hme.c revision 1.64.4.5 1 /* $NetBSD: hme.c,v 1.64.4.5 2009/09/16 13:37:47 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * HME Ethernet module driver.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.64.4.5 2009/09/16 13:37:47 yamt Exp $");
38
39 /* #define HMEDEBUG */
40
41 #include "opt_inet.h"
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/socket.h>
51 #include <sys/device.h>
52 #include <sys/malloc.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #if NRND > 0
56 #include <sys/rnd.h>
57 #endif
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63
64 #ifdef INET
65 #include <net/if_vlanvar.h>
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74
75
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
83
84 #include <sys/bus.h>
85
86 #include <dev/ic/hmereg.h>
87 #include <dev/ic/hmevar.h>
88
89 static void hme_start(struct ifnet *);
90 static void hme_stop(struct ifnet *, int);
91 static int hme_ioctl(struct ifnet *, u_long, void *);
92 static void hme_tick(void *);
93 static void hme_watchdog(struct ifnet *);
94 static bool hme_shutdown(device_t, int);
95 static int hme_init(struct hme_softc *);
96 static void hme_meminit(struct hme_softc *);
97 static void hme_mifinit(struct hme_softc *);
98 static void hme_chipreset(struct hme_softc *);
99 static void hme_setladrf(struct hme_softc *);
100
101 /* MII methods & callbacks */
102 static int hme_mii_readreg(device_t, int, int);
103 static void hme_mii_writereg(device_t, int, int, int);
104 static void hme_mii_statchg(device_t);
105
106 static int hme_mediachange(struct ifnet *);
107
108 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
109 static int hme_put(struct hme_softc *, int, struct mbuf *);
110 static void hme_read(struct hme_softc *, int, uint32_t);
111 static int hme_eint(struct hme_softc *, u_int);
112 static int hme_rint(struct hme_softc *);
113 static int hme_tint(struct hme_softc *);
114
115 #if 0
116 /* Default buffer copy routines */
117 static void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
118 static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
119 #endif
120
121 void
122 hme_config(struct hme_softc *sc)
123 {
124 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
125 struct mii_data *mii = &sc->sc_mii;
126 struct mii_softc *child;
127 bus_dma_tag_t dmatag = sc->sc_dmatag;
128 bus_dma_segment_t seg;
129 bus_size_t size;
130 int rseg, error;
131
132 /*
133 * HME common initialization.
134 *
135 * hme_softc fields that must be initialized by the front-end:
136 *
137 * the bus tag:
138 * sc_bustag
139 *
140 * the DMA bus tag:
141 * sc_dmatag
142 *
143 * the bus handles:
144 * sc_seb (Shared Ethernet Block registers)
145 * sc_erx (Receiver Unit registers)
146 * sc_etx (Transmitter Unit registers)
147 * sc_mac (MAC registers)
148 * sc_mif (Management Interface registers)
149 *
150 * the maximum bus burst size:
151 * sc_burst
152 *
153 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
154 * rb_membase, rb_dmabase)
155 *
156 * the local Ethernet address:
157 * sc_enaddr
158 *
159 */
160
161 /* Make sure the chip is stopped. */
162 hme_chipreset(sc);
163
164 /*
165 * Allocate descriptors and buffers
166 * XXX - do all this differently.. and more configurably,
167 * eg. use things as `dma_load_mbuf()' on transmit,
168 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
169 * all the time) on the receiver side.
170 *
171 * Note: receive buffers must be 64-byte aligned.
172 * Also, apparently, the buffers must extend to a DMA burst
173 * boundary beyond the maximum packet size.
174 */
175 #define _HME_NDESC 128
176 #define _HME_BUFSZ 1600
177
178 /* Note: the # of descriptors must be a multiple of 16 */
179 sc->sc_rb.rb_ntbuf = _HME_NDESC;
180 sc->sc_rb.rb_nrbuf = _HME_NDESC;
181
182 /*
183 * Allocate DMA capable memory
184 * Buffer descriptors must be aligned on a 2048 byte boundary;
185 * take this into account when calculating the size. Note that
186 * the maximum number of descriptors (256) occupies 2048 bytes,
187 * so we allocate that much regardless of _HME_NDESC.
188 */
189 size = 2048 + /* TX descriptors */
190 2048 + /* RX descriptors */
191 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
192 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
193
194 /* Allocate DMA buffer */
195 if ((error = bus_dmamem_alloc(dmatag, size,
196 2048, 0,
197 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
198 aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
199 error);
200 return;
201 }
202
203 /* Map DMA memory in CPU addressable space */
204 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
205 &sc->sc_rb.rb_membase,
206 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
207 aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
208 error);
209 bus_dmamap_unload(dmatag, sc->sc_dmamap);
210 bus_dmamem_free(dmatag, &seg, rseg);
211 return;
212 }
213
214 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
215 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
216 aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
217 error);
218 return;
219 }
220
221 /* Load the buffer */
222 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
223 sc->sc_rb.rb_membase, size, NULL,
224 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
225 aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
226 error);
227 bus_dmamem_free(dmatag, &seg, rseg);
228 return;
229 }
230 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
231
232 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
233 ether_sprintf(sc->sc_enaddr));
234
235 /* Initialize ifnet structure. */
236 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
237 ifp->if_softc = sc;
238 ifp->if_start = hme_start;
239 ifp->if_stop = hme_stop;
240 ifp->if_ioctl = hme_ioctl;
241 ifp->if_watchdog = hme_watchdog;
242 ifp->if_flags =
243 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
244 sc->sc_if_flags = ifp->if_flags;
245 ifp->if_capabilities |=
246 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
247 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
248 IFQ_SET_READY(&ifp->if_snd);
249
250 /* Initialize ifmedia structures and MII info */
251 mii->mii_ifp = ifp;
252 mii->mii_readreg = hme_mii_readreg;
253 mii->mii_writereg = hme_mii_writereg;
254 mii->mii_statchg = hme_mii_statchg;
255
256 sc->sc_ethercom.ec_mii = mii;
257 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
258
259 hme_mifinit(sc);
260
261 /*
262 * Some HME's have an MII connector, as well as RJ45. Try attaching
263 * the RJ45 (internal) PHY first, so that the MII PHY is always
264 * instance 1.
