Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.58
      1 /*	$NetBSD: hme.c,v 1.58 2007/07/12 17:42:17 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * HME Ethernet module driver.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.58 2007/07/12 17:42:17 martin Exp $");
     45 
     46 /* #define HMEDEBUG */
     47 
     48 #include "opt_inet.h"
     49 #include "bpfilter.h"
     50 #include "rnd.h"
     51 
     52 #include <sys/param.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/mbuf.h>
     56 #include <sys/syslog.h>
     57 #include <sys/socket.h>
     58 #include <sys/device.h>
     59 #include <sys/malloc.h>
     60 #include <sys/ioctl.h>
     61 #include <sys/errno.h>
     62 #if NRND > 0
     63 #include <sys/rnd.h>
     64 #endif
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 
     71 #ifdef INET
     72 #include <netinet/in.h>
     73 #include <netinet/if_inarp.h>
     74 #include <netinet/in_systm.h>
     75 #include <netinet/in_var.h>
     76 #include <netinet/ip.h>
     77 #include <netinet/tcp.h>
     78 #include <netinet/udp.h>
     79 #endif
     80 
     81 
     82 #if NBPFILTER > 0
     83 #include <net/bpf.h>
     84 #include <net/bpfdesc.h>
     85 #endif
     86 
     87 #include <dev/mii/mii.h>
     88 #include <dev/mii/miivar.h>
     89 
     90 #include <machine/bus.h>
     91 
     92 #include <dev/ic/hmereg.h>
     93 #include <dev/ic/hmevar.h>
     94 
     95 void		hme_start(struct ifnet *);
     96 void		hme_stop(struct hme_softc *,bool);
     97 int		hme_ioctl(struct ifnet *, u_long, void *);
     98 void		hme_tick(void *);
     99 void		hme_watchdog(struct ifnet *);
    100 void		hme_shutdown(void *);
    101 void		hme_init(struct hme_softc *);
    102 void		hme_meminit(struct hme_softc *);
    103 void		hme_mifinit(struct hme_softc *);
    104 void		hme_reset(struct hme_softc *);
    105 void		hme_setladrf(struct hme_softc *);
    106 
    107 /* MII methods & callbacks */
    108 static int	hme_mii_readreg(struct device *, int, int);
    109 static void	hme_mii_writereg(struct device *, int, int, int);
    110 static void	hme_mii_statchg(struct device *);
    111 
    112 int		hme_mediachange(struct ifnet *);
    113 void		hme_mediastatus(struct ifnet *, struct ifmediareq *);
    114 
    115 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    116 int		hme_put(struct hme_softc *, int, struct mbuf *);
    117 void		hme_read(struct hme_softc *, int, uint32_t);
    118 int		hme_eint(struct hme_softc *, u_int);
    119 int		hme_rint(struct hme_softc *);
    120 int		hme_tint(struct hme_softc *);
    121 
    122 static int	ether_cmp(u_char *, u_char *);
    123 
    124 /* Default buffer copy routines */
    125 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    126 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    127 void	hme_zerobuf_contig(struct hme_softc *, int, int);
    128 
    129 
    130 void
    131 hme_config(sc)
    132 	struct hme_softc *sc;
    133 {
    134 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    135 	struct mii_data *mii = &sc->sc_mii;
    136 	struct mii_softc *child;
    137 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    138 	bus_dma_segment_t seg;
    139 	bus_size_t size;
    140 	int rseg, error;
    141 
    142 	/*
    143 	 * HME common initialization.
    144 	 *
    145 	 * hme_softc fields that must be initialized by the front-end:
    146 	 *
    147 	 * the bus tag:
    148 	 *	sc_bustag
    149 	 *
    150 	 * the DMA bus tag:
    151 	 *	sc_dmatag
    152 	 *
    153 	 * the bus handles:
    154 	 *	sc_seb		(Shared Ethernet Block registers)
    155 	 *	sc_erx		(Receiver Unit registers)
    156 	 *	sc_etx		(Transmitter Unit registers)
    157 	 *	sc_mac		(MAC registers)
    158 	 *	sc_mif		(Management Interface registers)
    159 	 *
    160 	 * the maximum bus burst size:
    161 	 *	sc_burst
    162 	 *
    163 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    164 	 *	rb_membase, rb_dmabase)
    165 	 *
    166 	 * the local Ethernet address:
    167 	 *	sc_enaddr
    168 	 *
    169 	 */
    170 
    171 	/* Make sure the chip is stopped. */
    172 	hme_stop(sc, true);
    173 
    174 
    175 	/*
    176 	 * Allocate descriptors and buffers
    177 	 * XXX - do all this differently.. and more configurably,
    178 	 * eg. use things as `dma_load_mbuf()' on transmit,
    179 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    180 	 *     all the time) on the receiver side.
    181 	 *
    182 	 * Note: receive buffers must be 64-byte aligned.
    183 	 * Also, apparently, the buffers must extend to a DMA burst
    184 	 * boundary beyond the maximum packet size.
    185 	 */
    186 #define _HME_NDESC	128
    187 #define _HME_BUFSZ	1600
    188 
    189 	/* Note: the # of descriptors must be a multiple of 16 */
    190 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    191 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    192 
    193 	/*
    194 	 * Allocate DMA capable memory
    195 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    196 	 * take this into account when calculating the size. Note that
    197 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    198 	 * so we allocate that much regardless of _HME_NDESC.
