_inet.h"
49 #include "opt_ns.h"
50 #include "bpfilter.h"
51 #include "rnd.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/socket.h>
59 #include <sys/device.h>
60 #include <sys/malloc.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #if NRND > 0
64 #include <sys/rnd.h>
65 #endif
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_inarp.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #endif
79
80 #ifdef NS
81 #include <netns/ns.h>
82 #include <netns/ns_if.h>
83 #endif
84
85 #if NBPFILTER > 0
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #endif
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92
93 #include <machine/bus.h>
94
95 #include <dev/ic/hmereg.h>
96 #include <dev/ic/hmevar.h>
97
98 void hme_start __P((struct ifnet *));
99 void hme_stop __P((struct hme_softc *));
100 int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
101 void hme_tick __P((void *));
102 void hme_watchdog __P((struct ifnet *));
103 void hme_shutdown __P((void *));
104 void hme_init __P((struct hme_softc *));
105 void hme_meminit __P((struct hme_softc *));
106 void hme_mifinit __P((struct hme_softc *));
107 void hme_reset __P((struct hme_softc *));
108 void hme_setladrf __P((struct hme_softc *));
109
110 /* MII methods & callbacks */
111 static int hme_mii_readreg __P((struct device *, int, int));
112 static void hme_mii_writereg __P((struct device *, int, int, int));
113 static void hme_mii_statchg __P((struct device *));
114
115 int hme_mediachange __P((struct ifnet *));
116 void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
117
118 struct mbuf *hme_get __P((struct hme_softc *, int, int));
119 int hme_put __P((struct hme_softc *, int, struct mbuf *));
120 void hme_read __P((struct hme_softc *, int, int));
121 int hme_eint __P((struct hme_softc *, u_int));
122 int hme_rint __P((struct hme_softc *));
123 int hme_tint __P((struct hme_softc *));
124
125 static int ether_cmp __P((u_char *, u_char *));
126
127 /* Default buffer copy routines */
128 void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
129 void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
130 void hme_zerobuf_contig __P((struct hme_softc *, int, int));
131
132
133 void
134 hme_config(sc)
135 struct hme_softc *sc;
136 {
137 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
138 struct mii_data *mii = &sc->sc_mii;
139 struct mii_softc *child;
140 bus_dma_tag_t dmatag = sc->sc_dmatag;
141 bus_dma_segment_t seg;
142 bus_size_t size;
143 int rseg, error;
144
145 /*
146 * HME common initialization.
147 *
148 * hme_softc fields that must be initialized by the front-end:
149 *
150 * the bus tag:
151 * sc_bustag
152 *
153 * the dma bus tag:
154 * sc_dmatag
155 *
156 * the bus handles:
157 * sc_seb (Shared Ethernet Block registers)
158 * sc_erx (Receiver Unit registers)
159 * sc_etx (Transmitter Unit registers)
160 * sc_mac (MAC registers)
161 * sc_mif (Managment Interface registers)
162 *
163 * the maximum bus burst size:
164 * sc_burst
165 *
166 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
167 * rb_membase, rb_dmabase)
168 *
169 * the local Ethernet address:
170 * sc_enaddr
171 *
172 */
173
174 /* Make sure the chip is stopped. */
175 hme_stop(sc);
176
177
178 /*
179 * Allocate descriptors and buffers
180 * XXX - do all this differently.. and more configurably,
181 * eg. use things as `dma_load_mbuf()' on transmit,
182 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
183 * all the time) on the reveiver side.
184 *
185 * Note: receive buffers must be 64-byte aligned.
186 * Also, apparently, the buffers must extend to a DMA burst
187 * boundary beyond the maximum packet size.
188 */
189 #define _HME_NDESC 128
190 #define _HME_BUFSZ 1600
191
192 /* Note: the # of descriptors must be a multiple of 16 */
193 sc->sc_rb.rb_ntbuf = _HME_NDESC;
194 sc->sc_rb.rb_nrbuf = _HME_NDESC;
195
196 /*
197 * Allocate DMA capable memory
198 * Buffer descriptors must be aligned on a 2048 byte boundary;
199 * take this into account when calculating the size. Note that
200 * the maximum number of descriptors (256) occupies 2048 bytes,
201 * so we allocate that much regardless of _HME_NDESC.
