hme.c revision 1.33 1 /* $NetBSD: hme.c,v 1.33 2003/02/13 12:10:20 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.33 2003/02/13 12:10:20 pk Exp $");
45
46 #define HMEDEBUG
47
48 #include "opt_inet.h"
49 #include "opt_ns.h"
50 #include "bpfilter.h"
51 #include "rnd.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/socket.h>
59 #include <sys/device.h>
60 #include <sys/malloc.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #if NRND > 0
64 #include <sys/rnd.h>
65 #endif
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_inarp.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #endif
79
80 #ifdef NS
81 #include <netns/ns.h>
82 #include <netns/ns_if.h>
83 #endif
84
85 #if NBPFILTER > 0
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #endif
89
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92
93 #include <machine/bus.h>
94
95 #include <dev/ic/hmereg.h>
96 #include <dev/ic/hmevar.h>
97
98 void hme_start __P((struct ifnet *));
99 void hme_stop __P((struct hme_softc *));
100 int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
101 void hme_tick __P((void *));
102 void hme_watchdog __P((struct ifnet *));
103 void hme_shutdown __P((void *));
104 void hme_init __P((struct hme_softc *));
105 void hme_meminit __P((struct hme_softc *));
106 void hme_mifinit __P((struct hme_softc *));
107 void hme_reset __P((struct hme_softc *));
108 void hme_setladrf __P((struct hme_softc *));
109
110 /* MII methods & callbacks */
111 static int hme_mii_readreg __P((struct device *, int, int));
112 static void hme_mii_writereg __P((struct device *, int, int, int));
113 static void hme_mii_statchg __P((struct device *));
114
115 int hme_mediachange __P((struct ifnet *));
116 void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
117
118 struct mbuf *hme_get __P((struct hme_softc *, int, int));
119 int hme_put __P((struct hme_softc *, int, struct mbuf *));
120 void hme_read __P((struct hme_softc *, int, int));
121 int hme_eint __P((struct hme_softc *, u_int));
122 int hme_rint __P((struct hme_softc *));
123 int hme_tint __P((struct hme_softc *));
124
125 static int ether_cmp __P((u_char *, u_char *));
126
127 /* Default buffer copy routines */
128 void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
129 void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
130 void hme_zerobuf_contig __P((struct hme_softc *, int, int));
131
132
133 void
134 hme_config(sc)
135 struct hme_softc *sc;
136 {
137 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
138 struct mii_data *mii = &sc->sc_mii;
139 struct mii_softc *child;
140 bus_dma_tag_t dmatag = sc->sc_dmatag;
141 bus_dma_segment_t seg;
142 bus_size_t size;
143 int rseg, error;
144
145 /*
146 * HME common initialization.
147 *
148 * hme_softc fields that must be initialized by the front-end:
149 *
150 * the bus tag:
151 * sc_bustag
152 *
153 * the dma bus tag:
154 * sc_dmatag
155 *
156 * the bus handles:
157 * sc_seb (Shared Ethernet Block registers)
158 * sc_erx (Receiver Unit registers)
159 * sc_etx (Transmitter Unit registers)
160 * sc_mac (MAC registers)
161 * sc_mif (Managment Interface registers)
162 *
163 * the maximum bus burst size:
164 * sc_burst
165 *
166 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
167 * rb_membase, rb_dmabase)
168 *
169 * the local Ethernet address:
170 * sc_enaddr
171 *
172 */
173
174 /* Make sure the chip is stopped. */
175 hme_stop(sc);
176
177
178 /*
179 * Allocate descriptors and buffers
180 * XXX - do all this differently.. and more configurably,
181 * eg. use things as `dma_load_mbuf()' on transmit,
182 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
183 * all the time) on the reveiver side.
184 *
185 * Note: receive buffers must be 64-byte aligned.
186 * Also, apparently, the buffers must extend to a DMA burst
187 * boundary beyond the maximum packet size.
188 */
189 #define _HME_NDESC 128
190 #define _HME_BUFSZ 1600
191
192 /* Note: the # of descriptors must be a multiple of 16 */
193 sc->sc_rb.rb_ntbuf = _HME_NDESC;
194 sc->sc_rb.rb_nrbuf = _HME_NDESC;
195
196 /*
197 * Allocate DMA capable memory
198 * Buffer descriptors must be aligned on a 2048 byte boundary;
199 * take this into account when calculating the size. Note that
200 * the maximum number of descriptors (256) occupies 2048 bytes,
201 * so we allocate that much regardless of _HME_NDESC.
