Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.64.2.1
      1 /*	$NetBSD: hme.c,v 1.64.2.1 2008/05/18 12:33:42 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.64.2.1 2008/05/18 12:33:42 yamt Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 #include "bpfilter.h"
     43 #include "rnd.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/socket.h>
     51 #include <sys/device.h>
     52 #include <sys/malloc.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #if NRND > 0
     56 #include <sys/rnd.h>
     57 #endif
     58 
     59 #include <net/if.h>
     60 #include <net/if_dl.h>
     61 #include <net/if_ether.h>
     62 #include <net/if_media.h>
     63 
     64 #ifdef INET
     65 #include <netinet/in.h>
     66 #include <netinet/if_inarp.h>
     67 #include <netinet/in_systm.h>
     68 #include <netinet/in_var.h>
     69 #include <netinet/ip.h>
     70 #include <netinet/tcp.h>
     71 #include <netinet/udp.h>
     72 #endif
     73 
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #include <net/bpfdesc.h>
     78 #endif
     79 
     80 #include <dev/mii/mii.h>
     81 #include <dev/mii/miivar.h>
     82 
     83 #include <sys/bus.h>
     84 
     85 #include <dev/ic/hmereg.h>
     86 #include <dev/ic/hmevar.h>
     87 
     88 void		hme_start(struct ifnet *);
     89 void		hme_stop(struct hme_softc *,bool);
     90 int		hme_ioctl(struct ifnet *, u_long, void *);
     91 void		hme_tick(void *);
     92 void		hme_watchdog(struct ifnet *);
     93 void		hme_shutdown(void *);
     94 int		hme_init(struct hme_softc *);
     95 void		hme_meminit(struct hme_softc *);
     96 void		hme_mifinit(struct hme_softc *);
     97 void		hme_reset(struct hme_softc *);
     98 void		hme_setladrf(struct hme_softc *);
     99 
    100 /* MII methods & callbacks */
    101 static int	hme_mii_readreg(struct device *, int, int);
    102 static void	hme_mii_writereg(struct device *, int, int, int);
    103 static void	hme_mii_statchg(struct device *);
    104 
    105 int		hme_mediachange(struct ifnet *);
    106 
    107 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    108 int		hme_put(struct hme_softc *, int, struct mbuf *);
    109 void		hme_read(struct hme_softc *, int, uint32_t);
    110 int		hme_eint(struct hme_softc *, u_int);
    111 int		hme_rint(struct hme_softc *);
    112 int		hme_tint(struct hme_softc *);
    113 
    114 static int	ether_cmp(u_char *, u_char *);
    115 
    116 /* Default buffer copy routines */
    117 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    118 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    119 void	hme_zerobuf_contig(struct hme_softc *, int, int);
    120 
    121 
    122 void
    123 hme_config(sc)
    124 	struct hme_softc *sc;
    125 {
    126 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    127 	struct mii_data *mii = &sc->sc_mii;
    128 	struct mii_softc *child;
    129 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    130 	bus_dma_segment_t seg;
    131 	bus_size_t size;
    132 	int rseg, error;
    133 
    134 	/*
    135 	 * HME common initialization.
    136 	 *
    137 	 * hme_softc fields that must be initialized by the front-end:
    138 	 *
    139 	 * the bus tag:
    140 	 *	sc_bustag
    141 	 *
    142 	 * the DMA bus tag:
    143 	 *	sc_dmatag
    144 	 *
    145 	 * the bus handles:
    146 	 *	sc_seb		(Shared Ethernet Block registers)
    147 	 *	sc_erx		(Receiver Unit registers)
    148 	 *	sc_etx		(Transmitter Unit registers)
    149 	 *	sc_mac		(MAC registers)
    150 	 *	sc_mif		(Management Interface registers)
    151 	 *
    152 	 * the maximum bus burst size:
    153 	 *	sc_burst
    154 	 *
    155 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    156 	 *	rb_membase, rb_dmabase)
    157 	 *
    158 	 * the local Ethernet address:
    159 	 *	sc_enaddr
    160 	 *
    161 	 */
    162 
    163 	/* Make sure the chip is stopped. */
    164 	hme_stop(sc, true);
    165 
    166 
    167 	/*
    168 	 * Allocate descriptors and buffers
    169 	 * XXX - do all this differently.. and more configurably,
    170 	 * eg. use things as `dma_load_mbuf()' on transmit,
    171 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    172 	 *     all the time) on the receiver side.
    173 	 *
    174 	 * Note: receive buffers must be 64-byte aligned.
    175 	 * Also, apparently, the buffers must extend to a DMA burst
    176 	 * boundary beyond the maximum packet size.
    177 	 */
    178 #define _HME_NDESC	128
    179 #define _HME_BUFSZ	1600
    180 
    181 	/* Note: the # of descriptors must be a multiple of 16 */
    182 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    183 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    184 
    185 	/*
    186 	 * Allocate DMA capable memory
    187 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    188 	 * take this into account when calculating the size. Note that
    189 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    190 	 * so we allocate that much regardless of _HME_NDESC.