265 */
266 mii_attach(sc->sc_dev, mii, 0xffffffff,
267 HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
268 mii_attach(sc->sc_dev, mii, 0xffffffff,
269 HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
270
271 child = LIST_FIRST(&mii->mii_phys);
272 if (child == NULL) {
273 /* No PHY attached */
274 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
275 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
276 } else {
277 /*
278 * Walk along the list of attached MII devices and
279 * establish an `MII instance' to `phy number'
280 * mapping. We'll use this mapping in media change
281 * requests to determine which phy to use to program
282 * the MIF configuration register.
283 */
284 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
285 /*
286 * Note: we support just two PHYs: the built-in
287 * internal device and an external on the MII
288 * connector.
289 */
290 if (child->mii_phy > 1 || child->mii_inst > 1) {
291 aprint_error_dev(sc->sc_dev,
292 "cannot accommodate MII device %s"
293 " at phy %d, instance %d\n",
294 device_xname(child->mii_dev),
295 child->mii_phy, child->mii_inst);
296 continue;
297 }
298
299 sc->sc_phys[child->mii_inst] = child->mii_phy;
300 }
301
302 /*
303 * Set the default media to auto negotiation if the phy has
304 * the auto negotiation capability.
305 * XXX; What to do otherwise?
306 */
307 if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
308 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
309 /*
310 else
311 ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
312 */
313 }
314
315 /* claim 802.1q capability */
316 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
317
318 /* Attach the interface. */
319 if_attach(ifp);
320 ether_ifattach(ifp, sc->sc_enaddr);
321
322 if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
323 pmf_class_network_register(sc->sc_dev, ifp);
324 else
325 aprint_error_dev(sc->sc_dev,
326 "couldn't establish power handler\n");
327
328 #if NRND > 0
329 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
330 RND_TYPE_NET, 0);
331 #endif
332
333 callout_init(&sc->sc_tick_ch, 0);
334 }
335
336 void
337 hme_tick(void *arg)
338 {
339 struct hme_softc *sc = arg;
340 int s;
341
342 s = splnet();
343 mii_tick(&sc->sc_mii);
344 splx(s);
345
346 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
347 }
348
349 void
350 hme_reset(struct hme_softc *sc)
351 {
352 int s;
353
354 s = splnet();
355 (void)hme_init(sc);
356 splx(s);
357 }
358
359 void
360 hme_chipreset(struct hme_softc *sc)
361 {
362 bus_space_tag_t t = sc->sc_bustag;
363 bus_space_handle_t seb = sc->sc_seb;
364 int n;
365
366 /* Mask all interrupts */
367 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
368
369 /* Reset transmitter and receiver */
370 bus_space_write_4(t, seb, HME_SEBI_RESET,
371 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
372
373 for (n = 0; n < 20; n++) {
374 uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
375 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
376 return;
377 DELAY(20);
378 }
379
380 printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
381 }
382
383 void
384 hme_stop(struct ifnet *ifp, int disable)
385 {
386 struct hme_softc *sc;
387
388 sc = ifp->if_softc;
389
390 ifp->if_timer = 0;
391 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
392
393 callout_stop(&sc->sc_tick_ch);
394 mii_down(&sc->sc_mii);
395
396 hme_chipreset(sc);
397 }
398
399 void
400 hme_meminit(struct hme_softc *sc)
401 {
402 bus_addr_t txbufdma, rxbufdma;
403 bus_addr_t dma;
404 char *p;
405 unsigned int ntbuf, nrbuf, i;
406 struct hme_ring *hr = &sc->sc_rb;
407
408 p = hr->rb_membase;
409 dma = hr->rb_dmabase;
410
411 ntbuf = hr->rb_ntbuf;
412 nrbuf = hr->rb_nrbuf;
413
414 /*
415 * Allocate transmit descriptors
416 */
417 hr->rb_txd = p;
418 hr->rb_txddma = dma;
419 p += ntbuf * HME_XD_SIZE;
420 dma += ntbuf * HME_XD_SIZE;
421 /* We have reserved descriptor space until the next 2048 byte boundary.*/
422 dma = (bus_addr_t)roundup((u_long)dma, 2048);
423 p = (void *)roundup((u_long)p, 2048);
424
425 /*
426 * Allocate receive descriptors
427 */
428 hr->rb_rxd = p;
429 hr->rb_rxddma = dma;
430 p += nrbuf * HME_XD_SIZE;
431 dma += nrbuf * HME_XD_SIZE;
432 /* Again move forward to the next 2048 byte boundary.*/
433 dma = (bus_addr_t)roundup((u_long)dma, 2048);
434 p = (void *)roundup((u_long)p, 2048);
435
436
437 /*
438 * Allocate transmit buffers
439 */
440 hr->rb_txbuf = p;
441 txbufdma = dma;
442 p += ntbuf * _HME_BUFSZ;
443 dma += ntbuf * _HME_BUFSZ;
444
445 /*
446 * Allocate receive buffers
447 */
448 hr->rb_rxbuf = p;
449 rxbufdma = dma;
450 p += nrbuf * _HME_BUFSZ;
451 dma += nrbuf * _HME_BUFSZ;
452
453 /*
454 * Initialize transmit buffer descriptors
455 */
456 for (i = 0; i < ntbuf; i++) {
457 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
458 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
459 }
460
461 /*
462 * Initialize receive buffer descriptors
463 */
464 for (i = 0; i < nrbuf; i++) {
465 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
466 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
467 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
468 }
469
470 hr->rb_tdhead = hr->rb_tdtail = 0;
471 hr->rb_td_nbusy = 0;
472 hr->rb_rdtail = 0;
473 }
474
475 /*
476 * Initialization of interface; set up initialization block
477 * and transmit/receive descriptor rings.
