hme.c revision 1.64.2.1 1 /* $NetBSD: hme.c,v 1.64.2.1 2008/05/18 12:33:42 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * HME Ethernet module driver.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.64.2.1 2008/05/18 12:33:42 yamt Exp $");
38
39 /* #define HMEDEBUG */
40
41 #include "opt_inet.h"
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/socket.h>
51 #include <sys/device.h>
52 #include <sys/malloc.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #if NRND > 0
56 #include <sys/rnd.h>
57 #endif
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63
64 #ifdef INET
65 #include <netinet/in.h>
66 #include <netinet/if_inarp.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/tcp.h>
71 #include <netinet/udp.h>
72 #endif
73
74
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #include <net/bpfdesc.h>
78 #endif
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <sys/bus.h>
84
85 #include <dev/ic/hmereg.h>
86 #include <dev/ic/hmevar.h>
87
88 void hme_start(struct ifnet *);
89 void hme_stop(struct hme_softc *,bool);
90 int hme_ioctl(struct ifnet *, u_long, void *);
91 void hme_tick(void *);
92 void hme_watchdog(struct ifnet *);
93 void hme_shutdown(void *);
94 int hme_init(struct hme_softc *);
95 void hme_meminit(struct hme_softc *);
96 void hme_mifinit(struct hme_softc *);
97 void hme_reset(struct hme_softc *);
98 void hme_setladrf(struct hme_softc *);
99
100 /* MII methods & callbacks */
101 static int hme_mii_readreg(struct device *, int, int);
102 static void hme_mii_writereg(struct device *, int, int, int);
103 static void hme_mii_statchg(struct device *);
104
105 int hme_mediachange(struct ifnet *);
106
107 struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
108 int hme_put(struct hme_softc *, int, struct mbuf *);
109 void hme_read(struct hme_softc *, int, uint32_t);
110 int hme_eint(struct hme_softc *, u_int);
111 int hme_rint(struct hme_softc *);
112 int hme_tint(struct hme_softc *);
113
114 static int ether_cmp(u_char *, u_char *);
115
116 /* Default buffer copy routines */
117 void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
118 void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
119 void hme_zerobuf_contig(struct hme_softc *, int, int);
120
121
122 void
123 hme_config(sc)
124 struct hme_softc *sc;
125 {
126 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
127 struct mii_data *mii = &sc->sc_mii;
128 struct mii_softc *child;
129 bus_dma_tag_t dmatag = sc->sc_dmatag;
130 bus_dma_segment_t seg;
131 bus_size_t size;
132 int rseg, error;
133
134 /*
135 * HME common initialization.
136 *
137 * hme_softc fields that must be initialized by the front-end:
138 *
139 * the bus tag:
140 * sc_bustag
141 *
142 * the DMA bus tag:
143 * sc_dmatag
144 *
145 * the bus handles:
146 * sc_seb (Shared Ethernet Block registers)
147 * sc_erx (Receiver Unit registers)
148 * sc_etx (Transmitter Unit registers)
149 * sc_mac (MAC registers)
150 * sc_mif (Management Interface registers)
151 *
152 * the maximum bus burst size:
153 * sc_burst
154 *
155 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
156 * rb_membase, rb_dmabase)
157 *
158 * the local Ethernet address:
159 * sc_enaddr
160 *
161 */
162
163 /* Make sure the chip is stopped. */
164 hme_stop(sc, true);
165
166
167 /*
168 * Allocate descriptors and buffers
169 * XXX - do all this differently.. and more configurably,
170 * eg. use things as `dma_load_mbuf()' on transmit,
171 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
172 * all the time) on the receiver side.
173 *
174 * Note: receive buffers must be 64-byte aligned.
175 * Also, apparently, the buffers must extend to a DMA burst
176 * boundary beyond the maximum packet size.
177 */
178 #define _HME_NDESC 128
179 #define _HME_BUFSZ 1600
180
181 /* Note: the # of descriptors must be a multiple of 16 */
182 sc->sc_rb.rb_ntbuf = _HME_NDESC;
183 sc->sc_rb.rb_nrbuf = _HME_NDESC;
184
185 /*
186 * Allocate DMA capable memory
187 * Buffer descriptors must be aligned on a 2048 byte boundary;
188 * take this into account when calculating the size. Note that
189 * the maximum number of descriptors (256) occupies 2048 bytes,
190 * so we allocate that much regardless of _HME_NDESC.
191 */
192 size = 2048 + /* TX descriptors */
193 2048 + /* RX descriptors */
194 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
195 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
196
197 /* Allocate DMA buffer */
198 if ((error = bus_dmamem_alloc(dmatag, size,
199 2048, 0,
200 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
201 aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
202 error);
203 return;
204 }
205
206 /* Map DMA memory in CPU addressable space */
207 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
208 &sc->sc_rb.rb_membase,
209 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
210 aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
211 error);
212 bus_dmamap_unload(dmatag, sc->sc_dmamap);
213 bus_dmamem_free(dmatag, &seg, rseg);
214 return;
215 }
216
217 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
218 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
219 aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
220 error);
221 return;
222 }
223
224 /* Load the buffer */
225 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
226 sc->sc_rb.rb_membase, size, NULL,
227 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
228 aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
229 error);
230 bus_dmamem_free(dmatag, &seg, rseg);
231 return;
232 }
233 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
234
235 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
236 ether_sprintf(sc->sc_enaddr));
237
238 /* Initialize ifnet structure. */
239 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
240 ifp->if_softc = sc;
241 ifp->if_start = hme_start;
242 ifp->if_ioctl = hme_ioctl;
243 ifp->if_watchdog = hme_watchdog;
244 ifp->if_flags =
245 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
246 sc->sc_if_flags = ifp->if_flags;
247 ifp->if_capabilities |=
248 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
249 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
250 IFQ_SET_READY(&ifp->if_snd);
251
252 /* Initialize ifmedia structures and MII info */
253 mii->mii_ifp = ifp;
254 mii->mii_readreg = hme_mii_readreg;
255 mii->mii_writereg = hme_mii_writereg;
256 mii->mii_statchg = hme_mii_statchg;
257
258 sc->sc_ethercom.ec_mii = mii;
259 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
260
261 hme_mifinit(sc);
262
263 mii_attach(&sc->sc_dev, mii, 0xffffffff,
264 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
265
266 child = LIST_FIRST(&mii->mii_phys);
267 if (child == NULL) {
268 /* No PHY attached */
269 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
270 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
271 } else {
272 /*
273 * Walk along the list of attached MII devices and
274 * establish an `MII instance' to `phy number'
275 * mapping. We'll use this mapping in media change
276 * requests to determine which phy to use to program
277 * the MIF configuration register.
