hme.c revision 1.48 1 /* $NetBSD: hme.c,v 1.48 2005/02/27 00:27:01 perry Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.48 2005/02/27 00:27:01 perry Exp $");
45
46 /* #define HMEDEBUG */
47
48 #include "opt_inet.h"
49 #include "opt_ns.h"
50 #include "bpfilter.h"
51 #include "rnd.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/socket.h>
59 #include <sys/device.h>
60 #include <sys/malloc.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #if NRND > 0
64 #include <sys/rnd.h>
65 #endif
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_inarp.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #ifdef NS
83 #include <netns/ns.h>
84 #include <netns/ns_if.h>
85 #endif
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #include <net/bpfdesc.h>
90 #endif
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94
95 #include <machine/bus.h>
96
97 #include <dev/ic/hmereg.h>
98 #include <dev/ic/hmevar.h>
99
100 void hme_start(struct ifnet *);
101 void hme_stop(struct hme_softc *);
102 int hme_ioctl(struct ifnet *, u_long, caddr_t);
103 void hme_tick(void *);
104 void hme_watchdog(struct ifnet *);
105 void hme_shutdown(void *);
106 void hme_init(struct hme_softc *);
107 void hme_meminit(struct hme_softc *);
108 void hme_mifinit(struct hme_softc *);
109 void hme_reset(struct hme_softc *);
110 void hme_setladrf(struct hme_softc *);
111
112 /* MII methods & callbacks */
113 static int hme_mii_readreg(struct device *, int, int);
114 static void hme_mii_writereg(struct device *, int, int, int);
115 static void hme_mii_statchg(struct device *);
116
117 int hme_mediachange(struct ifnet *);
118 void hme_mediastatus(struct ifnet *, struct ifmediareq *);
119
120 struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
121 int hme_put(struct hme_softc *, int, struct mbuf *);
122 void hme_read(struct hme_softc *, int, uint32_t);
123 int hme_eint(struct hme_softc *, u_int);
124 int hme_rint(struct hme_softc *);
125 int hme_tint(struct hme_softc *);
126
127 static int ether_cmp(u_char *, u_char *);
128
129 /* Default buffer copy routines */
130 void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
131 void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
132 void hme_zerobuf_contig(struct hme_softc *, int, int);
133
134
135 void
136 hme_config(sc)
137 struct hme_softc *sc;
138 {
139 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
140 struct mii_data *mii = &sc->sc_mii;
141 struct mii_softc *child;
142 bus_dma_tag_t dmatag = sc->sc_dmatag;
143 bus_dma_segment_t seg;
144 bus_size_t size;
145 int rseg, error;
146
147 /*
148 * HME common initialization.
149 *
150 * hme_softc fields that must be initialized by the front-end:
151 *
152 * the bus tag:
153 * sc_bustag
154 *
155 * the DMA bus tag:
156 * sc_dmatag
157 *
158 * the bus handles:
159 * sc_seb (Shared Ethernet Block registers)
160 * sc_erx (Receiver Unit registers)
161 * sc_etx (Transmitter Unit registers)
162 * sc_mac (MAC registers)
163 * sc_mif (Management Interface registers)
164 *
165 * the maximum bus burst size:
166 * sc_burst
167 *
168 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
169 * rb_membase, rb_dmabase)
170 *
171 * the local Ethernet address:
172 * sc_enaddr
173 *
174 */
175
176 /* Make sure the chip is stopped. */
177 hme_stop(sc);
178
179
180 /*
181 * Allocate descriptors and buffers
182 * XXX - do all this differently.. and more configurably,
183 * eg. use things as `dma_load_mbuf()' on transmit,
184 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
185 * all the time) on the receiver side.
186 *
187 * Note: receive buffers must be 64-byte aligned.
188 * Also, apparently, the buffers must extend to a DMA burst
189 * boundary beyond the maximum packet size.
190 */
191 #define _HME_NDESC 128
192 #define _HME_BUFSZ 1600
193
194 /* Note: the # of descriptors must be a multiple of 16 */
195 sc->sc_rb.rb_ntbuf = _HME_NDESC;
196 sc->sc_rb.rb_nrbuf = _HME_NDESC;
197
198 /*
199 * Allocate DMA capable memory
200 * Buffer descriptors must be aligned on a 2048 byte boundary;
201 * take this into account when calculating the size. Note that
202 * the maximum number of descriptors (256) occupies 2048 bytes,
203 * so we allocate that much regardless of _HME_NDESC.
204 */
205 size = 2048 + /* TX descriptors */
206 2048 + /* RX descriptors */
207 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
208 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
209
210 /* Allocate DMA buffer */
211 if ((error = bus_dmamem_alloc(dmatag, size,
212 2048, 0,
213 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
214 printf("%s: DMA buffer alloc error %d\n",
215 sc->sc_dev.dv_xname, error);
216 return;
217 }
218
219 /* Map DMA memory in CPU addressable space */
220 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
221 &sc->sc_rb.rb_membase,
222 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
223 printf("%s: DMA buffer map error %d\n",
224 sc->sc_dev.dv_xname, error);
225 bus_dmamap_unload(dmatag, sc->sc_dmamap);
226 bus_dmamem_free(dmatag, &seg, rseg);
227 return;
228 }
229
230 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
231 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
232 printf("%s: DMA map create error %d\n",
233 sc->sc_dev.dv_xname, error);
234 return;
235 }
236
237 /* Load the buffer */
238 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
239 sc->sc_rb.rb_membase, size, NULL,
240 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
241 printf("%s: DMA buffer map load error %d\n",
242 sc->sc_dev.dv_xname, error);
243 bus_dmamem_free(dmatag, &seg, rseg);
244 return;
245 }
246 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
247
248 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
249 ether_sprintf(sc->sc_enaddr));
250
251 /* Initialize ifnet structure. */
252 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
253 ifp->if_softc = sc;
254 ifp->if_start = hme_start;
255 ifp->if_ioctl = hme_ioctl;
256 ifp->if_watchdog = hme_watchdog;
257 ifp->if_flags =
258 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
259 sc->sc_if_flags = ifp->if_flags;
260 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
261 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
262 IFQ_SET_READY(&ifp->if_snd);
263
264 /* Initialize ifmedia structures and MII info */
265 mii->mii_ifp = ifp;
266 mii->mii_readreg = hme_mii_readreg;
267 mii->mii_writereg = hme_mii_writereg;
268 mii->mii_statchg = hme_mii_statchg;
269
270 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
271
272 hme_mifinit(sc);
273
274 mii_attach(&sc->sc_dev, mii, 0xffffffff,
275 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
276
277 child = LIST_FIRST(&mii->mii_phys);
278 if (child == NULL) {
279 /* No PHY attached */
280 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
281 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
282 } else {
283 /*
284 * Walk along the list of attached MII devices and
285 * establish an `MII instance' to `phy number'
286 * mapping. We'll use this mapping in media change
287 * requests to determine which phy to use to program
288 * the MIF configuration register.