    199 	 */
    200 	size =	2048 +					/* TX descriptors */
    201 		2048 +					/* RX descriptors */
    202 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    203 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    204 
    205 	/* Allocate DMA buffer */
    206 	if ((error = bus_dmamem_alloc(dmatag, size,
    207 				      2048, 0,
    208 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    209 		printf("%s: DMA buffer alloc error %d\n",
    210 			sc->sc_dev.dv_xname, error);
    211 		return;
    212 	}
    213 
    214 	/* Map DMA memory in CPU addressable space */
    215 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    216 				    &sc->sc_rb.rb_membase,
    217 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    218 		printf("%s: DMA buffer map error %d\n",
    219 			sc->sc_dev.dv_xname, error);
    220 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    221 		bus_dmamem_free(dmatag, &seg, rseg);
    222 		return;
    223 	}
    224 
    225 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    226 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    227 		printf("%s: DMA map create error %d\n",
    228 			sc->sc_dev.dv_xname, error);
    229 		return;
    230 	}
    231 
    232 	/* Load the buffer */
    233 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    234 	    sc->sc_rb.rb_membase, size, NULL,
    235 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    236 		printf("%s: DMA buffer map load error %d\n",
    237 			sc->sc_dev.dv_xname, error);
    238 		bus_dmamem_free(dmatag, &seg, rseg);
    239 		return;
    240 	}
    241 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    242 
    243 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    244 	    ether_sprintf(sc->sc_enaddr));
    245 
    246 	/* Initialize ifnet structure. */
    247 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    248 	ifp->if_softc = sc;
    249 	ifp->if_start = hme_start;
    250 	ifp->if_ioctl = hme_ioctl;
    251 	ifp->if_watchdog = hme_watchdog;
    252 	ifp->if_flags =
    253 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    254 	sc->sc_if_flags = ifp->if_flags;
    255 	ifp->if_capabilities |=
    256 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    257 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    258 	IFQ_SET_READY(&ifp->if_snd);
    259 
    260 	/* Initialize ifmedia structures and MII info */
    261 	mii->mii_ifp = ifp;
    262 	mii->mii_readreg = hme_mii_readreg;
    263 	mii->mii_writereg = hme_mii_writereg;
    264 	mii->mii_statchg = hme_mii_statchg;
    265 
    266 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
    267 
    268 	hme_mifinit(sc);
    269 
    270 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    271 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    272 
    273 	child = LIST_FIRST(&mii->mii_phys);
    274 	if (child == NULL) {
    275 		/* No PHY attached */
    276 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    277 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    278 	} else {
    279 		/*
    280 		 * Walk along the list of attached MII devices and
    281 		 * establish an `MII instance' to `phy number'
    282 		 * mapping. We'll use this mapping in media change
    283 		 * requests to determine which phy to use to program
    284 		 * the MIF configuration register.
    285 		 */
    286 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    287 			/*
    288 			 * Note: we support just two PHYs: the built-in
    289 			 * internal device and an external on the MII
    290 			 * connector.
    291 			 */
    292 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    293 				printf("%s: cannot accommodate MII device %s"
    294 				       " at phy %d, instance %d\n",
    295 				       sc->sc_dev.dv_xname,
    296 				       child->mii_dev.dv_xname,
    297 				       child->mii_phy, child->mii_inst);
    298 				continue;
    299 			}
    300 
    301 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    302 		}
    303 
    304 		/*
    305 		 * XXX - we can really do the following ONLY if the
    306 		 * phy indeed has the auto negotiation capability!!
    307 		 */
    308 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    309 	}
    310 
    311 	/* claim 802.1q capability */
    312 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    313 
    314 	/* Attach the interface. */
    315 	if_attach(ifp);
    316 	ether_ifattach(ifp, sc->sc_enaddr);
    317 
    318 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    319 	if (sc->sc_sh == NULL)
    320 		panic("hme_config: can't establish shutdownhook");
    321 
    322 #if NRND > 0
    323 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    324 			  RND_TYPE_NET, 0);
    325 #endif
    326 
    327 	callout_init(&sc->sc_tick_ch, 0);
    328 }
    329 
    330 void
    331 hme_tick(arg)
    332 	void *arg;
    333 {
    334 	struct hme_softc *sc = arg;
    335 	int s;
    336 
    337 	s = splnet();
    338 	mii_tick(&sc->sc_mii);
    339 	splx(s);
    340 
    341 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    342 }
    343 
    344 void
    345 hme_reset(sc)
    346 	struct hme_softc *sc;
    347 {
    348 	int s;
    349 
    350 	s = splnet();
    351 	hme_init(sc);
    352 	splx(s);
    353 }
    354 
    355 void
    356 hme_stop(struct hme_softc *sc, bool chip_only)
    357 {
    358 	bus_space_tag_t t = sc->sc_bustag;
    359 	bus_space_handle_t seb = sc->sc_seb;
    360 	int n;
    361 
    362 	if (!chip_only) {
    363 		callout_stop(&sc->sc_tick_ch);
    364 		mii_down(&sc->sc_mii);
    365 	}
    366 
    367 	/* Mask all interrupts */
    368 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    369 
    370 	/* Reset transmitter and receiver */
    371 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    372 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    373 
    374 	for (n = 0; n < 20; n++) {
    375 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    376 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    377 			return;
    378 		DELAY(20);
    379 	}
    380 
    381 	printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
    382 }
    383 
    384 void
    385 hme_meminit(sc)
    386 	struct hme_softc *sc;
    387 {
    388 	bus_addr_t txbufdma, rxbufdma;
    389 	bus_addr_t dma;
    390 	char *p;
    391 	unsigned int ntbuf, nrbuf, i;
    392 	struct hme_ring *hr = &sc->sc_rb;
    393 
    394 	p = hr->rb_membase;
    395 	dma = hr->rb_dmabase;
    396 
    397 	ntbuf = hr->rb_ntbuf;
    398 	nrbuf = hr->rb_nrbuf;
    399 
    400 	/*
    401 	 * Allocate transmit descriptors
    402 	 */
    403 	hr->rb_txd = p;
    404 	hr->rb_txddma = dma;
    405 	p += ntbuf * HME_XD_SIZE;
    406 	dma += ntbuf * HME_XD_SIZE;
    407 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    408 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    409 	p = (void *)roundup((u_long)p, 2048);
    410 
    411 	/*
    412 	 * Allocate receive descriptors
    413 	 */
    414 	hr->rb_rxd = p;
    415 	hr->rb_rxddma = dma;
    416 	p += nrbuf * HME_XD_SIZE;
    417 	dma += nrbuf * HME_XD_SIZE;
    418 	/* Again move forward to the next 2048 byte boundary.*/
    419 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    420 	p = (void *)roundup((u_long)p, 2048);
    421 
    422 
    423 	/*
    424 	 * Allocate transmit buffers
    425 	 */
    426 	hr->rb_txbuf = p;
    427 	txbufdma = dma;
    428 	p += ntbuf * _HME_BUFSZ;
    429 	dma += ntbuf * _HME_BUFSZ;
    430 
    431 	/*
    432 	 * Allocate receive buffers
    433 	 */
    434 	hr->rb_rxbuf = p;
    435 	rxbufdma = dma;
    436 	p += nrbuf * _HME_BUFSZ;
    437 	dma += nrbuf * _HME_BUFSZ;
    438 
    439 	/*
    440 	 * Initialize transmit buffer descriptors
    441 	 */
    442 	for (i = 0; i < ntbuf; i++) {
    443 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    444 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    445 	}
    446 
    447 	/*
    448 	 * Initialize receive buffer descriptors
    449 	 */
    450 	for (i = 0; i < nrbuf; i++) {
    451 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    452 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    453 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    454 	}
    455 
    456 	hr->rb_tdhead = hr->rb_tdtail = 0;
    457 	hr->rb_td_nbusy = 0;
    458 	hr->rb_rdtail = 0;
    459 }
    460 
    461 /*
    462  * Initialization of interface; set up initialization block
    463  * and transmit/receive descriptor rings.