278 */
279 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
280 /*
281 * Note: we support just two PHYs: the built-in
282 * internal device and an external on the MII
283 * connector.
284 */
285 if (child->mii_phy > 1 || child->mii_inst > 1) {
286 aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
287 " at phy %d, instance %d\n",
288 device_xname(child->mii_dev),
289 child->mii_phy, child->mii_inst);
290 continue;
291 }
292
293 sc->sc_phys[child->mii_inst] = child->mii_phy;
294 }
295
296 /*
297 * XXX - we can really do the following ONLY if the
298 * phy indeed has the auto negotiation capability!!
299 */
300 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
301 }
302
303 /* claim 802.1q capability */
304 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
305
306 /* Attach the interface. */
307 if_attach(ifp);
308 ether_ifattach(ifp, sc->sc_enaddr);
309
310 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
311 if (sc->sc_sh == NULL)
312 panic("hme_config: can't establish shutdownhook");
313
314 #if NRND > 0
315 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
316 RND_TYPE_NET, 0);
317 #endif
318
319 callout_init(&sc->sc_tick_ch, 0);
320 }
321
322 void
323 hme_tick(arg)
324 void *arg;
325 {
326 struct hme_softc *sc = arg;
327 int s;
328
329 s = splnet();
330 mii_tick(&sc->sc_mii);
331 splx(s);
332
333 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
334 }
335
336 void
337 hme_reset(sc)
338 struct hme_softc *sc;
339 {
340 int s;
341
342 s = splnet();
343 (void)hme_init(sc);
344 splx(s);
345 }
346
347 void
348 hme_stop(struct hme_softc *sc, bool chip_only)
349 {
350 bus_space_tag_t t = sc->sc_bustag;
351 bus_space_handle_t seb = sc->sc_seb;
352 int n;
353
354 if (!chip_only) {
355 callout_stop(&sc->sc_tick_ch);
356 mii_down(&sc->sc_mii);
357 }
358
359 /* Mask all interrupts */
360 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
361
362 /* Reset transmitter and receiver */
363 bus_space_write_4(t, seb, HME_SEBI_RESET,
364 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
365
366 for (n = 0; n < 20; n++) {
367 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
368 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
369 return;
370 DELAY(20);
371 }
372
373 printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
374 }
375
376 void
377 hme_meminit(sc)
378 struct hme_softc *sc;
379 {
380 bus_addr_t txbufdma, rxbufdma;
381 bus_addr_t dma;
382 char *p;
383 unsigned int ntbuf, nrbuf, i;
384 struct hme_ring *hr = &sc->sc_rb;
385
386 p = hr->rb_membase;
387 dma = hr->rb_dmabase;
388
389 ntbuf = hr->rb_ntbuf;
390 nrbuf = hr->rb_nrbuf;
391
392 /*
393 * Allocate transmit descriptors
394 */
395 hr->rb_txd = p;
396 hr->rb_txddma = dma;
397 p += ntbuf * HME_XD_SIZE;
398 dma += ntbuf * HME_XD_SIZE;
399 /* We have reserved descriptor space until the next 2048 byte boundary.*/
400 dma = (bus_addr_t)roundup((u_long)dma, 2048);
401 p = (void *)roundup((u_long)p, 2048);
402
403 /*
404 * Allocate receive descriptors
405 */
406 hr->rb_rxd = p;
407 hr->rb_rxddma = dma;
408 p += nrbuf * HME_XD_SIZE;
409 dma += nrbuf * HME_XD_SIZE;
410 /* Again move forward to the next 2048 byte boundary.*/
411 dma = (bus_addr_t)roundup((u_long)dma, 2048);
412 p = (void *)roundup((u_long)p, 2048);
413
414
415 /*
416 * Allocate transmit buffers
417 */
418 hr->rb_txbuf = p;
419 txbufdma = dma;
420 p += ntbuf * _HME_BUFSZ;
421 dma += ntbuf * _HME_BUFSZ;
422
423 /*
424 * Allocate receive buffers
425 */
426 hr->rb_rxbuf = p;
427 rxbufdma = dma;
428 p += nrbuf * _HME_BUFSZ;
429 dma += nrbuf * _HME_BUFSZ;
430
431 /*
432 * Initialize transmit buffer descriptors
433 */
434 for (i = 0; i < ntbuf; i++) {
435 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
436 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
437 }
438
439 /*
440 * Initialize receive buffer descriptors
441 */
442 for (i = 0; i < nrbuf; i++) {
443 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
444 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
445 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
446 }
447
448 hr->rb_tdhead = hr->rb_tdtail = 0;
449 hr->rb_td_nbusy = 0;
450 hr->rb_rdtail = 0;
451 }
452
453 /*
454 * Initialization of interface; set up initialization block
455 * and transmit/receive descriptor rings.