202 */
203 size = 2048 + /* TX descriptors */
204 2048 + /* RX descriptors */
205 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
206 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
207
208 /* Allocate DMA buffer */
209 if ((error = bus_dmamem_alloc(dmatag, size,
210 2048, 0,
211 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
212 printf("%s: DMA buffer alloc error %d\n",
213 sc->sc_dev.dv_xname, error);
214 return;
215 }
216
217 /* Map DMA memory in CPU addressable space */
218 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
219 &sc->sc_rb.rb_membase,
220 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
221 printf("%s: DMA buffer map error %d\n",
222 sc->sc_dev.dv_xname, error);
223 bus_dmamap_unload(dmatag, sc->sc_dmamap);
224 bus_dmamem_free(dmatag, &seg, rseg);
225 return;
226 }
227
228 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
229 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
230 printf("%s: DMA map create error %d\n",
231 sc->sc_dev.dv_xname, error);
232 return;
233 }
234
235 /* Load the buffer */
236 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
237 sc->sc_rb.rb_membase, size, NULL,
238 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
239 printf("%s: DMA buffer map load error %d\n",
240 sc->sc_dev.dv_xname, error);
241 bus_dmamem_free(dmatag, &seg, rseg);
242 return;
243 }
244 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
245
246 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
247 ether_sprintf(sc->sc_enaddr));
248
249 /* Initialize ifnet structure. */
250 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
251 ifp->if_softc = sc;
252 ifp->if_start = hme_start;
253 ifp->if_ioctl = hme_ioctl;
254 ifp->if_watchdog = hme_watchdog;
255 ifp->if_flags =
256 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
257 IFQ_SET_READY(&ifp->if_snd);
258
259 /* Initialize ifmedia structures and MII info */
260 mii->mii_ifp = ifp;
261 mii->mii_readreg = hme_mii_readreg;
262 mii->mii_writereg = hme_mii_writereg;
263 mii->mii_statchg = hme_mii_statchg;
264
265 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
266
267 hme_mifinit(sc);
268
269 mii_attach(&sc->sc_dev, mii, 0xffffffff,
270 MII_PHY_ANY, MII_OFFSET_ANY, 0);
271
272 child = LIST_FIRST(&mii->mii_phys);
273 if (child == NULL) {
274 /* No PHY attached */
275 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
276 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
277 } else {
278 /*
279 * Walk along the list of attached MII devices and
280 * establish an `MII instance' to `phy number'
281 * mapping. We'll use this mapping in media change
282 * requests to determine which phy to use to program
283 * the MIF configuration register.
284 */
285 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
286 /*
287 * Note: we support just two PHYs: the built-in
288 * internal device and an external on the MII
289 * connector.
290 */
291 if (child->mii_phy > 1 || child->mii_inst > 1) {
292 printf("%s: cannot accomodate MII device %s"
293 " at phy %d, instance %d\n",
294 sc->sc_dev.dv_xname,
295 child->mii_dev.dv_xname,
296 child->mii_phy, child->mii_inst);
297 continue;
298 }
299
300 sc->sc_phys[child->mii_inst] = child->mii_phy;
301 }
302
303 /*
304 * XXX - we can really do the following ONLY if the
305 * phy indeed has the auto negotiation capability!!
306 */
307 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
308 }
309
310 /* claim 802.1q capability */
311 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
312
313 /* Attach the interface. */
314 if_attach(ifp);
315 ether_ifattach(ifp, sc->sc_enaddr);
316
317 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
318 if (sc->sc_sh == NULL)
319 panic("hme_config: can't establish shutdownhook");
320
321 #if NRND > 0
322 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
323 RND_TYPE_NET, 0);
324 #endif
325
326 callout_init(&sc->sc_tick_ch);
327 }
328
329 void
330 hme_tick(arg)
331 void *arg;
332 {
333 struct hme_softc *sc = arg;
334 int s;
335
336 s = splnet();
337 mii_tick(&sc->sc_mii);
338 splx(s);
339
340 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
341 }
342
343 void
344 hme_reset(sc)
345 struct hme_softc *sc;
346 {
347 int s;
348
349 s = splnet();
350 hme_init(sc);
351 splx(s);
352 }
353
354 void
355 hme_stop(sc)
356 struct hme_softc *sc;
357 {
358 bus_space_tag_t t = sc->sc_bustag;
359 bus_space_handle_t seb = sc->sc_seb;
360 int n;
361
362 callout_stop(&sc->sc_tick_ch);
363 mii_down(&sc->sc_mii);
364
365 /* Mask all interrupts */
366 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
367
368 /* Reset transmitter and receiver */
369 bus_space_write_4(t, seb, HME_SEBI_RESET,
370 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
371
372 for (n = 0; n < 20; n++) {
373 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
374 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
375 return;
376 DELAY(20);
377 }
378
379 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