    464  */
    465 void
    466 hme_init(sc)
    467 	struct hme_softc *sc;
    468 {
    469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    470 	bus_space_tag_t t = sc->sc_bustag;
    471 	bus_space_handle_t seb = sc->sc_seb;
    472 	bus_space_handle_t etx = sc->sc_etx;
    473 	bus_space_handle_t erx = sc->sc_erx;
    474 	bus_space_handle_t mac = sc->sc_mac;
    475 	u_int8_t *ea;
    476 	u_int32_t v;
    477 
    478 	/*
    479 	 * Initialization sequence. The numbered steps below correspond
    480 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    481 	 * Channel Engine manual (part of the PCIO manual).
    482 	 * See also the STP2002-STQ document from Sun Microsystems.
    483 	 */
    484 
    485 	/* step 1 & 2. Reset the Ethernet Channel */
    486 	hme_stop(sc, false);
    487 
    488 	/* Re-initialize the MIF */
    489 	hme_mifinit(sc);
    490 
    491 	/* Call MI reset function if any */
    492 	if (sc->sc_hwreset)
    493 		(*sc->sc_hwreset)(sc);
    494 
    495 #if 0
    496 	/* Mask all MIF interrupts, just in case */
    497 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    498 #endif
    499 
    500 	/* step 3. Setup data structures in host memory */
    501 	hme_meminit(sc);
    502 
    503 	/* step 4. TX MAC registers & counters */
    504 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    505 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    506 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    507 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    508 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    509 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    510 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    511 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    512 
    513 	/* Load station MAC address */
    514 	ea = sc->sc_enaddr;
    515 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    516 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    517 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    518 
    519 	/*
    520 	 * Init seed for backoff
    521 	 * (source suggested by manual: low 10 bits of MAC address)
    522 	 */
    523 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    524 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    525 
    526 
    527 	/* Note: Accepting power-on default for other MAC registers here.. */
    528 
    529 
    530 	/* step 5. RX MAC registers & counters */
    531 	hme_setladrf(sc);
    532 
    533 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    534 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    535 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    536 
    537 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    538 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    539 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    540 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    541 
    542 	/* step 8. Global Configuration & Interrupt Mask */
    543 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    544 			~(
    545 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    546 			  HME_SEB_STAT_HOSTTOTX |
    547 			  HME_SEB_STAT_RXTOHOST |
    548 			  HME_SEB_STAT_TXALL |
    549 			  HME_SEB_STAT_TXPERR |
    550 			  HME_SEB_STAT_RCNTEXP |
    551 			  /*HME_SEB_STAT_MIFIRQ |*/
    552 			  HME_SEB_STAT_ALL_ERRORS ));
    553 
    554 	switch (sc->sc_burst) {
    555 	default:
    556 		v = 0;
    557 		break;
    558 	case 16:
    559 		v = HME_SEB_CFG_BURST16;
    560 		break;
    561 	case 32:
    562 		v = HME_SEB_CFG_BURST32;
    563 		break;
    564 	case 64:
    565 		v = HME_SEB_CFG_BURST64;
    566 		break;
    567 	}
    568 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    569 
    570 	/* step 9. ETX Configuration: use mostly default values */
    571 
    572 	/* Enable DMA */
    573 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    574 	v |= HME_ETX_CFG_DMAENABLE;
    575 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    576 
    577 	/* Transmit Descriptor ring size: in increments of 16 */
    578 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    579 
    580 
    581 	/* step 10. ERX Configuration */
    582 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    583 
    584 	/* Encode Receive Descriptor ring size: four possible values */
    585 	switch (_HME_NDESC /*XXX*/) {
    586 	case 32:
    587 		v |= HME_ERX_CFG_RINGSIZE32;
    588 		break;
    589 	case 64:
    590 		v |= HME_ERX_CFG_RINGSIZE64;
    591 		break;
    592 	case 128:
    593 		v |= HME_ERX_CFG_RINGSIZE128;
    594 		break;
    595 	case 256:
    596 		v |= HME_ERX_CFG_RINGSIZE256;
    597 		break;
    598 	default:
    599 		printf("hme: invalid Receive Descriptor ring size\n");
    600 		break;
    601 	}
    602 
    603 	/* Enable DMA */
    604 	v |= HME_ERX_CFG_DMAENABLE;
    605 
    606 	/* set h/w rx checksum start offset (# of half-words) */
    607 #ifdef INET
    608 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
    609 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    610 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
    611 		HME_ERX_CFG_CSUMSTART;
    612 #endif
    613 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    614 
    615 	/* step 11. XIF Configuration */
    616 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    617 	v |= HME_MAC_XIF_OE;
    618 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    619 
    620 	/* step 12. RX_MAC Configuration Register */
    621 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    622 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    623 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    624 
    625 	/* step 13. TX_MAC Configuration Register */
    626 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    627 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    628 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    629 
    630 	/* step 14. Issue Transmit Pending command */
    631 
    632 	/* Call MI initialization function if any */
    633 	if (sc->sc_hwinit)
    634 		(*sc->sc_hwinit)(sc);
    635 
    636 	/* Set the current media. */
    637 	mii_mediachg(&sc->sc_mii);
    638 
    639 	/* Start the one second timer. */
    640 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    641 
    642 	ifp->if_flags |= IFF_RUNNING;
    643 	ifp->if_flags &= ~IFF_OACTIVE;
    644 	sc->sc_if_flags = ifp->if_flags;
    645 	ifp->if_timer = 0;
    646 	hme_start(ifp);
    647 }
    648 
    649 /*
    650  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    651  * speed.