456 */
457 int
458 hme_init(sc)
459 struct hme_softc *sc;
460 {
461 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
462 bus_space_tag_t t = sc->sc_bustag;
463 bus_space_handle_t seb = sc->sc_seb;
464 bus_space_handle_t etx = sc->sc_etx;
465 bus_space_handle_t erx = sc->sc_erx;
466 bus_space_handle_t mac = sc->sc_mac;
467 u_int8_t *ea;
468 u_int32_t v;
469 int rc;
470
471 /*
472 * Initialization sequence. The numbered steps below correspond
473 * to the sequence outlined in section 6.3.5.1 in the Ethernet
474 * Channel Engine manual (part of the PCIO manual).
475 * See also the STP2002-STQ document from Sun Microsystems.
476 */
477
478 /* step 1 & 2. Reset the Ethernet Channel */
479 hme_stop(sc, false);
480
481 /* Re-initialize the MIF */
482 hme_mifinit(sc);
483
484 /* Call MI reset function if any */
485 if (sc->sc_hwreset)
486 (*sc->sc_hwreset)(sc);
487
488 #if 0
489 /* Mask all MIF interrupts, just in case */
490 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
491 #endif
492
493 /* step 3. Setup data structures in host memory */
494 hme_meminit(sc);
495
496 /* step 4. TX MAC registers & counters */
497 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
498 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
499 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
500 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
501 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
502 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
503 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
504 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
505
506 /* Load station MAC address */
507 ea = sc->sc_enaddr;
508 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
509 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
510 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
511
512 /*
513 * Init seed for backoff
514 * (source suggested by manual: low 10 bits of MAC address)
515 */
516 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
517 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
518
519
520 /* Note: Accepting power-on default for other MAC registers here.. */
521
522
523 /* step 5. RX MAC registers & counters */
524 hme_setladrf(sc);
525
526 /* step 6 & 7. Program Descriptor Ring Base Addresses */
527 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
528 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
529
530 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
531 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
532 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
533 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
534
535 /* step 8. Global Configuration & Interrupt Mask */
536 bus_space_write_4(t, seb, HME_SEBI_IMASK,
537 ~(
538 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
539 HME_SEB_STAT_HOSTTOTX |
540 HME_SEB_STAT_RXTOHOST |
541 HME_SEB_STAT_TXALL |
542 HME_SEB_STAT_TXPERR |
543 HME_SEB_STAT_RCNTEXP |
544 /*HME_SEB_STAT_MIFIRQ |*/
545 HME_SEB_STAT_ALL_ERRORS ));
546
547 switch (sc->sc_burst) {
548 default:
549 v = 0;
550 break;
551 case 16:
552 v = HME_SEB_CFG_BURST16;
553 break;
554 case 32:
555 v = HME_SEB_CFG_BURST32;
556 break;
557 case 64:
558 v = HME_SEB_CFG_BURST64;
559 break;
560 }
561 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
562
563 /* step 9. ETX Configuration: use mostly default values */
564
565 /* Enable DMA */
566 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
567 v |= HME_ETX_CFG_DMAENABLE;
568 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
569
570 /* Transmit Descriptor ring size: in increments of 16 */
571 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
572
573
574 /* step 10. ERX Configuration */
575 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
576
577 /* Encode Receive Descriptor ring size: four possible values */
578 switch (_HME_NDESC /*XXX*/) {
579 case 32:
580 v |= HME_ERX_CFG_RINGSIZE32;
581 break;
582 case 64:
583 v |= HME_ERX_CFG_RINGSIZE64;
584 break;
585 case 128:
586 v |= HME_ERX_CFG_RINGSIZE128;
587 break;
588 case 256:
589 v |= HME_ERX_CFG_RINGSIZE256;
590 break;
591 default:
592 printf("hme: invalid Receive Descriptor ring size\n");
593 break;
594 }
595
596 /* Enable DMA */
597 v |= HME_ERX_CFG_DMAENABLE;
598
599 /* set h/w rx checksum start offset (# of half-words) */
600 #ifdef INET
601 v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
602 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
603 ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
604 HME_ERX_CFG_CSUMSTART;
605 #endif
606 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
607
608 /* step 11. XIF Configuration */
609 v = bus_space_read_4(t, mac, HME_MACI_XIF);
610 v |= HME_MAC_XIF_OE;
611 bus_space_write_4(t, mac, HME_MACI_XIF, v);
612
613 /* step 12. RX_MAC Configuration Register */
614 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
615 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
616 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
617
618 /* step 13. TX_MAC Configuration Register */
619 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
620 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
621 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
622
623 /* step 14. Issue Transmit Pending command */
624
625 /* Call MI initialization function if any */
626 if (sc->sc_hwinit)
627 (*sc->sc_hwinit)(sc);
628
629 /* Set the current media. */
630 if ((rc = hme_mediachange(ifp)) != 0)
631 return rc;
632
633 /* Start the one second timer. */
634 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
635
636 ifp->if_flags |= IFF_RUNNING;
637 ifp->if_flags &= ~IFF_OACTIVE;
638 sc->sc_if_flags = ifp->if_flags;
639 ifp->if_timer = 0;
640 hme_start(ifp);
641 return 0;
642 }
643
644 /*
645 * Compare two Ether/802 addresses for equality, inlined and unrolled for
646 * speed.
