hme.c revision 1.58 1 /* $NetBSD: hme.c,v 1.58 2007/07/12 17:42:17 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.58 2007/07/12 17:42:17 martin Exp $");
45
46 /* #define HMEDEBUG */
47
48 #include "opt_inet.h"
49 #include "bpfilter.h"
50 #include "rnd.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/mbuf.h>
56 #include <sys/syslog.h>
57 #include <sys/socket.h>
58 #include <sys/device.h>
59 #include <sys/malloc.h>
60 #include <sys/ioctl.h>
61 #include <sys/errno.h>
62 #if NRND > 0
63 #include <sys/rnd.h>
64 #endif
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/if_inarp.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80
81
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #endif
86
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89
90 #include <machine/bus.h>
91
92 #include <dev/ic/hmereg.h>
93 #include <dev/ic/hmevar.h>
94
95 void hme_start(struct ifnet *);
96 void hme_stop(struct hme_softc *,bool);
97 int hme_ioctl(struct ifnet *, u_long, void *);
98 void hme_tick(void *);
99 void hme_watchdog(struct ifnet *);
100 void hme_shutdown(void *);
101 void hme_init(struct hme_softc *);
102 void hme_meminit(struct hme_softc *);
103 void hme_mifinit(struct hme_softc *);
104 void hme_reset(struct hme_softc *);
105 void hme_setladrf(struct hme_softc *);
106
107 /* MII methods & callbacks */
108 static int hme_mii_readreg(struct device *, int, int);
109 static void hme_mii_writereg(struct device *, int, int, int);
110 static void hme_mii_statchg(struct device *);
111
112 int hme_mediachange(struct ifnet *);
113 void hme_mediastatus(struct ifnet *, struct ifmediareq *);
114
115 struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
116 int hme_put(struct hme_softc *, int, struct mbuf *);
117 void hme_read(struct hme_softc *, int, uint32_t);
118 int hme_eint(struct hme_softc *, u_int);
119 int hme_rint(struct hme_softc *);
120 int hme_tint(struct hme_softc *);
121
122 static int ether_cmp(u_char *, u_char *);
123
124 /* Default buffer copy routines */
125 void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
126 void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
127 void hme_zerobuf_contig(struct hme_softc *, int, int);
128
129
130 void
131 hme_config(sc)
132 struct hme_softc *sc;
133 {
134 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 struct mii_data *mii = &sc->sc_mii;
136 struct mii_softc *child;
137 bus_dma_tag_t dmatag = sc->sc_dmatag;
138 bus_dma_segment_t seg;
139 bus_size_t size;
140 int rseg, error;
141
142 /*
143 * HME common initialization.
144 *
145 * hme_softc fields that must be initialized by the front-end:
146 *
147 * the bus tag:
148 * sc_bustag
149 *
150 * the DMA bus tag:
151 * sc_dmatag
152 *
153 * the bus handles:
154 * sc_seb (Shared Ethernet Block registers)
155 * sc_erx (Receiver Unit registers)
156 * sc_etx (Transmitter Unit registers)
157 * sc_mac (MAC registers)
158 * sc_mif (Management Interface registers)
159 *
160 * the maximum bus burst size:
161 * sc_burst
162 *
163 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
164 * rb_membase, rb_dmabase)
165 *
166 * the local Ethernet address:
167 * sc_enaddr
168 *
169 */
170
171 /* Make sure the chip is stopped. */
172 hme_stop(sc, true);
173
174
175 /*
176 * Allocate descriptors and buffers
177 * XXX - do all this differently.. and more configurably,
178 * eg. use things as `dma_load_mbuf()' on transmit,
179 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
180 * all the time) on the receiver side.
181 *
182 * Note: receive buffers must be 64-byte aligned.
183 * Also, apparently, the buffers must extend to a DMA burst
184 * boundary beyond the maximum packet size.
185 */
186 #define _HME_NDESC 128
187 #define _HME_BUFSZ 1600
188
189 /* Note: the # of descriptors must be a multiple of 16 */
190 sc->sc_rb.rb_ntbuf = _HME_NDESC;
191 sc->sc_rb.rb_nrbuf = _HME_NDESC;
192
193 /*
194 * Allocate DMA capable memory
195 * Buffer descriptors must be aligned on a 2048 byte boundary;
196 * take this into account when calculating the size. Note that
197 * the maximum number of descriptors (256) occupies 2048 bytes,
198 * so we allocate that much regardless of _HME_NDESC.
199 */
200 size = 2048 + /* TX descriptors */
201 2048 + /* RX descriptors */
202 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
203 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
204
205 /* Allocate DMA buffer */
206 if ((error = bus_dmamem_alloc(dmatag, size,
207 2048, 0,
208 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
209 printf("%s: DMA buffer alloc error %d\n",
210 sc->sc_dev.dv_xname, error);
211 return;
212 }
213
214 /* Map DMA memory in CPU addressable space */
215 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
216 &sc->sc_rb.rb_membase,
217 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
218 printf("%s: DMA buffer map error %d\n",
219 sc->sc_dev.dv_xname, error);
220 bus_dmamap_unload(dmatag, sc->sc_dmamap);
221 bus_dmamem_free(dmatag, &seg, rseg);
222 return;
223 }
224
225 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
226 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
227 printf("%s: DMA map create error %d\n",
228 sc->sc_dev.dv_xname, error);
229 return;
230 }
231
232 /* Load the buffer */
233 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
234 sc->sc_rb.rb_membase, size, NULL,
235 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
236 printf("%s: DMA buffer map load error %d\n",
237 sc->sc_dev.dv_xname, error);
238 bus_dmamem_free(dmatag, &seg, rseg);
239 return;
240 }
241 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
242
243 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
244 ether_sprintf(sc->sc_enaddr));
245
246 /* Initialize ifnet structure. */
247 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
248 ifp->if_softc = sc;
249 ifp->if_start = hme_start;
250 ifp->if_ioctl = hme_ioctl;
251 ifp->if_watchdog = hme_watchdog;
252 ifp->if_flags =
253 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
254 sc->sc_if_flags = ifp->if_flags;
255 ifp->if_capabilities |=
256 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
257 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
258 IFQ_SET_READY(&ifp->if_snd);
259
260 /* Initialize ifmedia structures and MII info */
261 mii->mii_ifp = ifp;
262 mii->mii_readreg = hme_mii_readreg;
263 mii->mii_writereg = hme_mii_writereg;
264 mii->mii_statchg = hme_mii_statchg;
265
266 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
267
268 hme_mifinit(sc);
269
270 mii_attach(&sc->sc_dev, mii, 0xffffffff,
271 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
272
273 child = LIST_FIRST(&mii->mii_phys);
274 if (child == NULL) {
275 /* No PHY attached */
276 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
277 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
278 } else {
279 /*
280 * Walk along the list of attached MII devices and
281 * establish an `MII instance' to `phy number'
282 * mapping. We'll use this mapping in media change
283 * requests to determine which phy to use to program
284 * the MIF configuration register.