    652  */
    653 static inline int
    654 ether_cmp(a, b)
    655 	u_char *a, *b;
    656 {
    657 
    658 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    659 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    660 		return (0);
    661 	return (1);
    662 }
    663 
    664 
    665 /*
    666  * Routine to copy from mbuf chain to transmit buffer in
    667  * network buffer memory.
    668  * Returns the amount of data copied.
    669  */
    670 int
    671 hme_put(sc, ri, m)
    672 	struct hme_softc *sc;
    673 	int ri;			/* Ring index */
    674 	struct mbuf *m;
    675 {
    676 	struct mbuf *n;
    677 	int len, tlen = 0;
    678 	char *bp;
    679 
    680 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    681 	for (; m; m = n) {
    682 		len = m->m_len;
    683 		if (len == 0) {
    684 			MFREE(m, n);
    685 			continue;
    686 		}
    687 		memcpy(bp, mtod(m, void *), len);
    688 		bp += len;
    689 		tlen += len;
    690 		MFREE(m, n);
    691 	}
    692 	return (tlen);
    693 }
    694 
    695 /*
    696  * Pull data off an interface.
    697  * Len is length of data, with local net header stripped.
    698  * We copy the data into mbufs.  When full cluster sized units are present
    699  * we copy into clusters.
    700  */
    701 struct mbuf *
    702 hme_get(sc, ri, flags)
    703 	struct hme_softc *sc;
    704 	int ri;
    705 	u_int32_t flags;
    706 {
    707 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    708 	struct mbuf *m, *m0, *newm;
    709 	char *bp;
    710 	int len, totlen;
    711 
    712 	totlen = HME_XD_DECODE_RSIZE(flags);
    713 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    714 	if (m0 == 0)
    715 		return (0);
    716 	m0->m_pkthdr.rcvif = ifp;
    717 	m0->m_pkthdr.len = totlen;
    718 	len = MHLEN;
    719 	m = m0;
    720 
    721 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    722 
    723 	while (totlen > 0) {
    724 		if (totlen >= MINCLSIZE) {
    725 			MCLGET(m, M_DONTWAIT);
    726 			if ((m->m_flags & M_EXT) == 0)
    727 				goto bad;
    728 			len = MCLBYTES;
    729 		}
    730 
    731 		if (m == m0) {
    732 			char *newdata = (char *)
    733 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    734 			    sizeof(struct ether_header);
    735 			len -= newdata - m->m_data;
    736 			m->m_data = newdata;
    737 		}
    738 
    739 		m->m_len = len = min(totlen, len);
    740 		memcpy(mtod(m, void *), bp, len);
    741 		bp += len;
    742 
    743 		totlen -= len;
    744 		if (totlen > 0) {
    745 			MGET(newm, M_DONTWAIT, MT_DATA);
    746 			if (newm == 0)
    747 				goto bad;
    748 			len = MLEN;
    749 			m = m->m_next = newm;
    750 		}
    751 	}
    752 
    753 #ifdef INET
    754 	/* hardware checksum */
    755 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    756 		struct ether_header *eh;
    757 		struct ip *ip;
    758 		struct udphdr *uh;
    759 		uint16_t *opts;
    760 		int32_t hlen, pktlen;
    761 		uint32_t temp;
    762 
    763 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
    764 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
    765 				ETHER_VLAN_ENCAP_LEN;
    766 			eh = (struct ether_header *) mtod(m0, void *) +
    767 				ETHER_VLAN_ENCAP_LEN;
    768 		} else {
    769 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    770 			eh = mtod(m0, struct ether_header *);
    771 		}
    772 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
    773 			goto swcsum;
    774 		ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
    775 
    776 		/* IPv4 only */
    777 		if (ip->ip_v != IPVERSION)
    778 			goto swcsum;
    779 
    780 		hlen = ip->ip_hl << 2;
    781 		if (hlen < sizeof(struct ip))
    782 			goto swcsum;
    783 
    784 		/*
    785 		 * bail if too short, has random trailing garbage, truncated,
    786 		 * fragment, or has ethernet pad.
    787 		 */
    788 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
    789 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
    790 			goto swcsum;
    791 
    792 		switch (ip->ip_p) {
    793 		case IPPROTO_TCP:
    794 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
    795 				goto swcsum;
    796 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    797 				goto swcsum;
    798 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
    799 			break;
    800 		case IPPROTO_UDP:
    801 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
    802 				goto swcsum;
    803 			if (pktlen < (hlen + sizeof(struct udphdr)))
    804 				goto swcsum;
    805 			uh = (struct udphdr *)((char *)ip + hlen);
    806 			/* no checksum */
    807 			if (uh->uh_sum == 0)
    808 				goto swcsum;
    809 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
    810 			break;
    811 		default:
    812 			goto swcsum;
    813 		}
    814 
    815 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    816 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
    817 
    818 		/* if the pkt had ip options, we have to deduct them */
    819 		if (hlen > sizeof(struct ip)) {
    820 			uint32_t optsum;
    821 
    822 			optsum = 0;
    823 			temp = hlen - sizeof(struct ip);
    824 			opts = (uint16_t *)((char *)ip + sizeof(struct ip));
    825 
    826 			while (temp > 1) {
    827 				optsum += ntohs(*opts++);
    828 				temp -= 2;
    829 			}
    830 			while (optsum >> 16)
    831 				optsum = (optsum >> 16) + (optsum & 0xffff);
    832 
    833 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
    834 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
    835 						   ~optsum);
    836 
    837 			while (m0->m_pkthdr.csum_data >> 16)
    838 				m0->m_pkthdr.csum_data =
    839 					(m0->m_pkthdr.csum_data >> 16) +
    840 					(m0->m_pkthdr.csum_data & 0xffff);
    841 		}
    842 
    843 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    844 	}
    845 swcsum:
    846 		m0->m_pkthdr.csum_flags = 0;
    847 #endif
    848 
    849 	return (m0);
    850 
    851 bad:
    852 	m_freem(m0);
    853 	return (0);
    854 }
    855 
    856 /*
    857  * Pass a packet to the higher levels.