    191 	 */
    192 	size =	2048 +					/* TX descriptors */
    193 		2048 +					/* RX descriptors */
    194 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    195 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    196 
    197 	/* Allocate DMA buffer */
    198 	if ((error = bus_dmamem_alloc(dmatag, size,
    199 				      2048, 0,
    200 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    201 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
    202 			error);
    203 		return;
    204 	}
    205 
    206 	/* Map DMA memory in CPU addressable space */
    207 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    208 				    &sc->sc_rb.rb_membase,
    209 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    210 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
    211 			error);
    212 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    213 		bus_dmamem_free(dmatag, &seg, rseg);
    214 		return;
    215 	}
    216 
    217 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    218 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    219 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
    220 			error);
    221 		return;
    222 	}
    223 
    224 	/* Load the buffer */
    225 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    226 	    sc->sc_rb.rb_membase, size, NULL,
    227 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    228 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
    229 			error);
    230 		bus_dmamem_free(dmatag, &seg, rseg);
    231 		return;
    232 	}
    233 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    234 
    235 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    236 	    ether_sprintf(sc->sc_enaddr));
    237 
    238 	/* Initialize ifnet structure. */
    239 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    240 	ifp->if_softc = sc;
    241 	ifp->if_start = hme_start;
    242 	ifp->if_ioctl = hme_ioctl;
    243 	ifp->if_watchdog = hme_watchdog;
    244 	ifp->if_flags =
    245 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    246 	sc->sc_if_flags = ifp->if_flags;
    247 	ifp->if_capabilities |=
    248 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    249 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    250 	IFQ_SET_READY(&ifp->if_snd);
    251 
    252 	/* Initialize ifmedia structures and MII info */
    253 	mii->mii_ifp = ifp;
    254 	mii->mii_readreg = hme_mii_readreg;
    255 	mii->mii_writereg = hme_mii_writereg;
    256 	mii->mii_statchg = hme_mii_statchg;
    257 
    258 	sc->sc_ethercom.ec_mii = mii;
    259 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    260 
    261 	hme_mifinit(sc);
    262 
    263 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    264 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    265 
    266 	child = LIST_FIRST(&mii->mii_phys);
    267 	if (child == NULL) {
    268 		/* No PHY attached */
    269 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    270 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    271 	} else {
    272 		/*
    273 		 * Walk along the list of attached MII devices and
    274 		 * establish an `MII instance' to `phy number'
    275 		 * mapping. We'll use this mapping in media change
    276 		 * requests to determine which phy to use to program
    277 		 * the MIF configuration register.
    278 		 */
    279 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    280 			/*
    281 			 * Note: we support just two PHYs: the built-in
    282 			 * internal device and an external on the MII
    283 			 * connector.
    284 			 */
    285 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    286 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
    287 				       " at phy %d, instance %d\n",
    288 				       device_xname(child->mii_dev),
    289 				       child->mii_phy, child->mii_inst);
    290 				continue;
    291 			}
    292 
    293 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    294 		}
    295 
    296 		/*
    297 		 * XXX - we can really do the following ONLY if the
    298 		 * phy indeed has the auto negotiation capability!!
    299 		 */
    300 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    301 	}
    302 
    303 	/* claim 802.1q capability */
    304 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    305 
    306 	/* Attach the interface. */
    307 	if_attach(ifp);
    308 	ether_ifattach(ifp, sc->sc_enaddr);
    309 
    310 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    311 	if (sc->sc_sh == NULL)
    312 		panic("hme_config: can't establish shutdownhook");
    313 
    314 #if NRND > 0
    315 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    316 			  RND_TYPE_NET, 0);
    317 #endif
    318 
    319 	callout_init(&sc->sc_tick_ch, 0);
    320 }
    321 
    322 void
    323 hme_tick(arg)
    324 	void *arg;
    325 {
    326 	struct hme_softc *sc = arg;
    327 	int s;
    328 
    329 	s = splnet();
    330 	mii_tick(&sc->sc_mii);
    331 	splx(s);
    332 
    333 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    334 }
    335 
    336 void
    337 hme_reset(sc)
    338 	struct hme_softc *sc;
    339 {
    340 	int s;
    341 
    342 	s = splnet();
    343 	(void)hme_init(sc);
    344 	splx(s);
    345 }
    346 
    347 void
    348 hme_stop(struct hme_softc *sc, bool chip_only)
    349 {
    350 	bus_space_tag_t t = sc->sc_bustag;
    351 	bus_space_handle_t seb = sc->sc_seb;
    352 	int n;
    353 
    354 	if (!chip_only) {
    355 		callout_stop(&sc->sc_tick_ch);
    356 		mii_down(&sc->sc_mii);
    357 	}
    358 
    359 	/* Mask all interrupts */
    360 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    361 
    362 	/* Reset transmitter and receiver */
    363 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    364 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    365 
    366 	for (n = 0; n < 20; n++) {
    367 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    368 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    369 			return;
    370 		DELAY(20);
    371 	}
    372 
    373 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
    374 }
    375 
    376 void
    377 hme_meminit(sc)
    378 	struct hme_softc *sc;
    379 {
    380 	bus_addr_t txbufdma, rxbufdma;
    381 	bus_addr_t dma;
    382 	char *p;
    383 	unsigned int ntbuf, nrbuf, i;
    384 	struct hme_ring *hr = &sc->sc_rb;
    385 
    386 	p = hr->rb_membase;
    387 	dma = hr->rb_dmabase;
    388 
    389 	ntbuf = hr->rb_ntbuf;
    390 	nrbuf = hr->rb_nrbuf;
    391 
    392 	/*
    393 	 * Allocate transmit descriptors
    394 	 */
    395 	hr->rb_txd = p;
    396 	hr->rb_txddma = dma;
    397 	p += ntbuf * HME_XD_SIZE;
    398 	dma += ntbuf * HME_XD_SIZE;
    399 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    400 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    401 	p = (void *)roundup((u_long)p, 2048);
    402 
    403 	/*
    404 	 * Allocate receive descriptors
    405 	 */
    406 	hr->rb_rxd = p;
    407 	hr->rb_rxddma = dma;
    408 	p += nrbuf * HME_XD_SIZE;
    409 	dma += nrbuf * HME_XD_SIZE;
    410 	/* Again move forward to the next 2048 byte boundary.*/
    411 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    412 	p = (void *)roundup((u_long)p, 2048);
    413 
    414 
    415 	/*
    416 	 * Allocate transmit buffers
    417 	 */
    418 	hr->rb_txbuf = p;
    419 	txbufdma = dma;
    420 	p += ntbuf * _HME_BUFSZ;
    421 	dma += ntbuf * _HME_BUFSZ;
    422 
    423 	/*
    424 	 * Allocate receive buffers
    425 	 */
    426 	hr->rb_rxbuf = p;
    427 	rxbufdma = dma;
    428 	p += nrbuf * _HME_BUFSZ;
    429 	dma += nrbuf * _HME_BUFSZ;
    430 
    431 	/*
    432 	 * Initialize transmit buffer descriptors
    433 	 */
    434 	for (i = 0; i < ntbuf; i++) {
    435 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    436 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    437 	}
    438 
    439 	/*
    440 	 * Initialize receive buffer descriptors
    441 	 */
    442 	for (i = 0; i < nrbuf; i++) {
    443 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    444 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    445 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    446 	}
    447 
    448 	hr->rb_tdhead = hr->rb_tdtail = 0;
    449 	hr->rb_td_nbusy = 0;
    450 	hr->rb_rdtail = 0;
    451 }
    452 
    453 /*
    454  * Initialization of interface; set up initialization block
    455  * and transmit/receive descriptor rings.