285 */
286 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
287 /*
288 * Note: we support just two PHYs: the built-in
289 * internal device and an external on the MII
290 * connector.
291 */
292 if (child->mii_phy > 1 || child->mii_inst > 1) {
293 printf("%s: cannot accommodate MII device %s"
294 " at phy %d, instance %d\n",
295 sc->sc_dev.dv_xname,
296 child->mii_dev.dv_xname,
297 child->mii_phy, child->mii_inst);
298 continue;
299 }
300
301 sc->sc_phys[child->mii_inst] = child->mii_phy;
302 }
303
304 /*
305 * XXX - we can really do the following ONLY if the
306 * phy indeed has the auto negotiation capability!!
307 */
308 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
309 }
310
311 /* claim 802.1q capability */
312 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
313
314 /* Attach the interface. */
315 if_attach(ifp);
316 ether_ifattach(ifp, sc->sc_enaddr);
317
318 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
319 if (sc->sc_sh == NULL)
320 panic("hme_config: can't establish shutdownhook");
321
322 #if NRND > 0
323 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
324 RND_TYPE_NET, 0);
325 #endif
326
327 callout_init(&sc->sc_tick_ch, 0);
328 }
329
330 void
331 hme_tick(arg)
332 void *arg;
333 {
334 struct hme_softc *sc = arg;
335 int s;
336
337 s = splnet();
338 mii_tick(&sc->sc_mii);
339 splx(s);
340
341 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
342 }
343
344 void
345 hme_reset(sc)
346 struct hme_softc *sc;
347 {
348 int s;
349
350 s = splnet();
351 hme_init(sc);
352 splx(s);
353 }
354
355 void
356 hme_stop(struct hme_softc *sc, bool chip_only)
357 {
358 bus_space_tag_t t = sc->sc_bustag;
359 bus_space_handle_t seb = sc->sc_seb;
360 int n;
361
362 if (!chip_only) {
363 callout_stop(&sc->sc_tick_ch);
364 mii_down(&sc->sc_mii);
365 }
366
367 /* Mask all interrupts */
368 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
369
370 /* Reset transmitter and receiver */
371 bus_space_write_4(t, seb, HME_SEBI_RESET,
372 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
373
374 for (n = 0; n < 20; n++) {
375 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
376 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
377 return;
378 DELAY(20);
379 }
380
381 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
382 }
383
384 void
385 hme_meminit(sc)
386 struct hme_softc *sc;
387 {
388 bus_addr_t txbufdma, rxbufdma;
389 bus_addr_t dma;
390 char *p;
391 unsigned int ntbuf, nrbuf, i;
392 struct hme_ring *hr = &sc->sc_rb;
393
394 p = hr->rb_membase;
395 dma = hr->rb_dmabase;
396
397 ntbuf = hr->rb_ntbuf;
398 nrbuf = hr->rb_nrbuf;
399
400 /*
401 * Allocate transmit descriptors
402 */
403 hr->rb_txd = p;
404 hr->rb_txddma = dma;
405 p += ntbuf * HME_XD_SIZE;
406 dma += ntbuf * HME_XD_SIZE;
407 /* We have reserved descriptor space until the next 2048 byte boundary.*/
408 dma = (bus_addr_t)roundup((u_long)dma, 2048);
409 p = (void *)roundup((u_long)p, 2048);
410
411 /*
412 * Allocate receive descriptors
413 */
414 hr->rb_rxd = p;
415 hr->rb_rxddma = dma;
416 p += nrbuf * HME_XD_SIZE;
417 dma += nrbuf * HME_XD_SIZE;
418 /* Again move forward to the next 2048 byte boundary.*/
419 dma = (bus_addr_t)roundup((u_long)dma, 2048);
420 p = (void *)roundup((u_long)p, 2048);
421
422
423 /*
424 * Allocate transmit buffers
425 */
426 hr->rb_txbuf = p;
427 txbufdma = dma;
428 p += ntbuf * _HME_BUFSZ;
429 dma += ntbuf * _HME_BUFSZ;
430
431 /*
432 * Allocate receive buffers
433 */
434 hr->rb_rxbuf = p;
435 rxbufdma = dma;
436 p += nrbuf * _HME_BUFSZ;
437 dma += nrbuf * _HME_BUFSZ;
438
439 /*
440 * Initialize transmit buffer descriptors
441 */
442 for (i = 0; i < ntbuf; i++) {
443 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
444 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
445 }
446
447 /*
448 * Initialize receive buffer descriptors
449 */
450 for (i = 0; i < nrbuf; i++) {
451 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
452 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
453 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
454 }
455
456 hr->rb_tdhead = hr->rb_tdtail = 0;
457 hr->rb_td_nbusy = 0;
458 hr->rb_rdtail = 0;
459 }
460
461 /*
462 * Initialization of interface; set up initialization block
463 * and transmit/receive descriptor rings.