289 */
290 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
291 /*
292 * Note: we support just two PHYs: the built-in
293 * internal device and an external on the MII
294 * connector.
295 */
296 if (child->mii_phy > 1 || child->mii_inst > 1) {
297 printf("%s: cannot accomodate MII device %s"
298 " at phy %d, instance %d\n",
299 sc->sc_dev.dv_xname,
300 child->mii_dev.dv_xname,
301 child->mii_phy, child->mii_inst);
302 continue;
303 }
304
305 sc->sc_phys[child->mii_inst] = child->mii_phy;
306 }
307
308 /*
309 * XXX - we can really do the following ONLY if the
310 * phy indeed has the auto negotiation capability!!
311 */
312 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
313 }
314
315 /* claim 802.1q capability */
316 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
317
318 /* Attach the interface. */
319 if_attach(ifp);
320 ether_ifattach(ifp, sc->sc_enaddr);
321
322 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
323 if (sc->sc_sh == NULL)
324 panic("hme_config: can't establish shutdownhook");
325
326 #if NRND > 0
327 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
328 RND_TYPE_NET, 0);
329 #endif
330
331 callout_init(&sc->sc_tick_ch);
332 }
333
334 void
335 hme_tick(arg)
336 void *arg;
337 {
338 struct hme_softc *sc = arg;
339 int s;
340
341 s = splnet();
342 mii_tick(&sc->sc_mii);
343 splx(s);
344
345 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
346 }
347
348 void
349 hme_reset(sc)
350 struct hme_softc *sc;
351 {
352 int s;
353
354 s = splnet();
355 hme_init(sc);
356 splx(s);
357 }
358
359 void
360 hme_stop(sc)
361 struct hme_softc *sc;
362 {
363 bus_space_tag_t t = sc->sc_bustag;
364 bus_space_handle_t seb = sc->sc_seb;
365 int n;
366
367 callout_stop(&sc->sc_tick_ch);
368 mii_down(&sc->sc_mii);
369
370 /* Mask all interrupts */
371 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
372
373 /* Reset transmitter and receiver */
374 bus_space_write_4(t, seb, HME_SEBI_RESET,
375 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
376
377 for (n = 0; n < 20; n++) {
378 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
379 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
380 return;
381 DELAY(20);
382 }
383
384 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
385 }
386
387 void
388 hme_meminit(sc)
389 struct hme_softc *sc;
390 {
391 bus_addr_t txbufdma, rxbufdma;
392 bus_addr_t dma;
393 caddr_t p;
394 unsigned int ntbuf, nrbuf, i;
395 struct hme_ring *hr = &sc->sc_rb;
396
397 p = hr->rb_membase;
398 dma = hr->rb_dmabase;
399
400 ntbuf = hr->rb_ntbuf;
401 nrbuf = hr->rb_nrbuf;
402
403 /*
404 * Allocate transmit descriptors
405 */
406 hr->rb_txd = p;
407 hr->rb_txddma = dma;
408 p += ntbuf * HME_XD_SIZE;
409 dma += ntbuf * HME_XD_SIZE;
410 /* We have reserved descriptor space until the next 2048 byte boundary.*/
411 dma = (bus_addr_t)roundup((u_long)dma, 2048);
412 p = (caddr_t)roundup((u_long)p, 2048);
413
414 /*
415 * Allocate receive descriptors
416 */
417 hr->rb_rxd = p;
418 hr->rb_rxddma = dma;
419 p += nrbuf * HME_XD_SIZE;
420 dma += nrbuf * HME_XD_SIZE;
421 /* Again move forward to the next 2048 byte boundary.*/
422 dma = (bus_addr_t)roundup((u_long)dma, 2048);
423 p = (caddr_t)roundup((u_long)p, 2048);
424
425
426 /*
427 * Allocate transmit buffers
428 */
429 hr->rb_txbuf = p;
430 txbufdma = dma;
431 p += ntbuf * _HME_BUFSZ;
432 dma += ntbuf * _HME_BUFSZ;
433
434 /*
435 * Allocate receive buffers
436 */
437 hr->rb_rxbuf = p;
438 rxbufdma = dma;
439 p += nrbuf * _HME_BUFSZ;
440 dma += nrbuf * _HME_BUFSZ;
441
442 /*
443 * Initialize transmit buffer descriptors
444 */
445 for (i = 0; i < ntbuf; i++) {
446 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
447 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
448 }
449
450 /*
451 * Initialize receive buffer descriptors
452 */
453 for (i = 0; i < nrbuf; i++) {
454 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
455 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
456 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
457 }
458
459 hr->rb_tdhead = hr->rb_tdtail = 0;
460 hr->rb_td_nbusy = 0;
461 hr->rb_rdtail = 0;
462 }
463
464 /*
465 * Initialization of interface; set up initialization block
466 * and transmit/receive descriptor rings.
