hme.c revision 1.53 1 /* $NetBSD: hme.c,v 1.53 2005/12/24 23:41:33 perry Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.53 2005/12/24 23:41:33 perry Exp $");
45
46 /* #define HMEDEBUG */
47
48 #include "opt_inet.h"
49 #include "opt_ns.h"
50 #include "bpfilter.h"
51 #include "rnd.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/socket.h>
59 #include <sys/device.h>
60 #include <sys/malloc.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #if NRND > 0
64 #include <sys/rnd.h>
65 #endif
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_inarp.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #ifdef NS
83 #include <netns/ns.h>
84 #include <netns/ns_if.h>
85 #endif
86
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #include <net/bpfdesc.h>
90 #endif
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94
95 #include <machine/bus.h>
96
97 #include <dev/ic/hmereg.h>
98 #include <dev/ic/hmevar.h>
99
100 void hme_start(struct ifnet *);
101 void hme_stop(struct hme_softc *);
102 int hme_ioctl(struct ifnet *, u_long, caddr_t);
103 void hme_tick(void *);
104 void hme_watchdog(struct ifnet *);
105 void hme_shutdown(void *);
106 void hme_init(struct hme_softc *);
107 void hme_meminit(struct hme_softc *);
108 void hme_mifinit(struct hme_softc *);
109 void hme_reset(struct hme_softc *);
110 void hme_setladrf(struct hme_softc *);
111
112 /* MII methods & callbacks */
113 static int hme_mii_readreg(struct device *, int, int);
114 static void hme_mii_writereg(struct device *, int, int, int);
115 static void hme_mii_statchg(struct device *);
116
117 int hme_mediachange(struct ifnet *);
118 void hme_mediastatus(struct ifnet *, struct ifmediareq *);
119
120 struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
121 int hme_put(struct hme_softc *, int, struct mbuf *);
122 void hme_read(struct hme_softc *, int, uint32_t);
123 int hme_eint(struct hme_softc *, u_int);
124 int hme_rint(struct hme_softc *);
125 int hme_tint(struct hme_softc *);
126
127 static int ether_cmp(u_char *, u_char *);
128
129 /* Default buffer copy routines */
130 void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
131 void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
132 void hme_zerobuf_contig(struct hme_softc *, int, int);
133
134
135 void
136 hme_config(sc)
137 struct hme_softc *sc;
138 {
139 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
140 struct mii_data *mii = &sc->sc_mii;
141 struct mii_softc *child;
142 bus_dma_tag_t dmatag = sc->sc_dmatag;
143 bus_dma_segment_t seg;
144 bus_size_t size;
145 int rseg, error;
146
147 /*
148 * HME common initialization.
149 *
150 * hme_softc fields that must be initialized by the front-end:
151 *
152 * the bus tag:
153 * sc_bustag
154 *
155 * the DMA bus tag:
156 * sc_dmatag
157 *
158 * the bus handles:
159 * sc_seb (Shared Ethernet Block registers)
160 * sc_erx (Receiver Unit registers)
161 * sc_etx (Transmitter Unit registers)
162 * sc_mac (MAC registers)
163 * sc_mif (Management Interface registers)
164 *
165 * the maximum bus burst size:
166 * sc_burst
167 *
168 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
169 * rb_membase, rb_dmabase)
170 *
171 * the local Ethernet address:
172 * sc_enaddr
173 *
174 */
175
176 /* Make sure the chip is stopped. */
177 hme_stop(sc);
178
179
180 /*
181 * Allocate descriptors and buffers
182 * XXX - do all this differently.. and more configurably,
183 * eg. use things as `dma_load_mbuf()' on transmit,
184 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
185 * all the time) on the receiver side.
186 *
187 * Note: receive buffers must be 64-byte aligned.
188 * Also, apparently, the buffers must extend to a DMA burst
189 * boundary beyond the maximum packet size.
190 */
191 #define _HME_NDESC 128
192 #define _HME_BUFSZ 1600
193
194 /* Note: the # of descriptors must be a multiple of 16 */
195 sc->sc_rb.rb_ntbuf = _HME_NDESC;
196 sc->sc_rb.rb_nrbuf = _HME_NDESC;
197
198 /*
199 * Allocate DMA capable memory
200 * Buffer descriptors must be aligned on a 2048 byte boundary;
201 * take this into account when calculating the size. Note that
202 * the maximum number of descriptors (256) occupies 2048 bytes,
203 * so we allocate that much regardless of _HME_NDESC.
204 */
205 size = 2048 + /* TX descriptors */
206 2048 + /* RX descriptors */
207 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
208 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
209
210 /* Allocate DMA buffer */
211 if ((error = bus_dmamem_alloc(dmatag, size,
212 2048, 0,
213 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
214 printf("%s: DMA buffer alloc error %d\n",
215 sc->sc_dev.dv_xname, error);
216 return;
217 }
218
219 /* Map DMA memory in CPU addressable space */
220 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
221 &sc->sc_rb.rb_membase,
222 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
223 printf("%s: DMA buffer map error %d\n",
224 sc->sc_dev.dv_xname, error);
225 bus_dmamap_unload(dmatag, sc->sc_dmamap);
226 bus_dmamem_free(dmatag, &seg, rseg);
227 return;
228 }
229
230 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
231 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
232 printf("%s: DMA map create error %d\n",
233 sc->sc_dev.dv_xname, error);
234 return;
235 }
236
237 /* Load the buffer */
238 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
239 sc->sc_rb.rb_membase, size, NULL,
240 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
241 printf("%s: DMA buffer map load error %d\n",
242 sc->sc_dev.dv_xname, error);
243 bus_dmamem_free(dmatag, &seg, rseg);
244 return;
245 }
246 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
247
248 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
249 ether_sprintf(sc->sc_enaddr));
250
251 /* Initialize ifnet structure. */
252 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
253 ifp->if_softc = sc;
254 ifp->if_start = hme_start;
255 ifp->if_ioctl = hme_ioctl;
256 ifp->if_watchdog = hme_watchdog;
257 ifp->if_flags =
258 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
259 sc->sc_if_flags = ifp->if_flags;
260 ifp->if_capabilities |=
261 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
262 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
263 IFQ_SET_READY(&ifp->if_snd);
264
265 /* Initialize ifmedia structures and MII info */
266 mii->mii_ifp = ifp;
267 mii->mii_readreg = hme_mii_readreg;
268 mii->mii_writereg = hme_mii_writereg;
269 mii->mii_statchg = hme_mii_statchg;
270
271 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
272
273 hme_mifinit(sc);
274
275 mii_attach(&sc->sc_dev, mii, 0xffffffff,
276 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
277
278 child = LIST_FIRST(&mii->mii_phys);
279 if (child == NULL) {
280 /* No PHY attached */
281 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
282 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
283 } else {
284 /*
285 * Walk along the list of attached MII devices and
286 * establish an `MII instance' to `phy number'
287 * mapping. We'll use this mapping in media change
288 * requests to determine which phy to use to program
289 * the MIF configuration register.