464 */
465 void
466 hme_init(sc)
467 struct hme_softc *sc;
468 {
469 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 bus_space_tag_t t = sc->sc_bustag;
471 bus_space_handle_t seb = sc->sc_seb;
472 bus_space_handle_t etx = sc->sc_etx;
473 bus_space_handle_t erx = sc->sc_erx;
474 bus_space_handle_t mac = sc->sc_mac;
475 u_int8_t *ea;
476 u_int32_t v;
477
478 /*
479 * Initialization sequence. The numbered steps below correspond
480 * to the sequence outlined in section 6.3.5.1 in the Ethernet
481 * Channel Engine manual (part of the PCIO manual).
482 * See also the STP2002-STQ document from Sun Microsystems.
483 */
484
485 /* step 1 & 2. Reset the Ethernet Channel */
486 hme_stop(sc, false);
487
488 /* Re-initialize the MIF */
489 hme_mifinit(sc);
490
491 /* Call MI reset function if any */
492 if (sc->sc_hwreset)
493 (*sc->sc_hwreset)(sc);
494
495 #if 0
496 /* Mask all MIF interrupts, just in case */
497 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
498 #endif
499
500 /* step 3. Setup data structures in host memory */
501 hme_meminit(sc);
502
503 /* step 4. TX MAC registers & counters */
504 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
505 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
506 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
507 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
508 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
509 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
510 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
511 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
512
513 /* Load station MAC address */
514 ea = sc->sc_enaddr;
515 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
516 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
517 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
518
519 /*
520 * Init seed for backoff
521 * (source suggested by manual: low 10 bits of MAC address)
522 */
523 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
524 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
525
526
527 /* Note: Accepting power-on default for other MAC registers here.. */
528
529
530 /* step 5. RX MAC registers & counters */
531 hme_setladrf(sc);
532
533 /* step 6 & 7. Program Descriptor Ring Base Addresses */
534 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
535 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
536
537 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
538 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
539 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
540 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
541
542 /* step 8. Global Configuration & Interrupt Mask */
543 bus_space_write_4(t, seb, HME_SEBI_IMASK,
544 ~(
545 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
546 HME_SEB_STAT_HOSTTOTX |
547 HME_SEB_STAT_RXTOHOST |
548 HME_SEB_STAT_TXALL |
549 HME_SEB_STAT_TXPERR |
550 HME_SEB_STAT_RCNTEXP |
551 /*HME_SEB_STAT_MIFIRQ |*/
552 HME_SEB_STAT_ALL_ERRORS ));
553
554 switch (sc->sc_burst) {
555 default:
556 v = 0;
557 break;
558 case 16:
559 v = HME_SEB_CFG_BURST16;
560 break;
561 case 32:
562 v = HME_SEB_CFG_BURST32;
563 break;
564 case 64:
565 v = HME_SEB_CFG_BURST64;
566 break;
567 }
568 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
569
570 /* step 9. ETX Configuration: use mostly default values */
571
572 /* Enable DMA */
573 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
574 v |= HME_ETX_CFG_DMAENABLE;
575 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
576
577 /* Transmit Descriptor ring size: in increments of 16 */
578 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
579
580
581 /* step 10. ERX Configuration */
582 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
583
584 /* Encode Receive Descriptor ring size: four possible values */
585 switch (_HME_NDESC /*XXX*/) {
586 case 32:
587 v |= HME_ERX_CFG_RINGSIZE32;
588 break;
589 case 64:
590 v |= HME_ERX_CFG_RINGSIZE64;
591 break;
592 case 128:
593 v |= HME_ERX_CFG_RINGSIZE128;
594 break;
595 case 256:
596 v |= HME_ERX_CFG_RINGSIZE256;
597 break;
598 default:
599 printf("hme: invalid Receive Descriptor ring size\n");
600 break;
601 }
602
603 /* Enable DMA */
604 v |= HME_ERX_CFG_DMAENABLE;
605
606 /* set h/w rx checksum start offset (# of half-words) */
607 #ifdef INET
608 v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
609 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
610 ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
611 HME_ERX_CFG_CSUMSTART;
612 #endif
613 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
614
615 /* step 11. XIF Configuration */
616 v = bus_space_read_4(t, mac, HME_MACI_XIF);
617 v |= HME_MAC_XIF_OE;
618 bus_space_write_4(t, mac, HME_MACI_XIF, v);
619
620 /* step 12. RX_MAC Configuration Register */
621 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
622 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
623 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
624
625 /* step 13. TX_MAC Configuration Register */
626 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
627 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
628 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
629
630 /* step 14. Issue Transmit Pending command */
631
632 /* Call MI initialization function if any */
633 if (sc->sc_hwinit)
634 (*sc->sc_hwinit)(sc);
635
636 /* Set the current media. */
637 mii_mediachg(&sc->sc_mii);
638
639 /* Start the one second timer. */
640 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
641
642 ifp->if_flags |= IFF_RUNNING;
643 ifp->if_flags &= ~IFF_OACTIVE;
644 sc->sc_if_flags = ifp->if_flags;
645 ifp->if_timer = 0;
646 hme_start(ifp);
647 }
648
649 /*
650 * Compare two Ether/802 addresses for equality, inlined and unrolled for
651 * speed.