467 */
468 void
469 hme_init(sc)
470 struct hme_softc *sc;
471 {
472 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
473 bus_space_tag_t t = sc->sc_bustag;
474 bus_space_handle_t seb = sc->sc_seb;
475 bus_space_handle_t etx = sc->sc_etx;
476 bus_space_handle_t erx = sc->sc_erx;
477 bus_space_handle_t mac = sc->sc_mac;
478 u_int8_t *ea;
479 u_int32_t v;
480
481 /*
482 * Initialization sequence. The numbered steps below correspond
483 * to the sequence outlined in section 6.3.5.1 in the Ethernet
484 * Channel Engine manual (part of the PCIO manual).
485 * See also the STP2002-STQ document from Sun Microsystems.
486 */
487
488 /* step 1 & 2. Reset the Ethernet Channel */
489 hme_stop(sc);
490
491 /* Re-initialize the MIF */
492 hme_mifinit(sc);
493
494 /* Call MI reset function if any */
495 if (sc->sc_hwreset)
496 (*sc->sc_hwreset)(sc);
497
498 #if 0
499 /* Mask all MIF interrupts, just in case */
500 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
501 #endif
502
503 /* step 3. Setup data structures in host memory */
504 hme_meminit(sc);
505
506 /* step 4. TX MAC registers & counters */
507 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
508 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
509 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
510 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
511 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
512 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
513 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
514 ETHER_MAX_LEN);
515 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
516
517 /* Load station MAC address */
518 ea = sc->sc_enaddr;
519 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
520 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
521 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
522
523 /*
524 * Init seed for backoff
525 * (source suggested by manual: low 10 bits of MAC address)
526 */
527 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
528 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
529
530
531 /* Note: Accepting power-on default for other MAC registers here.. */
532
533
534 /* step 5. RX MAC registers & counters */
535 hme_setladrf(sc);
536
537 /* step 6 & 7. Program Descriptor Ring Base Addresses */
538 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
539 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
540
541 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
542 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
543 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
544 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN :
545 ETHER_MAX_LEN);
546
547
548 /* step 8. Global Configuration & Interrupt Mask */
549 bus_space_write_4(t, seb, HME_SEBI_IMASK,
550 ~(
551 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
552 HME_SEB_STAT_HOSTTOTX |
553 HME_SEB_STAT_RXTOHOST |
554 HME_SEB_STAT_TXALL |
555 HME_SEB_STAT_TXPERR |
556 HME_SEB_STAT_RCNTEXP |
557 /*HME_SEB_STAT_MIFIRQ |*/
558 HME_SEB_STAT_ALL_ERRORS ));
559
560 switch (sc->sc_burst) {
561 default:
562 v = 0;
563 break;
564 case 16:
565 v = HME_SEB_CFG_BURST16;
566 break;
567 case 32:
568 v = HME_SEB_CFG_BURST32;
569 break;
570 case 64:
571 v = HME_SEB_CFG_BURST64;
572 break;
573 }
574 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
575
576 /* step 9. ETX Configuration: use mostly default values */
577
578 /* Enable DMA */
579 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
580 v |= HME_ETX_CFG_DMAENABLE;
581 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
582
583 /* Transmit Descriptor ring size: in increments of 16 */
584 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
585
586
587 /* step 10. ERX Configuration */
588 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
589
590 /* Encode Receive Descriptor ring size: four possible values */
591 switch (_HME_NDESC /*XXX*/) {
592 case 32:
593 v |= HME_ERX_CFG_RINGSIZE32;
594 break;
595 case 64:
596 v |= HME_ERX_CFG_RINGSIZE64;
597 break;
598 case 128:
599 v |= HME_ERX_CFG_RINGSIZE128;
600 break;
601 case 256:
602 v |= HME_ERX_CFG_RINGSIZE256;
603 break;
604 default:
605 printf("hme: invalid Receive Descriptor ring size\n");
606 break;
607 }
608
609 /* Enable DMA */
610 v |= HME_ERX_CFG_DMAENABLE;
611
612 /* set h/w rx checksum start offset (# of half-words) */
613 v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
614 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
615 ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
616 HME_ERX_CFG_CSUMSTART;
617 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
618
619 /* step 11. XIF Configuration */
620 v = bus_space_read_4(t, mac, HME_MACI_XIF);
621 v |= HME_MAC_XIF_OE;
622 bus_space_write_4(t, mac, HME_MACI_XIF, v);
623
624 /* step 12. RX_MAC Configuration Register */
625 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
626 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
627 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
628
629 /* step 13. TX_MAC Configuration Register */
630 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
631 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
632 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
633
634 /* step 14. Issue Transmit Pending command */
635
636 /* Call MI initialization function if any */
637 if (sc->sc_hwinit)
638 (*sc->sc_hwinit)(sc);
639
640 /* Set the current media. */
641 mii_mediachg(&sc->sc_mii);
642
643 /* Start the one second timer. */
644 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
645
646 ifp->if_flags |= IFF_RUNNING;
647 ifp->if_flags &= ~IFF_OACTIVE;
648 sc->sc_if_flags = ifp->if_flags;
649 ifp->if_timer = 0;
650 hme_start(ifp);
651 }
652
653 /*
654 * Compare two Ether/802 addresses for equality, inlined and unrolled for
655 * speed.
656 */
657 static __inline__ int
658 ether_cmp(a, b)
659 u_char *a, *b;
660 {
661
662 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
663 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
664 return (0);
665 return (1);
666 }
667
668
669 /*
670 * Routine to copy from mbuf chain to transmit buffer in
671 * network buffer memory.
672 * Returns the amount of data copied.