478 */
479 int
480 hme_init(struct hme_softc *sc)
481 {
482 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
483 bus_space_tag_t t = sc->sc_bustag;
484 bus_space_handle_t seb = sc->sc_seb;
485 bus_space_handle_t etx = sc->sc_etx;
486 bus_space_handle_t erx = sc->sc_erx;
487 bus_space_handle_t mac = sc->sc_mac;
488 uint8_t *ea;
489 uint32_t v;
490 int rc;
491
492 /*
493 * Initialization sequence. The numbered steps below correspond
494 * to the sequence outlined in section 6.3.5.1 in the Ethernet
495 * Channel Engine manual (part of the PCIO manual).
496 * See also the STP2002-STQ document from Sun Microsystems.
497 */
498
499 /* step 1 & 2. Reset the Ethernet Channel */
500 hme_stop(ifp, 0);
501
502 /* Re-initialize the MIF */
503 hme_mifinit(sc);
504
505 /* Call MI reset function if any */
506 if (sc->sc_hwreset)
507 (*sc->sc_hwreset)(sc);
508
509 #if 0
510 /* Mask all MIF interrupts, just in case */
511 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
512 #endif
513
514 /* step 3. Setup data structures in host memory */
515 hme_meminit(sc);
516
517 /* step 4. TX MAC registers & counters */
518 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
519 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
520 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
521 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
522 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
523 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
524 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
525 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
526
527 /* Load station MAC address */
528 ea = sc->sc_enaddr;
529 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
530 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
531 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
532
533 /*
534 * Init seed for backoff
535 * (source suggested by manual: low 10 bits of MAC address)
536 */
537 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
538 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
539
540
541 /* Note: Accepting power-on default for other MAC registers here.. */
542
543
544 /* step 5. RX MAC registers & counters */
545 hme_setladrf(sc);
546
547 /* step 6 & 7. Program Descriptor Ring Base Addresses */
548 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
549 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
550
551 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
552 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
553 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
554 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
555
556 /* step 8. Global Configuration & Interrupt Mask */
557 bus_space_write_4(t, seb, HME_SEBI_IMASK,
558 ~(
559 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
560 HME_SEB_STAT_HOSTTOTX |
561 HME_SEB_STAT_RXTOHOST |
562 HME_SEB_STAT_TXALL |
563 HME_SEB_STAT_TXPERR |
564 HME_SEB_STAT_RCNTEXP |
565 HME_SEB_STAT_MIFIRQ |
566 HME_SEB_STAT_ALL_ERRORS ));
567
568 switch (sc->sc_burst) {
569 default:
570 v = 0;
571 break;
572 case 16:
573 v = HME_SEB_CFG_BURST16;
574 break;
575 case 32:
576 v = HME_SEB_CFG_BURST32;
577 break;
578 case 64:
579 v = HME_SEB_CFG_BURST64;
580 break;
581 }
582 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
583
584 /* step 9. ETX Configuration: use mostly default values */
585
586 /* Enable DMA */
587 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
588 v |= HME_ETX_CFG_DMAENABLE;
589 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
590
591 /* Transmit Descriptor ring size: in increments of 16 */
592 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
593
594
595 /* step 10. ERX Configuration */
596 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
597
598 /* Encode Receive Descriptor ring size: four possible values */
599 switch (_HME_NDESC /*XXX*/) {
600 case 32:
601 v |= HME_ERX_CFG_RINGSIZE32;
602 break;
603 case 64:
604 v |= HME_ERX_CFG_RINGSIZE64;
605 break;
606 case 128:
607 v |= HME_ERX_CFG_RINGSIZE128;
608 break;
609 case 256:
610 v |= HME_ERX_CFG_RINGSIZE256;
611 break;
612 default:
613 printf("hme: invalid Receive Descriptor ring size\n");
614 break;
615 }
616
617 /* Enable DMA */
618 v |= HME_ERX_CFG_DMAENABLE;
619
620 /* set h/w rx checksum start offset (# of half-words) */
621 #ifdef INET
622 v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
623 << HME_ERX_CFG_CSUMSHIFT) &
624 HME_ERX_CFG_CSUMSTART;
625 #endif
626 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
627
628 /* step 11. XIF Configuration */
629 v = bus_space_read_4(t, mac, HME_MACI_XIF);
630 v |= HME_MAC_XIF_OE;
631 bus_space_write_4(t, mac, HME_MACI_XIF, v);
632
633 /* step 12. RX_MAC Configuration Register */
634 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
635 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
636 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
637
638 /* step 13. TX_MAC Configuration Register */
639 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
640 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
641 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
642
643 /* step 14. Issue Transmit Pending command */
644
645 /* Call MI initialization function if any */
646 if (sc->sc_hwinit)
647 (*sc->sc_hwinit)(sc);
648
649 /* Set the current media. */
650 if ((rc = hme_mediachange(ifp)) != 0)
651 return rc;
652
653 /* Start the one second timer. */
654 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
655
656 ifp->if_flags |= IFF_RUNNING;
657 ifp->if_flags &= ~IFF_OACTIVE;
658 sc->sc_if_flags = ifp->if_flags;
659 ifp->if_timer = 0;
660 hme_start(ifp);
661 return 0;
662 }
663
664 /*
665 * Routine to copy from mbuf chain to transmit buffer in
666 * network buffer memory.