290 */
291 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
292 /*
293 * Note: we support just two PHYs: the built-in
294 * internal device and an external on the MII
295 * connector.
296 */
297 if (child->mii_phy > 1 || child->mii_inst > 1) {
298 printf("%s: cannot accomodate MII device %s"
299 " at phy %d, instance %d\n",
300 sc->sc_dev.dv_xname,
301 child->mii_dev.dv_xname,
302 child->mii_phy, child->mii_inst);
303 continue;
304 }
305
306 sc->sc_phys[child->mii_inst] = child->mii_phy;
307 }
308
309 /*
310 * XXX - we can really do the following ONLY if the
311 * phy indeed has the auto negotiation capability!!
312 */
313 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
314 }
315
316 /* claim 802.1q capability */
317 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
318
319 /* Attach the interface. */
320 if_attach(ifp);
321 ether_ifattach(ifp, sc->sc_enaddr);
322
323 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
324 if (sc->sc_sh == NULL)
325 panic("hme_config: can't establish shutdownhook");
326
327 #if NRND > 0
328 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
329 RND_TYPE_NET, 0);
330 #endif
331
332 callout_init(&sc->sc_tick_ch);
333 }
334
335 void
336 hme_tick(arg)
337 void *arg;
338 {
339 struct hme_softc *sc = arg;
340 int s;
341
342 s = splnet();
343 mii_tick(&sc->sc_mii);
344 splx(s);
345
346 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
347 }
348
349 void
350 hme_reset(sc)
351 struct hme_softc *sc;
352 {
353 int s;
354
355 s = splnet();
356 hme_init(sc);
357 splx(s);
358 }
359
360 void
361 hme_stop(sc)
362 struct hme_softc *sc;
363 {
364 bus_space_tag_t t = sc->sc_bustag;
365 bus_space_handle_t seb = sc->sc_seb;
366 int n;
367
368 callout_stop(&sc->sc_tick_ch);
369 mii_down(&sc->sc_mii);
370
371 /* Mask all interrupts */
372 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
373
374 /* Reset transmitter and receiver */
375 bus_space_write_4(t, seb, HME_SEBI_RESET,
376 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
377
378 for (n = 0; n < 20; n++) {
379 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
380 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
381 return;
382 DELAY(20);
383 }
384
385 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
386 }
387
388 void
389 hme_meminit(sc)
390 struct hme_softc *sc;
391 {
392 bus_addr_t txbufdma, rxbufdma;
393 bus_addr_t dma;
394 caddr_t p;
395 unsigned int ntbuf, nrbuf, i;
396 struct hme_ring *hr = &sc->sc_rb;
397
398 p = hr->rb_membase;
399 dma = hr->rb_dmabase;
400
401 ntbuf = hr->rb_ntbuf;
402 nrbuf = hr->rb_nrbuf;
403
404 /*
405 * Allocate transmit descriptors
406 */
407 hr->rb_txd = p;
408 hr->rb_txddma = dma;
409 p += ntbuf * HME_XD_SIZE;
410 dma += ntbuf * HME_XD_SIZE;
411 /* We have reserved descriptor space until the next 2048 byte boundary.*/
412 dma = (bus_addr_t)roundup((u_long)dma, 2048);
413 p = (caddr_t)roundup((u_long)p, 2048);
414
415 /*
416 * Allocate receive descriptors
417 */
418 hr->rb_rxd = p;
419 hr->rb_rxddma = dma;
420 p += nrbuf * HME_XD_SIZE;
421 dma += nrbuf * HME_XD_SIZE;
422 /* Again move forward to the next 2048 byte boundary.*/
423 dma = (bus_addr_t)roundup((u_long)dma, 2048);
424 p = (caddr_t)roundup((u_long)p, 2048);
425
426
427 /*
428 * Allocate transmit buffers
429 */
430 hr->rb_txbuf = p;
431 txbufdma = dma;
432 p += ntbuf * _HME_BUFSZ;
433 dma += ntbuf * _HME_BUFSZ;
434
435 /*
436 * Allocate receive buffers
437 */
438 hr->rb_rxbuf = p;
439 rxbufdma = dma;
440 p += nrbuf * _HME_BUFSZ;
441 dma += nrbuf * _HME_BUFSZ;
442
443 /*
444 * Initialize transmit buffer descriptors
445 */
446 for (i = 0; i < ntbuf; i++) {
447 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
448 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
449 }
450
451 /*
452 * Initialize receive buffer descriptors
453 */
454 for (i = 0; i < nrbuf; i++) {
455 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
456 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
457 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
458 }
459
460 hr->rb_tdhead = hr->rb_tdtail = 0;
461 hr->rb_td_nbusy = 0;
462 hr->rb_rdtail = 0;
463 }
464
465 /*
466 * Initialization of interface; set up initialization block
467 * and transmit/receive descriptor rings.