380 }
381
382 void
383 hme_meminit(sc)
384 struct hme_softc *sc;
385 {
386 bus_addr_t txbufdma, rxbufdma;
387 bus_addr_t dma;
388 caddr_t p;
389 unsigned int ntbuf, nrbuf, i;
390 struct hme_ring *hr = &sc->sc_rb;
391
392 p = hr->rb_membase;
393 dma = hr->rb_dmabase;
394
395 ntbuf = hr->rb_ntbuf;
396 nrbuf = hr->rb_nrbuf;
397
398 /*
399 * Allocate transmit descriptors
400 */
401 hr->rb_txd = p;
402 hr->rb_txddma = dma;
403 p += ntbuf * HME_XD_SIZE;
404 dma += ntbuf * HME_XD_SIZE;
405 /* We have reserved descriptor space until the next 2048 byte boundary.*/
406 dma = (bus_addr_t)roundup((u_long)dma, 2048);
407 p = (caddr_t)roundup((u_long)p, 2048);
408
409 /*
410 * Allocate receive descriptors
411 */
412 hr->rb_rxd = p;
413 hr->rb_rxddma = dma;
414 p += nrbuf * HME_XD_SIZE;
415 dma += nrbuf * HME_XD_SIZE;
416 /* Again move forward to the next 2048 byte boundary.*/
417 dma = (bus_addr_t)roundup((u_long)dma, 2048);
418 p = (caddr_t)roundup((u_long)p, 2048);
419
420
421 /*
422 * Allocate transmit buffers
423 */
424 hr->rb_txbuf = p;
425 txbufdma = dma;
426 p += ntbuf * _HME_BUFSZ;
427 dma += ntbuf * _HME_BUFSZ;
428
429 /*
430 * Allocate receive buffers
431 */
432 hr->rb_rxbuf = p;
433 rxbufdma = dma;
434 p += nrbuf * _HME_BUFSZ;
435 dma += nrbuf * _HME_BUFSZ;
436
437 /*
438 * Initialize transmit buffer descriptors
439 */
440 for (i = 0; i < ntbuf; i++) {
441 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
442 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
443 }
444
445 /*
446 * Initialize receive buffer descriptors
447 */
448 for (i = 0; i < nrbuf; i++) {
449 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
450 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
451 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
452 }
453
454 hr->rb_tdhead = hr->rb_tdtail = 0;
455 hr->rb_td_nbusy = 0;
456 hr->rb_rdtail = 0;
457 }
458
459 /*
460 * Initialization of interface; set up initialization block
461 * and transmit/receive descriptor rings.
462 */
463 void
464 hme_init(sc)
465 struct hme_softc *sc;
466 {
467 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468 bus_space_tag_t t = sc->sc_bustag;
469 bus_space_handle_t seb = sc->sc_seb;
470 bus_space_handle_t etx = sc->sc_etx;
471 bus_space_handle_t erx = sc->sc_erx;
472 bus_space_handle_t mac = sc->sc_mac;
473 bus_space_handle_t mif = sc->sc_mif;
474 u_int8_t *ea;
475 u_int32_t v;
476
477 /*
478 * Initialization sequence. The numbered steps below correspond
479 * to the sequence outlined in section 6.3.5.1 in the Ethernet
480 * Channel Engine manual (part of the PCIO manual).
481 * See also the STP2002-STQ document from Sun Microsystems.
482 */
483
484 /* step 1 & 2. Reset the Ethernet Channel */
485 hme_stop(sc);
486
487 /* Re-initialize the MIF */
488 hme_mifinit(sc);
489
490 /* Call MI reset function if any */
491 if (sc->sc_hwreset)
492 (*sc->sc_hwreset)(sc);
493
494 #if 0
495 /* Mask all MIF interrupts, just in case */
496 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
497 #endif
498
499 /* step 3. Setup data structures in host memory */
500 hme_meminit(sc);
501
502 /* step 4. TX MAC registers & counters */
503 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
504 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
505 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
506 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
507 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
508 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
509 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
510 ETHER_MAX_LEN);
511
512 /* Load station MAC address */
513 ea = sc->sc_enaddr;
514 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
515 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
516 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
517
518 /*
519 * Init seed for backoff
520 * (source suggested by manual: low 10 bits of MAC address)
521 */
522 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
523 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
524
525
526 /* Note: Accepting power-on default for other MAC registers here.. */
527
528
529 /* step 5. RX MAC registers & counters */
530 hme_setladrf(sc);
531
532 /* step 6 & 7. Program Descriptor Ring Base Addresses */
533 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
534 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
535
536 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
537 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
538 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
539 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
540 ETHER_MAX_LEN);
541
542
543 /* step 8. Global Configuration & Interrupt Mask */
544 bus_space_write_4(t, seb, HME_SEBI_IMASK,
545 ~(
546 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
547 HME_SEB_STAT_HOSTTOTX |
548 HME_SEB_STAT_RXTOHOST |
549 HME_SEB_STAT_TXALL |
550 HME_SEB_STAT_TXPERR |