667 * Returns the amount of data copied.
668 */
669 int
670 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
671 /* ri: Ring index */
672 {
673 struct mbuf *n;
674 int len, tlen = 0;
675 char *bp;
676
677 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
678 for (; m; m = n) {
679 len = m->m_len;
680 if (len == 0) {
681 MFREE(m, n);
682 continue;
683 }
684 memcpy(bp, mtod(m, void *), len);
685 bp += len;
686 tlen += len;
687 MFREE(m, n);
688 }
689 return (tlen);
690 }
691
692 /*
693 * Pull data off an interface.
694 * Len is length of data, with local net header stripped.
695 * We copy the data into mbufs. When full cluster sized units are present
696 * we copy into clusters.
697 */
698 struct mbuf *
699 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
700 {
701 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
702 struct mbuf *m, *m0, *newm;
703 char *bp;
704 int len, totlen;
705 #ifdef INET
706 int csum_flags;
707 #endif
708
709 totlen = HME_XD_DECODE_RSIZE(flags);
710 MGETHDR(m0, M_DONTWAIT, MT_DATA);
711 if (m0 == 0)
712 return (0);
713 m0->m_pkthdr.rcvif = ifp;
714 m0->m_pkthdr.len = totlen;
715 len = MHLEN;
716 m = m0;
717
718 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
719
720 while (totlen > 0) {
721 if (totlen >= MINCLSIZE) {
722 MCLGET(m, M_DONTWAIT);
723 if ((m->m_flags & M_EXT) == 0)
724 goto bad;
725 len = MCLBYTES;
726 }
727
728 if (m == m0) {
729 char *newdata = (char *)
730 ALIGN(m->m_data + sizeof(struct ether_header)) -
731 sizeof(struct ether_header);
732 len -= newdata - m->m_data;
733 m->m_data = newdata;
734 }
735
736 m->m_len = len = min(totlen, len);
737 memcpy(mtod(m, void *), bp, len);
738 bp += len;
739
740 totlen -= len;
741 if (totlen > 0) {
742 MGET(newm, M_DONTWAIT, MT_DATA);
743 if (newm == 0)
744 goto bad;
745 len = MLEN;
746 m = m->m_next = newm;
747 }
748 }
749
750 #ifdef INET
751 /* hardware checksum */
752 csum_flags = 0;
753 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
754 struct ether_header *eh;
755 struct ether_vlan_header *evh;
756 struct ip *ip;
757 struct udphdr *uh;
758 uint16_t *opts;
759 int32_t hlen, pktlen;
760 uint32_t csum_data;
761
762 eh = mtod(m0, struct ether_header *);
763 if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
764 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
765 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
766 } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
767 evh = (struct ether_vlan_header *)eh;
768 if (ntohs(evh->evl_proto != ETHERTYPE_IP))
769 goto swcsum;
770 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
771 ETHER_VLAN_ENCAP_LEN);
772 pktlen = m0->m_pkthdr.len -
773 ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
774 } else
775 goto swcsum;
776
777 /* IPv4 only */
778 if (ip->ip_v != IPVERSION)
779 goto swcsum;
780
781 hlen = ip->ip_hl << 2;
782 if (hlen < sizeof(struct ip))
783 goto swcsum;
784
785 /*
786 * bail if too short, has random trailing garbage, truncated,
787 * fragment, or has ethernet pad.
788 */
789 if (ntohs(ip->ip_len) < hlen ||
790 ntohs(ip->ip_len) != pktlen ||
791 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
792 goto swcsum;
793
794 switch (ip->ip_p) {
795 case IPPROTO_TCP:
796 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
797 goto swcsum;
798 if (pktlen < (hlen + sizeof(struct tcphdr)))
799 goto swcsum;
800 csum_flags =
801 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
802 break;
803 case IPPROTO_UDP:
804 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
805 goto swcsum;
806 if (pktlen < (hlen + sizeof(struct udphdr)))
807 goto swcsum;
808 uh = (struct udphdr *)((char *)ip + hlen);
809 /* no checksum */
810 if (uh->uh_sum == 0)
811 goto swcsum;
812 csum_flags =
813 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
814 break;
815 default:
816 goto swcsum;
817 }
818
819 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
820 csum_data = ~flags & HME_XD_RXCKSUM;
821
822 /*
823 * If data offset is different from RX cksum start offset,
824 * we have to deduct them.
825 */
826 hlen = ((char *)ip + hlen) -
827 ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
828 if (hlen > 1) {
829 uint32_t optsum;
830
831 optsum = 0;
832 opts = (uint16_t *)((char *)eh +
833 ETHER_HDR_LEN + sizeof(struct ip));
834
835 while (hlen > 1) {
836 optsum += ntohs(*opts++);
837 hlen -= 2;
838 }
839 while (optsum >> 16)
840 optsum = (optsum >> 16) + (optsum & 0xffff);
841
842 /* Deduct the ip opts sum from the hwsum. */
843 csum_data += (uint16_t)~optsum;
844
845 while (csum_data >> 16)
846 csum_data =
847 (csum_data >> 16) + (csum_data & 0xffff);
848 }
849 m0->m_pkthdr.csum_data = csum_data;
850 }
851 swcsum:
852 m0->m_pkthdr.csum_flags = csum_flags;
853 #endif
854
855 return (m0);
856
857 bad:
858 m_freem(m0);
859 return (0);
860 }
861
862 /*
863 * Pass a packet to the higher levels.