652 */
653 static inline int
654 ether_cmp(a, b)
655 u_char *a, *b;
656 {
657
658 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
659 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
660 return (0);
661 return (1);
662 }
663
664
665 /*
666 * Routine to copy from mbuf chain to transmit buffer in
667 * network buffer memory.
668 * Returns the amount of data copied.
669 */
670 int
671 hme_put(sc, ri, m)
672 struct hme_softc *sc;
673 int ri; /* Ring index */
674 struct mbuf *m;
675 {
676 struct mbuf *n;
677 int len, tlen = 0;
678 char *bp;
679
680 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
681 for (; m; m = n) {
682 len = m->m_len;
683 if (len == 0) {
684 MFREE(m, n);
685 continue;
686 }
687 memcpy(bp, mtod(m, void *), len);
688 bp += len;
689 tlen += len;
690 MFREE(m, n);
691 }
692 return (tlen);
693 }
694
695 /*
696 * Pull data off an interface.
697 * Len is length of data, with local net header stripped.
698 * We copy the data into mbufs. When full cluster sized units are present
699 * we copy into clusters.
700 */
701 struct mbuf *
702 hme_get(sc, ri, flags)
703 struct hme_softc *sc;
704 int ri;
705 u_int32_t flags;
706 {
707 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
708 struct mbuf *m, *m0, *newm;
709 char *bp;
710 int len, totlen;
711
712 totlen = HME_XD_DECODE_RSIZE(flags);
713 MGETHDR(m0, M_DONTWAIT, MT_DATA);
714 if (m0 == 0)
715 return (0);
716 m0->m_pkthdr.rcvif = ifp;
717 m0->m_pkthdr.len = totlen;
718 len = MHLEN;
719 m = m0;
720
721 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
722
723 while (totlen > 0) {
724 if (totlen >= MINCLSIZE) {
725 MCLGET(m, M_DONTWAIT);
726 if ((m->m_flags & M_EXT) == 0)
727 goto bad;
728 len = MCLBYTES;
729 }
730
731 if (m == m0) {
732 char *newdata = (char *)
733 ALIGN(m->m_data + sizeof(struct ether_header)) -
734 sizeof(struct ether_header);
735 len -= newdata - m->m_data;
736 m->m_data = newdata;
737 }
738
739 m->m_len = len = min(totlen, len);
740 memcpy(mtod(m, void *), bp, len);
741 bp += len;
742
743 totlen -= len;
744 if (totlen > 0) {
745 MGET(newm, M_DONTWAIT, MT_DATA);
746 if (newm == 0)
747 goto bad;
748 len = MLEN;
749 m = m->m_next = newm;
750 }
751 }
752
753 #ifdef INET
754 /* hardware checksum */
755 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
756 struct ether_header *eh;
757 struct ip *ip;
758 struct udphdr *uh;
759 uint16_t *opts;
760 int32_t hlen, pktlen;
761 uint32_t temp;
762
763 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
764 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
765 ETHER_VLAN_ENCAP_LEN;
766 eh = (struct ether_header *) mtod(m0, void *) +
767 ETHER_VLAN_ENCAP_LEN;
768 } else {
769 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
770 eh = mtod(m0, struct ether_header *);
771 }
772 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
773 goto swcsum;
774 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
775
776 /* IPv4 only */
777 if (ip->ip_v != IPVERSION)
778 goto swcsum;
779
780 hlen = ip->ip_hl << 2;
781 if (hlen < sizeof(struct ip))
782 goto swcsum;
783
784 /*
785 * bail if too short, has random trailing garbage, truncated,
786 * fragment, or has ethernet pad.
787 */
788 if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
789 || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
790 goto swcsum;
791
792 switch (ip->ip_p) {
793 case IPPROTO_TCP:
794 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
795 goto swcsum;
796 if (pktlen < (hlen + sizeof(struct tcphdr)))
797 goto swcsum;
798 m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
799 break;
800 case IPPROTO_UDP:
801 if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
802 goto swcsum;
803 if (pktlen < (hlen + sizeof(struct udphdr)))
804 goto swcsum;
805 uh = (struct udphdr *)((char *)ip + hlen);
806 /* no checksum */
807 if (uh->uh_sum == 0)
808 goto swcsum;
809 m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
810 break;
811 default:
812 goto swcsum;
813 }
814
815 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
816 m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
817
818 /* if the pkt had ip options, we have to deduct them */
819 if (hlen > sizeof(struct ip)) {
820 uint32_t optsum;
821
822 optsum = 0;
823 temp = hlen - sizeof(struct ip);
824 opts = (uint16_t *)((char *)ip + sizeof(struct ip));
825
826 while (temp > 1) {
827 optsum += ntohs(*opts++);
828 temp -= 2;
829 }
830 while (optsum >> 16)
831 optsum = (optsum >> 16) + (optsum & 0xffff);
832
833 /* Deduct the ip opts sum from the hwsum (rfc 1624). */
834 m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
835 ~optsum);
836
837 while (m0->m_pkthdr.csum_data >> 16)
838 m0->m_pkthdr.csum_data =
839 (m0->m_pkthdr.csum_data >> 16) +
840 (m0->m_pkthdr.csum_data & 0xffff);
841 }
842
843 m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
844 }
845 swcsum:
846 m0->m_pkthdr.csum_flags = 0;
847 #endif
848
849 return (m0);
850
851 bad:
852 m_freem(m0);
853 return (0);
854 }
855
856 /*
857 * Pass a packet to the higher levels.