    456  */
    457 int
    458 hme_init(sc)
    459 	struct hme_softc *sc;
    460 {
    461 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    462 	bus_space_tag_t t = sc->sc_bustag;
    463 	bus_space_handle_t seb = sc->sc_seb;
    464 	bus_space_handle_t etx = sc->sc_etx;
    465 	bus_space_handle_t erx = sc->sc_erx;
    466 	bus_space_handle_t mac = sc->sc_mac;
    467 	u_int8_t *ea;
    468 	u_int32_t v;
    469 	int rc;
    470 
    471 	/*
    472 	 * Initialization sequence. The numbered steps below correspond
    473 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    474 	 * Channel Engine manual (part of the PCIO manual).
    475 	 * See also the STP2002-STQ document from Sun Microsystems.
    476 	 */
    477 
    478 	/* step 1 & 2. Reset the Ethernet Channel */
    479 	hme_stop(sc, false);
    480 
    481 	/* Re-initialize the MIF */
    482 	hme_mifinit(sc);
    483 
    484 	/* Call MI reset function if any */
    485 	if (sc->sc_hwreset)
    486 		(*sc->sc_hwreset)(sc);
    487 
    488 #if 0
    489 	/* Mask all MIF interrupts, just in case */
    490 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    491 #endif
    492 
    493 	/* step 3. Setup data structures in host memory */
    494 	hme_meminit(sc);
    495 
    496 	/* step 4. TX MAC registers & counters */
    497 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    498 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    499 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    500 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    501 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    502 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    503 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    504 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    505 
    506 	/* Load station MAC address */
    507 	ea = sc->sc_enaddr;
    508 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    509 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    510 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    511 
    512 	/*
    513 	 * Init seed for backoff
    514 	 * (source suggested by manual: low 10 bits of MAC address)
    515 	 */
    516 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    517 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    518 
    519 
    520 	/* Note: Accepting power-on default for other MAC registers here.. */
    521 
    522 
    523 	/* step 5. RX MAC registers & counters */
    524 	hme_setladrf(sc);
    525 
    526 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    527 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    528 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    529 
    530 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    531 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    532 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    533 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    534 
    535 	/* step 8. Global Configuration & Interrupt Mask */
    536 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    537 			~(
    538 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    539 			  HME_SEB_STAT_HOSTTOTX |
    540 			  HME_SEB_STAT_RXTOHOST |
    541 			  HME_SEB_STAT_TXALL |
    542 			  HME_SEB_STAT_TXPERR |
    543 			  HME_SEB_STAT_RCNTEXP |
    544 			  /*HME_SEB_STAT_MIFIRQ |*/
    545 			  HME_SEB_STAT_ALL_ERRORS ));
    546 
    547 	switch (sc->sc_burst) {
    548 	default:
    549 		v = 0;
    550 		break;
    551 	case 16:
    552 		v = HME_SEB_CFG_BURST16;
    553 		break;
    554 	case 32:
    555 		v = HME_SEB_CFG_BURST32;
    556 		break;
    557 	case 64:
    558 		v = HME_SEB_CFG_BURST64;
    559 		break;
    560 	}
    561 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    562 
    563 	/* step 9. ETX Configuration: use mostly default values */
    564 
    565 	/* Enable DMA */
    566 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    567 	v |= HME_ETX_CFG_DMAENABLE;
    568 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    569 
    570 	/* Transmit Descriptor ring size: in increments of 16 */
    571 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    572 
    573 
    574 	/* step 10. ERX Configuration */
    575 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    576 
    577 	/* Encode Receive Descriptor ring size: four possible values */
    578 	switch (_HME_NDESC /*XXX*/) {
    579 	case 32:
    580 		v |= HME_ERX_CFG_RINGSIZE32;
    581 		break;
    582 	case 64:
    583 		v |= HME_ERX_CFG_RINGSIZE64;
    584 		break;
    585 	case 128:
    586 		v |= HME_ERX_CFG_RINGSIZE128;
    587 		break;
    588 	case 256:
    589 		v |= HME_ERX_CFG_RINGSIZE256;
    590 		break;
    591 	default:
    592 		printf("hme: invalid Receive Descriptor ring size\n");
    593 		break;
    594 	}
    595 
    596 	/* Enable DMA */
    597 	v |= HME_ERX_CFG_DMAENABLE;
    598 
    599 	/* set h/w rx checksum start offset (# of half-words) */
    600 #ifdef INET
    601 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
    602 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    603 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
    604 		HME_ERX_CFG_CSUMSTART;
    605 #endif
    606 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    607 
    608 	/* step 11. XIF Configuration */
    609 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    610 	v |= HME_MAC_XIF_OE;
    611 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    612 
    613 	/* step 12. RX_MAC Configuration Register */
    614 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    615 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    616 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    617 
    618 	/* step 13. TX_MAC Configuration Register */
    619 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    620 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    621 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    622 
    623 	/* step 14. Issue Transmit Pending command */
    624 
    625 	/* Call MI initialization function if any */
    626 	if (sc->sc_hwinit)
    627 		(*sc->sc_hwinit)(sc);
    628 
    629 	/* Set the current media. */
    630 	if ((rc = hme_mediachange(ifp)) != 0)
    631 		return rc;
    632 
    633 	/* Start the one second timer. */
    634 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    635 
    636 	ifp->if_flags |= IFF_RUNNING;
    637 	ifp->if_flags &= ~IFF_OACTIVE;
    638 	sc->sc_if_flags = ifp->if_flags;
    639 	ifp->if_timer = 0;
    640 	hme_start(ifp);
    641 	return 0;
    642 }
    643 
    644 /*
    645  * Compare two Ether/802 addresses for equality, inlined and unrolled for
    646  * speed.