468 */
469 void
470 hme_init(sc)
471 struct hme_softc *sc;
472 {
473 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
474 bus_space_tag_t t = sc->sc_bustag;
475 bus_space_handle_t seb = sc->sc_seb;
476 bus_space_handle_t etx = sc->sc_etx;
477 bus_space_handle_t erx = sc->sc_erx;
478 bus_space_handle_t mac = sc->sc_mac;
479 u_int8_t *ea;
480 u_int32_t v;
481
482 /*
483 * Initialization sequence. The numbered steps below correspond
484 * to the sequence outlined in section 6.3.5.1 in the Ethernet
485 * Channel Engine manual (part of the PCIO manual).
486 * See also the STP2002-STQ document from Sun Microsystems.
487 */
488
489 /* step 1 & 2. Reset the Ethernet Channel */
490 hme_stop(sc);
491
492 /* Re-initialize the MIF */
493 hme_mifinit(sc);
494
495 /* Call MI reset function if any */
496 if (sc->sc_hwreset)
497 (*sc->sc_hwreset)(sc);
498
499 #if 0
500 /* Mask all MIF interrupts, just in case */
501 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
502 #endif
503
504 /* step 3. Setup data structures in host memory */
505 hme_meminit(sc);
506
507 /* step 4. TX MAC registers & counters */
508 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
509 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
510 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
511 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
512 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
513 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
514 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
515 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
516
517 /* Load station MAC address */
518 ea = sc->sc_enaddr;
519 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
520 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
521 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
522
523 /*
524 * Init seed for backoff
525 * (source suggested by manual: low 10 bits of MAC address)
526 */
527 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
528 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
529
530
531 /* Note: Accepting power-on default for other MAC registers here.. */
532
533
534 /* step 5. RX MAC registers & counters */
535 hme_setladrf(sc);
536
537 /* step 6 & 7. Program Descriptor Ring Base Addresses */
538 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
539 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
540
541 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
542 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
543 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
544 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
545
546 /* step 8. Global Configuration & Interrupt Mask */
547 bus_space_write_4(t, seb, HME_SEBI_IMASK,
548 ~(
549 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
550 HME_SEB_STAT_HOSTTOTX |
551 HME_SEB_STAT_RXTOHOST |
552 HME_SEB_STAT_TXALL |
553 HME_SEB_STAT_TXPERR |
554 HME_SEB_STAT_RCNTEXP |
555 /*HME_SEB_STAT_MIFIRQ |*/
556 HME_SEB_STAT_ALL_ERRORS ));
557
558 switch (sc->sc_burst) {
559 default:
560 v = 0;
561 break;
562 case 16:
563 v = HME_SEB_CFG_BURST16;
564 break;
565 case 32:
566 v = HME_SEB_CFG_BURST32;
567 break;
568 case 64:
569 v = HME_SEB_CFG_BURST64;
570 break;
571 }
572 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
573
574 /* step 9. ETX Configuration: use mostly default values */
575
576 /* Enable DMA */
577 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
578 v |= HME_ETX_CFG_DMAENABLE;
579 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
580
581 /* Transmit Descriptor ring size: in increments of 16 */
582 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
583
584
585 /* step 10. ERX Configuration */
586 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
587
588 /* Encode Receive Descriptor ring size: four possible values */
589 switch (_HME_NDESC /*XXX*/) {
590 case 32:
591 v |= HME_ERX_CFG_RINGSIZE32;
592 break;
593 case 64:
594 v |= HME_ERX_CFG_RINGSIZE64;
595 break;
596 case 128:
597 v |= HME_ERX_CFG_RINGSIZE128;
598 break;
599 case 256:
600 v |= HME_ERX_CFG_RINGSIZE256;
601 break;
602 default:
603 printf("hme: invalid Receive Descriptor ring size\n");
604 break;
605 }
606
607 /* Enable DMA */
608 v |= HME_ERX_CFG_DMAENABLE;
609
610 /* set h/w rx checksum start offset (# of half-words) */
611 #ifdef INET
612 v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
613 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
614 ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
615 HME_ERX_CFG_CSUMSTART;
616 #endif
617 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
618
619 /* step 11. XIF Configuration */
620 v = bus_space_read_4(t, mac, HME_MACI_XIF);
621 v |= HME_MAC_XIF_OE;
622 bus_space_write_4(t, mac, HME_MACI_XIF, v);
623
624 /* step 12. RX_MAC Configuration Register */
625 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
626 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
627 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
628
629 /* step 13. TX_MAC Configuration Register */
630 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
631 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
632 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
633
634 /* step 14. Issue Transmit Pending command */
635
636 /* Call MI initialization function if any */
637 if (sc->sc_hwinit)
638 (*sc->sc_hwinit)(sc);
639
640 /* Set the current media. */
641 mii_mediachg(&sc->sc_mii);
642
643 /* Start the one second timer. */
644 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
645
646 ifp->if_flags |= IFF_RUNNING;
647 ifp->if_flags &= ~IFF_OACTIVE;
648 sc->sc_if_flags = ifp->if_flags;
649 ifp->if_timer = 0;
650 hme_start(ifp);
651 }
652
653 /*
654 * Compare two Ether/802 addresses for equality, inlined and unrolled for
655 * speed.
656 */
657 static inline int
658 ether_cmp(a, b)
659 u_char *a, *b;
660 {
661
662 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
663 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
664 return (0);
665 return (1);
666 }
667
668
669 /*
670 * Routine to copy from mbuf chain to transmit buffer in
671 * network buffer memory.
672 * Returns the amount of data copied.