858 */
859 void
860 hme_read(sc, ix, flags)
861 struct hme_softc *sc;
862 int ix;
863 u_int32_t flags;
864 {
865 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
866 struct mbuf *m;
867 int len;
868
869 len = HME_XD_DECODE_RSIZE(flags);
870 if (len <= sizeof(struct ether_header) ||
871 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
872 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
873 ETHERMTU + sizeof(struct ether_header))) {
874 #ifdef HMEDEBUG
875 printf("%s: invalid packet size %d; dropping\n",
876 sc->sc_dev.dv_xname, len);
877 #endif
878 ifp->if_ierrors++;
879 return;
880 }
881
882 /* Pull packet off interface. */
883 m = hme_get(sc, ix, flags);
884 if (m == 0) {
885 ifp->if_ierrors++;
886 return;
887 }
888
889 ifp->if_ipackets++;
890
891 #if NBPFILTER > 0
892 /*
893 * Check if there's a BPF listener on this interface.
894 * If so, hand off the raw packet to BPF.
895 */
896 if (ifp->if_bpf)
897 bpf_mtap(ifp->if_bpf, m);
898 #endif
899
900 /* Pass the packet up. */
901 (*ifp->if_input)(ifp, m);
902 }
903
904 void
905 hme_start(ifp)
906 struct ifnet *ifp;
907 {
908 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
909 void *txd = sc->sc_rb.rb_txd;
910 struct mbuf *m;
911 unsigned int txflags;
912 unsigned int ri, len;
913 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
914
915 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
916 return;
917
918 ri = sc->sc_rb.rb_tdhead;
919
920 for (;;) {
921 IFQ_DEQUEUE(&ifp->if_snd, m);
922 if (m == 0)
923 break;
924
925 #if NBPFILTER > 0
926 /*
927 * If BPF is listening on this interface, let it see the
928 * packet before we commit it to the wire.
929 */
930 if (ifp->if_bpf)
931 bpf_mtap(ifp->if_bpf, m);
932 #endif
933
934 #ifdef INET
935 /* collect bits for h/w csum, before hme_put frees the mbuf */
936 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
937 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
938 struct ether_header *eh;
939 uint16_t offset, start;
940
941 eh = mtod(m, struct ether_header *);
942 switch (ntohs(eh->ether_type)) {
943 case ETHERTYPE_IP:
944 start = ETHER_HDR_LEN;
945 break;
946 case ETHERTYPE_VLAN:
947 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
948 break;
949 default:
950 /* unsupported, drop it */
951 m_free(m);
952 continue;
953 }
954 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
955 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
956 + start;
957 txflags = HME_XD_TXCKSUM |
958 (offset << HME_XD_TXCSSTUFFSHIFT) |
959 (start << HME_XD_TXCSSTARTSHIFT);
960 } else
961 #endif
962 txflags = 0;
963
964 /*
965 * Copy the mbuf chain into the transmit buffer.
966 */
967 len = hme_put(sc, ri, m);
968
969 /*
970 * Initialize transmit registers and start transmission
971 */
972 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
973 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
974 HME_XD_ENCODE_TSIZE(len) | txflags);
975
976 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
977 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
978 HME_ETX_TP_DMAWAKEUP);
979
980 if (++ri == ntbuf)
981 ri = 0;
982
983 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
984 ifp->if_flags |= IFF_OACTIVE;
985 break;
986 }
987 }
988
989 sc->sc_rb.rb_tdhead = ri;
990 }
991
992 /*
993 * Transmit interrupt.
994 */
995 int
996 hme_tint(sc)
997 struct hme_softc *sc;
998 {
999 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1000 bus_space_tag_t t = sc->sc_bustag;
1001 bus_space_handle_t mac = sc->sc_mac;
1002 unsigned int ri, txflags;
1003
1004 /*
1005 * Unload collision counters
1006 */
1007 ifp->if_collisions +=
1008 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1009 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1010 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1011 bus_space_read_4(t, mac, HME_MACI_LTCNT);
1012
1013 /*
1014 * then clear the hardware counters.
1015 */
1016 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1017 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1018 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1019 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1020
1021 /* Fetch current position in the transmit ring */
1022 ri = sc->sc_rb.rb_tdtail;
1023
1024 for (;;) {
1025 if (sc->sc_rb.rb_td_nbusy <= 0)
1026 break;
1027
1028 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1029
1030 if (txflags & HME_XD_OWN)
1031 break;
1032
1033 ifp->if_flags &= ~IFF_OACTIVE;
1034 ifp->if_opackets++;
1035
1036 if (++ri == sc->sc_rb.rb_ntbuf)
1037 ri = 0;
1038
1039 --sc->sc_rb.rb_td_nbusy;
1040 }
1041
1042 /* Update ring */
1043 sc->sc_rb.rb_tdtail = ri;
1044
1045 hme_start(ifp);
1046
1047 if (sc->sc_rb.rb_td_nbusy == 0)
1048 ifp->if_timer = 0;
1049
1050 return (1);
1051 }
1052
1053 /*
1054 * Receive interrupt.
1055 */
1056 int
1057 hme_rint(sc)
1058 struct hme_softc *sc;
1059 {
1060 void *xdr = sc->sc_rb.rb_rxd;
1061 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1062 unsigned int ri;
1063 u_int32_t flags;
1064
1065 ri = sc->sc_rb.rb_rdtail;
1066
1067 /*
1068 * Process all buffers with valid data.