    647  */
    648 static inline int
    649 ether_cmp(a, b)
    650 	u_char *a, *b;
    651 {
    652 
    653 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
    654 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
    655 		return (0);
    656 	return (1);
    657 }
    658 
    659 
    660 /*
    661  * Routine to copy from mbuf chain to transmit buffer in
    662  * network buffer memory.
    663  * Returns the amount of data copied.
    664  */
    665 int
    666 hme_put(sc, ri, m)
    667 	struct hme_softc *sc;
    668 	int ri;			/* Ring index */
    669 	struct mbuf *m;
    670 {
    671 	struct mbuf *n;
    672 	int len, tlen = 0;
    673 	char *bp;
    674 
    675 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    676 	for (; m; m = n) {
    677 		len = m->m_len;
    678 		if (len == 0) {
    679 			MFREE(m, n);
    680 			continue;
    681 		}
    682 		memcpy(bp, mtod(m, void *), len);
    683 		bp += len;
    684 		tlen += len;
    685 		MFREE(m, n);
    686 	}
    687 	return (tlen);
    688 }
    689 
    690 /*
    691  * Pull data off an interface.
    692  * Len is length of data, with local net header stripped.
    693  * We copy the data into mbufs.  When full cluster sized units are present
    694  * we copy into clusters.
    695  */
    696 struct mbuf *
    697 hme_get(sc, ri, flags)
    698 	struct hme_softc *sc;
    699 	int ri;
    700 	u_int32_t flags;
    701 {
    702 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    703 	struct mbuf *m, *m0, *newm;
    704 	char *bp;
    705 	int len, totlen;
    706 
    707 	totlen = HME_XD_DECODE_RSIZE(flags);
    708 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    709 	if (m0 == 0)
    710 		return (0);
    711 	m0->m_pkthdr.rcvif = ifp;
    712 	m0->m_pkthdr.len = totlen;
    713 	len = MHLEN;
    714 	m = m0;
    715 
    716 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    717 
    718 	while (totlen > 0) {
    719 		if (totlen >= MINCLSIZE) {
    720 			MCLGET(m, M_DONTWAIT);
    721 			if ((m->m_flags & M_EXT) == 0)
    722 				goto bad;
    723 			len = MCLBYTES;
    724 		}
    725 
    726 		if (m == m0) {
    727 			char *newdata = (char *)
    728 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    729 			    sizeof(struct ether_header);
    730 			len -= newdata - m->m_data;
    731 			m->m_data = newdata;
    732 		}
    733 
    734 		m->m_len = len = min(totlen, len);
    735 		memcpy(mtod(m, void *), bp, len);
    736 		bp += len;
    737 
    738 		totlen -= len;
    739 		if (totlen > 0) {
    740 			MGET(newm, M_DONTWAIT, MT_DATA);
    741 			if (newm == 0)
    742 				goto bad;
    743 			len = MLEN;
    744 			m = m->m_next = newm;
    745 		}
    746 	}
    747 
    748 #ifdef INET
    749 	/* hardware checksum */
    750 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    751 		struct ether_header *eh;
    752 		struct ip *ip;
    753 		struct udphdr *uh;
    754 		uint16_t *opts;
    755 		int32_t hlen, pktlen;
    756 		uint32_t temp;
    757 
    758 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
    759 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
    760 				ETHER_VLAN_ENCAP_LEN;
    761 			eh = (struct ether_header *) mtod(m0, void *) +
    762 				ETHER_VLAN_ENCAP_LEN;
    763 		} else {
    764 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    765 			eh = mtod(m0, struct ether_header *);
    766 		}
    767 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
    768 			goto swcsum;
    769 		ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
    770 
    771 		/* IPv4 only */
    772 		if (ip->ip_v != IPVERSION)
    773 			goto swcsum;
    774 
    775 		hlen = ip->ip_hl << 2;
    776 		if (hlen < sizeof(struct ip))
    777 			goto swcsum;
    778 
    779 		/*
    780 		 * bail if too short, has random trailing garbage, truncated,
    781 		 * fragment, or has ethernet pad.
    782 		 */
    783 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
    784 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
    785 			goto swcsum;
    786 
    787 		switch (ip->ip_p) {
    788 		case IPPROTO_TCP:
    789 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
    790 				goto swcsum;
    791 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    792 				goto swcsum;
    793 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
    794 			break;
    795 		case IPPROTO_UDP:
    796 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
    797 				goto swcsum;
    798 			if (pktlen < (hlen + sizeof(struct udphdr)))
    799 				goto swcsum;
    800 			uh = (struct udphdr *)((char *)ip + hlen);
    801 			/* no checksum */
    802 			if (uh->uh_sum == 0)
    803 				goto swcsum;
    804 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
    805 			break;
    806 		default:
    807 			goto swcsum;
    808 		}
    809 
    810 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    811 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
    812 
    813 		/* if the pkt had ip options, we have to deduct them */
    814 		if (hlen > sizeof(struct ip)) {
    815 			uint32_t optsum;
    816 
    817 			optsum = 0;
    818 			temp = hlen - sizeof(struct ip);
    819 			opts = (uint16_t *)((char *)ip + sizeof(struct ip));
    820 
    821 			while (temp > 1) {
    822 				optsum += ntohs(*opts++);
    823 				temp -= 2;
    824 			}
    825 			while (optsum >> 16)
    826 				optsum = (optsum >> 16) + (optsum & 0xffff);
    827 
    828 			/* Deduct the ip opts sum from the hwsum (rfc 1624). */
    829 			m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
    830 						   ~optsum);
    831 
    832 			while (m0->m_pkthdr.csum_data >> 16)
    833 				m0->m_pkthdr.csum_data =
    834 					(m0->m_pkthdr.csum_data >> 16) +
    835 					(m0->m_pkthdr.csum_data & 0xffff);
    836 		}
    837 
    838 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    839 	}
    840 swcsum:
    841 		m0->m_pkthdr.csum_flags = 0;
    842 #endif
    843 
    844 	return (m0);
    845 
    846 bad:
    847 	m_freem(m0);
    848 	return (0);
    849 }
    850 
    851 /*
    852  * Pass a packet to the higher levels.