673 */
674 int
675 hme_put(sc, ri, m)
676 struct hme_softc *sc;
677 int ri; /* Ring index */
678 struct mbuf *m;
679 {
680 struct mbuf *n;
681 int len, tlen = 0;
682 caddr_t bp;
683
684 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
685 for (; m; m = n) {
686 len = m->m_len;
687 if (len == 0) {
688 MFREE(m, n);
689 continue;
690 }
691 memcpy(bp, mtod(m, caddr_t), len);
692 bp += len;
693 tlen += len;
694 MFREE(m, n);
695 }
696 return (tlen);
697 }
698
699 /*
700 * Pull data off an interface.
701 * Len is length of data, with local net header stripped.
702 * We copy the data into mbufs. When full cluster sized units are present
703 * we copy into clusters.
704 */
705 struct mbuf *
706 hme_get(sc, ri, flags)
707 struct hme_softc *sc;
708 int ri;
709 u_int32_t flags;
710 {
711 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
712 struct mbuf *m, *m0, *newm;
713 caddr_t bp;
714 int len, totlen;
715
716 totlen = HME_XD_DECODE_RSIZE(flags);
717 MGETHDR(m0, M_DONTWAIT, MT_DATA);
718 if (m0 == 0)
719 return (0);
720 m0->m_pkthdr.rcvif = ifp;
721 m0->m_pkthdr.len = totlen;
722 len = MHLEN;
723 m = m0;
724
725 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
726
727 while (totlen > 0) {
728 if (totlen >= MINCLSIZE) {
729 MCLGET(m, M_DONTWAIT);
730 if ((m->m_flags & M_EXT) == 0)
731 goto bad;
732 len = MCLBYTES;
733 }
734
735 if (m == m0) {
736 caddr_t newdata = (caddr_t)
737 ALIGN(m->m_data + sizeof(struct ether_header)) -
738 sizeof(struct ether_header);
739 len -= newdata - m->m_data;
740 m->m_data = newdata;
741 }
742
743 m->m_len = len = min(totlen, len);
744 memcpy(mtod(m, caddr_t), bp, len);
745 bp += len;
746
747 totlen -= len;
748 if (totlen > 0) {
749 MGET(newm, M_DONTWAIT, MT_DATA);
750 if (newm == 0)
751 goto bad;
752 len = MLEN;
753 m = m->m_next = newm;
754 }
755 }
756
757 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_TCPv4)) {
758 struct ether_header *eh;
759 struct ip *ip;
760 struct udphdr *uh;
761 uint16_t *opts;
762 int32_t hlen, pktlen;
763 uint32_t temp;
764
765 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
766 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
767 ETHER_VLAN_ENCAP_LEN;
768 eh = (struct ether_header *) mtod(m0, caddr_t) +
769 ETHER_VLAN_ENCAP_LEN;
770 } else {
771 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
772 eh = mtod(m0, struct ether_header *);
773 }
774 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
775 goto swcsum;
776 ip = (struct ip *) ((caddr_t) eh + ETHER_HDR_LEN);
777
778 /* IPv4 only */
779 if (ip->ip_v != IPVERSION)
780 goto swcsum;
781
782 hlen = ip->ip_hl << 2;
783 if (hlen < sizeof(struct ip))
784 goto swcsum;
785
786 /* too short, truncated, fragment */
787 if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) > pktlen)
788 || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
789 goto swcsum;
790
791 switch (ip->ip_p) {
792 case IPPROTO_TCP:
793 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
794 goto swcsum;
795 if (pktlen < (hlen + sizeof(struct tcphdr)))
796 goto swcsum;
797 m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
798 break;
799 case IPPROTO_UDP:
800 if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
801 goto swcsum;
802 if (pktlen < (hlen + sizeof(struct udphdr)))
803 goto swcsum;
804 uh = (struct udphdr *)((caddr_t)ip + hlen);
805 /* no checksum */
806 if (uh->uh_sum == 0)
807 goto swcsum;
808 m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
809 break;
810 default:
811 goto swcsum;
812 }
813
814 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
815 m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
816
817 /* if the pkt had ip options, we have to deduct them */
818 if (hlen > sizeof(struct ip)) {
819 uint32_t optsum;
820
821 optsum = 0;
822 temp = hlen - sizeof(struct ip);
823 opts = (uint16_t *) ((caddr_t) ip + sizeof(struct ip));
824
825 while (temp > 1) {
826 optsum += ntohs(*opts++);
827 temp -= 2;
828 }
829 while (optsum >> 16)
830 optsum = (optsum >> 16) + (optsum & 0xffff);
831
832 /* Deduct the ip opts sum from the hwsum (rfc 1624). */
833 m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
834 ~optsum);
835
836 while (m0->m_pkthdr.csum_data >> 16)
837 m0->m_pkthdr.csum_data =
838 (m0->m_pkthdr.csum_data >> 16) +
839 (m0->m_pkthdr.csum_data & 0xffff);
840 }
841
842 m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
843 }
844
845 swcsum:
846 return (m0);
847
848 bad:
849 m_freem(m0);
850 return (0);
851 }
852
853 /*
854 * Pass a packet to the higher levels.
855 */
856 void
857 hme_read(sc, ix, flags)
858 struct hme_softc *sc;
859 int ix;
860 u_int32_t flags;
861 {
862 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
863 struct mbuf *m;
864 int len;
865
866 len = HME_XD_DECODE_RSIZE(flags);
867 if (len <= sizeof(struct ether_header) ||
868 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
869 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
870 ETHERMTU + sizeof(struct ether_header))) {
871 #ifdef HMEDEBUG
872 printf("%s: invalid packet size %d; dropping\n",
873 sc->sc_dev.dv_xname, len);
874 #endif
875 ifp->if_ierrors++;
876 return;
877 }
878
879 /* Pull packet off interface. */
880 m = hme_get(sc, ix, flags);
881 if (m == 0) {
882 ifp->if_ierrors++;
883 return;
884 }
885
886 ifp->if_ipackets++;
887
888 #if NBPFILTER > 0
889 /*
890 * Check if there's a BPF listener on this interface.