1069 */
1070 for (;;) {
1071 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1072 if (flags & HME_XD_OWN)
1073 break;
1074
1075 if (flags & HME_XD_OFL) {
1076 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1077 sc->sc_dev.dv_xname, ri, flags);
1078 } else
1079 hme_read(sc, ri, flags);
1080
1081 /* This buffer can be used by the hardware again */
1082 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1083 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1084
1085 if (++ri == nrbuf)
1086 ri = 0;
1087 }
1088
1089 sc->sc_rb.rb_rdtail = ri;
1090
1091 return (1);
1092 }
1093
1094 int
1095 hme_eint(sc, status)
1096 struct hme_softc *sc;
1097 u_int status;
1098 {
1099 char bits[128];
1100
1101 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1102 bus_space_tag_t t = sc->sc_bustag;
1103 bus_space_handle_t mif = sc->sc_mif;
1104 u_int32_t cf, st, sm;
1105 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1106 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1107 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1108 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1109 sc->sc_dev.dv_xname, cf, st, sm);
1110 return (1);
1111 }
1112
1113 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1114 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
1115 return (1);
1116 }
1117
1118 int
1119 hme_intr(v)
1120 void *v;
1121 {
1122 struct hme_softc *sc = (struct hme_softc *)v;
1123 bus_space_tag_t t = sc->sc_bustag;
1124 bus_space_handle_t seb = sc->sc_seb;
1125 u_int32_t status;
1126 int r = 0;
1127
1128 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1129
1130 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1131 r |= hme_eint(sc, status);
1132
1133 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1134 r |= hme_tint(sc);
1135
1136 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1137 r |= hme_rint(sc);
1138
1139 #if NRND > 0
1140 rnd_add_uint32(&sc->rnd_source, status);
1141 #endif
1142
1143 return (r);
1144 }
1145
1146
1147 void
1148 hme_watchdog(ifp)
1149 struct ifnet *ifp;
1150 {
1151 struct hme_softc *sc = ifp->if_softc;
1152
1153 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1154 ++ifp->if_oerrors;
1155
1156 hme_reset(sc);
1157 }
1158
1159 /*
1160 * Initialize the MII Management Interface
1161 */
1162 void
1163 hme_mifinit(sc)
1164 struct hme_softc *sc;
1165 {
1166 bus_space_tag_t t = sc->sc_bustag;
1167 bus_space_handle_t mif = sc->sc_mif;
1168 bus_space_handle_t mac = sc->sc_mac;
1169 int instance, phy;
1170 u_int32_t v;
1171
1172 if (sc->sc_media.ifm_cur != NULL) {
1173 instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1174 phy = sc->sc_phys[instance];
1175 } else
1176 /* No media set yet, pick phy arbitrarily.. */
1177 phy = HME_PHYAD_EXTERNAL;
1178
1179 /* Configure the MIF in frame mode, no poll, current phy select */
1180 v = 0;
1181 if (phy == HME_PHYAD_EXTERNAL)
1182 v |= HME_MIF_CFG_PHY;
1183 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1184
1185 /* If an external transceiver is selected, enable its MII drivers */
1186 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1187 v &= ~HME_MAC_XIF_MIIENABLE;
1188 if (phy == HME_PHYAD_EXTERNAL)
1189 v |= HME_MAC_XIF_MIIENABLE;
1190 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1191 }
1192
1193 /*
1194 * MII interface
1195 */
1196 static int
1197 hme_mii_readreg(self, phy, reg)
1198 struct device *self;
1199 int phy, reg;
1200 {
1201 struct hme_softc *sc = (void *)self;
1202 bus_space_tag_t t = sc->sc_bustag;
1203 bus_space_handle_t mif = sc->sc_mif;
1204 bus_space_handle_t mac = sc->sc_mac;
1205 u_int32_t v, xif_cfg, mifi_cfg;
1206 int n;
1207
1208 /* We can at most have two PHYs */
1209 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1210 return (0);
1211
1212 /* Select the desired PHY in the MIF configuration register */
1213 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1214 v &= ~HME_MIF_CFG_PHY;
1215 if (phy == HME_PHYAD_EXTERNAL)
1216 v |= HME_MIF_CFG_PHY;
1217 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1218
1219 /* Enable MII drivers on external transceiver */
1220 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1221 if (phy == HME_PHYAD_EXTERNAL)
1222 v |= HME_MAC_XIF_MIIENABLE;
1223 else
1224 v &= ~HME_MAC_XIF_MIIENABLE;
1225 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1226
1227 #if 0
1228 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1229 /*
1230 * Check whether a transceiver is connected by testing
1231 * the MIF configuration register's MDI_X bits. Note that
1232 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1233 */
1234 mif_mdi_bit = 1 << (8 + (1 - phy));
1235 delay(100);
1236 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1237 if ((v & mif_mdi_bit) == 0)
1238 return (0);
1239 #endif
1240
1241 /* Construct the frame command */
1242 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1243 HME_MIF_FO_TAMSB |
1244 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1245 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1246 (reg << HME_MIF_FO_REGAD_SHIFT);
1247
1248 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1249 for (n = 0; n < 100; n++) {
1250 DELAY(1);
1251 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1252 if (v & HME_MIF_FO_TALSB) {
1253 v &= HME_MIF_FO_DATA;
1254 goto out;
1255 }
1256 }
1257
1258 v = 0;
1259 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1260
1261 out:
1262 /* Restore MIFI_CFG register */
1263 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1264 /* Restore XIF register */
1265 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1266 return (v);
1267 }
1268
1269 static void
1270 hme_mii_writereg(self, phy, reg, val)
1271 struct device *self;
1272 int phy, reg, val;
1273 {
1274 struct hme_softc *sc = (void *)self;
1275 bus_space_tag_t t = sc->sc_bustag;
1276 bus_space_handle_t mif = sc->sc_mif;
1277 bus_space_handle_t mac = sc->sc_mac;
1278 u_int32_t v, xif_cfg, mifi_cfg;