647 */
648 static inline int
649 ether_cmp(a, b)
650 u_char *a, *b;
651 {
652
653 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
654 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
655 return (0);
656 return (1);
657 }
658
659
660 /*
661 * Routine to copy from mbuf chain to transmit buffer in
662 * network buffer memory.
663 * Returns the amount of data copied.
664 */
665 int
666 hme_put(sc, ri, m)
667 struct hme_softc *sc;
668 int ri; /* Ring index */
669 struct mbuf *m;
670 {
671 struct mbuf *n;
672 int len, tlen = 0;
673 char *bp;
674
675 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
676 for (; m; m = n) {
677 len = m->m_len;
678 if (len == 0) {
679 MFREE(m, n);
680 continue;
681 }
682 memcpy(bp, mtod(m, void *), len);
683 bp += len;
684 tlen += len;
685 MFREE(m, n);
686 }
687 return (tlen);
688 }
689
690 /*
691 * Pull data off an interface.
692 * Len is length of data, with local net header stripped.
693 * We copy the data into mbufs. When full cluster sized units are present
694 * we copy into clusters.
695 */
696 struct mbuf *
697 hme_get(sc, ri, flags)
698 struct hme_softc *sc;
699 int ri;
700 u_int32_t flags;
701 {
702 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
703 struct mbuf *m, *m0, *newm;
704 char *bp;
705 int len, totlen;
706
707 totlen = HME_XD_DECODE_RSIZE(flags);
708 MGETHDR(m0, M_DONTWAIT, MT_DATA);
709 if (m0 == 0)
710 return (0);
711 m0->m_pkthdr.rcvif = ifp;
712 m0->m_pkthdr.len = totlen;
713 len = MHLEN;
714 m = m0;
715
716 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
717
718 while (totlen > 0) {
719 if (totlen >= MINCLSIZE) {
720 MCLGET(m, M_DONTWAIT);
721 if ((m->m_flags & M_EXT) == 0)
722 goto bad;
723 len = MCLBYTES;
724 }
725
726 if (m == m0) {
727 char *newdata = (char *)
728 ALIGN(m->m_data + sizeof(struct ether_header)) -
729 sizeof(struct ether_header);
730 len -= newdata - m->m_data;
731 m->m_data = newdata;
732 }
733
734 m->m_len = len = min(totlen, len);
735 memcpy(mtod(m, void *), bp, len);
736 bp += len;
737
738 totlen -= len;
739 if (totlen > 0) {
740 MGET(newm, M_DONTWAIT, MT_DATA);
741 if (newm == 0)
742 goto bad;
743 len = MLEN;
744 m = m->m_next = newm;
745 }
746 }
747
748 #ifdef INET
749 /* hardware checksum */
750 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
751 struct ether_header *eh;
752 struct ip *ip;
753 struct udphdr *uh;
754 uint16_t *opts;
755 int32_t hlen, pktlen;
756 uint32_t temp;
757
758 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
759 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
760 ETHER_VLAN_ENCAP_LEN;
761 eh = (struct ether_header *) mtod(m0, void *) +
762 ETHER_VLAN_ENCAP_LEN;
763 } else {
764 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
765 eh = mtod(m0, struct ether_header *);
766 }
767 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
768 goto swcsum;
769 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
770
771 /* IPv4 only */
772 if (ip->ip_v != IPVERSION)
773 goto swcsum;
774
775 hlen = ip->ip_hl << 2;
776 if (hlen < sizeof(struct ip))
777 goto swcsum;
778
779 /*
780 * bail if too short, has random trailing garbage, truncated,
781 * fragment, or has ethernet pad.
782 */
783 if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
784 || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
785 goto swcsum;
786
787 switch (ip->ip_p) {
788 case IPPROTO_TCP:
789 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
790 goto swcsum;
791 if (pktlen < (hlen + sizeof(struct tcphdr)))
792 goto swcsum;
793 m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
794 break;
795 case IPPROTO_UDP:
796 if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
797 goto swcsum;
798 if (pktlen < (hlen + sizeof(struct udphdr)))
799 goto swcsum;
800 uh = (struct udphdr *)((char *)ip + hlen);
801 /* no checksum */
802 if (uh->uh_sum == 0)
803 goto swcsum;
804 m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
805 break;
806 default:
807 goto swcsum;
808 }
809
810 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
811 m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
812
813 /* if the pkt had ip options, we have to deduct them */
814 if (hlen > sizeof(struct ip)) {
815 uint32_t optsum;
816
817 optsum = 0;
818 temp = hlen - sizeof(struct ip);
819 opts = (uint16_t *)((char *)ip + sizeof(struct ip));
820
821 while (temp > 1) {
822 optsum += ntohs(*opts++);
823 temp -= 2;
824 }
825 while (optsum >> 16)
826 optsum = (optsum >> 16) + (optsum & 0xffff);
827
828 /* Deduct the ip opts sum from the hwsum (rfc 1624). */
829 m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
830 ~optsum);
831
832 while (m0->m_pkthdr.csum_data >> 16)
833 m0->m_pkthdr.csum_data =
834 (m0->m_pkthdr.csum_data >> 16) +
835 (m0->m_pkthdr.csum_data & 0xffff);
836 }
837
838 m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
839 }
840 swcsum:
841 m0->m_pkthdr.csum_flags = 0;
842 #endif
843
844 return (m0);
845
846 bad:
847 m_freem(m0);
848 return (0);
849 }
850
851 /*
852 * Pass a packet to the higher levels.