673 */
674 int
675 hme_put(sc, ri, m)
676 struct hme_softc *sc;
677 int ri; /* Ring index */
678 struct mbuf *m;
679 {
680 struct mbuf *n;
681 int len, tlen = 0;
682 caddr_t bp;
683
684 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
685 for (; m; m = n) {
686 len = m->m_len;
687 if (len == 0) {
688 MFREE(m, n);
689 continue;
690 }
691 memcpy(bp, mtod(m, caddr_t), len);
692 bp += len;
693 tlen += len;
694 MFREE(m, n);
695 }
696 return (tlen);
697 }
698
699 /*
700 * Pull data off an interface.
701 * Len is length of data, with local net header stripped.
702 * We copy the data into mbufs. When full cluster sized units are present
703 * we copy into clusters.
704 */
705 struct mbuf *
706 hme_get(sc, ri, flags)
707 struct hme_softc *sc;
708 int ri;
709 u_int32_t flags;
710 {
711 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
712 struct mbuf *m, *m0, *newm;
713 caddr_t bp;
714 int len, totlen;
715
716 totlen = HME_XD_DECODE_RSIZE(flags);
717 MGETHDR(m0, M_DONTWAIT, MT_DATA);
718 if (m0 == 0)
719 return (0);
720 m0->m_pkthdr.rcvif = ifp;
721 m0->m_pkthdr.len = totlen;
722 len = MHLEN;
723 m = m0;
724
725 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
726
727 while (totlen > 0) {
728 if (totlen >= MINCLSIZE) {
729 MCLGET(m, M_DONTWAIT);
730 if ((m->m_flags & M_EXT) == 0)
731 goto bad;
732 len = MCLBYTES;
733 }
734
735 if (m == m0) {
736 caddr_t newdata = (caddr_t)
737 ALIGN(m->m_data + sizeof(struct ether_header)) -
738 sizeof(struct ether_header);
739 len -= newdata - m->m_data;
740 m->m_data = newdata;
741 }
742
743 m->m_len = len = min(totlen, len);
744 memcpy(mtod(m, caddr_t), bp, len);
745 bp += len;
746
747 totlen -= len;
748 if (totlen > 0) {
749 MGET(newm, M_DONTWAIT, MT_DATA);
750 if (newm == 0)
751 goto bad;
752 len = MLEN;
753 m = m->m_next = newm;
754 }
755 }
756
757 #ifdef INET
758 /* hardware checksum */
759 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
760 struct ether_header *eh;
761 struct ip *ip;
762 struct udphdr *uh;
763 uint16_t *opts;
764 int32_t hlen, pktlen;
765 uint32_t temp;
766
767 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
768 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
769 ETHER_VLAN_ENCAP_LEN;
770 eh = (struct ether_header *) mtod(m0, caddr_t) +
771 ETHER_VLAN_ENCAP_LEN;
772 } else {
773 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
774 eh = mtod(m0, struct ether_header *);
775 }
776 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
777 goto swcsum;
778 ip = (struct ip *) ((caddr_t) eh + ETHER_HDR_LEN);
779
780 /* IPv4 only */
781 if (ip->ip_v != IPVERSION)
782 goto swcsum;
783
784 hlen = ip->ip_hl << 2;
785 if (hlen < sizeof(struct ip))
786 goto swcsum;
787
788 /*
789 * bail if too short, has random trailing garbage, truncated,
790 * fragment, or has ethernet pad.
791 */
792 if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
793 || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
794 goto swcsum;
795
796 switch (ip->ip_p) {
797 case IPPROTO_TCP:
798 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
799 goto swcsum;
800 if (pktlen < (hlen + sizeof(struct tcphdr)))
801 goto swcsum;
802 m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
803 break;
804 case IPPROTO_UDP:
805 if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
806 goto swcsum;
807 if (pktlen < (hlen + sizeof(struct udphdr)))
808 goto swcsum;
809 uh = (struct udphdr *)((caddr_t)ip + hlen);
810 /* no checksum */
811 if (uh->uh_sum == 0)
812 goto swcsum;
813 m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
814 break;
815 default:
816 goto swcsum;
817 }
818
819 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
820 m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
821
822 /* if the pkt had ip options, we have to deduct them */
823 if (hlen > sizeof(struct ip)) {
824 uint32_t optsum;
825
826 optsum = 0;
827 temp = hlen - sizeof(struct ip);
828 opts = (uint16_t *) ((caddr_t) ip + sizeof(struct ip));
829
830 while (temp > 1) {
831 optsum += ntohs(*opts++);
832 temp -= 2;
833 }
834 while (optsum >> 16)
835 optsum = (optsum >> 16) + (optsum & 0xffff);
836
837 /* Deduct the ip opts sum from the hwsum (rfc 1624). */
838 m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
839 ~optsum);
840
841 while (m0->m_pkthdr.csum_data >> 16)
842 m0->m_pkthdr.csum_data =
843 (m0->m_pkthdr.csum_data >> 16) +
844 (m0->m_pkthdr.csum_data & 0xffff);
845 }
846
847 m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
848 }
849 swcsum:
850 m0->m_pkthdr.csum_flags = 0;
851 #endif
852
853 return (m0);
854
855 bad:
856 m_freem(m0);
857 return (0);
858 }
859
860 /*
861 * Pass a packet to the higher levels.
862 */
863 void
864 hme_read(sc, ix, flags)
865 struct hme_softc *sc;
866 int ix;
867 u_int32_t flags;
868 {
869 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
870 struct mbuf *m;
871 int len;
872
873 len = HME_XD_DECODE_RSIZE(flags);
874 if (len <= sizeof(struct ether_header) ||
875 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
876 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
877 ETHERMTU + sizeof(struct ether_header))) {
878 #ifdef HMEDEBUG
879 printf("%s: invalid packet size %d; dropping\n",
880 sc->sc_dev.dv_xname, len);
881 #endif
882 ifp->if_ierrors++;
883 return;
884 }
885
886 /* Pull packet off interface. */
887 m = hme_get(sc, ix, flags);
888 if (m == 0) {
889 ifp->if_ierrors++;
890 return;
891 }
892
893 ifp->if_ipackets++;
894
895 #if NBPFILTER > 0
896 /*
897 * Check if there's a BPF listener on this interface.