    853  */
    854 void
    855 hme_read(sc, ix, flags)
    856 	struct hme_softc *sc;
    857 	int ix;
    858 	u_int32_t flags;
    859 {
    860 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    861 	struct mbuf *m;
    862 	int len;
    863 
    864 	len = HME_XD_DECODE_RSIZE(flags);
    865 	if (len <= sizeof(struct ether_header) ||
    866 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    867 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    868 	    ETHERMTU + sizeof(struct ether_header))) {
    869 #ifdef HMEDEBUG
    870 		printf("%s: invalid packet size %d; dropping\n",
    871 		    device_xname(&sc->sc_dev), len);
    872 #endif
    873 		ifp->if_ierrors++;
    874 		return;
    875 	}
    876 
    877 	/* Pull packet off interface. */
    878 	m = hme_get(sc, ix, flags);
    879 	if (m == 0) {
    880 		ifp->if_ierrors++;
    881 		return;
    882 	}
    883 
    884 	ifp->if_ipackets++;
    885 
    886 #if NBPFILTER > 0
    887 	/*
    888 	 * Check if there's a BPF listener on this interface.
    889 	 * If so, hand off the raw packet to BPF.
    890 	 */
    891 	if (ifp->if_bpf)
    892 		bpf_mtap(ifp->if_bpf, m);
    893 #endif
    894 
    895 	/* Pass the packet up. */
    896 	(*ifp->if_input)(ifp, m);
    897 }
    898 
    899 void
    900 hme_start(ifp)
    901 	struct ifnet *ifp;
    902 {
    903 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    904 	void *txd = sc->sc_rb.rb_txd;
    905 	struct mbuf *m;
    906 	unsigned int txflags;
    907 	unsigned int ri, len;
    908 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    909 
    910 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    911 		return;
    912 
    913 	ri = sc->sc_rb.rb_tdhead;
    914 
    915 	for (;;) {
    916 		IFQ_DEQUEUE(&ifp->if_snd, m);
    917 		if (m == 0)
    918 			break;
    919 
    920 #if NBPFILTER > 0
    921 		/*
    922 		 * If BPF is listening on this interface, let it see the
    923 		 * packet before we commit it to the wire.
    924 		 */
    925 		if (ifp->if_bpf)
    926 			bpf_mtap(ifp->if_bpf, m);
    927 #endif
    928 
    929 #ifdef INET
    930 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    931 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    932 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    933 			struct ether_header *eh;
    934 			uint16_t offset, start;
    935 
    936 			eh = mtod(m, struct ether_header *);
    937 			switch (ntohs(eh->ether_type)) {
    938 			case ETHERTYPE_IP:
    939 				start = ETHER_HDR_LEN;
    940 				break;
    941 			case ETHERTYPE_VLAN:
    942 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    943 				break;
    944 			default:
    945 				/* unsupported, drop it */
    946 				m_free(m);
    947 				continue;
    948 			}
    949 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    950 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    951 			    + start;
    952 			txflags = HME_XD_TXCKSUM |
    953 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    954 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    955 		} else
    956 #endif
    957 			txflags = 0;
    958 
    959 		/*
    960 		 * Copy the mbuf chain into the transmit buffer.
    961 		 */
    962 		len = hme_put(sc, ri, m);
    963 
    964 		/*
    965 		 * Initialize transmit registers and start transmission
    966 		 */
    967 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    968 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    969 			HME_XD_ENCODE_TSIZE(len) | txflags);
    970 
    971 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    972 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    973 				  HME_ETX_TP_DMAWAKEUP);
    974 
    975 		if (++ri == ntbuf)
    976 			ri = 0;
    977 
    978 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    979 			ifp->if_flags |= IFF_OACTIVE;
    980 			break;
    981 		}
    982 	}
    983 
    984 	sc->sc_rb.rb_tdhead = ri;
    985 }
    986 
    987 /*
    988  * Transmit interrupt.
    989  */
    990 int
    991 hme_tint(sc)
    992 	struct hme_softc *sc;
    993 {
    994 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    995 	bus_space_tag_t t = sc->sc_bustag;
    996 	bus_space_handle_t mac = sc->sc_mac;
    997 	unsigned int ri, txflags;
    998 
    999 	/*
   1000 	 * Unload collision counters
   1001 	 */
   1002 	ifp->if_collisions +=
   1003 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
   1004 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
   1005 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
   1006 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1007 
   1008 	/*
   1009 	 * then clear the hardware counters.
   1010 	 */
   1011 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1012 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1013 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1014 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1015 
   1016 	/* Fetch current position in the transmit ring */
   1017 	ri = sc->sc_rb.rb_tdtail;
   1018 
   1019 	for (;;) {
   1020 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1021 			break;
   1022 
   1023 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1024 
   1025 		if (txflags & HME_XD_OWN)
   1026 			break;
   1027 
   1028 		ifp->if_flags &= ~IFF_OACTIVE;
   1029 		ifp->if_opackets++;
   1030 
   1031 		if (++ri == sc->sc_rb.rb_ntbuf)
   1032 			ri = 0;
   1033 
   1034 		--sc->sc_rb.rb_td_nbusy;
   1035 	}
   1036 
   1037 	/* Update ring */
   1038 	sc->sc_rb.rb_tdtail = ri;
   1039 
   1040 	hme_start(ifp);
   1041 
   1042 	if (sc->sc_rb.rb_td_nbusy == 0)
   1043 		ifp->if_timer = 0;
   1044 
   1045 	return (1);
   1046 }
   1047 
   1048 /*
   1049  * Receive interrupt.
   1050  */
   1051 int
   1052 hme_rint(sc)
   1053 	struct hme_softc *sc;
   1054 {
   1055 	void *xdr = sc->sc_rb.rb_rxd;
   1056 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1057 	unsigned int ri;
   1058 	u_int32_t flags;
   1059 
   1060 	ri = sc->sc_rb.rb_rdtail;
   1061 
   1062 	/*
   1063 	 * Process all buffers with valid data.