1279 int n;
1280
1281 /* We can at most have two PHYs */
1282 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1283 return;
1284
1285 /* Select the desired PHY in the MIF configuration register */
1286 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1287 v &= ~HME_MIF_CFG_PHY;
1288 if (phy == HME_PHYAD_EXTERNAL)
1289 v |= HME_MIF_CFG_PHY;
1290 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1291
1292 /* Enable MII drivers on external transceiver */
1293 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1294 if (phy == HME_PHYAD_EXTERNAL)
1295 v |= HME_MAC_XIF_MIIENABLE;
1296 else
1297 v &= ~HME_MAC_XIF_MIIENABLE;
1298 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1299
1300 #if 0
1301 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1302 /*
1303 * Check whether a transceiver is connected by testing
1304 * the MIF configuration register's MDI_X bits. Note that
1305 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1306 */
1307 mif_mdi_bit = 1 << (8 + (1 - phy));
1308 delay(100);
1309 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1310 if ((v & mif_mdi_bit) == 0)
1311 return;
1312 #endif
1313
1314 /* Construct the frame command */
1315 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1316 HME_MIF_FO_TAMSB |
1317 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1318 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1319 (reg << HME_MIF_FO_REGAD_SHIFT) |
1320 (val & HME_MIF_FO_DATA);
1321
1322 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1323 for (n = 0; n < 100; n++) {
1324 DELAY(1);
1325 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1326 if (v & HME_MIF_FO_TALSB)
1327 goto out;
1328 }
1329
1330 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1331 out:
1332 /* Restore MIFI_CFG register */
1333 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1334 /* Restore XIF register */
1335 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1336 }
1337
1338 static void
1339 hme_mii_statchg(dev)
1340 struct device *dev;
1341 {
1342 struct hme_softc *sc = (void *)dev;
1343 bus_space_tag_t t = sc->sc_bustag;
1344 bus_space_handle_t mac = sc->sc_mac;
1345 u_int32_t v;
1346
1347 #ifdef HMEDEBUG
1348 if (sc->sc_debug)
1349 printf("hme_mii_statchg: status change\n");
1350 #endif
1351
1352 /* Set the MAC Full Duplex bit appropriately */
1353 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1354 but not otherwise. */
1355 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1356 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1357 v |= HME_MAC_TXCFG_FULLDPLX;
1358 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1359 } else {
1360 v &= ~HME_MAC_TXCFG_FULLDPLX;
1361 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1362 }
1363 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1364 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1365 }
1366
1367 int
1368 hme_mediachange(ifp)
1369 struct ifnet *ifp;
1370 {
1371 struct hme_softc *sc = ifp->if_softc;
1372 bus_space_tag_t t = sc->sc_bustag;
1373 bus_space_handle_t mif = sc->sc_mif;
1374 bus_space_handle_t mac = sc->sc_mac;
1375 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1376 int phy = sc->sc_phys[instance];
1377 u_int32_t v;
1378
1379 #ifdef HMEDEBUG
1380 if (sc->sc_debug)
1381 printf("hme_mediachange: phy = %d\n", phy);
1382 #endif
1383 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1384 return (EINVAL);
1385
1386 /* Select the current PHY in the MIF configuration register */
1387 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1388 v &= ~HME_MIF_CFG_PHY;
1389 if (phy == HME_PHYAD_EXTERNAL)
1390 v |= HME_MIF_CFG_PHY;
1391 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1392
1393 /* If an external transceiver is selected, enable its MII drivers */
1394 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1395 v &= ~HME_MAC_XIF_MIIENABLE;
1396 if (phy == HME_PHYAD_EXTERNAL)
1397 v |= HME_MAC_XIF_MIIENABLE;
1398 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1399
1400 return (mii_mediachg(&sc->sc_mii));
1401 }
1402
1403 void
1404 hme_mediastatus(ifp, ifmr)
1405 struct ifnet *ifp;
1406 struct ifmediareq *ifmr;
1407 {
1408 struct hme_softc *sc = ifp->if_softc;
1409
1410 if ((ifp->if_flags & IFF_UP) == 0)
1411 return;
1412
1413 mii_pollstat(&sc->sc_mii);
1414 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1415 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1416 }
1417
1418 /*
1419 * Process an ioctl request.
1420 */
1421 int
1422 hme_ioctl(ifp, cmd, data)
1423 struct ifnet *ifp;
1424 u_long cmd;
1425 void *data;
1426 {
1427 struct hme_softc *sc = ifp->if_softc;
1428 struct ifaddr *ifa = (struct ifaddr *)data;
1429 struct ifreq *ifr = (struct ifreq *)data;
1430 int s, error = 0;
1431
1432 s = splnet();
1433
1434 switch (cmd) {
1435
1436 case SIOCSIFADDR:
1437 switch (ifa->ifa_addr->sa_family) {
1438 #ifdef INET
1439 case AF_INET:
1440 if (ifp->if_flags & IFF_UP)
1441 hme_setladrf(sc);
1442 else {
1443 ifp->if_flags |= IFF_UP;
1444 hme_init(sc);
1445 }
1446 arp_ifinit(ifp, ifa);
1447 break;
1448 #endif
1449 default:
1450 ifp->if_flags |= IFF_UP;
1451 hme_init(sc);
1452 break;
1453 }
1454 break;
1455
1456 case SIOCSIFFLAGS:
1457 #ifdef HMEDEBUG
1458 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1459 #endif
1460
1461 if ((ifp->if_flags & IFF_UP) == 0 &&
1462 (ifp->if_flags & IFF_RUNNING) != 0) {
1463 /*
1464 * If interface is marked down and it is running, then
1465 * stop it.
1466 */
1467 hme_stop(sc, false);
1468 ifp->if_flags &= ~IFF_RUNNING;
1469 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1470 (ifp->if_flags & IFF_RUNNING) == 0) {
1471 /*
1472 * If interface is marked up and it is stopped, then
1473 * start it.
1474 */
1475 hme_init(sc);
1476 } else if ((ifp->if_flags & IFF_UP) != 0) {
1477 /*
1478 * If setting debug or promiscuous mode, do not reset
1479 * the chip; for everything else, call hme_init()
1480 * which will trigger a reset.