898 * If so, hand off the raw packet to BPF.
899 */
900 if (ifp->if_bpf)
901 bpf_mtap(ifp->if_bpf, m);
902 #endif
903
904 /* Pass the packet up. */
905 (*ifp->if_input)(ifp, m);
906 }
907
908 void
909 hme_start(ifp)
910 struct ifnet *ifp;
911 {
912 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
913 caddr_t txd = sc->sc_rb.rb_txd;
914 struct mbuf *m;
915 unsigned int txflags;
916 unsigned int ri, len;
917 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
918
919 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
920 return;
921
922 ri = sc->sc_rb.rb_tdhead;
923
924 for (;;) {
925 IFQ_DEQUEUE(&ifp->if_snd, m);
926 if (m == 0)
927 break;
928
929 #if NBPFILTER > 0
930 /*
931 * If BPF is listening on this interface, let it see the
932 * packet before we commit it to the wire.
933 */
934 if (ifp->if_bpf)
935 bpf_mtap(ifp->if_bpf, m);
936 #endif
937
938 #ifdef INET
939 /* collect bits for h/w csum, before hme_put frees the mbuf */
940 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
941 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
942 struct ether_header *eh;
943 uint16_t offset, start;
944
945 eh = mtod(m, struct ether_header *);
946 switch (ntohs(eh->ether_type)) {
947 case ETHERTYPE_IP:
948 start = ETHER_HDR_LEN;
949 break;
950 case ETHERTYPE_VLAN:
951 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
952 break;
953 default:
954 /* unsupported, drop it */
955 m_free(m);
956 continue;
957 }
958 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
959 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
960 + start;
961 txflags = HME_XD_TXCKSUM |
962 (offset << HME_XD_TXCSSTUFFSHIFT) |
963 (start << HME_XD_TXCSSTARTSHIFT);
964 } else
965 #endif
966 txflags = 0;
967
968 /*
969 * Copy the mbuf chain into the transmit buffer.
970 */
971 len = hme_put(sc, ri, m);
972
973 /*
974 * Initialize transmit registers and start transmission
975 */
976 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
977 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
978 HME_XD_ENCODE_TSIZE(len) | txflags);
979
980 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
981 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
982 HME_ETX_TP_DMAWAKEUP);
983
984 if (++ri == ntbuf)
985 ri = 0;
986
987 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
988 ifp->if_flags |= IFF_OACTIVE;
989 break;
990 }
991 }
992
993 sc->sc_rb.rb_tdhead = ri;
994 }
995
996 /*
997 * Transmit interrupt.
998 */
999 int
1000 hme_tint(sc)
1001 struct hme_softc *sc;
1002 {
1003 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1004 bus_space_tag_t t = sc->sc_bustag;
1005 bus_space_handle_t mac = sc->sc_mac;
1006 unsigned int ri, txflags;
1007
1008 /*
1009 * Unload collision counters
1010 */
1011 ifp->if_collisions +=
1012 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1013 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1014 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1015 bus_space_read_4(t, mac, HME_MACI_LTCNT);
1016
1017 /*
1018 * then clear the hardware counters.
1019 */
1020 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1021 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1022 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1023 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1024
1025 /* Fetch current position in the transmit ring */
1026 ri = sc->sc_rb.rb_tdtail;
1027
1028 for (;;) {
1029 if (sc->sc_rb.rb_td_nbusy <= 0)
1030 break;
1031
1032 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1033
1034 if (txflags & HME_XD_OWN)
1035 break;
1036
1037 ifp->if_flags &= ~IFF_OACTIVE;
1038 ifp->if_opackets++;
1039
1040 if (++ri == sc->sc_rb.rb_ntbuf)
1041 ri = 0;
1042
1043 --sc->sc_rb.rb_td_nbusy;
1044 }
1045
1046 /* Update ring */
1047 sc->sc_rb.rb_tdtail = ri;
1048
1049 hme_start(ifp);
1050
1051 if (sc->sc_rb.rb_td_nbusy == 0)
1052 ifp->if_timer = 0;
1053
1054 return (1);
1055 }
1056
1057 /*
1058 * Receive interrupt.
1059 */
1060 int
1061 hme_rint(sc)
1062 struct hme_softc *sc;
1063 {
1064 caddr_t xdr = sc->sc_rb.rb_rxd;
1065 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1066 unsigned int ri;
1067 u_int32_t flags;
1068
1069 ri = sc->sc_rb.rb_rdtail;
1070
1071 /*
1072 * Process all buffers with valid data.