864 */
865 void
866 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
867 {
868 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
869 struct mbuf *m;
870 int len;
871
872 len = HME_XD_DECODE_RSIZE(flags);
873 if (len <= sizeof(struct ether_header) ||
874 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
875 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
876 ETHERMTU + sizeof(struct ether_header))) {
877 #ifdef HMEDEBUG
878 printf("%s: invalid packet size %d; dropping\n",
879 device_xname(sc->sc_dev), len);
880 #endif
881 ifp->if_ierrors++;
882 return;
883 }
884
885 /* Pull packet off interface. */
886 m = hme_get(sc, ix, flags);
887 if (m == 0) {
888 ifp->if_ierrors++;
889 return;
890 }
891
892 ifp->if_ipackets++;
893
894 #if NBPFILTER > 0
895 /*
896 * Check if there's a BPF listener on this interface.
897 * If so, hand off the raw packet to BPF.
898 */
899 if (ifp->if_bpf)
900 bpf_mtap(ifp->if_bpf, m);
901 #endif
902
903 /* Pass the packet up. */
904 (*ifp->if_input)(ifp, m);
905 }
906
907 void
908 hme_start(struct ifnet *ifp)
909 {
910 struct hme_softc *sc = ifp->if_softc;
911 void *txd = sc->sc_rb.rb_txd;
912 struct mbuf *m;
913 unsigned int txflags;
914 unsigned int ri, len, obusy;
915 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
916
917 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
918 return;
919
920 ri = sc->sc_rb.rb_tdhead;
921 obusy = sc->sc_rb.rb_td_nbusy;
922
923 for (;;) {
924 IFQ_DEQUEUE(&ifp->if_snd, m);
925 if (m == 0)
926 break;
927
928 #if NBPFILTER > 0
929 /*
930 * If BPF is listening on this interface, let it see the
931 * packet before we commit it to the wire.
932 */
933 if (ifp->if_bpf)
934 bpf_mtap(ifp->if_bpf, m);
935 #endif
936
937 #ifdef INET
938 /* collect bits for h/w csum, before hme_put frees the mbuf */
939 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
940 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
941 struct ether_header *eh;
942 uint16_t offset, start;
943
944 eh = mtod(m, struct ether_header *);
945 switch (ntohs(eh->ether_type)) {
946 case ETHERTYPE_IP:
947 start = ETHER_HDR_LEN;
948 break;
949 case ETHERTYPE_VLAN:
950 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
951 break;
952 default:
953 /* unsupported, drop it */
954 m_free(m);
955 continue;
956 }
957 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
958 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
959 + start;
960 txflags = HME_XD_TXCKSUM |
961 (offset << HME_XD_TXCSSTUFFSHIFT) |
962 (start << HME_XD_TXCSSTARTSHIFT);
963 } else
964 #endif
965 txflags = 0;
966
967 /*
968 * Copy the mbuf chain into the transmit buffer.
969 */
970 len = hme_put(sc, ri, m);
971
972 /*
973 * Initialize transmit registers and start transmission
974 */
975 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
976 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
977 HME_XD_ENCODE_TSIZE(len) | txflags);
978
979 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
980 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
981 HME_ETX_TP_DMAWAKEUP);
982
983 if (++ri == ntbuf)
984 ri = 0;
985
986 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
987 ifp->if_flags |= IFF_OACTIVE;
988 break;
989 }
990 }
991
992 if (obusy != sc->sc_rb.rb_td_nbusy) {
993 sc->sc_rb.rb_tdhead = ri;
994 ifp->if_timer = 5;
995 }
996 }
997
998 /*
999 * Transmit interrupt.
1000 */
1001 int
1002 hme_tint(struct hme_softc *sc)
1003 {
1004 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1005 bus_space_tag_t t = sc->sc_bustag;
1006 bus_space_handle_t mac = sc->sc_mac;
1007 unsigned int ri, txflags;
1008
1009 /*
1010 * Unload collision counters
1011 */
1012 ifp->if_collisions +=
1013 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1014 bus_space_read_4(t, mac, HME_MACI_FCCNT);
1015 ifp->if_oerrors +=
1016 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1017 bus_space_read_4(t, mac, HME_MACI_LTCNT);
1018
1019 /*
1020 * then clear the hardware counters.
1021 */
1022 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1023 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1024 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1025 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1026
1027 /* Fetch current position in the transmit ring */
1028 ri = sc->sc_rb.rb_tdtail;
1029
1030 for (;;) {
1031 if (sc->sc_rb.rb_td_nbusy <= 0)
1032 break;
1033
1034 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1035
1036 if (txflags & HME_XD_OWN)
1037 break;
1038
1039 ifp->if_flags &= ~IFF_OACTIVE;
1040 ifp->if_opackets++;
1041
1042 if (++ri == sc->sc_rb.rb_ntbuf)
1043 ri = 0;
1044
1045 --sc->sc_rb.rb_td_nbusy;
1046 }
1047
1048 /* Update ring */
1049 sc->sc_rb.rb_tdtail = ri;
1050
1051 hme_start(ifp);
1052
1053 if (sc->sc_rb.rb_td_nbusy == 0)
1054 ifp->if_timer = 0;
1055
1056 return (1);
1057 }
1058
1059 /*
1060 * Receive interrupt.
1061 */
1062 int
1063 hme_rint(struct hme_softc *sc)
1064 {
1065 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1066 bus_space_tag_t t = sc->sc_bustag;
1067 bus_space_handle_t mac = sc->sc_mac;
1068 void *xdr = sc->sc_rb.rb_rxd;
1069 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1070 unsigned int ri;
1071 uint32_t flags;
1072
1073 ri = sc->sc_rb.rb_rdtail;
1074
1075 /*
1076 * Process all buffers with valid data.