551 HME_SEB_STAT_RCNTEXP |
552 /*HME_SEB_STAT_MIFIRQ |*/
553 HME_SEB_STAT_ALL_ERRORS ));
554
555 switch (sc->sc_burst) {
556 default:
557 v = 0;
558 break;
559 case 16:
560 v = HME_SEB_CFG_BURST16;
561 break;
562 case 32:
563 v = HME_SEB_CFG_BURST32;
564 break;
565 case 64:
566 v = HME_SEB_CFG_BURST64;
567 break;
568 }
569 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
570
571 /* step 9. ETX Configuration: use mostly default values */
572
573 /* Enable DMA */
574 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
575 v |= HME_ETX_CFG_DMAENABLE;
576 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
577
578 /* Transmit Descriptor ring size: in increments of 16 */
579 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
580
581
582 /* step 10. ERX Configuration */
583 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
584
585 /* Encode Receive Descriptor ring size: four possible values */
586 switch (_HME_NDESC /*XXX*/) {
587 case 32:
588 v |= HME_ERX_CFG_RINGSIZE32;
589 break;
590 case 64:
591 v |= HME_ERX_CFG_RINGSIZE64;
592 break;
593 case 128:
594 v |= HME_ERX_CFG_RINGSIZE128;
595 break;
596 case 256:
597 v |= HME_ERX_CFG_RINGSIZE256;
598 break;
599 default:
600 printf("hme: invalid Receive Descriptor ring size\n");
601 break;
602 }
603
604 /* Enable DMA */
605 v |= HME_ERX_CFG_DMAENABLE;
606 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
607
608 /* step 11. XIF Configuration */
609 v = bus_space_read_4(t, mac, HME_MACI_XIF);
610 v |= HME_MAC_XIF_OE;
611 /* If an external transceiver is connected, enable its MII drivers */
612 if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
613 v |= HME_MAC_XIF_MIIENABLE;
614 bus_space_write_4(t, mac, HME_MACI_XIF, v);
615
616
617 /* step 12. RX_MAC Configuration Register */
618 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
619 v |= HME_MAC_RXCFG_ENABLE;
620 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
621
622 /* step 13. TX_MAC Configuration Register */
623 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
624 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
625 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
626
627 /* step 14. Issue Transmit Pending command */
628
629 /* Call MI initialization function if any */
630 if (sc->sc_hwinit)
631 (*sc->sc_hwinit)(sc);
632
633 /* Set the current media. */
634 mii_mediachg(&sc->sc_mii);
635
636 /* Start the one second timer. */
637 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
638
639 ifp->if_flags |= IFF_RUNNING;
640 ifp->if_flags &= ~IFF_OACTIVE;
641 ifp->if_timer = 0;
642 hme_start(ifp);
643 }
644
645 /*
646 * Compare two Ether/802 addresses for equality, inlined and unrolled for
647 * speed.
648 */
649 static __inline__ int
650 ether_cmp(a, b)
651 u_char *a, *b;
652 {
653
654 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
655 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
656 return (0);
657 return (1);
658 }
659
660
661 /*
662 * Routine to copy from mbuf chain to transmit buffer in
663 * network buffer memory.
664 * Returns the amount of data copied.
665 */
666 int
667 hme_put(sc, ri, m)
668 struct hme_softc *sc;
669 int ri; /* Ring index */
670 struct mbuf *m;
671 {
672 struct mbuf *n;
673 int len, tlen = 0;
674 caddr_t bp;
675
676 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
677 for (; m; m = n) {
678 len = m->m_len;
679 if (len == 0) {
680 MFREE(m, n);
681 continue;
682 }
683 memcpy(bp, mtod(m, caddr_t), len);
684 bp += len;
685 tlen += len;
686 MFREE(m, n);
687 }
688 return (tlen);
689 }
690
691 /*
692 * Pull data off an interface.
693 * Len is length of data, with local net header stripped.
694 * We copy the data into mbufs. When full cluster sized units are present
695 * we copy into clusters.
696 */
697 struct mbuf *
698 hme_get(sc, ri, totlen)
699 struct hme_softc *sc;
700 int ri, totlen;
701 {
702 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
703 struct mbuf *m, *m0, *newm;
704 caddr_t bp;
705 int len;
706
707 MGETHDR(m0, M_DONTWAIT, MT_DATA);
708 if (m0 == 0)
709 return (0);
710 m0->m_pkthdr.rcvif = ifp;
711 m0->m_pkthdr.len = totlen;
712 len = MHLEN;
713 m = m0;
714
715 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
716
717 while (totlen > 0) {
718 if (totlen >= MINCLSIZE) {
719 MCLGET(m, M_DONTWAIT);
720 if ((m->m_flags & M_EXT) == 0)
721 goto bad;
722 len = MCLBYTES;
723 }
724
725 if (m == m0) {
726 caddr_t newdata = (caddr_t)
727 ALIGN(m->m_data + sizeof(struct ether_header)) -
728 sizeof(struct ether_header);
729 len -= newdata - m->m_data;
730 m->m_data = newdata;
731 }
732
733 m->m_len = len = min(totlen, len);
734 memcpy(mtod(m, caddr_t), bp, len);
735 bp += len;
736
737 totlen -= len;
738 if (totlen > 0) {
739 MGET(newm, M_DONTWAIT, MT_DATA);
740 if (newm == 0)
741 goto bad;
742 len = MLEN;
743 m = m->m_next = newm;
744 }
745 }
746
747 return (m0);
748
749 bad:
750 m_freem(m0);
751 return (0);
752 }
753
754 /*
755 * Pass a packet to the higher levels.