891 * If so, hand off the raw packet to BPF.
892 */
893 if (ifp->if_bpf)
894 bpf_mtap(ifp->if_bpf, m);
895 #endif
896
897 /* Pass the packet up. */
898 (*ifp->if_input)(ifp, m);
899 }
900
901 void
902 hme_start(ifp)
903 struct ifnet *ifp;
904 {
905 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
906 caddr_t txd = sc->sc_rb.rb_txd;
907 struct mbuf *m;
908 unsigned int txflags;
909 unsigned int ri, len;
910 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
911
912 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
913 return;
914
915 ri = sc->sc_rb.rb_tdhead;
916
917 for (;;) {
918 IFQ_DEQUEUE(&ifp->if_snd, m);
919 if (m == 0)
920 break;
921
922 #if NBPFILTER > 0
923 /*
924 * If BPF is listening on this interface, let it see the
925 * packet before we commit it to the wire.
926 */
927 if (ifp->if_bpf)
928 bpf_mtap(ifp->if_bpf, m);
929 #endif
930
931 /* collect bits for h/w csum, before hme_put frees the mbuf */
932 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
933 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
934 struct ether_header *eh;
935 uint16_t offset, start;
936
937 eh = mtod(m, struct ether_header *);
938 switch (ntohs(eh->ether_type)) {
939 case ETHERTYPE_IP:
940 start = ETHER_HDR_LEN;
941 break;
942 case ETHERTYPE_VLAN:
943 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
944 break;
945 default:
946 /* unsupported, drop it */
947 m_free(m);
948 continue;
949 }
950 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
951 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
952 + start;
953 txflags = HME_XD_TXCKSUM |
954 (offset << HME_XD_TXCSSTUFFSHIFT) |
955 (start << HME_XD_TXCSSTARTSHIFT);
956 } else
957 txflags = 0;
958
959 /*
960 * Copy the mbuf chain into the transmit buffer.
961 */
962 len = hme_put(sc, ri, m);
963
964 /*
965 * Initialize transmit registers and start transmission
966 */
967 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
968 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
969 HME_XD_ENCODE_TSIZE(len) | txflags);
970
971 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
972 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
973 HME_ETX_TP_DMAWAKEUP);
974
975 if (++ri == ntbuf)
976 ri = 0;
977
978 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
979 ifp->if_flags |= IFF_OACTIVE;
980 break;
981 }
982 }
983
984 sc->sc_rb.rb_tdhead = ri;
985 }
986
987 /*
988 * Transmit interrupt.
989 */
990 int
991 hme_tint(sc)
992 struct hme_softc *sc;
993 {
994 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
995 bus_space_tag_t t = sc->sc_bustag;
996 bus_space_handle_t mac = sc->sc_mac;
997 unsigned int ri, txflags;
998
999 /*
1000 * Unload collision counters
1001 */
1002 ifp->if_collisions +=
1003 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1004 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1005 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1006 bus_space_read_4(t, mac, HME_MACI_LTCNT);
1007
1008 /*
1009 * then clear the hardware counters.
1010 */
1011 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1012 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1013 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1014 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1015
1016 /* Fetch current position in the transmit ring */
1017 ri = sc->sc_rb.rb_tdtail;
1018
1019 for (;;) {
1020 if (sc->sc_rb.rb_td_nbusy <= 0)
1021 break;
1022
1023 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1024
1025 if (txflags & HME_XD_OWN)
1026 break;
1027
1028 ifp->if_flags &= ~IFF_OACTIVE;
1029 ifp->if_opackets++;
1030
1031 if (++ri == sc->sc_rb.rb_ntbuf)
1032 ri = 0;
1033
1034 --sc->sc_rb.rb_td_nbusy;
1035 }
1036
1037 /* Update ring */
1038 sc->sc_rb.rb_tdtail = ri;
1039
1040 hme_start(ifp);
1041
1042 if (sc->sc_rb.rb_td_nbusy == 0)
1043 ifp->if_timer = 0;
1044
1045 return (1);
1046 }
1047
1048 /*
1049 * Receive interrupt.
1050 */
1051 int
1052 hme_rint(sc)
1053 struct hme_softc *sc;
1054 {
1055 caddr_t xdr = sc->sc_rb.rb_rxd;
1056 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1057 unsigned int ri;
1058 u_int32_t flags;
1059
1060 ri = sc->sc_rb.rb_rdtail;
1061
1062 /*
1063 * Process all buffers with valid data.