202 */
203 size = 2048 + /* TX descriptors */
204 2048 + /* RX descriptors */
205 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
206 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
207
208 /* Allocate DMA buffer */
209 if ((error = bus_dmamem_alloc(dmatag, size,
210 2048, 0,
211 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
212 printf("%s: DMA buffer alloc error %d\n",
213 sc->sc_dev.dv_xname, error);
214 return;
215 }
216
217 /* Map DMA memory in CPU addressable space */
218 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
219 &sc->sc_rb.rb_membase,
220 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
221 printf("%s: DMA buffer map error %d\n",
222 sc->sc_dev.dv_xname, error);
223 bus_dmamap_unload(dmatag, sc->sc_dmamap);
224 bus_dmamem_free(dmatag, &seg, rseg);
225 return;
226 }
227
228 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
229 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
230 printf("%s: DMA map create error %d\n",
231 sc->sc_dev.dv_xname, error);
232 return;
233 }
234
235 /* Load the buffer */
236 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
237 sc->sc_rb.rb_membase, size, NULL,
238 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
239 printf("%s: DMA buffer map load error %d\n",
240 sc->sc_dev.dv_xname, error);
241 bus_dmamem_free(dmatag, &seg, rseg);
242 return;
243 }
244 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
245
246 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
247 ether_sprintf(sc->sc_enaddr));
248
249 /* Initialize ifnet structure. */
250 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
251 ifp->if_softc = sc;
252 ifp->if_start = hme_start;
253 ifp->if_ioctl = hme_ioctl;
254 ifp->if_watchdog = hme_watchdog;
255 ifp->if_flags =
256 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
257 IFQ_SET_READY(&ifp->if_snd);
258
259 /* Initialize ifmedia structures and MII info */
260 mii->mii_ifp = ifp;
261 mii->mii_readreg = hme_mii_readreg;
262 mii->mii_writereg = hme_mii_writereg;
263 mii->mii_statchg = hme_mii_statchg;
264
265 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
266
267 hme_mifinit(sc);
268
269 mii_attach(&sc->sc_dev, mii, 0xffffffff,
270 MII_PHY_ANY, MII_OFFSET_ANY, 0);
271
272 child = LIST_FIRST(&mii->mii_phys);
273 if (child == NULL) {
274 /* No PHY attached */
275 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
276 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
277 } else {
278 /*
279 * Walk along the list of attached MII devices and
280 * establish an `MII instance' to `phy number'
281 * mapping. We'll use this mapping in media change
282 * requests to determine which phy to use to program
283 * the MIF configuration register.
284 */
285 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
286 /*
287 * Note: we support just two PHYs: the built-in
288 * internal device and an external on the MII
289 * connector.
290 */
291 if (child->mii_phy > 1 || child->mii_inst > 1) {
292 printf("%s: cannot accomodate MII device %s"
293 " at phy %d, instance %d\n",
294 sc->sc_dev.dv_xname,
295 child->mii_dev.dv_xname,
296 child->mii_phy, child->mii_inst);
297 continue;
298 }
299
300 sc->sc_phys[child->mii_inst] = child->mii_phy;
301 }
302
303 /*
304 * XXX - we can really do the following ONLY if the
305 * phy indeed has the auto negotiation capability!!
306 */
307 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
308 }
309
310 /* claim 802.1q capability */
311 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
312
313 /* Attach the interface. */
314 if_attach(ifp);
315 ether_ifattach(ifp, sc->sc_enaddr);
316
317 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
318 if (sc->sc_sh == NULL)
319 panic("hme_config: can't establish shutdownhook");
320
321 #if 0
322 printf("%s: %d receive buffers, %d transmit buffers\n",
323 sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
324 sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
325 M_WAITOK);
326 sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
327 M_WAITOK);
328 #endif
329
330 #if NRND > 0
331 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
332 RND_TYPE_NET, 0);
333 #endif
334
335 callout_init(&sc->sc_tick_ch);
336 }
337
338 void
339 hme_tick(arg)
340 void *arg;
341 {
342 struct hme_softc *sc = arg;
343 int s;
344
345 s = splnet();
346 mii_tick(&sc->sc_mii);
347 splx(s);
348
349 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
350 }
351
352 void
353 hme_reset(sc)
354 struct hme_softc *sc;
355 {
356 int s;
357
358 s = splnet();
359 hme_init(sc);
360 splx(s);
361 }
362
363 void
364 hme_stop(sc)
365 struct hme_softc *sc;
366 {
367 bus_space_tag_t t = sc->sc_bustag;
368 bus_space_handle_t seb = sc->sc_seb;
369 int n;
370
371 callout_stop(&sc->sc_tick_ch);
372 mii_down(&sc->sc_mii);
373
374 /* Reset transmitter and receiver */
375 bus_space_write_4(t, seb, HME_SEBI_RESET,
376 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
377
378 for (n = 0; n < 20; n++) {
379 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