756 */
757 void
758 hme_read(sc, ix, len)
759 struct hme_softc *sc;
760 int ix, len;
761 {
762 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
763 struct mbuf *m;
764
765 if (len <= sizeof(struct ether_header) ||
766 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
767 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
768 ETHERMTU + sizeof(struct ether_header))) {
769 #ifdef HMEDEBUG
770 printf("%s: invalid packet size %d; dropping\n",
771 sc->sc_dev.dv_xname, len);
772 #endif
773 ifp->if_ierrors++;
774 return;
775 }
776
777 /* Pull packet off interface. */
778 m = hme_get(sc, ix, len);
779 if (m == 0) {
780 ifp->if_ierrors++;
781 return;
782 }
783
784 ifp->if_ipackets++;
785
786 #if NBPFILTER > 0
787 /*
788 * Check if there's a BPF listener on this interface.
789 * If so, hand off the raw packet to BPF.
790 */
791 if (ifp->if_bpf)
792 bpf_mtap(ifp->if_bpf, m);
793 #endif
794
795 /* Pass the packet up. */
796 (*ifp->if_input)(ifp, m);
797 }
798
799 void
800 hme_start(ifp)
801 struct ifnet *ifp;
802 {
803 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
804 caddr_t txd = sc->sc_rb.rb_txd;
805 struct mbuf *m;
806 unsigned int ri, len;
807 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
808
809 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
810 return;
811
812 ri = sc->sc_rb.rb_tdhead;
813
814 for (;;) {
815 IFQ_DEQUEUE(&ifp->if_snd, m);
816 if (m == 0)
817 break;
818
819 #if NBPFILTER > 0
820 /*
821 * If BPF is listening on this interface, let it see the
822 * packet before we commit it to the wire.
823 */
824 if (ifp->if_bpf)
825 bpf_mtap(ifp->if_bpf, m);
826 #endif
827
828 /*
829 * Copy the mbuf chain into the transmit buffer.
830 */
831 len = hme_put(sc, ri, m);
832
833 /*
834 * Initialize transmit registers and start transmission
835 */
836 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
837 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
838 HME_XD_ENCODE_TSIZE(len));
839
840 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
841 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
842 HME_ETX_TP_DMAWAKEUP);
843
844 if (++ri == ntbuf)
845 ri = 0;
846
847 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
848 ifp->if_flags |= IFF_OACTIVE;
849 break;
850 }
851 }
852
853 sc->sc_rb.rb_tdhead = ri;
854 }
855
856 /*
857 * Transmit interrupt.
858 */
859 int
860 hme_tint(sc)
861 struct hme_softc *sc;
862 {
863 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
864 bus_space_tag_t t = sc->sc_bustag;
865 bus_space_handle_t mac = sc->sc_mac;
866 unsigned int ri, txflags;
867
868 /*
869 * Unload collision counters
870 */
871 ifp->if_collisions +=
872 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
873 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
874 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
875 bus_space_read_4(t, mac, HME_MACI_LTCNT);
876
877 /*
878 * then clear the hardware counters.
879 */
880 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
881 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
882 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
883 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
884
885 /* Fetch current position in the transmit ring */
886 ri = sc->sc_rb.rb_tdtail;
887
888 for (;;) {
889 if (sc->sc_rb.rb_td_nbusy <= 0)
890 break;
891
892 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
893
894 if (txflags & HME_XD_OWN)
895 break;
896
897 ifp->if_flags &= ~IFF_OACTIVE;
898 ifp->if_opackets++;
899
900 if (++ri == sc->sc_rb.rb_ntbuf)
901 ri = 0;
902
903 --sc->sc_rb.rb_td_nbusy;
904 }
905
906 /* Update ring */
907 sc->sc_rb.rb_tdtail = ri;
908
909 hme_start(ifp);
910
911 if (sc->sc_rb.rb_td_nbusy == 0)
912 ifp->if_timer = 0;
913
914 return (1);
915 }
916
917 /*
918 * Receive interrupt.
919 */
920 int
921 hme_rint(sc)
922 struct hme_softc *sc;
923 {
924 caddr_t xdr = sc->sc_rb.rb_rxd;
925 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
926 unsigned int ri, len;
927 u_int32_t flags;
928
929 ri = sc->sc_rb.rb_rdtail;
930
931 /*
932 * Process all buffers with valid data.