1077 */
1078 for (;;) {
1079 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1080 if (flags & HME_XD_OWN)
1081 break;
1082
1083 if (flags & HME_XD_OFL) {
1084 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1085 device_xname(sc->sc_dev), ri, flags);
1086 } else
1087 hme_read(sc, ri, flags);
1088
1089 /* This buffer can be used by the hardware again */
1090 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1091 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1092
1093 if (++ri == nrbuf)
1094 ri = 0;
1095 }
1096
1097 sc->sc_rb.rb_rdtail = ri;
1098
1099 /* Read error counters ... */
1100 ifp->if_ierrors +=
1101 bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1102 bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1103 bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1104 bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1105
1106 /* ... then clear the hardware counters. */
1107 bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1108 bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1109 bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1110 bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1111 return (1);
1112 }
1113
1114 int
1115 hme_eint(struct hme_softc *sc, u_int status)
1116 {
1117 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1118 char bits[128];
1119
1120 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1121 bus_space_tag_t t = sc->sc_bustag;
1122 bus_space_handle_t mif = sc->sc_mif;
1123 uint32_t cf, st, sm;
1124 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1125 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1126 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1127 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1128 device_xname(sc->sc_dev), cf, st, sm);
1129 return (1);
1130 }
1131
1132 /* Receive error counters rolled over */
1133 if (status & HME_SEB_STAT_ACNTEXP)
1134 ifp->if_ierrors += 0xff;
1135 if (status & HME_SEB_STAT_CCNTEXP)
1136 ifp->if_ierrors += 0xff;
1137 if (status & HME_SEB_STAT_LCNTEXP)
1138 ifp->if_ierrors += 0xff;
1139 if (status & HME_SEB_STAT_CVCNTEXP)
1140 ifp->if_ierrors += 0xff;
1141
1142 /* RXTERR locks up the interface, so do a reset */
1143 if (status & HME_SEB_STAT_RXTERR)
1144 hme_reset(sc);
1145
1146 snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1147 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1148
1149 return (1);
1150 }
1151
1152 int
1153 hme_intr(void *v)
1154 {
1155 struct hme_softc *sc = v;
1156 bus_space_tag_t t = sc->sc_bustag;
1157 bus_space_handle_t seb = sc->sc_seb;
1158 uint32_t status;
1159 int r = 0;
1160
1161 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1162
1163 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1164 r |= hme_eint(sc, status);
1165
1166 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1167 r |= hme_tint(sc);
1168
1169 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1170 r |= hme_rint(sc);
1171
1172 #if NRND > 0
1173 rnd_add_uint32(&sc->rnd_source, status);
1174 #endif
1175
1176 return (r);
1177 }
1178
1179
1180 void
1181 hme_watchdog(struct ifnet *ifp)
1182 {
1183 struct hme_softc *sc = ifp->if_softc;
1184
1185 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1186 ++ifp->if_oerrors;
1187
1188 hme_reset(sc);
1189 }
1190
1191 /*
1192 * Initialize the MII Management Interface
1193 */
1194 void
1195 hme_mifinit(struct hme_softc *sc)
1196 {
1197 bus_space_tag_t t = sc->sc_bustag;
1198 bus_space_handle_t mif = sc->sc_mif;
1199 bus_space_handle_t mac = sc->sc_mac;
1200 int instance, phy;
1201 uint32_t v;
1202
1203 if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1204 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1205 phy = sc->sc_phys[instance];
1206 } else
1207 /* No media set yet, pick phy arbitrarily.. */
1208 phy = HME_PHYAD_EXTERNAL;
1209
1210 /* Configure the MIF in frame mode, no poll, current phy select */
1211 v = 0;
1212 if (phy == HME_PHYAD_EXTERNAL)
1213 v |= HME_MIF_CFG_PHY;
1214 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1215
1216 /* If an external transceiver is selected, enable its MII drivers */
1217 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1218 v &= ~HME_MAC_XIF_MIIENABLE;
1219 if (phy == HME_PHYAD_EXTERNAL)
1220 v |= HME_MAC_XIF_MIIENABLE;
1221 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1222 }
1223
1224 /*
1225 * MII interface
1226 */
1227 static int
1228 hme_mii_readreg(device_t self, int phy, int reg)
1229 {
1230 struct hme_softc *sc = device_private(self);
1231 bus_space_tag_t t = sc->sc_bustag;
1232 bus_space_handle_t mif = sc->sc_mif;
1233 bus_space_handle_t mac = sc->sc_mac;
1234 uint32_t v, xif_cfg, mifi_cfg;
1235 int n;
1236
1237 /* We can at most have two PHYs */
1238 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1239 return (0);
1240
1241 /* Select the desired PHY in the MIF configuration register */
1242 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1243 v &= ~HME_MIF_CFG_PHY;
1244 if (phy == HME_PHYAD_EXTERNAL)
1245 v |= HME_MIF_CFG_PHY;
1246 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1247
1248 /* Enable MII drivers on external transceiver */
1249 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1250 if (phy == HME_PHYAD_EXTERNAL)
1251 v |= HME_MAC_XIF_MIIENABLE;
1252 else
1253 v &= ~HME_MAC_XIF_MIIENABLE;
1254 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1255
1256 #if 0
1257 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1258 /*
1259 * Check whether a transceiver is connected by testing
1260 * the MIF configuration register's MDI_X bits. Note that
1261 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1262 */
1263 mif_mdi_bit = 1 << (8 + (1 - phy));
1264 delay(100);
1265 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1266 if ((v & mif_mdi_bit) == 0)
1267 return (0);
1268 #endif
1269
1270 /* Construct the frame command */
1271 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1272 HME_MIF_FO_TAMSB |
1273 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1274 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1275 (reg << HME_MIF_FO_REGAD_SHIFT);