    858  */
    859 void
    860 hme_read(sc, ix, flags)
    861 	struct hme_softc *sc;
    862 	int ix;
    863 	u_int32_t flags;
    864 {
    865 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    866 	struct mbuf *m;
    867 	int len;
    868 
    869 	len = HME_XD_DECODE_RSIZE(flags);
    870 	if (len <= sizeof(struct ether_header) ||
    871 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    872 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    873 	    ETHERMTU + sizeof(struct ether_header))) {
    874 #ifdef HMEDEBUG
    875 		printf("%s: invalid packet size %d; dropping\n",
    876 		    sc->sc_dev.dv_xname, len);
    877 #endif
    878 		ifp->if_ierrors++;
    879 		return;
    880 	}
    881 
    882 	/* Pull packet off interface. */
    883 	m = hme_get(sc, ix, flags);
    884 	if (m == 0) {
    885 		ifp->if_ierrors++;
    886 		return;
    887 	}
    888 
    889 	ifp->if_ipackets++;
    890 
    891 #if NBPFILTER > 0
    892 	/*
    893 	 * Check if there's a BPF listener on this interface.
    894 	 * If so, hand off the raw packet to BPF.
    895 	 */
    896 	if (ifp->if_bpf)
    897 		bpf_mtap(ifp->if_bpf, m);
    898 #endif
    899 
    900 	/* Pass the packet up. */
    901 	(*ifp->if_input)(ifp, m);
    902 }
    903 
    904 void
    905 hme_start(ifp)
    906 	struct ifnet *ifp;
    907 {
    908 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    909 	void *txd = sc->sc_rb.rb_txd;
    910 	struct mbuf *m;
    911 	unsigned int txflags;
    912 	unsigned int ri, len;
    913 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    914 
    915 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    916 		return;
    917 
    918 	ri = sc->sc_rb.rb_tdhead;
    919 
    920 	for (;;) {
    921 		IFQ_DEQUEUE(&ifp->if_snd, m);
    922 		if (m == 0)
    923 			break;
    924 
    925 #if NBPFILTER > 0
    926 		/*
    927 		 * If BPF is listening on this interface, let it see the
    928 		 * packet before we commit it to the wire.
    929 		 */
    930 		if (ifp->if_bpf)
    931 			bpf_mtap(ifp->if_bpf, m);
    932 #endif
    933 
    934 #ifdef INET
    935 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    936 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    937 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    938 			struct ether_header *eh;
    939 			uint16_t offset, start;
    940 
    941 			eh = mtod(m, struct ether_header *);
    942 			switch (ntohs(eh->ether_type)) {
    943 			case ETHERTYPE_IP:
    944 				start = ETHER_HDR_LEN;
    945 				break;
    946 			case ETHERTYPE_VLAN:
    947 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    948 				break;
    949 			default:
    950 				/* unsupported, drop it */
    951 				m_free(m);
    952 				continue;
    953 			}
    954 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    955 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    956 			    + start;
    957 			txflags = HME_XD_TXCKSUM |
    958 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    959 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    960 		} else
    961 #endif
    962 			txflags = 0;
    963 
    964 		/*
    965 		 * Copy the mbuf chain into the transmit buffer.
    966 		 */
    967 		len = hme_put(sc, ri, m);
    968 
    969 		/*
    970 		 * Initialize transmit registers and start transmission
    971 		 */
    972 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    973 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    974 			HME_XD_ENCODE_TSIZE(len) | txflags);
    975 
    976 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    977 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    978 				  HME_ETX_TP_DMAWAKEUP);
    979 
    980 		if (++ri == ntbuf)
    981 			ri = 0;
    982 
    983 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    984 			ifp->if_flags |= IFF_OACTIVE;
    985 			break;
    986 		}
    987 	}
    988 
    989 	sc->sc_rb.rb_tdhead = ri;
    990 }
    991 
    992 /*
    993  * Transmit interrupt.
    994  */
    995 int
    996 hme_tint(sc)
    997 	struct hme_softc *sc;
    998 {
    999 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1000 	bus_space_tag_t t = sc->sc_bustag;
   1001 	bus_space_handle_t mac = sc->sc_mac;
   1002 	unsigned int ri, txflags;
   1003 
   1004 	/*
   1005 	 * Unload collision counters
   1006 	 */
   1007 	ifp->if_collisions +=
   1008 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
   1009 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
   1010 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
   1011 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1012 
   1013 	/*
   1014 	 * then clear the hardware counters.
   1015 	 */
   1016 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1017 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1018 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1019 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1020 
   1021 	/* Fetch current position in the transmit ring */
   1022 	ri = sc->sc_rb.rb_tdtail;
   1023 
   1024 	for (;;) {
   1025 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1026 			break;
   1027 
   1028 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1029 
   1030 		if (txflags & HME_XD_OWN)
   1031 			break;
   1032 
   1033 		ifp->if_flags &= ~IFF_OACTIVE;
   1034 		ifp->if_opackets++;
   1035 
   1036 		if (++ri == sc->sc_rb.rb_ntbuf)
   1037 			ri = 0;
   1038 
   1039 		--sc->sc_rb.rb_td_nbusy;
   1040 	}
   1041 
   1042 	/* Update ring */
   1043 	sc->sc_rb.rb_tdtail = ri;
   1044 
   1045 	hme_start(ifp);
   1046 
   1047 	if (sc->sc_rb.rb_td_nbusy == 0)
   1048 		ifp->if_timer = 0;
   1049 
   1050 	return (1);
   1051 }
   1052 
   1053 /*
   1054  * Receive interrupt.
   1055  */
   1056 int
   1057 hme_rint(sc)
   1058 	struct hme_softc *sc;
   1059 {
   1060 	void *xdr = sc->sc_rb.rb_rxd;
   1061 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1062 	unsigned int ri;
   1063 	u_int32_t flags;
   1064 
   1065 	ri = sc->sc_rb.rb_rdtail;
   1066 
   1067 	/*
   1068 	 * Process all buffers with valid data.