380 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
381 return;
382 DELAY(20);
383 }
384
385 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
386 }
387
388 void
389 hme_meminit(sc)
390 struct hme_softc *sc;
391 {
392 bus_addr_t txbufdma, rxbufdma;
393 bus_addr_t dma;
394 caddr_t p;
395 unsigned int ntbuf, nrbuf, i;
396 struct hme_ring *hr = &sc->sc_rb;
397
398 p = hr->rb_membase;
399 dma = hr->rb_dmabase;
400
401 ntbuf = hr->rb_ntbuf;
402 nrbuf = hr->rb_nrbuf;
403
404 /*
405 * Allocate transmit descriptors
406 */
407 hr->rb_txd = p;
408 hr->rb_txddma = dma;
409 p += ntbuf * HME_XD_SIZE;
410 dma += ntbuf * HME_XD_SIZE;
411 /* We have reserved descriptor space until the next 2048 byte boundary.*/
412 dma = (bus_addr_t)roundup((u_long)dma, 2048);
413 p = (caddr_t)roundup((u_long)p, 2048);
414
415 /*
416 * Allocate receive descriptors
417 */
418 hr->rb_rxd = p;
419 hr->rb_rxddma = dma;
420 p += nrbuf * HME_XD_SIZE;
421 dma += nrbuf * HME_XD_SIZE;
422 /* Again move forward to the next 2048 byte boundary.*/
423 dma = (bus_addr_t)roundup((u_long)dma, 2048);
424 p = (caddr_t)roundup((u_long)p, 2048);
425
426
427 /*
428 * Allocate transmit buffers
429 */
430 hr->rb_txbuf = p;
431 txbufdma = dma;
432 p += ntbuf * _HME_BUFSZ;
433 dma += ntbuf * _HME_BUFSZ;
434
435 /*
436 * Allocate receive buffers
437 */
438 hr->rb_rxbuf = p;
439 rxbufdma = dma;
440 p += nrbuf * _HME_BUFSZ;
441 dma += nrbuf * _HME_BUFSZ;
442
443 /*
444 * Initialize transmit buffer descriptors
445 */
446 for (i = 0; i < ntbuf; i++) {
447 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
448 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
449 }
450
451 /*
452 * Initialize receive buffer descriptors
453 */
454 for (i = 0; i < nrbuf; i++) {
455 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
456 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
457 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
458 }
459
460 hr->rb_tdhead = hr->rb_tdtail = 0;
461 hr->rb_td_nbusy = 0;
462 hr->rb_rdtail = 0;
463 }
464
465 /*
466 * Initialization of interface; set up initialization block
467 * and transmit/receive descriptor rings.
468 */
469 void
470 hme_init(sc)
471 struct hme_softc *sc;
472 {
473 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
474 bus_space_tag_t t = sc->sc_bustag;
475 bus_space_handle_t seb = sc->sc_seb;
476 bus_space_handle_t etx = sc->sc_etx;
477 bus_space_handle_t erx = sc->sc_erx;
478 bus_space_handle_t mac = sc->sc_mac;
479 bus_space_handle_t mif = sc->sc_mif;
480 u_int8_t *ea;
481 u_int32_t v;
482
483 /*
484 * Initialization sequence. The numbered steps below correspond
485 * to the sequence outlined in section 6.3.5.1 in the Ethernet
486 * Channel Engine manual (part of the PCIO manual).
487 * See also the STP2002-STQ document from Sun Microsystems.
488 */
489
490 /* step 1 & 2. Reset the Ethernet Channel */
491 hme_stop(sc);
492
493 /* Re-initialize the MIF */
494 hme_mifinit(sc);
495
496 /* Call MI reset function if any */
497 if (sc->sc_hwreset)
498 (*sc->sc_hwreset)(sc);
499
500 #if 0
501 /* Mask all MIF interrupts, just in case */
502 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
503 #endif
504
505 /* step 3. Setup data structures in host memory */
506 hme_meminit(sc);
507
508 /* step 4. TX MAC registers & counters */
509 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
510 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
511 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
512 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
513 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
514 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
515 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
516 ETHER_MAX_LEN);
517
518 /* Load station MAC address */
519 ea = sc->sc_enaddr;
520 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
521 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
522 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
523
524 /*
525 * Init seed for backoff
526 * (source suggested by manual: low 10 bits of MAC address)
527 */
528 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
529 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
530
531
532 /* Note: Accepting power-on default for other MAC registers here.. */
533
534
535 /* step 5. RX MAC registers & counters */
536 hme_setladrf(sc);
537
538 /* step 6 & 7. Program Descriptor Ring Base Addresses */
539 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
540 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
541
542 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
543 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
544 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
545 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
546 ETHER_MAX_LEN);
547
548
549 /* step 8. Global Configuration & Interrupt Mask */
550 bus_space_write_4(t, seb, HME_SEBI_IMASK,
551 ~(
552 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
553 HME_SEB_STAT_HOSTTOTX |