1073 */
1074 for (;;) {
1075 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1076 if (flags & HME_XD_OWN)
1077 break;
1078
1079 if (flags & HME_XD_OFL) {
1080 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1081 sc->sc_dev.dv_xname, ri, flags);
1082 } else
1083 hme_read(sc, ri, flags);
1084
1085 /* This buffer can be used by the hardware again */
1086 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1087 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1088
1089 if (++ri == nrbuf)
1090 ri = 0;
1091 }
1092
1093 sc->sc_rb.rb_rdtail = ri;
1094
1095 return (1);
1096 }
1097
1098 int
1099 hme_eint(sc, status)
1100 struct hme_softc *sc;
1101 u_int status;
1102 {
1103 char bits[128];
1104
1105 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1106 bus_space_tag_t t = sc->sc_bustag;
1107 bus_space_handle_t mif = sc->sc_mif;
1108 u_int32_t cf, st, sm;
1109 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1110 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1111 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1112 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1113 sc->sc_dev.dv_xname, cf, st, sm);
1114 return (1);
1115 }
1116
1117 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1118 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
1119 return (1);
1120 }
1121
1122 int
1123 hme_intr(v)
1124 void *v;
1125 {
1126 struct hme_softc *sc = (struct hme_softc *)v;
1127 bus_space_tag_t t = sc->sc_bustag;
1128 bus_space_handle_t seb = sc->sc_seb;
1129 u_int32_t status;
1130 int r = 0;
1131
1132 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1133
1134 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1135 r |= hme_eint(sc, status);
1136
1137 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1138 r |= hme_tint(sc);
1139
1140 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1141 r |= hme_rint(sc);
1142
1143 #if NRND > 0
1144 rnd_add_uint32(&sc->rnd_source, status);
1145 #endif
1146
1147 return (r);
1148 }
1149
1150
1151 void
1152 hme_watchdog(ifp)
1153 struct ifnet *ifp;
1154 {
1155 struct hme_softc *sc = ifp->if_softc;
1156
1157 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1158 ++ifp->if_oerrors;
1159
1160 hme_reset(sc);
1161 }
1162
1163 /*
1164 * Initialize the MII Management Interface
1165 */
1166 void
1167 hme_mifinit(sc)
1168 struct hme_softc *sc;
1169 {
1170 bus_space_tag_t t = sc->sc_bustag;
1171 bus_space_handle_t mif = sc->sc_mif;
1172 bus_space_handle_t mac = sc->sc_mac;
1173 int instance, phy;
1174 u_int32_t v;
1175
1176 if (sc->sc_media.ifm_cur != NULL) {
1177 instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1178 phy = sc->sc_phys[instance];
1179 } else
1180 /* No media set yet, pick phy arbitrarily.. */
1181 phy = HME_PHYAD_EXTERNAL;
1182
1183 /* Configure the MIF in frame mode, no poll, current phy select */
1184 v = 0;
1185 if (phy == HME_PHYAD_EXTERNAL)
1186 v |= HME_MIF_CFG_PHY;
1187 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1188
1189 /* If an external transceiver is selected, enable its MII drivers */
1190 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1191 v &= ~HME_MAC_XIF_MIIENABLE;
1192 if (phy == HME_PHYAD_EXTERNAL)
1193 v |= HME_MAC_XIF_MIIENABLE;
1194 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1195 }
1196
1197 /*
1198 * MII interface
1199 */
1200 static int
1201 hme_mii_readreg(self, phy, reg)
1202 struct device *self;
1203 int phy, reg;
1204 {
1205 struct hme_softc *sc = (void *)self;
1206 bus_space_tag_t t = sc->sc_bustag;
1207 bus_space_handle_t mif = sc->sc_mif;
1208 bus_space_handle_t mac = sc->sc_mac;
1209 u_int32_t v, xif_cfg, mifi_cfg;
1210 int n;
1211
1212 /* We can at most have two PHYs */
1213 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1214 return (0);
1215
1216 /* Select the desired PHY in the MIF configuration register */
1217 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1218 v &= ~HME_MIF_CFG_PHY;
1219 if (phy == HME_PHYAD_EXTERNAL)
1220 v |= HME_MIF_CFG_PHY;
1221 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1222
1223 /* Enable MII drivers on external transceiver */
1224 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1225 if (phy == HME_PHYAD_EXTERNAL)
1226 v |= HME_MAC_XIF_MIIENABLE;
1227 else
1228 v &= ~HME_MAC_XIF_MIIENABLE;
1229 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1230
1231 #if 0
1232 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1233 /*
1234 * Check whether a transceiver is connected by testing
1235 * the MIF configuration register's MDI_X bits. Note that
1236 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1237 */
1238 mif_mdi_bit = 1 << (8 + (1 - phy));
1239 delay(100);
1240 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1241 if ((v & mif_mdi_bit) == 0)
1242 return (0);
1243 #endif
1244
1245 /* Construct the frame command */
1246 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1247 HME_MIF_FO_TAMSB |
1248 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1249 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1250 (reg << HME_MIF_FO_REGAD_SHIFT);
1251
1252 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1253 for (n = 0; n < 100; n++) {
1254 DELAY(1);
1255 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1256 if (v & HME_MIF_FO_TALSB) {
1257 v &= HME_MIF_FO_DATA;
1258 goto out;
1259 }
1260 }
1261
1262 v = 0;
1263 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1264
1265 out:
1266 /* Restore MIFI_CFG register */
1267 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1268 /* Restore XIF register */
1269 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1270 return (v);
1271 }
1272
1273 static void
1274 hme_mii_writereg(self, phy, reg, val)
1275 struct device *self;
1276 int phy, reg, val;
1277 {
1278 struct hme_softc *sc = (void *)self;
1279 bus_space_tag_t t = sc->sc_bustag;
1280 bus_space_handle_t mif = sc->sc_mif;
1281 bus_space_handle_t mac = sc->sc_mac;
1282 u_int32_t v, xif_cfg, mifi_cfg;
1283 int n;
1284
1285 /* We can at most have two PHYs */
1286 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1287 return;
1288
1289 /* Select the desired PHY in the MIF configuration register */