   1069 	 */
   1070 	for (;;) {
   1071 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1072 		if (flags & HME_XD_OWN)
   1073 			break;
   1074 
   1075 		if (flags & HME_XD_OFL) {
   1076 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1077 					sc->sc_dev.dv_xname, ri, flags);
   1078 		} else
   1079 			hme_read(sc, ri, flags);
   1080 
   1081 		/* This buffer can be used by the hardware again */
   1082 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1083 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1084 
   1085 		if (++ri == nrbuf)
   1086 			ri = 0;
   1087 	}
   1088 
   1089 	sc->sc_rb.rb_rdtail = ri;
   1090 
   1091 	return (1);
   1092 }
   1093 
   1094 int
   1095 hme_eint(sc, status)
   1096 	struct hme_softc *sc;
   1097 	u_int status;
   1098 {
   1099 	char bits[128];
   1100 
   1101 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1102 		bus_space_tag_t t = sc->sc_bustag;
   1103 		bus_space_handle_t mif = sc->sc_mif;
   1104 		u_int32_t cf, st, sm;
   1105 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1106 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1107 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1108 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1109 			sc->sc_dev.dv_xname, cf, st, sm);
   1110 		return (1);
   1111 	}
   1112 
   1113 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1114 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
   1115 	return (1);
   1116 }
   1117 
   1118 int
   1119 hme_intr(v)
   1120 	void *v;
   1121 {
   1122 	struct hme_softc *sc = (struct hme_softc *)v;
   1123 	bus_space_tag_t t = sc->sc_bustag;
   1124 	bus_space_handle_t seb = sc->sc_seb;
   1125 	u_int32_t status;
   1126 	int r = 0;
   1127 
   1128 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1129 
   1130 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1131 		r |= hme_eint(sc, status);
   1132 
   1133 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1134 		r |= hme_tint(sc);
   1135 
   1136 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1137 		r |= hme_rint(sc);
   1138 
   1139 #if NRND > 0
   1140 	rnd_add_uint32(&sc->rnd_source, status);
   1141 #endif
   1142 
   1143 	return (r);
   1144 }
   1145 
   1146 
   1147 void
   1148 hme_watchdog(ifp)
   1149 	struct ifnet *ifp;
   1150 {
   1151 	struct hme_softc *sc = ifp->if_softc;
   1152 
   1153 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1154 	++ifp->if_oerrors;
   1155 
   1156 	hme_reset(sc);
   1157 }
   1158 
   1159 /*
   1160  * Initialize the MII Management Interface
   1161  */
   1162 void
   1163 hme_mifinit(sc)
   1164 	struct hme_softc *sc;
   1165 {
   1166 	bus_space_tag_t t = sc->sc_bustag;
   1167 	bus_space_handle_t mif = sc->sc_mif;
   1168 	bus_space_handle_t mac = sc->sc_mac;
   1169 	int instance, phy;
   1170 	u_int32_t v;
   1171 
   1172 	if (sc->sc_media.ifm_cur != NULL) {
   1173 		instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
   1174 		phy = sc->sc_phys[instance];
   1175 	} else
   1176 		/* No media set yet, pick phy arbitrarily.. */
   1177 		phy = HME_PHYAD_EXTERNAL;
   1178 
   1179 	/* Configure the MIF in frame mode, no poll, current phy select */
   1180 	v = 0;
   1181 	if (phy == HME_PHYAD_EXTERNAL)
   1182 		v |= HME_MIF_CFG_PHY;
   1183 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1184 
   1185 	/* If an external transceiver is selected, enable its MII drivers */
   1186 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1187 	v &= ~HME_MAC_XIF_MIIENABLE;
   1188 	if (phy == HME_PHYAD_EXTERNAL)
   1189 		v |= HME_MAC_XIF_MIIENABLE;
   1190 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1191 }
   1192 
   1193 /*
   1194  * MII interface
   1195  */
   1196 static int
   1197 hme_mii_readreg(self, phy, reg)
   1198 	struct device *self;
   1199 	int phy, reg;
   1200 {
   1201 	struct hme_softc *sc = (void *)self;
   1202 	bus_space_tag_t t = sc->sc_bustag;
   1203 	bus_space_handle_t mif = sc->sc_mif;
   1204 	bus_space_handle_t mac = sc->sc_mac;
   1205 	u_int32_t v, xif_cfg, mifi_cfg;
   1206 	int n;
   1207 
   1208 	/* We can at most have two PHYs */
   1209 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1210 		return (0);
   1211 
   1212 	/* Select the desired PHY in the MIF configuration register */
   1213 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1214 	v &= ~HME_MIF_CFG_PHY;
   1215 	if (phy == HME_PHYAD_EXTERNAL)
   1216 		v |= HME_MIF_CFG_PHY;
   1217 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1218 
   1219 	/* Enable MII drivers on external transceiver */
   1220 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1221 	if (phy == HME_PHYAD_EXTERNAL)
   1222 		v |= HME_MAC_XIF_MIIENABLE;
   1223 	else
   1224 		v &= ~HME_MAC_XIF_MIIENABLE;
   1225 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1226 
   1227 #if 0
   1228 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1229 	/*
   1230 	 * Check whether a transceiver is connected by testing
   1231 	 * the MIF configuration register's MDI_X bits. Note that
   1232 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1233 	 */
   1234 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1235 	delay(100);
   1236 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1237 	if ((v & mif_mdi_bit) == 0)
   1238 		return (0);
   1239 #endif
   1240 
   1241 	/* Construct the frame command */
   1242 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1243 	    HME_MIF_FO_TAMSB |
   1244 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1245 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1246 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1247 
   1248 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1249 	for (n = 0; n < 100; n++) {
   1250 		DELAY(1);
   1251 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1252 		if (v & HME_MIF_FO_TALSB) {
   1253 			v &= HME_MIF_FO_DATA;
   1254 			goto out;
   1255 		}
   1256 	}
   1257 
   1258 	v = 0;
   1259 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1260 
   1261 out:
   1262 	/* Restore MIFI_CFG register */
   1263 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1264 	/* Restore XIF register */
   1265 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1266 	return (v);
   1267 }
   1268 
   1269 static void
   1270 hme_mii_writereg(self, phy, reg, val)
   1271 	struct device *self;
   1272 	int phy, reg, val;
   1273 {
   1274 	struct hme_softc *sc = (void *)self;
   1275 	bus_space_tag_t t = sc->sc_bustag;
   1276 	bus_space_handle_t mif = sc->sc_mif;
   1277 	bus_space_handle_t mac = sc->sc_mac;
   1278 	u_int32_t v, xif_cfg, mifi_cfg;
   1279 	int n;
   1280 