   1064 	 */
   1065 	for (;;) {
   1066 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1067 		if (flags & HME_XD_OWN)
   1068 			break;
   1069 
   1070 		if (flags & HME_XD_OFL) {
   1071 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1072 					device_xname(&sc->sc_dev), ri, flags);
   1073 		} else
   1074 			hme_read(sc, ri, flags);
   1075 
   1076 		/* This buffer can be used by the hardware again */
   1077 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1078 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1079 
   1080 		if (++ri == nrbuf)
   1081 			ri = 0;
   1082 	}
   1083 
   1084 	sc->sc_rb.rb_rdtail = ri;
   1085 
   1086 	return (1);
   1087 }
   1088 
   1089 int
   1090 hme_eint(sc, status)
   1091 	struct hme_softc *sc;
   1092 	u_int status;
   1093 {
   1094 	char bits[128];
   1095 
   1096 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1097 		bus_space_tag_t t = sc->sc_bustag;
   1098 		bus_space_handle_t mif = sc->sc_mif;
   1099 		u_int32_t cf, st, sm;
   1100 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1101 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1102 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1103 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1104 			device_xname(&sc->sc_dev), cf, st, sm);
   1105 		return (1);
   1106 	}
   1107 
   1108 	printf("%s: status=%s\n", device_xname(&sc->sc_dev),
   1109 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
   1110 	return (1);
   1111 }
   1112 
   1113 int
   1114 hme_intr(v)
   1115 	void *v;
   1116 {
   1117 	struct hme_softc *sc = (struct hme_softc *)v;
   1118 	bus_space_tag_t t = sc->sc_bustag;
   1119 	bus_space_handle_t seb = sc->sc_seb;
   1120 	u_int32_t status;
   1121 	int r = 0;
   1122 
   1123 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1124 
   1125 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1126 		r |= hme_eint(sc, status);
   1127 
   1128 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1129 		r |= hme_tint(sc);
   1130 
   1131 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1132 		r |= hme_rint(sc);
   1133 
   1134 #if NRND > 0
   1135 	rnd_add_uint32(&sc->rnd_source, status);
   1136 #endif
   1137 
   1138 	return (r);
   1139 }
   1140 
   1141 
   1142 void
   1143 hme_watchdog(ifp)
   1144 	struct ifnet *ifp;
   1145 {
   1146 	struct hme_softc *sc = ifp->if_softc;
   1147 
   1148 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   1149 	++ifp->if_oerrors;
   1150 
   1151 	hme_reset(sc);
   1152 }
   1153 
   1154 /*
   1155  * Initialize the MII Management Interface
   1156  */
   1157 void
   1158 hme_mifinit(sc)
   1159 	struct hme_softc *sc;
   1160 {
   1161 	bus_space_tag_t t = sc->sc_bustag;
   1162 	bus_space_handle_t mif = sc->sc_mif;
   1163 	bus_space_handle_t mac = sc->sc_mac;
   1164 	int instance, phy;
   1165 	u_int32_t v;
   1166 
   1167 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1168 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1169 		phy = sc->sc_phys[instance];
   1170 	} else
   1171 		/* No media set yet, pick phy arbitrarily.. */
   1172 		phy = HME_PHYAD_EXTERNAL;
   1173 
   1174 	/* Configure the MIF in frame mode, no poll, current phy select */
   1175 	v = 0;
   1176 	if (phy == HME_PHYAD_EXTERNAL)
   1177 		v |= HME_MIF_CFG_PHY;
   1178 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1179 
   1180 	/* If an external transceiver is selected, enable its MII drivers */
   1181 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1182 	v &= ~HME_MAC_XIF_MIIENABLE;
   1183 	if (phy == HME_PHYAD_EXTERNAL)
   1184 		v |= HME_MAC_XIF_MIIENABLE;
   1185 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1186 }
   1187 
   1188 /*
   1189  * MII interface
   1190  */
   1191 static int
   1192 hme_mii_readreg(self, phy, reg)
   1193 	struct device *self;
   1194 	int phy, reg;
   1195 {
   1196 	struct hme_softc *sc = (void *)self;
   1197 	bus_space_tag_t t = sc->sc_bustag;
   1198 	bus_space_handle_t mif = sc->sc_mif;
   1199 	bus_space_handle_t mac = sc->sc_mac;
   1200 	u_int32_t v, xif_cfg, mifi_cfg;
   1201 	int n;
   1202 
   1203 	/* We can at most have two PHYs */
   1204 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1205 		return (0);
   1206 
   1207 	/* Select the desired PHY in the MIF configuration register */
   1208 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1209 	v &= ~HME_MIF_CFG_PHY;
   1210 	if (phy == HME_PHYAD_EXTERNAL)
   1211 		v |= HME_MIF_CFG_PHY;
   1212 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1213 
   1214 	/* Enable MII drivers on external transceiver */
   1215 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1216 	if (phy == HME_PHYAD_EXTERNAL)
   1217 		v |= HME_MAC_XIF_MIIENABLE;
   1218 	else
   1219 		v &= ~HME_MAC_XIF_MIIENABLE;
   1220 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1221 
   1222 #if 0
   1223 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1224 	/*
   1225 	 * Check whether a transceiver is connected by testing
   1226 	 * the MIF configuration register's MDI_X bits. Note that
   1227 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1228 	 */
   1229 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1230 	delay(100);
   1231 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1232 	if ((v & mif_mdi_bit) == 0)
   1233 		return (0);
   1234 #endif
   1235 
   1236 	/* Construct the frame command */
   1237 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1238 	    HME_MIF_FO_TAMSB |
   1239 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1240 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1241 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1242 
   1243 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1244 	for (n = 0; n < 100; n++) {
   1245 		DELAY(1);
   1246 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1247 		if (v & HME_MIF_FO_TALSB) {
   1248 			v &= HME_MIF_FO_DATA;
   1249 			goto out;
   1250 		}
   1251 	}
   1252 
   1253 	v = 0;
   1254 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   1255 
   1256 out:
   1257 	/* Restore MIFI_CFG register */
   1258 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1259 	/* Restore XIF register */
   1260 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1261 	return (v);
   1262 }
   1263 