853 */
854 void
855 hme_read(sc, ix, flags)
856 struct hme_softc *sc;
857 int ix;
858 u_int32_t flags;
859 {
860 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
861 struct mbuf *m;
862 int len;
863
864 len = HME_XD_DECODE_RSIZE(flags);
865 if (len <= sizeof(struct ether_header) ||
866 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
867 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
868 ETHERMTU + sizeof(struct ether_header))) {
869 #ifdef HMEDEBUG
870 printf("%s: invalid packet size %d; dropping\n",
871 device_xname(&sc->sc_dev), len);
872 #endif
873 ifp->if_ierrors++;
874 return;
875 }
876
877 /* Pull packet off interface. */
878 m = hme_get(sc, ix, flags);
879 if (m == 0) {
880 ifp->if_ierrors++;
881 return;
882 }
883
884 ifp->if_ipackets++;
885
886 #if NBPFILTER > 0
887 /*
888 * Check if there's a BPF listener on this interface.
889 * If so, hand off the raw packet to BPF.
890 */
891 if (ifp->if_bpf)
892 bpf_mtap(ifp->if_bpf, m);
893 #endif
894
895 /* Pass the packet up. */
896 (*ifp->if_input)(ifp, m);
897 }
898
899 void
900 hme_start(ifp)
901 struct ifnet *ifp;
902 {
903 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
904 void *txd = sc->sc_rb.rb_txd;
905 struct mbuf *m;
906 unsigned int txflags;
907 unsigned int ri, len;
908 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
909
910 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
911 return;
912
913 ri = sc->sc_rb.rb_tdhead;
914
915 for (;;) {
916 IFQ_DEQUEUE(&ifp->if_snd, m);
917 if (m == 0)
918 break;
919
920 #if NBPFILTER > 0
921 /*
922 * If BPF is listening on this interface, let it see the
923 * packet before we commit it to the wire.
924 */
925 if (ifp->if_bpf)
926 bpf_mtap(ifp->if_bpf, m);
927 #endif
928
929 #ifdef INET
930 /* collect bits for h/w csum, before hme_put frees the mbuf */
931 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
932 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
933 struct ether_header *eh;
934 uint16_t offset, start;
935
936 eh = mtod(m, struct ether_header *);
937 switch (ntohs(eh->ether_type)) {
938 case ETHERTYPE_IP:
939 start = ETHER_HDR_LEN;
940 break;
941 case ETHERTYPE_VLAN:
942 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
943 break;
944 default:
945 /* unsupported, drop it */
946 m_free(m);
947 continue;
948 }
949 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
950 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
951 + start;
952 txflags = HME_XD_TXCKSUM |
953 (offset << HME_XD_TXCSSTUFFSHIFT) |
954 (start << HME_XD_TXCSSTARTSHIFT);
955 } else
956 #endif
957 txflags = 0;
958
959 /*
960 * Copy the mbuf chain into the transmit buffer.
961 */
962 len = hme_put(sc, ri, m);
963
964 /*
965 * Initialize transmit registers and start transmission
966 */
967 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
968 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
969 HME_XD_ENCODE_TSIZE(len) | txflags);
970
971 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
972 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
973 HME_ETX_TP_DMAWAKEUP);
974
975 if (++ri == ntbuf)
976 ri = 0;
977
978 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
979 ifp->if_flags |= IFF_OACTIVE;
980 break;
981 }
982 }
983
984 sc->sc_rb.rb_tdhead = ri;
985 }
986
987 /*
988 * Transmit interrupt.
989 */
990 int
991 hme_tint(sc)
992 struct hme_softc *sc;
993 {
994 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
995 bus_space_tag_t t = sc->sc_bustag;
996 bus_space_handle_t mac = sc->sc_mac;
997 unsigned int ri, txflags;
998
999 /*
1000 * Unload collision counters
1001 */
1002 ifp->if_collisions +=
1003 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1004 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
1005 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1006 bus_space_read_4(t, mac, HME_MACI_LTCNT);
1007
1008 /*
1009 * then clear the hardware counters.
1010 */
1011 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1012 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1013 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1014 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1015
1016 /* Fetch current position in the transmit ring */
1017 ri = sc->sc_rb.rb_tdtail;
1018
1019 for (;;) {
1020 if (sc->sc_rb.rb_td_nbusy <= 0)
1021 break;
1022
1023 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1024
1025 if (txflags & HME_XD_OWN)
1026 break;
1027
1028 ifp->if_flags &= ~IFF_OACTIVE;
1029 ifp->if_opackets++;
1030
1031 if (++ri == sc->sc_rb.rb_ntbuf)
1032 ri = 0;
1033
1034 --sc->sc_rb.rb_td_nbusy;
1035 }
1036
1037 /* Update ring */
1038 sc->sc_rb.rb_tdtail = ri;
1039
1040 hme_start(ifp);
1041
1042 if (sc->sc_rb.rb_td_nbusy == 0)
1043 ifp->if_timer = 0;
1044
1045 return (1);
1046 }
1047
1048 /*
1049 * Receive interrupt.
1050 */
1051 int
1052 hme_rint(sc)
1053 struct hme_softc *sc;
1054 {
1055 void *xdr = sc->sc_rb.rb_rxd;
1056 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1057 unsigned int ri;
1058 u_int32_t flags;
1059
1060 ri = sc->sc_rb.rb_rdtail;
1061
1062 /*
1063 * Process all buffers with valid data.