554 HME_SEB_STAT_RXTOHOST |
555 HME_SEB_STAT_TXALL |
556 HME_SEB_STAT_TXPERR |
557 HME_SEB_STAT_RCNTEXP |
558 HME_SEB_STAT_ALL_ERRORS ));
559
560 switch (sc->sc_burst) {
561 default:
562 v = 0;
563 break;
564 case 16:
565 v = HME_SEB_CFG_BURST16;
566 break;
567 case 32:
568 v = HME_SEB_CFG_BURST32;
569 break;
570 case 64:
571 v = HME_SEB_CFG_BURST64;
572 break;
573 }
574 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
575
576 /* step 9. ETX Configuration: use mostly default values */
577
578 /* Enable DMA */
579 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
580 v |= HME_ETX_CFG_DMAENABLE;
581 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
582
583 /* Transmit Descriptor ring size: in increments of 16 */
584 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
585
586
587 /* step 10. ERX Configuration */
588 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
589
590 /* Encode Receive Descriptor ring size: four possible values */
591 switch (_HME_NDESC /*XXX*/) {
592 case 32:
593 v |= HME_ERX_CFG_RINGSIZE32;
594 break;
595 case 64:
596 v |= HME_ERX_CFG_RINGSIZE64;
597 break;
598 case 128:
599 v |= HME_ERX_CFG_RINGSIZE128;
600 break;
601 case 256:
602 v |= HME_ERX_CFG_RINGSIZE256;
603 break;
604 default:
605 printf("hme: invalid Receive Descriptor ring size\n");
606 break;
607 }
608
609 /* Enable DMA */
610 v |= HME_ERX_CFG_DMAENABLE;
611 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
612
613 /* step 11. XIF Configuration */
614 v = bus_space_read_4(t, mac, HME_MACI_XIF);
615 v |= HME_MAC_XIF_OE;
616 /* If an external transceiver is connected, enable its MII drivers */
617 if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
618 v |= HME_MAC_XIF_MIIENABLE;
619 bus_space_write_4(t, mac, HME_MACI_XIF, v);
620
621
622 /* step 12. RX_MAC Configuration Register */
623 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
624 v |= HME_MAC_RXCFG_ENABLE;
625 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
626
627 /* step 13. TX_MAC Configuration Register */
628 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
629 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
630 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
631
632 /* step 14. Issue Transmit Pending command */
633
634 /* Call MI initialization function if any */
635 if (sc->sc_hwinit)
636 (*sc->sc_hwinit)(sc);
637
638 /* Set the current media. */
639 mii_mediachg(&sc->sc_mii);
640
641 /* Start the one second timer. */
642 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
643
644 ifp->if_flags |= IFF_RUNNING;
645 ifp->if_flags &= ~IFF_OACTIVE;
646 ifp->if_timer = 0;
647 hme_start(ifp);
648 }
649
650 /*
651 * Compare two Ether/802 addresses for equality, inlined and unrolled for
652 * speed.
653 */
654 static __inline__ int
655 ether_cmp(a, b)
656 u_char *a, *b;
657 {
658
659 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
660 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
661 return (0);
662 return (1);
663 }
664
665
666 /*
667 * Routine to copy from mbuf chain to transmit buffer in
668 * network buffer memory.
669 * Returns the amount of data copied.
670 */
671 int
672 hme_put(sc, ri, m)
673 struct hme_softc *sc;
674 int ri; /* Ring index */
675 struct mbuf *m;
676 {
677 struct mbuf *n;
678 int len, tlen = 0;
679 caddr_t bp;
680
681 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
682 for (; m; m = n) {
683 len = m->m_len;
684 if (len == 0) {
685 MFREE(m, n);
686 continue;
687 }
688 memcpy(bp, mtod(m, caddr_t), len);
689 bp += len;
690 tlen += len;
691 MFREE(m, n);
692 }
693 return (tlen);
694 }
695
696 /*
697 * Pull data off an interface.
698 * Len is length of data, with local net header stripped.
699 * We copy the data into mbufs. When full cluster sized units are present
700 * we copy into clusters.
701 */
702 struct mbuf *
703 hme_get(sc, ri, totlen)
704 struct hme_softc *sc;
705 int ri, totlen;
706 {
707 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
708 struct mbuf *m, *m0, *newm;
709 caddr_t bp;
710 int len;
711
712 MGETHDR(m0, M_DONTWAIT, MT_DATA);
713 if (m0 == 0)
714 return (0);
715 m0->m_pkthdr.rcvif = ifp;
716 m0->m_pkthdr.len = totlen;
717 len = MHLEN;
718 m = m0;
719
720 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
721
722 while (totlen > 0) {
723 if (totlen >= MINCLSIZE) {
724 MCLGET(m, M_DONTWAIT);
725 if ((m->m_flags & M_EXT) == 0)
726 goto bad;
727 len = MCLBYTES;
728 }
729
730 if (m == m0) {
731 caddr_t newdata = (caddr_t)
732 ALIGN(m->m_data + sizeof(struct ether_header)) -
733 sizeof(struct ether_header);
734 len -= newdata - m->m_data;
735 m->m_data = newdata;
736 }
737
738 m->m_len = len = min(totlen, len);
739 memcpy(mtod(m, caddr_t), bp, len);
740 bp += len;
741
742 totlen -= len;
743 if (totlen > 0) {
744 MGET(newm, M_DONTWAIT, MT_DATA);
745 if (newm == 0)
746 goto bad;
747 len = MLEN;
748 m = m->m_next = newm;
749 }
750 }
751
752 return (m0);
753
754 bad:
755 m_freem(m0);
756 return (0);
757 }
758
759 /*
760 * Pass a packet to the higher levels.