933 */
934 for (;;) {
935 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
936 if (flags & HME_XD_OWN)
937 break;
938
939 if (flags & HME_XD_OFL) {
940 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
941 sc->sc_dev.dv_xname, ri, flags);
942 } else {
943 len = HME_XD_DECODE_RSIZE(flags);
944 hme_read(sc, ri, len);
945 }
946
947 /* This buffer can be used by the hardware again */
948 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
949 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
950
951 if (++ri == nrbuf)
952 ri = 0;
953 }
954
955 sc->sc_rb.rb_rdtail = ri;
956
957 return (1);
958 }
959
960 int
961 hme_eint(sc, status)
962 struct hme_softc *sc;
963 u_int status;
964 {
965 char bits[128];
966
967 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
968 bus_space_tag_t t = sc->sc_bustag;
969 bus_space_handle_t mif = sc->sc_mif;
970 u_int32_t cf, st, sm;
971 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
972 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
973 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
974 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
975 sc->sc_dev.dv_xname, cf, st, sm);
976 return (1);
977 }
978
979 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
980 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
981 return (1);
982 }
983
984 int
985 hme_intr(v)
986 void *v;
987 {
988 struct hme_softc *sc = (struct hme_softc *)v;
989 bus_space_tag_t t = sc->sc_bustag;
990 bus_space_handle_t seb = sc->sc_seb;
991 u_int32_t status;
992 int r = 0;
993
994 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
995
996 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
997 r |= hme_eint(sc, status);
998
999 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1000 r |= hme_tint(sc);
1001
1002 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1003 r |= hme_rint(sc);
1004
1005 return (r);
1006 }
1007
1008
1009 void
1010 hme_watchdog(ifp)
1011 struct ifnet *ifp;
1012 {
1013 struct hme_softc *sc = ifp->if_softc;
1014
1015 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1016 ++ifp->if_oerrors;
1017
1018 hme_reset(sc);
1019 }
1020
1021 /*
1022 * Initialize the MII Management Interface
1023 */
1024 void
1025 hme_mifinit(sc)
1026 struct hme_softc *sc;
1027 {
1028 bus_space_tag_t t = sc->sc_bustag;
1029 bus_space_handle_t mif = sc->sc_mif;
1030 int instance, phy;
1031 u_int32_t v;
1032
1033 if (sc->sc_media.ifm_cur != NULL) {
1034 instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1035 phy = sc->sc_phys[instance];
1036 } else
1037 /* No media set yet, pick phy arbitrarily.. */
1038 phy = HME_PHYAD_EXTERNAL;
1039
1040 /* Configure the MIF in frame mode, no poll, current phy select */
1041 v = 0;
1042 if (phy == HME_PHYAD_EXTERNAL)
1043 v |= HME_MIF_CFG_PHY;
1044 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1045 }
1046
1047 /*
1048 * MII interface
1049 */
1050 static int
1051 hme_mii_readreg(self, phy, reg)
1052 struct device *self;
1053 int phy, reg;
1054 {
1055 struct hme_softc *sc = (void *)self;
1056 bus_space_tag_t t = sc->sc_bustag;
1057 bus_space_handle_t mif = sc->sc_mif;
1058 u_int32_t v, mifi_cfg;
1059 int n;
1060
1061 /* We can at most have two PHYs */
1062 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1063 return (0);
1064
1065 /* Select the desired PHY in the MIF configuration register */
1066 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1067 v &= ~HME_MIF_CFG_PHY;
1068 if (phy == HME_PHYAD_EXTERNAL)
1069 v |= HME_MIF_CFG_PHY;
1070 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1071
1072 #if 0
1073 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1074 /*
1075 * Check whether a transceiver is connected by testing
1076 * the MIF configuration register's MDI_X bits. Note that
1077 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1078 */
1079 mif_mdi_bit = 1 << (8 + (1 - phy));
1080 delay(100);
1081 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1082 if ((v & mif_mdi_bit) == 0)
1083 return (0);
1084 #endif
1085
1086 /* Construct the frame command */
1087 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1088 HME_MIF_FO_TAMSB |
1089 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1090 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1091 (reg << HME_MIF_FO_REGAD_SHIFT);
1092
1093 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1094 for (n = 0; n < 100; n++) {
1095 DELAY(1);
1096 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1097 if (v & HME_MIF_FO_TALSB) {
1098 v &= HME_MIF_FO_DATA;
1099 goto out;
1100 }
1101 }
1102
1103 v = 0;
1104 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1105
1106 out:
1107 /* Restore MIFI_CFG register */
1108 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1109 return (v);
1110 }
1111
1112 static void
1113 hme_mii_writereg(self, phy, reg, val)
1114 struct device *self;
1115 int phy, reg, val;
1116 {
1117 struct hme_softc *sc = (void *)self;
1118 bus_space_tag_t t = sc->sc_bustag;
1119 bus_space_handle_t mif = sc->sc_mif;
1120 u_int32_t v, mifi_cfg;
1121 int n;
1122
1123 /* We can at most have two PHYs */
1124 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1125 return;
1126
1127 /* Select the desired PHY in the MIF configuration register */
1128 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1129 v &= ~HME_MIF_CFG_PHY;
1130 if (phy == HME_PHYAD_EXTERNAL)
1131 v |= HME_MIF_CFG_PHY;
1132 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1133
1134 #if 0