1064 */
1065 for (;;) {
1066 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1067 if (flags & HME_XD_OWN)
1068 break;
1069
1070 if (flags & HME_XD_OFL) {
1071 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1072 sc->sc_dev.dv_xname, ri, flags);
1073 } else
1074 hme_read(sc, ri, flags);
1075
1076 /* This buffer can be used by the hardware again */
1077 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1078 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1079
1080 if (++ri == nrbuf)
1081 ri = 0;
1082 }
1083
1084 sc->sc_rb.rb_rdtail = ri;
1085
1086 return (1);
1087 }
1088
1089 int
1090 hme_eint(sc, status)
1091 struct hme_softc *sc;
1092 u_int status;
1093 {
1094 char bits[128];
1095
1096 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1097 bus_space_tag_t t = sc->sc_bustag;
1098 bus_space_handle_t mif = sc->sc_mif;
1099 u_int32_t cf, st, sm;
1100 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1101 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1102 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1103 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1104 sc->sc_dev.dv_xname, cf, st, sm);
1105 return (1);
1106 }
1107
1108 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1109 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
1110 return (1);
1111 }
1112
1113 int
1114 hme_intr(v)
1115 void *v;
1116 {
1117 struct hme_softc *sc = (struct hme_softc *)v;
1118 bus_space_tag_t t = sc->sc_bustag;
1119 bus_space_handle_t seb = sc->sc_seb;
1120 u_int32_t status;
1121 int r = 0;
1122
1123 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1124
1125 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1126 r |= hme_eint(sc, status);
1127
1128 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1129 r |= hme_tint(sc);
1130
1131 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1132 r |= hme_rint(sc);
1133
1134 #if NRND > 0
1135 rnd_add_uint32(&sc->rnd_source, status);
1136 #endif
1137
1138 return (r);
1139 }
1140
1141
1142 void
1143 hme_watchdog(ifp)
1144 struct ifnet *ifp;
1145 {
1146 struct hme_softc *sc = ifp->if_softc;
1147
1148 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1149 ++ifp->if_oerrors;
1150
1151 hme_reset(sc);
1152 }
1153
1154 /*
1155 * Initialize the MII Management Interface
1156 */
1157 void
1158 hme_mifinit(sc)
1159 struct hme_softc *sc;
1160 {
1161 bus_space_tag_t t = sc->sc_bustag;
1162 bus_space_handle_t mif = sc->sc_mif;
1163 bus_space_handle_t mac = sc->sc_mac;
1164 int instance, phy;
1165 u_int32_t v;
1166
1167 if (sc->sc_media.ifm_cur != NULL) {
1168 instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1169 phy = sc->sc_phys[instance];
1170 } else
1171 /* No media set yet, pick phy arbitrarily.. */
1172 phy = HME_PHYAD_EXTERNAL;
1173
1174 /* Configure the MIF in frame mode, no poll, current phy select */
1175 v = 0;
1176 if (phy == HME_PHYAD_EXTERNAL)
1177 v |= HME_MIF_CFG_PHY;
1178 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1179
1180 /* If an external transceiver is selected, enable its MII drivers */
1181 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1182 v &= ~HME_MAC_XIF_MIIENABLE;
1183 if (phy == HME_PHYAD_EXTERNAL)
1184 v |= HME_MAC_XIF_MIIENABLE;
1185 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1186 }
1187
1188 /*
1189 * MII interface
1190 */
1191 static int
1192 hme_mii_readreg(self, phy, reg)
1193 struct device *self;
1194 int phy, reg;
1195 {
1196 struct hme_softc *sc = (void *)self;
1197 bus_space_tag_t t = sc->sc_bustag;
1198 bus_space_handle_t mif = sc->sc_mif;
1199 bus_space_handle_t mac = sc->sc_mac;
1200 u_int32_t v, xif_cfg, mifi_cfg;
1201 int n;
1202
1203 /* We can at most have two PHYs */
1204 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1205 return (0);
1206
1207 /* Select the desired PHY in the MIF configuration register */
1208 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1209 v &= ~HME_MIF_CFG_PHY;
1210 if (phy == HME_PHYAD_EXTERNAL)
1211 v |= HME_MIF_CFG_PHY;
1212 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1213
1214 /* Enable MII drivers on external transceiver */
1215 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1216 if (phy == HME_PHYAD_EXTERNAL)
1217 v |= HME_MAC_XIF_MIIENABLE;
1218 else
1219 v &= ~HME_MAC_XIF_MIIENABLE;
1220 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1221
1222 #if 0
1223 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1224 /*
1225 * Check whether a transceiver is connected by testing
1226 * the MIF configuration register's MDI_X bits. Note that
1227 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1228 */
1229 mif_mdi_bit = 1 << (8 + (1 - phy));
1230 delay(100);
1231 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1232 if ((v & mif_mdi_bit) == 0)
1233 return (0);
1234 #endif
1235
1236 /* Construct the frame command */
1237 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1238 HME_MIF_FO_TAMSB |
1239 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1240 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1241 (reg << HME_MIF_FO_REGAD_SHIFT);
1242
1243 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1244 for (n = 0; n < 100; n++) {
1245 DELAY(1);
1246 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1247 if (v & HME_MIF_FO_TALSB) {
1248 v &= HME_MIF_FO_DATA;
1249 goto out;
1250 }
1251 }
1252
1253 v = 0;
1254 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1255
1256 out:
1257 /* Restore MIFI_CFG register */
1258 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1259 /* Restore XIF register */
1260 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1261 return (v);
1262 }
1263
1264 static void
1265 hme_mii_writereg(self, phy, reg, val)
1266 struct device *self;
1267 int phy, reg, val;
1268 {
1269 struct hme_softc *sc = (void *)self;
1270 bus_space_tag_t t = sc->sc_bustag;
1271 bus_space_handle_t mif = sc->sc_mif;
1272 bus_space_handle_t mac = sc->sc_mac;
1273 u_int32_t v, xif_cfg, mifi_cfg;
1274 int n;
1275
1276 /* We can at most have two PHYs */
1277 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1278 return;
1279
1280 /* Select the desired PHY in the MIF configuration register */