761 */
762 void
763 hme_read(sc, ix, len)
764 struct hme_softc *sc;
765 int ix, len;
766 {
767 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
768 struct mbuf *m;
769
770 if (len <= sizeof(struct ether_header) ||
771 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
772 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
773 ETHERMTU + sizeof(struct ether_header))) {
774 #ifdef HMEDEBUG
775 printf("%s: invalid packet size %d; dropping\n",
776 sc->sc_dev.dv_xname, len);
777 #endif
778 ifp->if_ierrors++;
779 return;
780 }
781
782 /* Pull packet off interface. */
783 m = hme_get(sc, ix, len);
784 if (m == 0) {
785 ifp->if_ierrors++;
786 return;
787 }
788
789 ifp->if_ipackets++;
790
791 #if NBPFILTER > 0
792 /*
793 * Check if there's a BPF listener on this interface.
794 * If so, hand off the raw packet to BPF.
795 */
796 if (ifp->if_bpf)
797 bpf_mtap(ifp->if_bpf, m);
798 #endif
799
800 /* Pass the packet up. */
801 (*ifp->if_input)(ifp, m);
802 }
803
804 void
805 hme_start(ifp)
806 struct ifnet *ifp;
807 {
808 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
809 caddr_t txd = sc->sc_rb.rb_txd;
810 struct mbuf *m;
811 unsigned int ri, len;
812 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
813
814 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
815 return;
816
817 ri = sc->sc_rb.rb_tdhead;
818
819 for (;;) {
820 IFQ_DEQUEUE(&ifp->if_snd, m);
821 if (m == 0)
822 break;
823
824 #if NBPFILTER > 0
825 /*
826 * If BPF is listening on this interface, let it see the
827 * packet before we commit it to the wire.
828 */
829 if (ifp->if_bpf)
830 bpf_mtap(ifp->if_bpf, m);
831 #endif
832
833 /*
834 * Copy the mbuf chain into the transmit buffer.
835 */
836 len = hme_put(sc, ri, m);
837
838 /*
839 * Initialize transmit registers and start transmission
840 */
841 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
842 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
843 HME_XD_ENCODE_TSIZE(len));
844
845 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
846 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
847 HME_ETX_TP_DMAWAKEUP);
848
849 if (++ri == ntbuf)
850 ri = 0;
851
852 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
853 ifp->if_flags |= IFF_OACTIVE;
854 break;
855 }
856 }
857
858 sc->sc_rb.rb_tdhead = ri;
859 }
860
861 /*
862 * Transmit interrupt.
863 */
864 int
865 hme_tint(sc)
866 struct hme_softc *sc;
867 {
868 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
869 bus_space_tag_t t = sc->sc_bustag;
870 bus_space_handle_t mac = sc->sc_mac;
871 unsigned int ri, txflags;
872
873 /*
874 * Unload collision counters
875 */
876 ifp->if_collisions +=
877 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
878 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
879 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
880 bus_space_read_4(t, mac, HME_MACI_LTCNT);
881
882 /*
883 * then clear the hardware counters.
884 */
885 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
886 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
887 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
888 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
889
890 /* Fetch current position in the transmit ring */
891 ri = sc->sc_rb.rb_tdtail;
892
893 for (;;) {
894 if (sc->sc_rb.rb_td_nbusy <= 0)
895 break;
896
897 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
898
899 if (txflags & HME_XD_OWN)
900 break;
901
902 ifp->if_flags &= ~IFF_OACTIVE;
903 ifp->if_opackets++;
904
905 if (++ri == sc->sc_rb.rb_ntbuf)
906 ri = 0;
907
908 --sc->sc_rb.rb_td_nbusy;
909 }
910
911 /* Update ring */
912 sc->sc_rb.rb_tdtail = ri;
913
914 hme_start(ifp);
915
916 if (sc->sc_rb.rb_td_nbusy == 0)
917 ifp->if_timer = 0;
918
919 return (1);
920 }
921
922 /*
923 * Receive interrupt.
924 */
925 int
926 hme_rint(sc)
927 struct hme_softc *sc;
928 {
929 caddr_t xdr = sc->sc_rb.rb_rxd;
930 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
931 unsigned int ri, len;
932 u_int32_t flags;
933
934 ri = sc->sc_rb.rb_rdtail;
935
936 /*
937 * Process all buffers with valid data.