1276
1277 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1278 for (n = 0; n < 100; n++) {
1279 DELAY(1);
1280 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1281 if (v & HME_MIF_FO_TALSB) {
1282 v &= HME_MIF_FO_DATA;
1283 goto out;
1284 }
1285 }
1286
1287 v = 0;
1288 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1289
1290 out:
1291 /* Restore MIFI_CFG register */
1292 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1293 /* Restore XIF register */
1294 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1295 return (v);
1296 }
1297
1298 static void
1299 hme_mii_writereg(device_t self, int phy, int reg, int val)
1300 {
1301 struct hme_softc *sc = device_private(self);
1302 bus_space_tag_t t = sc->sc_bustag;
1303 bus_space_handle_t mif = sc->sc_mif;
1304 bus_space_handle_t mac = sc->sc_mac;
1305 uint32_t v, xif_cfg, mifi_cfg;
1306 int n;
1307
1308 /* We can at most have two PHYs */
1309 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1310 return;
1311
1312 /* Select the desired PHY in the MIF configuration register */
1313 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1314 v &= ~HME_MIF_CFG_PHY;
1315 if (phy == HME_PHYAD_EXTERNAL)
1316 v |= HME_MIF_CFG_PHY;
1317 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1318
1319 /* Enable MII drivers on external transceiver */
1320 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1321 if (phy == HME_PHYAD_EXTERNAL)
1322 v |= HME_MAC_XIF_MIIENABLE;
1323 else
1324 v &= ~HME_MAC_XIF_MIIENABLE;
1325 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1326
1327 #if 0
1328 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1329 /*
1330 * Check whether a transceiver is connected by testing
1331 * the MIF configuration register's MDI_X bits. Note that
1332 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1333 */
1334 mif_mdi_bit = 1 << (8 + (1 - phy));
1335 delay(100);
1336 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1337 if ((v & mif_mdi_bit) == 0)
1338 return;
1339 #endif
1340
1341 /* Construct the frame command */
1342 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1343 HME_MIF_FO_TAMSB |
1344 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1345 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1346 (reg << HME_MIF_FO_REGAD_SHIFT) |
1347 (val & HME_MIF_FO_DATA);
1348
1349 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1350 for (n = 0; n < 100; n++) {
1351 DELAY(1);
1352 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1353 if (v & HME_MIF_FO_TALSB)
1354 goto out;
1355 }
1356
1357 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1358 out:
1359 /* Restore MIFI_CFG register */
1360 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1361 /* Restore XIF register */
1362 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1363 }
1364
1365 static void
1366 hme_mii_statchg(device_t dev)
1367 {
1368 struct hme_softc *sc = device_private(dev);
1369 bus_space_tag_t t = sc->sc_bustag;
1370 bus_space_handle_t mac = sc->sc_mac;
1371 uint32_t v;
1372
1373 #ifdef HMEDEBUG
1374 if (sc->sc_debug)
1375 printf("hme_mii_statchg: status change\n");
1376 #endif
1377
1378 /* Set the MAC Full Duplex bit appropriately */
1379 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1380 but not otherwise. */
1381 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1382 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1383 v |= HME_MAC_TXCFG_FULLDPLX;
1384 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1385 } else {
1386 v &= ~HME_MAC_TXCFG_FULLDPLX;
1387 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1388 }
1389 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1390 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1391 }
1392
1393 int
1394 hme_mediachange(struct ifnet *ifp)
1395 {
1396 struct hme_softc *sc = ifp->if_softc;
1397 bus_space_tag_t t = sc->sc_bustag;
1398 bus_space_handle_t mif = sc->sc_mif;
1399 bus_space_handle_t mac = sc->sc_mac;
1400 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1401 int phy = sc->sc_phys[instance];
1402 int rc;
1403 uint32_t v;
1404
1405 #ifdef HMEDEBUG
1406 if (sc->sc_debug)
1407 printf("hme_mediachange: phy = %d\n", phy);
1408 #endif
1409
1410 /* Select the current PHY in the MIF configuration register */
1411 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1412 v &= ~HME_MIF_CFG_PHY;
1413 if (phy == HME_PHYAD_EXTERNAL)
1414 v |= HME_MIF_CFG_PHY;
1415 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1416
1417 /* If an external transceiver is selected, enable its MII drivers */
1418 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1419 v &= ~HME_MAC_XIF_MIIENABLE;
1420 if (phy == HME_PHYAD_EXTERNAL)
1421 v |= HME_MAC_XIF_MIIENABLE;
1422 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1423
1424 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1425 return 0;
1426 return rc;
1427 }
1428
1429 /*
1430 * Process an ioctl request.
1431 */
1432 int
1433 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1434 {
1435 struct hme_softc *sc = ifp->if_softc;
1436 struct ifaddr *ifa = (struct ifaddr *)data;
1437 int s, error = 0;
1438
1439 s = splnet();
1440
1441 switch (cmd) {
1442
1443 case SIOCINITIFADDR:
1444 switch (ifa->ifa_addr->sa_family) {
1445 #ifdef INET
1446 case AF_INET:
1447 if (ifp->if_flags & IFF_UP)
1448 hme_setladrf(sc);
1449 else {
1450 ifp->if_flags |= IFF_UP;
1451 error = hme_init(sc);
1452 }
1453 arp_ifinit(ifp, ifa);
1454 break;
1455 #endif
1456 default:
1457 ifp->if_flags |= IFF_UP;
1458 error = hme_init(sc);
1459 break;
1460 }
1461 break;
1462
1463 case SIOCSIFFLAGS:
1464 #ifdef HMEDEBUG
1465 {
1466 struct ifreq *ifr = data;
1467 sc->sc_debug =
1468 (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1469 }
1470 #endif
1471 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1472 break;
1473
1474 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1475 case IFF_RUNNING:
1476 /*
1477 * If interface is marked down and it is running, then
1478 * stop it.