   1281 	/* We can at most have two PHYs */
   1282 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1283 		return;
   1284 
   1285 	/* Select the desired PHY in the MIF configuration register */
   1286 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1287 	v &= ~HME_MIF_CFG_PHY;
   1288 	if (phy == HME_PHYAD_EXTERNAL)
   1289 		v |= HME_MIF_CFG_PHY;
   1290 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1291 
   1292 	/* Enable MII drivers on external transceiver */
   1293 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1294 	if (phy == HME_PHYAD_EXTERNAL)
   1295 		v |= HME_MAC_XIF_MIIENABLE;
   1296 	else
   1297 		v &= ~HME_MAC_XIF_MIIENABLE;
   1298 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1299 
   1300 #if 0
   1301 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1302 	/*
   1303 	 * Check whether a transceiver is connected by testing
   1304 	 * the MIF configuration register's MDI_X bits. Note that
   1305 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1306 	 */
   1307 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1308 	delay(100);
   1309 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1310 	if ((v & mif_mdi_bit) == 0)
   1311 		return;
   1312 #endif
   1313 
   1314 	/* Construct the frame command */
   1315 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1316 	    HME_MIF_FO_TAMSB				|
   1317 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1318 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1319 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1320 	    (val & HME_MIF_FO_DATA);
   1321 
   1322 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1323 	for (n = 0; n < 100; n++) {
   1324 		DELAY(1);
   1325 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1326 		if (v & HME_MIF_FO_TALSB)
   1327 			goto out;
   1328 	}
   1329 
   1330 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1331 out:
   1332 	/* Restore MIFI_CFG register */
   1333 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1334 	/* Restore XIF register */
   1335 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1336 }
   1337 
   1338 static void
   1339 hme_mii_statchg(dev)
   1340 	struct device *dev;
   1341 {
   1342 	struct hme_softc *sc = (void *)dev;
   1343 	bus_space_tag_t t = sc->sc_bustag;
   1344 	bus_space_handle_t mac = sc->sc_mac;
   1345 	u_int32_t v;
   1346 
   1347 #ifdef HMEDEBUG
   1348 	if (sc->sc_debug)
   1349 		printf("hme_mii_statchg: status change\n");
   1350 #endif
   1351 
   1352 	/* Set the MAC Full Duplex bit appropriately */
   1353 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1354 	   but not otherwise. */
   1355 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1356 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1357 		v |= HME_MAC_TXCFG_FULLDPLX;
   1358 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1359 	} else {
   1360 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1361 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1362 	}
   1363 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1364 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1365 }
   1366 
   1367 int
   1368 hme_mediachange(ifp)
   1369 	struct ifnet *ifp;
   1370 {
   1371 	struct hme_softc *sc = ifp->if_softc;
   1372 	bus_space_tag_t t = sc->sc_bustag;
   1373 	bus_space_handle_t mif = sc->sc_mif;
   1374 	bus_space_handle_t mac = sc->sc_mac;
   1375 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1376 	int phy = sc->sc_phys[instance];
   1377 	u_int32_t v;
   1378 
   1379 #ifdef HMEDEBUG
   1380 	if (sc->sc_debug)
   1381 		printf("hme_mediachange: phy = %d\n", phy);
   1382 #endif
   1383 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1384 		return (EINVAL);
   1385 
   1386 	/* Select the current PHY in the MIF configuration register */
   1387 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1388 	v &= ~HME_MIF_CFG_PHY;
   1389 	if (phy == HME_PHYAD_EXTERNAL)
   1390 		v |= HME_MIF_CFG_PHY;
   1391 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1392 
   1393 	/* If an external transceiver is selected, enable its MII drivers */
   1394 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1395 	v &= ~HME_MAC_XIF_MIIENABLE;
   1396 	if (phy == HME_PHYAD_EXTERNAL)
   1397 		v |= HME_MAC_XIF_MIIENABLE;
   1398 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1399 
   1400 	return (mii_mediachg(&sc->sc_mii));
   1401 }
   1402 
   1403 void
   1404 hme_mediastatus(ifp, ifmr)
   1405 	struct ifnet *ifp;
   1406 	struct ifmediareq *ifmr;
   1407 {
   1408 	struct hme_softc *sc = ifp->if_softc;
   1409 
   1410 	if ((ifp->if_flags & IFF_UP) == 0)
   1411 		return;
   1412 
   1413 	mii_pollstat(&sc->sc_mii);
   1414 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1415 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1416 }
   1417 
   1418 /*
   1419  * Process an ioctl request.
   1420  */
   1421 int
   1422 hme_ioctl(ifp, cmd, data)
   1423 	struct ifnet *ifp;
   1424 	u_long cmd;
   1425 	void *data;
   1426 {
   1427 	struct hme_softc *sc = ifp->if_softc;
   1428 	struct ifaddr *ifa = (struct ifaddr *)data;
   1429 	struct ifreq *ifr = (struct ifreq *)data;
   1430 	int s, error = 0;
   1431 
   1432 	s = splnet();
   1433 
   1434 	switch (cmd) {
   1435 
   1436 	case SIOCSIFADDR:
   1437 		switch (ifa->ifa_addr->sa_family) {
   1438 #ifdef INET
   1439 		case AF_INET:
   1440 			if (ifp->if_flags & IFF_UP)
   1441 				hme_setladrf(sc);
   1442 			else {
   1443 				ifp->if_flags |= IFF_UP;
   1444 				hme_init(sc);
   1445 			}
   1446 			arp_ifinit(ifp, ifa);
   1447 			break;
   1448 #endif
   1449 		default:
   1450 			ifp->if_flags |= IFF_UP;
   1451 			hme_init(sc);
   1452 			break;
   1453 		}
   1454 		break;
   1455 
   1456 	case SIOCSIFFLAGS:
   1457 #ifdef HMEDEBUG
   1458 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1459 #endif
   1460 
   1461 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1462 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1463 			/*
   1464 			 * If interface is marked down and it is running, then
   1465 			 * stop it.
   1466 			 */
   1467 			hme_stop(sc, false);
   1468 			ifp->if_flags &= ~IFF_RUNNING;
   1469 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1470 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1471 			/*
   1472 			 * If interface is marked up and it is stopped, then
   1473 			 * start it.
   1474 			 */
   1475 			hme_init(sc);
   1476 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1477 			/*
   1478 			 * If setting debug or promiscuous mode, do not reset
   1479 			 * the chip; for everything else, call hme_init()
   1480 			 * which will trigger a reset.