938 */
939 for (;;) {
940 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
941 if (flags & HME_XD_OWN)
942 break;
943
944 if (flags & HME_XD_OFL) {
945 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
946 sc->sc_dev.dv_xname, ri, flags);
947 } else {
948 len = HME_XD_DECODE_RSIZE(flags);
949 hme_read(sc, ri, len);
950 }
951
952 /* This buffer can be used by the hardware again */
953 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
954 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
955
956 if (++ri == nrbuf)
957 ri = 0;
958 }
959
960 sc->sc_rb.rb_rdtail = ri;
961
962 return (1);
963 }
964
965 int
966 hme_eint(sc, status)
967 struct hme_softc *sc;
968 u_int status;
969 {
970 char bits[128];
971
972 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
973 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
974 return (1);
975 }
976
977 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
978 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
979 return (1);
980 }
981
982 int
983 hme_intr(v)
984 void *v;
985 {
986 struct hme_softc *sc = (struct hme_softc *)v;
987 bus_space_tag_t t = sc->sc_bustag;
988 bus_space_handle_t seb = sc->sc_seb;
989 u_int32_t status;
990 int r = 0;
991
992 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
993
994 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
995 r |= hme_eint(sc, status);
996
997 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
998 r |= hme_tint(sc);
999
1000 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1001 r |= hme_rint(sc);
1002
1003 return (r);
1004 }
1005
1006
1007 void
1008 hme_watchdog(ifp)
1009 struct ifnet *ifp;
1010 {
1011 struct hme_softc *sc = ifp->if_softc;
1012
1013 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1014 ++ifp->if_oerrors;
1015
1016 hme_reset(sc);
1017 }
1018
1019 /*
1020 * Initialize the MII Management Interface
1021 */
1022 void
1023 hme_mifinit(sc)
1024 struct hme_softc *sc;
1025 {
1026 bus_space_tag_t t = sc->sc_bustag;
1027 bus_space_handle_t mif = sc->sc_mif;
1028 u_int32_t v;
1029
1030 /* Configure the MIF in frame mode */
1031 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1032 v &= ~HME_MIF_CFG_BBMODE;
1033 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1034 }
1035
1036 /*
1037 * MII interface
1038 */
1039 static int
1040 hme_mii_readreg(self, phy, reg)
1041 struct device *self;
1042 int phy, reg;
1043 {
1044 struct hme_softc *sc = (void *)self;
1045 bus_space_tag_t t = sc->sc_bustag;
1046 bus_space_handle_t mif = sc->sc_mif;
1047 int n;
1048 u_int32_t v;
1049
1050 /* Select the desired PHY in the MIF configuration register */
1051 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1052 /* Clear PHY select bit */
1053 v &= ~HME_MIF_CFG_PHY;
1054 if (phy == HME_PHYAD_EXTERNAL)
1055 /* Set PHY select bit to get at external device */
1056 v |= HME_MIF_CFG_PHY;
1057 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1058
1059 /* Construct the frame command */
1060 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1061 HME_MIF_FO_TAMSB |
1062 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1063 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1064 (reg << HME_MIF_FO_REGAD_SHIFT);
1065
1066 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1067 for (n = 0; n < 100; n++) {
1068 DELAY(1);
1069 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1070 if (v & HME_MIF_FO_TALSB)
1071 return (v & HME_MIF_FO_DATA);
1072 }
1073
1074 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1075 return (0);
1076 }
1077
1078 static void
1079 hme_mii_writereg(self, phy, reg, val)
1080 struct device *self;
1081 int phy, reg, val;
1082 {
1083 struct hme_softc *sc = (void *)self;
1084 bus_space_tag_t t = sc->sc_bustag;
1085 bus_space_handle_t mif = sc->sc_mif;
1086 int n;
1087 u_int32_t v;
1088
1089 /* Select the desired PHY in the MIF configuration register */
1090 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1091 /* Clear PHY select bit */
1092 v &= ~HME_MIF_CFG_PHY;
1093 if (phy == HME_PHYAD_EXTERNAL)
1094 /* Set PHY select bit to get at external device */
1095 v |= HME_MIF_CFG_PHY;
1096 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1097
1098 /* Construct the frame command */
1099 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1100 HME_MIF_FO_TAMSB |
1101 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1102 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1103 (reg << HME_MIF_FO_REGAD_SHIFT) |
1104 (val & HME_MIF_FO_DATA);
1105
1106 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1107 for (n = 0; n < 100; n++) {