1479 */
1480 hme_stop(ifp, 0);
1481 ifp->if_flags &= ~IFF_RUNNING;
1482 break;
1483 case IFF_UP:
1484 /*
1485 * If interface is marked up and it is stopped, then
1486 * start it.
1487 */
1488 error = hme_init(sc);
1489 break;
1490 case IFF_UP|IFF_RUNNING:
1491 /*
1492 * If setting debug or promiscuous mode, do not reset
1493 * the chip; for everything else, call hme_init()
1494 * which will trigger a reset.
1495 */
1496 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1497 if (ifp->if_flags != sc->sc_if_flags) {
1498 if ((ifp->if_flags & (~RESETIGN))
1499 == (sc->sc_if_flags & (~RESETIGN)))
1500 hme_setladrf(sc);
1501 else
1502 error = hme_init(sc);
1503 }
1504 #undef RESETIGN
1505 break;
1506 case 0:
1507 break;
1508 }
1509
1510 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1511 error = hme_init(sc);
1512
1513 break;
1514
1515 default:
1516 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1517 break;
1518
1519 error = 0;
1520
1521 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1522 ;
1523 else if (ifp->if_flags & IFF_RUNNING) {
1524 /*
1525 * Multicast list has changed; set the hardware filter
1526 * accordingly.
1527 */
1528 hme_setladrf(sc);
1529 }
1530 break;
1531 }
1532
1533 sc->sc_if_flags = ifp->if_flags;
1534 splx(s);
1535 return (error);
1536 }
1537
1538 bool
1539 hme_shutdown(device_t self, int howto)
1540 {
1541 struct hme_softc *sc;
1542 struct ifnet *ifp;
1543
1544 sc = device_private(self);
1545 ifp = &sc->sc_ethercom.ec_if;
1546 hme_stop(ifp, 1);
1547
1548 return true;
1549 }
1550
1551 /*
1552 * Set up the logical address filter.
1553 */
1554 void
1555 hme_setladrf(struct hme_softc *sc)
1556 {
1557 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1558 struct ether_multi *enm;
1559 struct ether_multistep step;
1560 struct ethercom *ec = &sc->sc_ethercom;
1561 bus_space_tag_t t = sc->sc_bustag;
1562 bus_space_handle_t mac = sc->sc_mac;
1563 u_char *cp;
1564 uint32_t crc;
1565 uint32_t hash[4];
1566 uint32_t v;
1567 int len;
1568
1569 /* Clear hash table */
1570 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1571
1572 /* Get current RX configuration */
1573 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1574
1575 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1576 /* Turn on promiscuous mode; turn off the hash filter */
1577 v |= HME_MAC_RXCFG_PMISC;
1578 v &= ~HME_MAC_RXCFG_HENABLE;
1579 ifp->if_flags |= IFF_ALLMULTI;
1580 goto chipit;
1581 }
1582
1583 /* Turn off promiscuous mode; turn on the hash filter */
1584 v &= ~HME_MAC_RXCFG_PMISC;
1585 v |= HME_MAC_RXCFG_HENABLE;
1586
1587 /*
1588 * Set up multicast address filter by passing all multicast addresses
1589 * through a crc generator, and then using the high order 6 bits as an
1590 * index into the 64 bit logical address filter. The high order bit
1591 * selects the word, while the rest of the bits select the bit within
1592 * the word.
1593 */
1594
1595 ETHER_FIRST_MULTI(step, ec, enm);
1596 while (enm != NULL) {
1597 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1598 /*
1599 * We must listen to a range of multicast addresses.
1600 * For now, just accept all multicasts, rather than
1601 * trying to set only those filter bits needed to match
1602 * the range. (At this time, the only use of address
1603 * ranges is for IP multicast routing, for which the
1604 * range is big enough to require all bits set.)
1605 */
1606 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1607 ifp->if_flags |= IFF_ALLMULTI;
1608 goto chipit;
1609 }
1610
1611 cp = enm->enm_addrlo;
1612 crc = 0xffffffff;
1613 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1614 int octet = *cp++;
1615 int i;
1616
1617 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1618 for (i = 0; i < 8; i++) {
1619 if ((crc & 1) ^ (octet & 1)) {
1620 crc >>= 1;
1621 crc ^= MC_POLY_LE;
1622 } else {
1623 crc >>= 1;
1624 }
1625 octet >>= 1;
1626 }
1627 }
1628 /* Just want the 6 most significant bits. */
1629 crc >>= 26;
1630
1631 /* Set the corresponding bit in the filter. */
1632 hash[crc >> 4] |= 1 << (crc & 0xf);
1633
1634 ETHER_NEXT_MULTI(step, enm);
1635 }
1636
1637 ifp->if_flags &= ~IFF_ALLMULTI;
1638
1639 chipit:
1640 /* Now load the hash table into the chip */
1641 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1642 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1643 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1644 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1645 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1646 }
1647
1648 /*
1649 * Routines for accessing the transmit and receive buffers.
1650 * The various CPU and adapter configurations supported by this
1651 * driver require three different access methods for buffers
1652 * and descriptors:
1653 * (1) contig (contiguous data; no padding),
1654 * (2) gap2 (two bytes of data followed by two bytes of padding),
1655 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1656 */
1657
1658 #if 0
1659 /*
1660 * contig: contiguous data with no padding.
1661 *
1662 * Buffers may have any alignment.
1663 */
1664
1665 void
1666 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1667 {
1668 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1669
1670 /*
1671 * Just call memcpy() to do the work.
1672 */
1673 memcpy(buf, from, len);
1674 }
1675
1676 void
1677 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1678 {
1679 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1680
1681 /*
1682 * Just call memcpy() to do the work.
1683 */
1684 memcpy(to, buf, len);
1685 }
1686 #endif
1687