1481 */
1482 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1483 if (ifp->if_flags != sc->sc_if_flags) {
1484 if ((ifp->if_flags & (~RESETIGN))
1485 == (sc->sc_if_flags & (~RESETIGN)))
1486 hme_setladrf(sc);
1487 else
1488 hme_init(sc);
1489 }
1490 #undef RESETIGN
1491 }
1492
1493 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1494 hme_init(sc);
1495
1496 break;
1497
1498 case SIOCADDMULTI:
1499 case SIOCDELMULTI:
1500 error = (cmd == SIOCADDMULTI) ?
1501 ether_addmulti(ifr, &sc->sc_ethercom) :
1502 ether_delmulti(ifr, &sc->sc_ethercom);
1503
1504 if (error == ENETRESET) {
1505 /*
1506 * Multicast list has changed; set the hardware filter
1507 * accordingly.
1508 */
1509 if (ifp->if_flags & IFF_RUNNING)
1510 hme_setladrf(sc);
1511 error = 0;
1512 }
1513 break;
1514
1515 case SIOCGIFMEDIA:
1516 case SIOCSIFMEDIA:
1517 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1518 break;
1519
1520 default:
1521 error = EINVAL;
1522 break;
1523 }
1524
1525 sc->sc_if_flags = ifp->if_flags;
1526 splx(s);
1527 return (error);
1528 }
1529
1530 void
1531 hme_shutdown(arg)
1532 void *arg;
1533 {
1534
1535 hme_stop((struct hme_softc *)arg, false);
1536 }
1537
1538 /*
1539 * Set up the logical address filter.
1540 */
1541 void
1542 hme_setladrf(sc)
1543 struct hme_softc *sc;
1544 {
1545 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1546 struct ether_multi *enm;
1547 struct ether_multistep step;
1548 struct ethercom *ec = &sc->sc_ethercom;
1549 bus_space_tag_t t = sc->sc_bustag;
1550 bus_space_handle_t mac = sc->sc_mac;
1551 u_char *cp;
1552 u_int32_t crc;
1553 u_int32_t hash[4];
1554 u_int32_t v;
1555 int len;
1556
1557 /* Clear hash table */
1558 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1559
1560 /* Get current RX configuration */
1561 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1562
1563 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1564 /* Turn on promiscuous mode; turn off the hash filter */
1565 v |= HME_MAC_RXCFG_PMISC;
1566 v &= ~HME_MAC_RXCFG_HENABLE;
1567 ifp->if_flags |= IFF_ALLMULTI;
1568 goto chipit;
1569 }
1570
1571 /* Turn off promiscuous mode; turn on the hash filter */
1572 v &= ~HME_MAC_RXCFG_PMISC;
1573 v |= HME_MAC_RXCFG_HENABLE;
1574
1575 /*
1576 * Set up multicast address filter by passing all multicast addresses
1577 * through a crc generator, and then using the high order 6 bits as an
1578 * index into the 64 bit logical address filter. The high order bit
1579 * selects the word, while the rest of the bits select the bit within
1580 * the word.
1581 */
1582
1583 ETHER_FIRST_MULTI(step, ec, enm);
1584 while (enm != NULL) {
1585 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1586 /*
1587 * We must listen to a range of multicast addresses.
1588 * For now, just accept all multicasts, rather than
1589 * trying to set only those filter bits needed to match
1590 * the range. (At this time, the only use of address
1591 * ranges is for IP multicast routing, for which the
1592 * range is big enough to require all bits set.)
1593 */
1594 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1595 ifp->if_flags |= IFF_ALLMULTI;
1596 goto chipit;
1597 }
1598
1599 cp = enm->enm_addrlo;
1600 crc = 0xffffffff;
1601 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1602 int octet = *cp++;
1603 int i;
1604
1605 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1606 for (i = 0; i < 8; i++) {
1607 if ((crc & 1) ^ (octet & 1)) {
1608 crc >>= 1;
1609 crc ^= MC_POLY_LE;
1610 } else {
1611 crc >>= 1;
1612 }
1613 octet >>= 1;
1614 }
1615 }
1616 /* Just want the 6 most significant bits. */
1617 crc >>= 26;
1618
1619 /* Set the corresponding bit in the filter. */
1620 hash[crc >> 4] |= 1 << (crc & 0xf);
1621
1622 ETHER_NEXT_MULTI(step, enm);
1623 }
1624
1625 ifp->if_flags &= ~IFF_ALLMULTI;
1626
1627 chipit:
1628 /* Now load the hash table into the chip */
1629 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1630 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1631 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1632 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1633 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1634 }
1635
1636 /*
1637 * Routines for accessing the transmit and receive buffers.
1638 * The various CPU and adapter configurations supported by this
1639 * driver require three different access methods for buffers
1640 * and descriptors:
1641 * (1) contig (contiguous data; no padding),
1642 * (2) gap2 (two bytes of data followed by two bytes of padding),
1643 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1644 */
1645
1646 #if 0
1647 /*
1648 * contig: contiguous data with no padding.
1649 *
1650 * Buffers may have any alignment.
1651 */
1652
1653 void
1654 hme_copytobuf_contig(sc, from, ri, len)
1655 struct hme_softc *sc;
1656 void *from;
1657 int ri, len;
1658 {
1659 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1660
1661 /*
1662 * Just call memcpy() to do the work.
1663 */
1664 memcpy(buf, from, len);
1665 }
1666
1667 void
1668 hme_copyfrombuf_contig(sc, to, boff, len)
1669 struct hme_softc *sc;
1670 void *to;
1671 int boff, len;
1672 {
1673 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1674
1675 /*
1676 * Just call memcpy() to do the work.
1677 */
1678 memcpy(to, buf, len);
1679 }
1680 #endif
1681