1108 DELAY(1);
1109 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1110 if (v & HME_MIF_FO_TALSB)
1111 return;
1112 }
1113
1114 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1115 }
1116
1117 static void
1118 hme_mii_statchg(dev)
1119 struct device *dev;
1120 {
1121 struct hme_softc *sc = (void *)dev;
1122 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1123 int phy = sc->sc_phys[instance];
1124 bus_space_tag_t t = sc->sc_bustag;
1125 bus_space_handle_t mif = sc->sc_mif;
1126 bus_space_handle_t mac = sc->sc_mac;
1127 u_int32_t v;
1128
1129 #ifdef HMEDEBUG
1130 if (sc->sc_debug)
1131 printf("hme_mii_statchg: status change: phy = %d\n", phy);
1132 #endif
1133
1134 /* Select the current PHY in the MIF configuration register */
1135 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1136 v &= ~HME_MIF_CFG_PHY;
1137 if (phy == HME_PHYAD_EXTERNAL)
1138 v |= HME_MIF_CFG_PHY;
1139 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1140
1141 /* Set the MAC Full Duplex bit appropriately */
1142 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1143 but not otherwise. */
1144 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1145 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1146 v |= HME_MAC_TXCFG_FULLDPLX;
1147 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1148 } else {
1149 v &= ~HME_MAC_TXCFG_FULLDPLX;
1150 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1151 }
1152 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1153
1154 /* If an external transceiver is selected, enable its MII drivers */
1155 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1156 v &= ~HME_MAC_XIF_MIIENABLE;
1157 if (phy == HME_PHYAD_EXTERNAL)
1158 v |= HME_MAC_XIF_MIIENABLE;
1159 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1160 }
1161
1162 int
1163 hme_mediachange(ifp)
1164 struct ifnet *ifp;
1165 {
1166 struct hme_softc *sc = ifp->if_softc;
1167
1168 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1169 return (EINVAL);
1170
1171 return (mii_mediachg(&sc->sc_mii));
1172 }
1173
1174 void
1175 hme_mediastatus(ifp, ifmr)
1176 struct ifnet *ifp;
1177 struct ifmediareq *ifmr;
1178 {
1179 struct hme_softc *sc = ifp->if_softc;
1180
1181 if ((ifp->if_flags & IFF_UP) == 0)
1182 return;
1183
1184 mii_pollstat(&sc->sc_mii);
1185 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1186 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1187 }
1188
1189 /*
1190 * Process an ioctl request.
1191 */
1192 int
1193 hme_ioctl(ifp, cmd, data)
1194 struct ifnet *ifp;
1195 u_long cmd;
1196 caddr_t data;
1197 {
1198 struct hme_softc *sc = ifp->if_softc;
1199 struct ifaddr *ifa = (struct ifaddr *)data;
1200 struct ifreq *ifr = (struct ifreq *)data;
1201 int s, error = 0;
1202
1203 s = splnet();
1204
1205 switch (cmd) {
1206
1207 case SIOCSIFADDR:
1208 ifp->if_flags |= IFF_UP;
1209
1210 switch (ifa->ifa_addr->sa_family) {
1211 #ifdef INET
1212 case AF_INET:
1213 hme_init(sc);
1214 arp_ifinit(ifp, ifa);
1215 break;
1216 #endif
1217 #ifdef NS
1218 case AF_NS:
1219 {
1220 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1221
1222 if (ns_nullhost(*ina))
1223 ina->x_host =
1224 *(union ns_host *)LLADDR(ifp->if_sadl);
1225 else {
1226 memcpy(LLADDR(ifp->if_sadl),
1227 ina->x_host.c_host, sizeof(sc->sc_enaddr));
1228 }
1229 /* Set new address. */
1230 hme_init(sc);
1231 break;
1232 }
1233 #endif
1234 default:
1235 hme_init(sc);
1236 break;
1237 }
1238 break;
1239
1240 case SIOCSIFFLAGS:
1241 if ((ifp->if_flags & IFF_UP) == 0 &&
1242 (ifp->if_flags & IFF_RUNNING) != 0) {
1243 /*
1244 * If interface is marked down and it is running, then
1245 * stop it.
1246 */
1247 hme_stop(sc);
1248 ifp->if_flags &= ~IFF_RUNNING;
1249 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1250 (ifp->if_flags & IFF_RUNNING) == 0) {
1251 /*
1252 * If interface is marked up and it is stopped, then
1253 * start it.
1254 */
1255 hme_init(sc);
1256 } else if ((ifp->if_flags & IFF_UP) != 0) {
1257 /*
1258 * Reset the interface to pick up changes in any other
1259 * flags that affect hardware registers.
1260 */
1261 /*hme_stop(sc);*/
1262 hme_init(sc);
1263 }
1264 #ifdef HMEDEBUG
1265 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1266 #endif
1267 break;
1268
1269 case SIOCADDMULTI:
1270 case SIOCDELMULTI:
1271 error = (cmd == SIOCADDMULTI) ?
1272 ether_addmulti(ifr, &sc->sc_ethercom) :
1273 ether_delmulti(ifr, &sc->sc_ethercom);
1274
1275 if (error == ENETRESET) {
1276 /*
1277 * Multicast list has changed; set the hardware filter
1278 * accordingly.