   1481 			 */
   1482 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1483 			if (ifp->if_flags != sc->sc_if_flags) {
   1484 				if ((ifp->if_flags & (~RESETIGN))
   1485 				    == (sc->sc_if_flags & (~RESETIGN)))
   1486 					hme_setladrf(sc);
   1487 				else
   1488 					hme_init(sc);
   1489 			}
   1490 #undef RESETIGN
   1491 		}
   1492 
   1493 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1494 			hme_init(sc);
   1495 
   1496 		break;
   1497 
   1498 	case SIOCADDMULTI:
   1499 	case SIOCDELMULTI:
   1500 		error = (cmd == SIOCADDMULTI) ?
   1501 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1502 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1503 
   1504 		if (error == ENETRESET) {
   1505 			/*
   1506 			 * Multicast list has changed; set the hardware filter
   1507 			 * accordingly.
   1508 			 */
   1509 			if (ifp->if_flags & IFF_RUNNING)
   1510 				hme_setladrf(sc);
   1511 			error = 0;
   1512 		}
   1513 		break;
   1514 
   1515 	case SIOCGIFMEDIA:
   1516 	case SIOCSIFMEDIA:
   1517 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1518 		break;
   1519 
   1520 	default:
   1521 		error = EINVAL;
   1522 		break;
   1523 	}
   1524 
   1525 	sc->sc_if_flags = ifp->if_flags;
   1526 	splx(s);
   1527 	return (error);
   1528 }
   1529 
   1530 void
   1531 hme_shutdown(arg)
   1532 	void *arg;
   1533 {
   1534 
   1535 	hme_stop((struct hme_softc *)arg, false);
   1536 }
   1537 
   1538 /*
   1539  * Set up the logical address filter.
   1540  */
   1541 void
   1542 hme_setladrf(sc)
   1543 	struct hme_softc *sc;
   1544 {
   1545 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1546 	struct ether_multi *enm;
   1547 	struct ether_multistep step;
   1548 	struct ethercom *ec = &sc->sc_ethercom;
   1549 	bus_space_tag_t t = sc->sc_bustag;
   1550 	bus_space_handle_t mac = sc->sc_mac;
   1551 	u_char *cp;
   1552 	u_int32_t crc;
   1553 	u_int32_t hash[4];
   1554 	u_int32_t v;
   1555 	int len;
   1556 
   1557 	/* Clear hash table */
   1558 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1559 
   1560 	/* Get current RX configuration */
   1561 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1562 
   1563 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1564 		/* Turn on promiscuous mode; turn off the hash filter */
   1565 		v |= HME_MAC_RXCFG_PMISC;
   1566 		v &= ~HME_MAC_RXCFG_HENABLE;
   1567 		ifp->if_flags |= IFF_ALLMULTI;
   1568 		goto chipit;
   1569 	}
   1570 
   1571 	/* Turn off promiscuous mode; turn on the hash filter */
   1572 	v &= ~HME_MAC_RXCFG_PMISC;
   1573 	v |= HME_MAC_RXCFG_HENABLE;
   1574 
   1575 	/*
   1576 	 * Set up multicast address filter by passing all multicast addresses
   1577 	 * through a crc generator, and then using the high order 6 bits as an
   1578 	 * index into the 64 bit logical address filter.  The high order bit
   1579 	 * selects the word, while the rest of the bits select the bit within
   1580 	 * the word.
   1581 	 */
   1582 
   1583 	ETHER_FIRST_MULTI(step, ec, enm);
   1584 	while (enm != NULL) {
   1585 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1586 			/*
   1587 			 * We must listen to a range of multicast addresses.
   1588 			 * For now, just accept all multicasts, rather than
   1589 			 * trying to set only those filter bits needed to match
   1590 			 * the range.  (At this time, the only use of address
   1591 			 * ranges is for IP multicast routing, for which the
   1592 			 * range is big enough to require all bits set.)
   1593 			 */
   1594 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1595 			ifp->if_flags |= IFF_ALLMULTI;
   1596 			goto chipit;
   1597 		}
   1598 
   1599 		cp = enm->enm_addrlo;
   1600 		crc = 0xffffffff;
   1601 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1602 			int octet = *cp++;
   1603 			int i;
   1604 
   1605 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1606 			for (i = 0; i < 8; i++) {
   1607 				if ((crc & 1) ^ (octet & 1)) {
   1608 					crc >>= 1;
   1609 					crc ^= MC_POLY_LE;
   1610 				} else {
   1611 					crc >>= 1;
   1612 				}
   1613 				octet >>= 1;
   1614 			}
   1615 		}
   1616 		/* Just want the 6 most significant bits. */
   1617 		crc >>= 26;
   1618 
   1619 		/* Set the corresponding bit in the filter. */
   1620 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1621 
   1622 		ETHER_NEXT_MULTI(step, enm);
   1623 	}
   1624 
   1625 	ifp->if_flags &= ~IFF_ALLMULTI;
   1626 
   1627 chipit:
   1628 	/* Now load the hash table into the chip */
   1629 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1630 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1631 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1632 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1633 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1634 }
   1635 
   1636 /*
   1637  * Routines for accessing the transmit and receive buffers.
   1638  * The various CPU and adapter configurations supported by this
   1639  * driver require three different access methods for buffers
   1640  * and descriptors:
   1641  *	(1) contig (contiguous data; no padding),
   1642  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1643  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1644  */
   1645 
   1646 #if 0
   1647 /*
   1648  * contig: contiguous data with no padding.
   1649  *
   1650  * Buffers may have any alignment.
   1651  */
   1652 
   1653 void
   1654 hme_copytobuf_contig(sc, from, ri, len)
   1655 	struct hme_softc *sc;
   1656 	void *from;
   1657 	int ri, len;
   1658 {
   1659 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1660 
   1661 	/*
   1662 	 * Just call memcpy() to do the work.
   1663 	 */
   1664 	memcpy(buf, from, len);
   1665 }
   1666 
   1667 void
   1668 hme_copyfrombuf_contig(sc, to, boff, len)
   1669 	struct hme_softc *sc;
   1670 	void *to;
   1671 	int boff, len;
   1672 {
   1673 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1674 
   1675 	/*
   1676 	 * Just call memcpy() to do the work.
   1677 	 */
   1678 	memcpy(to, buf, len);
   1679 }
   1680 #endif
   1681