   1264 static void
   1265 hme_mii_writereg(self, phy, reg, val)
   1266 	struct device *self;
   1267 	int phy, reg, val;
   1268 {
   1269 	struct hme_softc *sc = (void *)self;
   1270 	bus_space_tag_t t = sc->sc_bustag;
   1271 	bus_space_handle_t mif = sc->sc_mif;
   1272 	bus_space_handle_t mac = sc->sc_mac;
   1273 	u_int32_t v, xif_cfg, mifi_cfg;
   1274 	int n;
   1275 
   1276 	/* We can at most have two PHYs */
   1277 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1278 		return;
   1279 
   1280 	/* Select the desired PHY in the MIF configuration register */
   1281 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1282 	v &= ~HME_MIF_CFG_PHY;
   1283 	if (phy == HME_PHYAD_EXTERNAL)
   1284 		v |= HME_MIF_CFG_PHY;
   1285 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1286 
   1287 	/* Enable MII drivers on external transceiver */
   1288 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1289 	if (phy == HME_PHYAD_EXTERNAL)
   1290 		v |= HME_MAC_XIF_MIIENABLE;
   1291 	else
   1292 		v &= ~HME_MAC_XIF_MIIENABLE;
   1293 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1294 
   1295 #if 0
   1296 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1297 	/*
   1298 	 * Check whether a transceiver is connected by testing
   1299 	 * the MIF configuration register's MDI_X bits. Note that
   1300 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1301 	 */
   1302 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1303 	delay(100);
   1304 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1305 	if ((v & mif_mdi_bit) == 0)
   1306 		return;
   1307 #endif
   1308 
   1309 	/* Construct the frame command */
   1310 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1311 	    HME_MIF_FO_TAMSB				|
   1312 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1313 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1314 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1315 	    (val & HME_MIF_FO_DATA);
   1316 
   1317 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1318 	for (n = 0; n < 100; n++) {
   1319 		DELAY(1);
   1320 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1321 		if (v & HME_MIF_FO_TALSB)
   1322 			goto out;
   1323 	}
   1324 
   1325 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   1326 out:
   1327 	/* Restore MIFI_CFG register */
   1328 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1329 	/* Restore XIF register */
   1330 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1331 }
   1332 
   1333 static void
   1334 hme_mii_statchg(dev)
   1335 	struct device *dev;
   1336 {
   1337 	struct hme_softc *sc = (void *)dev;
   1338 	bus_space_tag_t t = sc->sc_bustag;
   1339 	bus_space_handle_t mac = sc->sc_mac;
   1340 	u_int32_t v;
   1341 
   1342 #ifdef HMEDEBUG
   1343 	if (sc->sc_debug)
   1344 		printf("hme_mii_statchg: status change\n");
   1345 #endif
   1346 
   1347 	/* Set the MAC Full Duplex bit appropriately */
   1348 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1349 	   but not otherwise. */
   1350 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1351 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1352 		v |= HME_MAC_TXCFG_FULLDPLX;
   1353 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1354 	} else {
   1355 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1356 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1357 	}
   1358 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1359 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1360 }
   1361 
   1362 int
   1363 hme_mediachange(ifp)
   1364 	struct ifnet *ifp;
   1365 {
   1366 	struct hme_softc *sc = ifp->if_softc;
   1367 	bus_space_tag_t t = sc->sc_bustag;
   1368 	bus_space_handle_t mif = sc->sc_mif;
   1369 	bus_space_handle_t mac = sc->sc_mac;
   1370 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1371 	int phy = sc->sc_phys[instance];
   1372 	int rc;
   1373 	u_int32_t v;
   1374 
   1375 #ifdef HMEDEBUG
   1376 	if (sc->sc_debug)
   1377 		printf("hme_mediachange: phy = %d\n", phy);
   1378 #endif
   1379 
   1380 	/* Select the current PHY in the MIF configuration register */
   1381 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1382 	v &= ~HME_MIF_CFG_PHY;
   1383 	if (phy == HME_PHYAD_EXTERNAL)
   1384 		v |= HME_MIF_CFG_PHY;
   1385 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1386 
   1387 	/* If an external transceiver is selected, enable its MII drivers */
   1388 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1389 	v &= ~HME_MAC_XIF_MIIENABLE;
   1390 	if (phy == HME_PHYAD_EXTERNAL)
   1391 		v |= HME_MAC_XIF_MIIENABLE;
   1392 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1393 
   1394 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1395 		return 0;
   1396 	return rc;
   1397 }
   1398 
   1399 /*
   1400  * Process an ioctl request.
   1401  */
   1402 int
   1403 hme_ioctl(ifp, cmd, data)
   1404 	struct ifnet *ifp;
   1405 	u_long cmd;
   1406 	void *data;
   1407 {
   1408 	struct hme_softc *sc = ifp->if_softc;
   1409 	struct ifaddr *ifa = (struct ifaddr *)data;
   1410 	int s, error = 0;
   1411 
   1412 	s = splnet();
   1413 
   1414 	switch (cmd) {
   1415 
   1416 	case SIOCSIFADDR:
   1417 		switch (ifa->ifa_addr->sa_family) {
   1418 #ifdef INET
   1419 		case AF_INET:
   1420 			if (ifp->if_flags & IFF_UP)
   1421 				hme_setladrf(sc);
   1422 			else {
   1423 				ifp->if_flags |= IFF_UP;
   1424 				error = hme_init(sc);
   1425 			}
   1426 			arp_ifinit(ifp, ifa);
   1427 			break;
   1428 #endif
   1429 		default:
   1430 			ifp->if_flags |= IFF_UP;
   1431 			error = hme_init(sc);
   1432 			break;
   1433 		}
   1434 		break;
   1435 
   1436 	case SIOCSIFFLAGS:
   1437 #ifdef HMEDEBUG
   1438 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1439 #endif
   1440 
   1441 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1442 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1443 			/*
   1444 			 * If interface is marked down and it is running, then
   1445 			 * stop it.
   1446 			 */
   1447 			hme_stop(sc, false);
   1448 			ifp->if_flags &= ~IFF_RUNNING;
   1449 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1450 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1451 			/*
   1452 			 * If interface is marked up and it is stopped, then
   1453 			 * start it.