1279 */
1280 hme_setladrf(sc);
1281 error = 0;
1282 }
1283 break;
1284
1285 case SIOCGIFMEDIA:
1286 case SIOCSIFMEDIA:
1287 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1288 break;
1289
1290 default:
1291 error = EINVAL;
1292 break;
1293 }
1294
1295 splx(s);
1296 return (error);
1297 }
1298
1299 void
1300 hme_shutdown(arg)
1301 void *arg;
1302 {
1303
1304 hme_stop((struct hme_softc *)arg);
1305 }
1306
1307 /*
1308 * Set up the logical address filter.
1309 */
1310 void
1311 hme_setladrf(sc)
1312 struct hme_softc *sc;
1313 {
1314 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1315 struct ether_multi *enm;
1316 struct ether_multistep step;
1317 struct ethercom *ec = &sc->sc_ethercom;
1318 bus_space_tag_t t = sc->sc_bustag;
1319 bus_space_handle_t mac = sc->sc_mac;
1320 u_char *cp;
1321 u_int32_t crc;
1322 u_int32_t hash[4];
1323 u_int32_t v;
1324 int len;
1325
1326 /* Clear hash table */
1327 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1328
1329 /* Get current RX configuration */
1330 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1331
1332 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1333 /* Turn on promiscuous mode; turn off the hash filter */
1334 v |= HME_MAC_RXCFG_PMISC;
1335 v &= ~HME_MAC_RXCFG_HENABLE;
1336 ifp->if_flags |= IFF_ALLMULTI;
1337 goto chipit;
1338 }
1339
1340 /* Turn off promiscuous mode; turn on the hash filter */
1341 v &= ~HME_MAC_RXCFG_PMISC;
1342 v |= HME_MAC_RXCFG_HENABLE;
1343
1344 /*
1345 * Set up multicast address filter by passing all multicast addresses
1346 * through a crc generator, and then using the high order 6 bits as an
1347 * index into the 64 bit logical address filter. The high order bit
1348 * selects the word, while the rest of the bits select the bit within
1349 * the word.
1350 */
1351
1352 ETHER_FIRST_MULTI(step, ec, enm);
1353 while (enm != NULL) {
1354 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1355 /*
1356 * We must listen to a range of multicast addresses.
1357 * For now, just accept all multicasts, rather than
1358 * trying to set only those filter bits needed to match
1359 * the range. (At this time, the only use of address
1360 * ranges is for IP multicast routing, for which the
1361 * range is big enough to require all bits set.)
1362 */
1363 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1364 ifp->if_flags |= IFF_ALLMULTI;
1365 goto chipit;
1366 }
1367
1368 cp = enm->enm_addrlo;
1369 crc = 0xffffffff;
1370 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1371 int octet = *cp++;
1372 int i;
1373
1374 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1375 for (i = 0; i < 8; i++) {
1376 if ((crc & 1) ^ (octet & 1)) {
1377 crc >>= 1;
1378 crc ^= MC_POLY_LE;
1379 } else {
1380 crc >>= 1;
1381 }
1382 octet >>= 1;
1383 }
1384 }
1385 /* Just want the 6 most significant bits. */
1386 crc >>= 26;
1387
1388 /* Set the corresponding bit in the filter. */
1389 hash[crc >> 4] |= 1 << (crc & 0xf);
1390
1391 ETHER_NEXT_MULTI(step, enm);
1392 }
1393
1394 ifp->if_flags &= ~IFF_ALLMULTI;
1395
1396 chipit:
1397 /* Now load the hash table into the chip */
1398 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1399 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1400 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1401 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1402 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1403 }
1404
1405 /*
1406 * Routines for accessing the transmit and receive buffers.
1407 * The various CPU and adapter configurations supported by this
1408 * driver require three different access methods for buffers
1409 * and descriptors:
1410 * (1) contig (contiguous data; no padding),
1411 * (2) gap2 (two bytes of data followed by two bytes of padding),
1412 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1413 */
1414
1415 #if 0
1416 /*
1417 * contig: contiguous data with no padding.
1418 *
1419 * Buffers may have any alignment.
1420 */
1421
1422 void
1423 hme_copytobuf_contig(sc, from, ri, len)
1424 struct hme_softc *sc;
1425 void *from;
1426 int ri, len;
1427 {
1428 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1429
1430 /*
1431 * Just call memcpy() to do the work.
1432 */
1433 memcpy(buf, from, len);
1434 }
1435
1436 void
1437 hme_copyfrombuf_contig(sc, to, boff, len)
1438 struct hme_softc *sc;
1439 void *to;
1440 int boff, len;
1441 {
1442 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1443
1444 /*
1445 * Just call memcpy() to do the work.
1446 */
1447 memcpy(to, buf, len);
1448 }
1449 #endif
1450