1290 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1291 v &= ~HME_MIF_CFG_PHY;
1292 if (phy == HME_PHYAD_EXTERNAL)
1293 v |= HME_MIF_CFG_PHY;
1294 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1295
1296 /* Enable MII drivers on external transceiver */
1297 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1298 if (phy == HME_PHYAD_EXTERNAL)
1299 v |= HME_MAC_XIF_MIIENABLE;
1300 else
1301 v &= ~HME_MAC_XIF_MIIENABLE;
1302 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1303
1304 #if 0
1305 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1306 /*
1307 * Check whether a transceiver is connected by testing
1308 * the MIF configuration register's MDI_X bits. Note that
1309 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1310 */
1311 mif_mdi_bit = 1 << (8 + (1 - phy));
1312 delay(100);
1313 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1314 if ((v & mif_mdi_bit) == 0)
1315 return;
1316 #endif
1317
1318 /* Construct the frame command */
1319 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1320 HME_MIF_FO_TAMSB |
1321 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1322 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1323 (reg << HME_MIF_FO_REGAD_SHIFT) |
1324 (val & HME_MIF_FO_DATA);
1325
1326 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1327 for (n = 0; n < 100; n++) {
1328 DELAY(1);
1329 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1330 if (v & HME_MIF_FO_TALSB)
1331 goto out;
1332 }
1333
1334 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1335 out:
1336 /* Restore MIFI_CFG register */
1337 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1338 /* Restore XIF register */
1339 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1340 }
1341
1342 static void
1343 hme_mii_statchg(dev)
1344 struct device *dev;
1345 {
1346 struct hme_softc *sc = (void *)dev;
1347 bus_space_tag_t t = sc->sc_bustag;
1348 bus_space_handle_t mac = sc->sc_mac;
1349 u_int32_t v;
1350
1351 #ifdef HMEDEBUG
1352 if (sc->sc_debug)
1353 printf("hme_mii_statchg: status change\n");
1354 #endif
1355
1356 /* Set the MAC Full Duplex bit appropriately */
1357 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1358 but not otherwise. */
1359 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1360 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1361 v |= HME_MAC_TXCFG_FULLDPLX;
1362 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1363 } else {
1364 v &= ~HME_MAC_TXCFG_FULLDPLX;
1365 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1366 }
1367 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1368 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1369 }
1370
1371 int
1372 hme_mediachange(ifp)
1373 struct ifnet *ifp;
1374 {
1375 struct hme_softc *sc = ifp->if_softc;
1376 bus_space_tag_t t = sc->sc_bustag;
1377 bus_space_handle_t mif = sc->sc_mif;
1378 bus_space_handle_t mac = sc->sc_mac;
1379 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1380 int phy = sc->sc_phys[instance];
1381 u_int32_t v;
1382
1383 #ifdef HMEDEBUG
1384 if (sc->sc_debug)
1385 printf("hme_mediachange: phy = %d\n", phy);
1386 #endif
1387 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1388 return (EINVAL);
1389
1390 /* Select the current PHY in the MIF configuration register */
1391 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1392 v &= ~HME_MIF_CFG_PHY;
1393 if (phy == HME_PHYAD_EXTERNAL)
1394 v |= HME_MIF_CFG_PHY;
1395 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1396
1397 /* If an external transceiver is selected, enable its MII drivers */
1398 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1399 v &= ~HME_MAC_XIF_MIIENABLE;
1400 if (phy == HME_PHYAD_EXTERNAL)
1401 v |= HME_MAC_XIF_MIIENABLE;
1402 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1403
1404 return (mii_mediachg(&sc->sc_mii));
1405 }
1406
1407 void
1408 hme_mediastatus(ifp, ifmr)
1409 struct ifnet *ifp;
1410 struct ifmediareq *ifmr;
1411 {
1412 struct hme_softc *sc = ifp->if_softc;
1413
1414 if ((ifp->if_flags & IFF_UP) == 0)
1415 return;
1416
1417 mii_pollstat(&sc->sc_mii);
1418 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1419 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1420 }
1421
1422 /*
1423 * Process an ioctl request.
1424 */
1425 int
1426 hme_ioctl(ifp, cmd, data)
1427 struct ifnet *ifp;
1428 u_long cmd;
1429 caddr_t data;
1430 {
1431 struct hme_softc *sc = ifp->if_softc;
1432 struct ifaddr *ifa = (struct ifaddr *)data;
1433 struct ifreq *ifr = (struct ifreq *)data;
1434 int s, error = 0;
1435
1436 s = splnet();
1437
1438 switch (cmd) {
1439
1440 case SIOCSIFADDR:
1441 switch (ifa->ifa_addr->sa_family) {
1442 #ifdef INET
1443 case AF_INET:
1444 if (ifp->if_flags & IFF_UP)
1445 hme_setladrf(sc);
1446 else {
1447 ifp->if_flags |= IFF_UP;
1448 hme_init(sc);
1449 }
1450 arp_ifinit(ifp, ifa);
1451 break;
1452 #endif
1453 #ifdef NS
1454 case AF_NS:
1455 {
1456 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1457
1458 if (ns_nullhost(*ina))
1459 ina->x_host =
1460 *(union ns_host *)LLADDR(ifp->if_sadl);
1461 else {
1462 memcpy(LLADDR(ifp->if_sadl),
1463 ina->x_host.c_host, sizeof(sc->sc_enaddr));
1464 }
1465 /* Set new address. */
1466 if (ifp->if_flags & IFF_UP)
1467 hme_setladrf(sc);
1468 else {
1469 ifp->if_flags |= IFF_UP;
1470 hme_init(sc);
1471 }
1472 break;
1473 }
1474 #endif
1475 default:
1476 ifp->if_flags |= IFF_UP;
1477 hme_init(sc);
1478 break;
1479 }
1480 break;
1481
1482 case SIOCSIFFLAGS:
1483 #ifdef HMEDEBUG
1484 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1485 #endif
1486
1487 if ((ifp->if_flags & IFF_UP) == 0 &&
1488 (ifp->if_flags & IFF_RUNNING) != 0) {
1489 /*
1490 * If interface is marked down and it is running, then
1491 * stop it.
1492 */
1493 hme_stop(sc);
1494 ifp->if_flags &= ~IFF_RUNNING;
1495 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1496 (ifp->if_flags & IFF_RUNNING) == 0) {
1497 /*
1498 * If interface is marked up and it is stopped, then
1499 * start it.
1500 */
1501 hme_init(sc);
1502 } else if ((ifp->if_flags & IFF_UP) != 0) {
1503 /*
1504 * If setting debug or promiscuous mode, do not reset
1505 * the chip; for everything else, call hme_init()
1506 * which will trigger a reset.