1281 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1282 v &= ~HME_MIF_CFG_PHY;
1283 if (phy == HME_PHYAD_EXTERNAL)
1284 v |= HME_MIF_CFG_PHY;
1285 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1286
1287 /* Enable MII drivers on external transceiver */
1288 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1289 if (phy == HME_PHYAD_EXTERNAL)
1290 v |= HME_MAC_XIF_MIIENABLE;
1291 else
1292 v &= ~HME_MAC_XIF_MIIENABLE;
1293 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1294
1295 #if 0
1296 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1297 /*
1298 * Check whether a transceiver is connected by testing
1299 * the MIF configuration register's MDI_X bits. Note that
1300 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1301 */
1302 mif_mdi_bit = 1 << (8 + (1 - phy));
1303 delay(100);
1304 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1305 if ((v & mif_mdi_bit) == 0)
1306 return;
1307 #endif
1308
1309 /* Construct the frame command */
1310 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1311 HME_MIF_FO_TAMSB |
1312 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1313 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1314 (reg << HME_MIF_FO_REGAD_SHIFT) |
1315 (val & HME_MIF_FO_DATA);
1316
1317 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1318 for (n = 0; n < 100; n++) {
1319 DELAY(1);
1320 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1321 if (v & HME_MIF_FO_TALSB)
1322 goto out;
1323 }
1324
1325 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1326 out:
1327 /* Restore MIFI_CFG register */
1328 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1329 /* Restore XIF register */
1330 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1331 }
1332
1333 static void
1334 hme_mii_statchg(dev)
1335 struct device *dev;
1336 {
1337 struct hme_softc *sc = (void *)dev;
1338 bus_space_tag_t t = sc->sc_bustag;
1339 bus_space_handle_t mac = sc->sc_mac;
1340 u_int32_t v;
1341
1342 #ifdef HMEDEBUG
1343 if (sc->sc_debug)
1344 printf("hme_mii_statchg: status change\n");
1345 #endif
1346
1347 /* Set the MAC Full Duplex bit appropriately */
1348 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1349 but not otherwise. */
1350 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1351 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1352 v |= HME_MAC_TXCFG_FULLDPLX;
1353 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1354 } else {
1355 v &= ~HME_MAC_TXCFG_FULLDPLX;
1356 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1357 }
1358 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1359 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1360 }
1361
1362 int
1363 hme_mediachange(ifp)
1364 struct ifnet *ifp;
1365 {
1366 struct hme_softc *sc = ifp->if_softc;
1367 bus_space_tag_t t = sc->sc_bustag;
1368 bus_space_handle_t mif = sc->sc_mif;
1369 bus_space_handle_t mac = sc->sc_mac;
1370 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1371 int phy = sc->sc_phys[instance];
1372 u_int32_t v;
1373
1374 #ifdef HMEDEBUG
1375 if (sc->sc_debug)
1376 printf("hme_mediachange: phy = %d\n", phy);
1377 #endif
1378 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1379 return (EINVAL);
1380
1381 /* Select the current PHY in the MIF configuration register */
1382 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1383 v &= ~HME_MIF_CFG_PHY;
1384 if (phy == HME_PHYAD_EXTERNAL)
1385 v |= HME_MIF_CFG_PHY;
1386 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1387
1388 /* If an external transceiver is selected, enable its MII drivers */
1389 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1390 v &= ~HME_MAC_XIF_MIIENABLE;
1391 if (phy == HME_PHYAD_EXTERNAL)
1392 v |= HME_MAC_XIF_MIIENABLE;
1393 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1394
1395 return (mii_mediachg(&sc->sc_mii));
1396 }
1397
1398 void
1399 hme_mediastatus(ifp, ifmr)
1400 struct ifnet *ifp;
1401 struct ifmediareq *ifmr;
1402 {
1403 struct hme_softc *sc = ifp->if_softc;
1404
1405 if ((ifp->if_flags & IFF_UP) == 0)
1406 return;
1407
1408 mii_pollstat(&sc->sc_mii);
1409 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1410 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1411 }
1412
1413 /*
1414 * Process an ioctl request.
1415 */
1416 int
1417 hme_ioctl(ifp, cmd, data)
1418 struct ifnet *ifp;
1419 u_long cmd;
1420 caddr_t data;
1421 {
1422 struct hme_softc *sc = ifp->if_softc;
1423 struct ifaddr *ifa = (struct ifaddr *)data;
1424 struct ifreq *ifr = (struct ifreq *)data;
1425 int s, error = 0;
1426
1427 s = splnet();
1428
1429 switch (cmd) {
1430
1431 case SIOCSIFADDR:
1432 switch (ifa->ifa_addr->sa_family) {
1433 #ifdef INET
1434 case AF_INET:
1435 if (ifp->if_flags & IFF_UP)
1436 hme_setladrf(sc);
1437 else {
1438 ifp->if_flags |= IFF_UP;
1439 hme_init(sc);
1440 }
1441 arp_ifinit(ifp, ifa);
1442 break;
1443 #endif
1444 #ifdef NS
1445 case AF_NS:
1446 {
1447 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1448
1449 if (ns_nullhost(*ina))
1450 ina->x_host =
1451 *(union ns_host *)LLADDR(ifp->if_sadl);
1452 else {
1453 memcpy(LLADDR(ifp->if_sadl),
1454 ina->x_host.c_host, sizeof(sc->sc_enaddr));
1455 }
1456 /* Set new address. */
1457 if (ifp->if_flags & IFF_UP)
1458 hme_setladrf(sc);
1459 else {
1460 ifp->if_flags |= IFF_UP;
1461 hme_init(sc);
1462 }
1463 break;
1464 }
1465 #endif
1466 default:
1467 ifp->if_flags |= IFF_UP;
1468 hme_init(sc);
1469 break;
1470 }
1471 break;
1472
1473 case SIOCSIFFLAGS:
1474 #ifdef HMEDEBUG
1475 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1476 #endif
1477
1478 if ((ifp->if_flags & IFF_UP) == 0 &&
1479 (ifp->if_flags & IFF_RUNNING) != 0) {
1480 /*
1481 * If interface is marked down and it is running, then
1482 * stop it.
1483 */
1484 hme_stop(sc);
1485 ifp->if_flags &= ~IFF_RUNNING;
1486 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1487 (ifp->if_flags & IFF_RUNNING) == 0) {
1488 /*
1489 * If interface is marked up and it is stopped, then
1490 * start it.
1491 */
1492 hme_init(sc);
1493 } else if ((ifp->if_flags & IFF_UP) != 0) {
1494 /*
1495 * If setting debug or promiscuous mode, do not reset
1496 * the chip; for everything else, call hme_init()
1497 * which will trigger a reset.