1135 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1136 /*
1137 * Check whether a transceiver is connected by testing
1138 * the MIF configuration register's MDI_X bits. Note that
1139 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1140 */
1141 mif_mdi_bit = 1 << (8 + (1 - phy));
1142 delay(100);
1143 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1144 if ((v & mif_mdi_bit) == 0)
1145 return;
1146 #endif
1147
1148 /* Construct the frame command */
1149 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1150 HME_MIF_FO_TAMSB |
1151 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1152 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1153 (reg << HME_MIF_FO_REGAD_SHIFT) |
1154 (val & HME_MIF_FO_DATA);
1155
1156 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1157 for (n = 0; n < 100; n++) {
1158 DELAY(1);
1159 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1160 if (v & HME_MIF_FO_TALSB)
1161 goto out;
1162 }
1163
1164 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1165 out:
1166 /* Restore MIFI_CFG register */
1167 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1168 }
1169
1170 static void
1171 hme_mii_statchg(dev)
1172 struct device *dev;
1173 {
1174 struct hme_softc *sc = (void *)dev;
1175 bus_space_tag_t t = sc->sc_bustag;
1176 bus_space_handle_t mac = sc->sc_mac;
1177 u_int32_t v;
1178
1179 #ifdef HMEDEBUG
1180 if (sc->sc_debug)
1181 printf("hme_mii_statchg: status change\n");
1182 #endif
1183
1184 /* Set the MAC Full Duplex bit appropriately */
1185 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1186 but not otherwise. */
1187 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1188 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1189 v |= HME_MAC_TXCFG_FULLDPLX;
1190 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1191 } else {
1192 v &= ~HME_MAC_TXCFG_FULLDPLX;
1193 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1194 }
1195 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1196 }
1197
1198 int
1199 hme_mediachange(ifp)
1200 struct ifnet *ifp;
1201 {
1202 struct hme_softc *sc = ifp->if_softc;
1203 bus_space_tag_t t = sc->sc_bustag;
1204 bus_space_handle_t mif = sc->sc_mif;
1205 bus_space_handle_t mac = sc->sc_mac;
1206 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1207 int phy = sc->sc_phys[instance];
1208 u_int32_t v;
1209
1210 #ifdef HMEDEBUG
1211 if (sc->sc_debug)
1212 printf("hme_mediachange: phy = %d\n", phy);
1213 #endif
1214 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1215 return (EINVAL);
1216
1217 /* Select the current PHY in the MIF configuration register */
1218 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1219 v &= ~HME_MIF_CFG_PHY;
1220 if (phy == HME_PHYAD_EXTERNAL)
1221 v |= HME_MIF_CFG_PHY;
1222 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1223
1224 /* If an external transceiver is selected, enable its MII drivers */
1225 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1226 v &= ~HME_MAC_XIF_MIIENABLE;
1227 if (phy == HME_PHYAD_EXTERNAL)
1228 v |= HME_MAC_XIF_MIIENABLE;
1229 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1230
1231 return (mii_mediachg(&sc->sc_mii));
1232 }
1233
1234 void
1235 hme_mediastatus(ifp, ifmr)
1236 struct ifnet *ifp;
1237 struct ifmediareq *ifmr;
1238 {
1239 struct hme_softc *sc = ifp->if_softc;
1240
1241 if ((ifp->if_flags & IFF_UP) == 0)
1242 return;
1243
1244 mii_pollstat(&sc->sc_mii);
1245 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1246 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1247 }
1248
1249 /*
1250 * Process an ioctl request.
1251 */
1252 int
1253 hme_ioctl(ifp, cmd, data)
1254 struct ifnet *ifp;
1255 u_long cmd;
1256 caddr_t data;
1257 {
1258 struct hme_softc *sc = ifp->if_softc;
1259 struct ifaddr *ifa = (struct ifaddr *)data;
1260 struct ifreq *ifr = (struct ifreq *)data;
1261 int s, error = 0;
1262
1263 s = splnet();
1264
1265 switch (cmd) {
1266
1267 case SIOCSIFADDR:
1268 ifp->if_flags |= IFF_UP;
1269
1270 switch (ifa->ifa_addr->sa_family) {
1271 #ifdef INET
1272 case AF_INET:
1273 hme_init(sc);
1274 arp_ifinit(ifp, ifa);
1275 break;
1276 #endif
1277 #ifdef NS
1278 case AF_NS:
1279 {
1280 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1281
1282 if (ns_nullhost(*ina))
1283 ina->x_host =
1284 *(union ns_host *)LLADDR(ifp->if_sadl);
1285 else {
1286 memcpy(LLADDR(ifp->if_sadl),
1287 ina->x_host.c_host, sizeof(sc->sc_enaddr));
1288 }
1289 /* Set new address. */
1290 hme_init(sc);
1291 break;
1292 }
1293 #endif
1294 default:
1295 hme_init(sc);
1296 break;
1297 }
1298 break;
1299
1300 case SIOCSIFFLAGS:
1301 if ((ifp->if_flags & IFF_UP) == 0 &&
1302 (ifp->if_flags & IFF_RUNNING) != 0) {
1303 /*
1304 * If interface is marked down and it is running, then
1305 * stop it.
1306 */
1307 hme_stop(sc);
1308 ifp->if_flags &= ~IFF_RUNNING;
1309 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1310 (ifp->if_flags & IFF_RUNNING) == 0) {
1311 /*
1312 * If interface is marked up and it is stopped, then
1313 * start it.
1314 */
1315 hme_init(sc);
1316 } else if ((ifp->if_flags & IFF_UP) != 0) {
1317 /*
1318 * Reset the interface to pick up changes in any other
1319 * flags that affect hardware registers.
1320 */
1321 /*hme_stop(sc);*/
1322 hme_init(sc);
1323 }
1324 #ifdef HMEDEBUG
1325 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1326 #endif
1327 break;
1328
1329 case SIOCADDMULTI:
1330 case SIOCDELMULTI:
1331 error = (cmd == SIOCADDMULTI) ?