1064 */
1065 for (;;) {
1066 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1067 if (flags & HME_XD_OWN)
1068 break;
1069
1070 if (flags & HME_XD_OFL) {
1071 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1072 device_xname(&sc->sc_dev), ri, flags);
1073 } else
1074 hme_read(sc, ri, flags);
1075
1076 /* This buffer can be used by the hardware again */
1077 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1078 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1079
1080 if (++ri == nrbuf)
1081 ri = 0;
1082 }
1083
1084 sc->sc_rb.rb_rdtail = ri;
1085
1086 return (1);
1087 }
1088
1089 int
1090 hme_eint(sc, status)
1091 struct hme_softc *sc;
1092 u_int status;
1093 {
1094 char bits[128];
1095
1096 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1097 bus_space_tag_t t = sc->sc_bustag;
1098 bus_space_handle_t mif = sc->sc_mif;
1099 u_int32_t cf, st, sm;
1100 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1101 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1102 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1103 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1104 device_xname(&sc->sc_dev), cf, st, sm);
1105 return (1);
1106 }
1107
1108 printf("%s: status=%s\n", device_xname(&sc->sc_dev),
1109 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
1110 return (1);
1111 }
1112
1113 int
1114 hme_intr(v)
1115 void *v;
1116 {
1117 struct hme_softc *sc = (struct hme_softc *)v;
1118 bus_space_tag_t t = sc->sc_bustag;
1119 bus_space_handle_t seb = sc->sc_seb;
1120 u_int32_t status;
1121 int r = 0;
1122
1123 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1124
1125 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1126 r |= hme_eint(sc, status);
1127
1128 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1129 r |= hme_tint(sc);
1130
1131 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1132 r |= hme_rint(sc);
1133
1134 #if NRND > 0
1135 rnd_add_uint32(&sc->rnd_source, status);
1136 #endif
1137
1138 return (r);
1139 }
1140
1141
1142 void
1143 hme_watchdog(ifp)
1144 struct ifnet *ifp;
1145 {
1146 struct hme_softc *sc = ifp->if_softc;
1147
1148 log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
1149 ++ifp->if_oerrors;
1150
1151 hme_reset(sc);
1152 }
1153
1154 /*
1155 * Initialize the MII Management Interface
1156 */
1157 void
1158 hme_mifinit(sc)
1159 struct hme_softc *sc;
1160 {
1161 bus_space_tag_t t = sc->sc_bustag;
1162 bus_space_handle_t mif = sc->sc_mif;
1163 bus_space_handle_t mac = sc->sc_mac;
1164 int instance, phy;
1165 u_int32_t v;
1166
1167 if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1168 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1169 phy = sc->sc_phys[instance];
1170 } else
1171 /* No media set yet, pick phy arbitrarily.. */
1172 phy = HME_PHYAD_EXTERNAL;
1173
1174 /* Configure the MIF in frame mode, no poll, current phy select */
1175 v = 0;
1176 if (phy == HME_PHYAD_EXTERNAL)
1177 v |= HME_MIF_CFG_PHY;
1178 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1179
1180 /* If an external transceiver is selected, enable its MII drivers */
1181 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1182 v &= ~HME_MAC_XIF_MIIENABLE;
1183 if (phy == HME_PHYAD_EXTERNAL)
1184 v |= HME_MAC_XIF_MIIENABLE;
1185 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1186 }
1187
1188 /*
1189 * MII interface
1190 */
1191 static int
1192 hme_mii_readreg(self, phy, reg)
1193 struct device *self;
1194 int phy, reg;
1195 {
1196 struct hme_softc *sc = (void *)self;
1197 bus_space_tag_t t = sc->sc_bustag;
1198 bus_space_handle_t mif = sc->sc_mif;
1199 bus_space_handle_t mac = sc->sc_mac;
1200 u_int32_t v, xif_cfg, mifi_cfg;
1201 int n;
1202
1203 /* We can at most have two PHYs */
1204 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1205 return (0);
1206
1207 /* Select the desired PHY in the MIF configuration register */
1208 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1209 v &= ~HME_MIF_CFG_PHY;
1210 if (phy == HME_PHYAD_EXTERNAL)
1211 v |= HME_MIF_CFG_PHY;
1212 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1213
1214 /* Enable MII drivers on external transceiver */
1215 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1216 if (phy == HME_PHYAD_EXTERNAL)
1217 v |= HME_MAC_XIF_MIIENABLE;
1218 else
1219 v &= ~HME_MAC_XIF_MIIENABLE;
1220 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1221
1222 #if 0
1223 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1224 /*
1225 * Check whether a transceiver is connected by testing
1226 * the MIF configuration register's MDI_X bits. Note that
1227 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1228 */
1229 mif_mdi_bit = 1 << (8 + (1 - phy));
1230 delay(100);
1231 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1232 if ((v & mif_mdi_bit) == 0)
1233 return (0);
1234 #endif
1235
1236 /* Construct the frame command */
1237 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1238 HME_MIF_FO_TAMSB |
1239 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1240 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1241 (reg << HME_MIF_FO_REGAD_SHIFT);
1242
1243 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1244 for (n = 0; n < 100; n++) {
1245 DELAY(1);
1246 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1247 if (v & HME_MIF_FO_TALSB) {
1248 v &= HME_MIF_FO_DATA;
1249 goto out;
1250 }
1251 }
1252
1253 v = 0;
1254 printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
1255
1256 out:
1257 /* Restore MIFI_CFG register */
1258 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1259 /* Restore XIF register */
1260 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1261 return (v);