1498 */
1499 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1500 if (ifp->if_flags != sc->sc_if_flags) {
1501 if ((ifp->if_flags & (~RESETIGN))
1502 == (sc->sc_if_flags & (~RESETIGN)))
1503 hme_setladrf(sc);
1504 else
1505 hme_init(sc);
1506 }
1507 #undef RESETIGN
1508 }
1509
1510 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1511 hme_init(sc);
1512
1513 break;
1514
1515 case SIOCADDMULTI:
1516 case SIOCDELMULTI:
1517 error = (cmd == SIOCADDMULTI) ?
1518 ether_addmulti(ifr, &sc->sc_ethercom) :
1519 ether_delmulti(ifr, &sc->sc_ethercom);
1520
1521 if (error == ENETRESET) {
1522 /*
1523 * Multicast list has changed; set the hardware filter
1524 * accordingly.
1525 */
1526 if (ifp->if_flags & IFF_RUNNING)
1527 hme_setladrf(sc);
1528 error = 0;
1529 }
1530 break;
1531
1532 case SIOCGIFMEDIA:
1533 case SIOCSIFMEDIA:
1534 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1535 break;
1536
1537 default:
1538 error = EINVAL;
1539 break;
1540 }
1541
1542 sc->sc_if_flags = ifp->if_flags;
1543 splx(s);
1544 return (error);
1545 }
1546
1547 void
1548 hme_shutdown(arg)
1549 void *arg;
1550 {
1551
1552 hme_stop((struct hme_softc *)arg);
1553 }
1554
1555 /*
1556 * Set up the logical address filter.
1557 */
1558 void
1559 hme_setladrf(sc)
1560 struct hme_softc *sc;
1561 {
1562 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1563 struct ether_multi *enm;
1564 struct ether_multistep step;
1565 struct ethercom *ec = &sc->sc_ethercom;
1566 bus_space_tag_t t = sc->sc_bustag;
1567 bus_space_handle_t mac = sc->sc_mac;
1568 u_char *cp;
1569 u_int32_t crc;
1570 u_int32_t hash[4];
1571 u_int32_t v;
1572 int len;
1573
1574 /* Clear hash table */
1575 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1576
1577 /* Get current RX configuration */
1578 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1579
1580 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1581 /* Turn on promiscuous mode; turn off the hash filter */
1582 v |= HME_MAC_RXCFG_PMISC;
1583 v &= ~HME_MAC_RXCFG_HENABLE;
1584 ifp->if_flags |= IFF_ALLMULTI;
1585 goto chipit;
1586 }
1587
1588 /* Turn off promiscuous mode; turn on the hash filter */
1589 v &= ~HME_MAC_RXCFG_PMISC;
1590 v |= HME_MAC_RXCFG_HENABLE;
1591
1592 /*
1593 * Set up multicast address filter by passing all multicast addresses
1594 * through a crc generator, and then using the high order 6 bits as an
1595 * index into the 64 bit logical address filter. The high order bit
1596 * selects the word, while the rest of the bits select the bit within
1597 * the word.
1598 */
1599
1600 ETHER_FIRST_MULTI(step, ec, enm);
1601 while (enm != NULL) {
1602 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1603 /*
1604 * We must listen to a range of multicast addresses.
1605 * For now, just accept all multicasts, rather than
1606 * trying to set only those filter bits needed to match
1607 * the range. (At this time, the only use of address
1608 * ranges is for IP multicast routing, for which the
1609 * range is big enough to require all bits set.)
1610 */
1611 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1612 ifp->if_flags |= IFF_ALLMULTI;
1613 goto chipit;
1614 }
1615
1616 cp = enm->enm_addrlo;
1617 crc = 0xffffffff;
1618 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1619 int octet = *cp++;
1620 int i;
1621
1622 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1623 for (i = 0; i < 8; i++) {
1624 if ((crc & 1) ^ (octet & 1)) {
1625 crc >>= 1;
1626 crc ^= MC_POLY_LE;
1627 } else {
1628 crc >>= 1;
1629 }
1630 octet >>= 1;
1631 }
1632 }
1633 /* Just want the 6 most significant bits. */
1634 crc >>= 26;
1635
1636 /* Set the corresponding bit in the filter. */
1637 hash[crc >> 4] |= 1 << (crc & 0xf);
1638
1639 ETHER_NEXT_MULTI(step, enm);
1640 }
1641
1642 ifp->if_flags &= ~IFF_ALLMULTI;
1643
1644 chipit:
1645 /* Now load the hash table into the chip */
1646 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1647 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1648 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1649 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1650 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1651 }
1652
1653 /*
1654 * Routines for accessing the transmit and receive buffers.
1655 * The various CPU and adapter configurations supported by this
1656 * driver require three different access methods for buffers
1657 * and descriptors:
1658 * (1) contig (contiguous data; no padding),
1659 * (2) gap2 (two bytes of data followed by two bytes of padding),
1660 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1661 */
1662
1663 #if 0
1664 /*
1665 * contig: contiguous data with no padding.
1666 *
1667 * Buffers may have any alignment.
1668 */
1669
1670 void
1671 hme_copytobuf_contig(sc, from, ri, len)
1672 struct hme_softc *sc;
1673 void *from;
1674 int ri, len;
1675 {
1676 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1677
1678 /*
1679 * Just call memcpy() to do the work.
1680 */
1681 memcpy(buf, from, len);
1682 }
1683
1684 void
1685 hme_copyfrombuf_contig(sc, to, boff, len)
1686 struct hme_softc *sc;
1687 void *to;
1688 int boff, len;
1689 {
1690 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1691
1692 /*
1693 * Just call memcpy() to do the work.
1694 */
1695 memcpy(to, buf, len);
1696 }
1697 #endif
1698