1332 ether_addmulti(ifr, &sc->sc_ethercom) :
1333 ether_delmulti(ifr, &sc->sc_ethercom);
1334
1335 if (error == ENETRESET) {
1336 /*
1337 * Multicast list has changed; set the hardware filter
1338 * accordingly.
1339 */
1340 hme_setladrf(sc);
1341 error = 0;
1342 }
1343 break;
1344
1345 case SIOCGIFMEDIA:
1346 case SIOCSIFMEDIA:
1347 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1348 break;
1349
1350 default:
1351 error = EINVAL;
1352 break;
1353 }
1354
1355 splx(s);
1356 return (error);
1357 }
1358
1359 void
1360 hme_shutdown(arg)
1361 void *arg;
1362 {
1363
1364 hme_stop((struct hme_softc *)arg);
1365 }
1366
1367 /*
1368 * Set up the logical address filter.
1369 */
1370 void
1371 hme_setladrf(sc)
1372 struct hme_softc *sc;
1373 {
1374 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1375 struct ether_multi *enm;
1376 struct ether_multistep step;
1377 struct ethercom *ec = &sc->sc_ethercom;
1378 bus_space_tag_t t = sc->sc_bustag;
1379 bus_space_handle_t mac = sc->sc_mac;
1380 u_char *cp;
1381 u_int32_t crc;
1382 u_int32_t hash[4];
1383 u_int32_t v;
1384 int len;
1385
1386 /* Clear hash table */
1387 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1388
1389 /* Get current RX configuration */
1390 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1391
1392 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1393 /* Turn on promiscuous mode; turn off the hash filter */
1394 v |= HME_MAC_RXCFG_PMISC;
1395 v &= ~HME_MAC_RXCFG_HENABLE;
1396 ifp->if_flags |= IFF_ALLMULTI;
1397 goto chipit;
1398 }
1399
1400 /* Turn off promiscuous mode; turn on the hash filter */
1401 v &= ~HME_MAC_RXCFG_PMISC;
1402 v |= HME_MAC_RXCFG_HENABLE;
1403
1404 /*
1405 * Set up multicast address filter by passing all multicast addresses
1406 * through a crc generator, and then using the high order 6 bits as an
1407 * index into the 64 bit logical address filter. The high order bit
1408 * selects the word, while the rest of the bits select the bit within
1409 * the word.
1410 */
1411
1412 ETHER_FIRST_MULTI(step, ec, enm);
1413 while (enm != NULL) {
1414 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1415 /*
1416 * We must listen to a range of multicast addresses.
1417 * For now, just accept all multicasts, rather than
1418 * trying to set only those filter bits needed to match
1419 * the range. (At this time, the only use of address
1420 * ranges is for IP multicast routing, for which the
1421 * range is big enough to require all bits set.)
1422 */
1423 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1424 ifp->if_flags |= IFF_ALLMULTI;
1425 goto chipit;
1426 }
1427
1428 cp = enm->enm_addrlo;
1429 crc = 0xffffffff;
1430 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1431 int octet = *cp++;
1432 int i;
1433
1434 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1435 for (i = 0; i < 8; i++) {
1436 if ((crc & 1) ^ (octet & 1)) {
1437 crc >>= 1;
1438 crc ^= MC_POLY_LE;
1439 } else {
1440 crc >>= 1;
1441 }
1442 octet >>= 1;
1443 }
1444 }
1445 /* Just want the 6 most significant bits. */
1446 crc >>= 26;
1447
1448 /* Set the corresponding bit in the filter. */
1449 hash[crc >> 4] |= 1 << (crc & 0xf);
1450
1451 ETHER_NEXT_MULTI(step, enm);
1452 }
1453
1454 ifp->if_flags &= ~IFF_ALLMULTI;
1455
1456 chipit:
1457 /* Now load the hash table into the chip */
1458 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1459 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1460 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1461 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1462 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1463 }
1464
1465 /*
1466 * Routines for accessing the transmit and receive buffers.
1467 * The various CPU and adapter configurations supported by this
1468 * driver require three different access methods for buffers
1469 * and descriptors:
1470 * (1) contig (contiguous data; no padding),
1471 * (2) gap2 (two bytes of data followed by two bytes of padding),
1472 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1473 */
1474
1475 #if 0
1476 /*
1477 * contig: contiguous data with no padding.
1478 *
1479 * Buffers may have any alignment.
1480 */
1481
1482 void
1483 hme_copytobuf_contig(sc, from, ri, len)
1484 struct hme_softc *sc;
1485 void *from;
1486 int ri, len;
1487 {
1488 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1489
1490 /*
1491 * Just call memcpy() to do the work.
1492 */
1493 memcpy(buf, from, len);
1494 }
1495
1496 void
1497 hme_copyfrombuf_contig(sc, to, boff, len)
1498 struct hme_softc *sc;
1499 void *to;
1500 int boff, len;
1501 {
1502 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1503
1504 /*
1505 * Just call memcpy() to do the work.
1506 */
1507 memcpy(to, buf, len);
1508 }
1509 #endif
1510