1262 }
1263
1264 static void
1265 hme_mii_writereg(self, phy, reg, val)
1266 struct device *self;
1267 int phy, reg, val;
1268 {
1269 struct hme_softc *sc = (void *)self;
1270 bus_space_tag_t t = sc->sc_bustag;
1271 bus_space_handle_t mif = sc->sc_mif;
1272 bus_space_handle_t mac = sc->sc_mac;
1273 u_int32_t v, xif_cfg, mifi_cfg;
1274 int n;
1275
1276 /* We can at most have two PHYs */
1277 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1278 return;
1279
1280 /* Select the desired PHY in the MIF configuration register */
1281 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1282 v &= ~HME_MIF_CFG_PHY;
1283 if (phy == HME_PHYAD_EXTERNAL)
1284 v |= HME_MIF_CFG_PHY;
1285 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1286
1287 /* Enable MII drivers on external transceiver */
1288 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1289 if (phy == HME_PHYAD_EXTERNAL)
1290 v |= HME_MAC_XIF_MIIENABLE;
1291 else
1292 v &= ~HME_MAC_XIF_MIIENABLE;
1293 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1294
1295 #if 0
1296 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1297 /*
1298 * Check whether a transceiver is connected by testing
1299 * the MIF configuration register's MDI_X bits. Note that
1300 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1301 */
1302 mif_mdi_bit = 1 << (8 + (1 - phy));
1303 delay(100);
1304 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1305 if ((v & mif_mdi_bit) == 0)
1306 return;
1307 #endif
1308
1309 /* Construct the frame command */
1310 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1311 HME_MIF_FO_TAMSB |
1312 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1313 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1314 (reg << HME_MIF_FO_REGAD_SHIFT) |
1315 (val & HME_MIF_FO_DATA);
1316
1317 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1318 for (n = 0; n < 100; n++) {
1319 DELAY(1);
1320 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1321 if (v & HME_MIF_FO_TALSB)
1322 goto out;
1323 }
1324
1325 printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
1326 out:
1327 /* Restore MIFI_CFG register */
1328 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1329 /* Restore XIF register */
1330 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1331 }
1332
1333 static void
1334 hme_mii_statchg(dev)
1335 struct device *dev;
1336 {
1337 struct hme_softc *sc = (void *)dev;
1338 bus_space_tag_t t = sc->sc_bustag;
1339 bus_space_handle_t mac = sc->sc_mac;
1340 u_int32_t v;
1341
1342 #ifdef HMEDEBUG
1343 if (sc->sc_debug)
1344 printf("hme_mii_statchg: status change\n");
1345 #endif
1346
1347 /* Set the MAC Full Duplex bit appropriately */
1348 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1349 but not otherwise. */
1350 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1351 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1352 v |= HME_MAC_TXCFG_FULLDPLX;
1353 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1354 } else {
1355 v &= ~HME_MAC_TXCFG_FULLDPLX;
1356 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1357 }
1358 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1359 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1360 }
1361
1362 int
1363 hme_mediachange(ifp)
1364 struct ifnet *ifp;
1365 {
1366 struct hme_softc *sc = ifp->if_softc;
1367 bus_space_tag_t t = sc->sc_bustag;
1368 bus_space_handle_t mif = sc->sc_mif;
1369 bus_space_handle_t mac = sc->sc_mac;
1370 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1371 int phy = sc->sc_phys[instance];
1372 int rc;
1373 u_int32_t v;
1374
1375 #ifdef HMEDEBUG
1376 if (sc->sc_debug)
1377 printf("hme_mediachange: phy = %d\n", phy);
1378 #endif
1379
1380 /* Select the current PHY in the MIF configuration register */
1381 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1382 v &= ~HME_MIF_CFG_PHY;
1383 if (phy == HME_PHYAD_EXTERNAL)
1384 v |= HME_MIF_CFG_PHY;
1385 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1386
1387 /* If an external transceiver is selected, enable its MII drivers */
1388 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1389 v &= ~HME_MAC_XIF_MIIENABLE;
1390 if (phy == HME_PHYAD_EXTERNAL)
1391 v |= HME_MAC_XIF_MIIENABLE;
1392 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1393
1394 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1395 return 0;
1396 return rc;
1397 }
1398
1399 /*
1400 * Process an ioctl request.
1401 */
1402 int
1403 hme_ioctl(ifp, cmd, data)
1404 struct ifnet *ifp;
1405 u_long cmd;
1406 void *data;
1407 {
1408 struct hme_softc *sc = ifp->if_softc;
1409 struct ifaddr *ifa = (struct ifaddr *)data;
1410 int s, error = 0;
1411
1412 s = splnet();
1413
1414 switch (cmd) {
1415
1416 case SIOCSIFADDR:
1417 switch (ifa->ifa_addr->sa_family) {
1418 #ifdef INET
1419 case AF_INET:
1420 if (ifp->if_flags & IFF_UP)
1421 hme_setladrf(sc);
1422 else {
1423 ifp->if_flags |= IFF_UP;
1424 error = hme_init(sc);
1425 }
1426 arp_ifinit(ifp, ifa);
1427 break;
1428 #endif
1429 default:
1430 ifp->if_flags |= IFF_UP;
1431 error = hme_init(sc);
1432 break;
1433 }
1434 break;
1435
1436 case SIOCSIFFLAGS:
1437 #ifdef HMEDEBUG
1438 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1439 #endif
1440
1441 if ((ifp->if_flags & IFF_UP) == 0 &&
1442 (ifp->if_flags & IFF_RUNNING) != 0) {
1443 /*
1444 * If interface is marked down and it is running, then
1445 * stop it.
1446 */
1447 hme_stop(sc, false);
1448 ifp->if_flags &= ~IFF_RUNNING;
1449 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1450 (ifp->if_flags & IFF_RUNNING) == 0) {
1451 /*
1452 * If interface is marked up and it is stopped, then
1453 * start it.