1507 */
1508 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1509 if (ifp->if_flags != sc->sc_if_flags) {
1510 if ((ifp->if_flags & (~RESETIGN))
1511 == (sc->sc_if_flags & (~RESETIGN)))
1512 hme_setladrf(sc);
1513 else
1514 hme_init(sc);
1515 }
1516 #undef RESETIGN
1517 }
1518
1519 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1520 hme_init(sc);
1521
1522 break;
1523
1524 case SIOCADDMULTI:
1525 case SIOCDELMULTI:
1526 error = (cmd == SIOCADDMULTI) ?
1527 ether_addmulti(ifr, &sc->sc_ethercom) :
1528 ether_delmulti(ifr, &sc->sc_ethercom);
1529
1530 if (error == ENETRESET) {
1531 /*
1532 * Multicast list has changed; set the hardware filter
1533 * accordingly.
1534 */
1535 if (ifp->if_flags & IFF_RUNNING)
1536 hme_setladrf(sc);
1537 error = 0;
1538 }
1539 break;
1540
1541 case SIOCGIFMEDIA:
1542 case SIOCSIFMEDIA:
1543 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1544 break;
1545
1546 default:
1547 error = EINVAL;
1548 break;
1549 }
1550
1551 sc->sc_if_flags = ifp->if_flags;
1552 splx(s);
1553 return (error);
1554 }
1555
1556 void
1557 hme_shutdown(arg)
1558 void *arg;
1559 {
1560
1561 hme_stop((struct hme_softc *)arg);
1562 }
1563
1564 /*
1565 * Set up the logical address filter.
1566 */
1567 void
1568 hme_setladrf(sc)
1569 struct hme_softc *sc;
1570 {
1571 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1572 struct ether_multi *enm;
1573 struct ether_multistep step;
1574 struct ethercom *ec = &sc->sc_ethercom;
1575 bus_space_tag_t t = sc->sc_bustag;
1576 bus_space_handle_t mac = sc->sc_mac;
1577 u_char *cp;
1578 u_int32_t crc;
1579 u_int32_t hash[4];
1580 u_int32_t v;
1581 int len;
1582
1583 /* Clear hash table */
1584 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1585
1586 /* Get current RX configuration */
1587 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1588
1589 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1590 /* Turn on promiscuous mode; turn off the hash filter */
1591 v |= HME_MAC_RXCFG_PMISC;
1592 v &= ~HME_MAC_RXCFG_HENABLE;
1593 ifp->if_flags |= IFF_ALLMULTI;
1594 goto chipit;
1595 }
1596
1597 /* Turn off promiscuous mode; turn on the hash filter */
1598 v &= ~HME_MAC_RXCFG_PMISC;
1599 v |= HME_MAC_RXCFG_HENABLE;
1600
1601 /*
1602 * Set up multicast address filter by passing all multicast addresses
1603 * through a crc generator, and then using the high order 6 bits as an
1604 * index into the 64 bit logical address filter. The high order bit
1605 * selects the word, while the rest of the bits select the bit within
1606 * the word.
1607 */
1608
1609 ETHER_FIRST_MULTI(step, ec, enm);
1610 while (enm != NULL) {
1611 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1612 /*
1613 * We must listen to a range of multicast addresses.
1614 * For now, just accept all multicasts, rather than
1615 * trying to set only those filter bits needed to match
1616 * the range. (At this time, the only use of address
1617 * ranges is for IP multicast routing, for which the
1618 * range is big enough to require all bits set.)
1619 */
1620 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1621 ifp->if_flags |= IFF_ALLMULTI;
1622 goto chipit;
1623 }
1624
1625 cp = enm->enm_addrlo;
1626 crc = 0xffffffff;
1627 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1628 int octet = *cp++;
1629 int i;
1630
1631 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1632 for (i = 0; i < 8; i++) {
1633 if ((crc & 1) ^ (octet & 1)) {
1634 crc >>= 1;
1635 crc ^= MC_POLY_LE;
1636 } else {
1637 crc >>= 1;
1638 }
1639 octet >>= 1;
1640 }
1641 }
1642 /* Just want the 6 most significant bits. */
1643 crc >>= 26;
1644
1645 /* Set the corresponding bit in the filter. */
1646 hash[crc >> 4] |= 1 << (crc & 0xf);
1647
1648 ETHER_NEXT_MULTI(step, enm);
1649 }
1650
1651 ifp->if_flags &= ~IFF_ALLMULTI;
1652
1653 chipit:
1654 /* Now load the hash table into the chip */
1655 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1656 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1657 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1658 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1659 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1660 }
1661
1662 /*
1663 * Routines for accessing the transmit and receive buffers.
1664 * The various CPU and adapter configurations supported by this
1665 * driver require three different access methods for buffers
1666 * and descriptors:
1667 * (1) contig (contiguous data; no padding),
1668 * (2) gap2 (two bytes of data followed by two bytes of padding),
1669 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1670 */
1671
1672 #if 0
1673 /*
1674 * contig: contiguous data with no padding.
1675 *
1676 * Buffers may have any alignment.
1677 */
1678
1679 void
1680 hme_copytobuf_contig(sc, from, ri, len)
1681 struct hme_softc *sc;
1682 void *from;
1683 int ri, len;
1684 {
1685 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1686
1687 /*
1688 * Just call memcpy() to do the work.
1689 */
1690 memcpy(buf, from, len);
1691 }
1692
1693 void
1694 hme_copyfrombuf_contig(sc, to, boff, len)
1695 struct hme_softc *sc;
1696 void *to;
1697 int boff, len;
1698 {
1699 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1700
1701 /*
1702 * Just call memcpy() to do the work.
1703 */
1704 memcpy(to, buf, len);
1705 }
1706 #endif
1707