   1454 			 */
   1455 			error = hme_init(sc);
   1456 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1457 			/*
   1458 			 * If setting debug or promiscuous mode, do not reset
   1459 			 * the chip; for everything else, call hme_init()
   1460 			 * which will trigger a reset.
   1461 			 */
   1462 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1463 			if (ifp->if_flags != sc->sc_if_flags) {
   1464 				if ((ifp->if_flags & (~RESETIGN))
   1465 				    == (sc->sc_if_flags & (~RESETIGN)))
   1466 					hme_setladrf(sc);
   1467 				else
   1468 					error = hme_init(sc);
   1469 			}
   1470 #undef RESETIGN
   1471 		}
   1472 
   1473 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1474 			error = hme_init(sc);
   1475 
   1476 		break;
   1477 
   1478 	default:
   1479 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1480 			break;
   1481 
   1482 		error = 0;
   1483 
   1484 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1485 			;
   1486 		else if (ifp->if_flags & IFF_RUNNING) {
   1487 			/*
   1488 			 * Multicast list has changed; set the hardware filter
   1489 			 * accordingly.
   1490 			 */
   1491 			hme_setladrf(sc);
   1492 		}
   1493 		break;
   1494 	}
   1495 
   1496 	sc->sc_if_flags = ifp->if_flags;
   1497 	splx(s);
   1498 	return (error);
   1499 }
   1500 
   1501 void
   1502 hme_shutdown(arg)
   1503 	void *arg;
   1504 {
   1505 
   1506 	hme_stop((struct hme_softc *)arg, false);
   1507 }
   1508 
   1509 /*
   1510  * Set up the logical address filter.
   1511  */
   1512 void
   1513 hme_setladrf(sc)
   1514 	struct hme_softc *sc;
   1515 {
   1516 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1517 	struct ether_multi *enm;
   1518 	struct ether_multistep step;
   1519 	struct ethercom *ec = &sc->sc_ethercom;
   1520 	bus_space_tag_t t = sc->sc_bustag;
   1521 	bus_space_handle_t mac = sc->sc_mac;
   1522 	u_char *cp;
   1523 	u_int32_t crc;
   1524 	u_int32_t hash[4];
   1525 	u_int32_t v;
   1526 	int len;
   1527 
   1528 	/* Clear hash table */
   1529 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1530 
   1531 	/* Get current RX configuration */
   1532 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1533 
   1534 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1535 		/* Turn on promiscuous mode; turn off the hash filter */
   1536 		v |= HME_MAC_RXCFG_PMISC;
   1537 		v &= ~HME_MAC_RXCFG_HENABLE;
   1538 		ifp->if_flags |= IFF_ALLMULTI;
   1539 		goto chipit;
   1540 	}
   1541 
   1542 	/* Turn off promiscuous mode; turn on the hash filter */
   1543 	v &= ~HME_MAC_RXCFG_PMISC;
   1544 	v |= HME_MAC_RXCFG_HENABLE;
   1545 
   1546 	/*
   1547 	 * Set up multicast address filter by passing all multicast addresses
   1548 	 * through a crc generator, and then using the high order 6 bits as an
   1549 	 * index into the 64 bit logical address filter.  The high order bit
   1550 	 * selects the word, while the rest of the bits select the bit within
   1551 	 * the word.
   1552 	 */
   1553 
   1554 	ETHER_FIRST_MULTI(step, ec, enm);
   1555 	while (enm != NULL) {
   1556 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
   1557 			/*
   1558 			 * We must listen to a range of multicast addresses.
   1559 			 * For now, just accept all multicasts, rather than
   1560 			 * trying to set only those filter bits needed to match
   1561 			 * the range.  (At this time, the only use of address
   1562 			 * ranges is for IP multicast routing, for which the
   1563 			 * range is big enough to require all bits set.)
   1564 			 */
   1565 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1566 			ifp->if_flags |= IFF_ALLMULTI;
   1567 			goto chipit;
   1568 		}
   1569 
   1570 		cp = enm->enm_addrlo;
   1571 		crc = 0xffffffff;
   1572 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1573 			int octet = *cp++;
   1574 			int i;
   1575 
   1576 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1577 			for (i = 0; i < 8; i++) {
   1578 				if ((crc & 1) ^ (octet & 1)) {
   1579 					crc >>= 1;
   1580 					crc ^= MC_POLY_LE;
   1581 				} else {
   1582 					crc >>= 1;
   1583 				}
   1584 				octet >>= 1;
   1585 			}
   1586 		}
   1587 		/* Just want the 6 most significant bits. */
   1588 		crc >>= 26;
   1589 
   1590 		/* Set the corresponding bit in the filter. */
   1591 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1592 
   1593 		ETHER_NEXT_MULTI(step, enm);
   1594 	}
   1595 
   1596 	ifp->if_flags &= ~IFF_ALLMULTI;
   1597 
   1598 chipit:
   1599 	/* Now load the hash table into the chip */
   1600 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1601 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1602 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1603 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1604 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1605 }
   1606 
   1607 /*
   1608  * Routines for accessing the transmit and receive buffers.
   1609  * The various CPU and adapter configurations supported by this
   1610  * driver require three different access methods for buffers
   1611  * and descriptors:
   1612  *	(1) contig (contiguous data; no padding),
   1613  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1614  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1615  */
   1616 
   1617 #if 0
   1618 /*
   1619  * contig: contiguous data with no padding.
   1620  *
   1621  * Buffers may have any alignment.
   1622  */
   1623 
   1624 void
   1625 hme_copytobuf_contig(sc, from, ri, len)
   1626 	struct hme_softc *sc;
   1627 	void *from;
   1628 	int ri, len;
   1629 {
   1630 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1631 
   1632 	/*
   1633 	 * Just call memcpy() to do the work.
   1634 	 */
   1635 	memcpy(buf, from, len);
   1636 }
   1637 
   1638 void
   1639 hme_copyfrombuf_contig(sc, to, boff, len)
   1640 	struct hme_softc *sc;
   1641 	void *to;
   1642 	int boff, len;
   1643 {
   1644 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1645 
   1646 	/*
   1647 	 * Just call memcpy() to do the work.
   1648 	 */
   1649 	memcpy(to, buf, len);
   1650 }
   1651 #endif
   1652