1454 */
1455 error = hme_init(sc);
1456 } else if ((ifp->if_flags & IFF_UP) != 0) {
1457 /*
1458 * If setting debug or promiscuous mode, do not reset
1459 * the chip; for everything else, call hme_init()
1460 * which will trigger a reset.
1461 */
1462 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1463 if (ifp->if_flags != sc->sc_if_flags) {
1464 if ((ifp->if_flags & (~RESETIGN))
1465 == (sc->sc_if_flags & (~RESETIGN)))
1466 hme_setladrf(sc);
1467 else
1468 error = hme_init(sc);
1469 }
1470 #undef RESETIGN
1471 }
1472
1473 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1474 error = hme_init(sc);
1475
1476 break;
1477
1478 default:
1479 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1480 break;
1481
1482 error = 0;
1483
1484 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1485 ;
1486 else if (ifp->if_flags & IFF_RUNNING) {
1487 /*
1488 * Multicast list has changed; set the hardware filter
1489 * accordingly.
1490 */
1491 hme_setladrf(sc);
1492 }
1493 break;
1494 }
1495
1496 sc->sc_if_flags = ifp->if_flags;
1497 splx(s);
1498 return (error);
1499 }
1500
1501 void
1502 hme_shutdown(arg)
1503 void *arg;
1504 {
1505
1506 hme_stop((struct hme_softc *)arg, false);
1507 }
1508
1509 /*
1510 * Set up the logical address filter.
1511 */
1512 void
1513 hme_setladrf(sc)
1514 struct hme_softc *sc;
1515 {
1516 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1517 struct ether_multi *enm;
1518 struct ether_multistep step;
1519 struct ethercom *ec = &sc->sc_ethercom;
1520 bus_space_tag_t t = sc->sc_bustag;
1521 bus_space_handle_t mac = sc->sc_mac;
1522 u_char *cp;
1523 u_int32_t crc;
1524 u_int32_t hash[4];
1525 u_int32_t v;
1526 int len;
1527
1528 /* Clear hash table */
1529 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1530
1531 /* Get current RX configuration */
1532 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1533
1534 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1535 /* Turn on promiscuous mode; turn off the hash filter */
1536 v |= HME_MAC_RXCFG_PMISC;
1537 v &= ~HME_MAC_RXCFG_HENABLE;
1538 ifp->if_flags |= IFF_ALLMULTI;
1539 goto chipit;
1540 }
1541
1542 /* Turn off promiscuous mode; turn on the hash filter */
1543 v &= ~HME_MAC_RXCFG_PMISC;
1544 v |= HME_MAC_RXCFG_HENABLE;
1545
1546 /*
1547 * Set up multicast address filter by passing all multicast addresses
1548 * through a crc generator, and then using the high order 6 bits as an
1549 * index into the 64 bit logical address filter. The high order bit
1550 * selects the word, while the rest of the bits select the bit within
1551 * the word.
1552 */
1553
1554 ETHER_FIRST_MULTI(step, ec, enm);
1555 while (enm != NULL) {
1556 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1557 /*
1558 * We must listen to a range of multicast addresses.
1559 * For now, just accept all multicasts, rather than
1560 * trying to set only those filter bits needed to match
1561 * the range. (At this time, the only use of address
1562 * ranges is for IP multicast routing, for which the
1563 * range is big enough to require all bits set.)
1564 */
1565 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1566 ifp->if_flags |= IFF_ALLMULTI;
1567 goto chipit;
1568 }
1569
1570 cp = enm->enm_addrlo;
1571 crc = 0xffffffff;
1572 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1573 int octet = *cp++;
1574 int i;
1575
1576 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1577 for (i = 0; i < 8; i++) {
1578 if ((crc & 1) ^ (octet & 1)) {
1579 crc >>= 1;
1580 crc ^= MC_POLY_LE;
1581 } else {
1582 crc >>= 1;
1583 }
1584 octet >>= 1;
1585 }
1586 }
1587 /* Just want the 6 most significant bits. */
1588 crc >>= 26;
1589
1590 /* Set the corresponding bit in the filter. */
1591 hash[crc >> 4] |= 1 << (crc & 0xf);
1592
1593 ETHER_NEXT_MULTI(step, enm);
1594 }
1595
1596 ifp->if_flags &= ~IFF_ALLMULTI;
1597
1598 chipit:
1599 /* Now load the hash table into the chip */
1600 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1601 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1602 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1603 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1604 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1605 }
1606
1607 /*
1608 * Routines for accessing the transmit and receive buffers.
1609 * The various CPU and adapter configurations supported by this
1610 * driver require three different access methods for buffers
1611 * and descriptors:
1612 * (1) contig (contiguous data; no padding),
1613 * (2) gap2 (two bytes of data followed by two bytes of padding),
1614 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1615 */
1616
1617 #if 0
1618 /*
1619 * contig: contiguous data with no padding.
1620 *
1621 * Buffers may have any alignment.
1622 */
1623
1624 void
1625 hme_copytobuf_contig(sc, from, ri, len)
1626 struct hme_softc *sc;
1627 void *from;
1628 int ri, len;
1629 {
1630 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1631
1632 /*
1633 * Just call memcpy() to do the work.
1634 */
1635 memcpy(buf, from, len);
1636 }
1637
1638 void
1639 hme_copyfrombuf_contig(sc, to, boff, len)
1640 struct hme_softc *sc;
1641 void *to;
1642 int boff, len;
1643 {
1644 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1645
1646 /*
1647 * Just call memcpy() to do the work.
1648 */
1649 memcpy(to, buf, len);
1650 }
1651 #endif
1652