hme.c revision 1.64.4.7 1 /* $NetBSD: hme.c,v 1.64.4.7 2010/08/11 22:53:25 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * HME Ethernet module driver.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.64.4.7 2010/08/11 22:53:25 yamt Exp $");
38
39 /* #define HMEDEBUG */
40
41 #include "opt_inet.h"
42 #include "rnd.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/socket.h>
50 #include <sys/device.h>
51 #include <sys/malloc.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #if NRND > 0
55 #include <sys/rnd.h>
56 #endif
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_ether.h>
61 #include <net/if_media.h>
62
63 #ifdef INET
64 #include <net/if_vlanvar.h>
65 #include <netinet/in.h>
66 #include <netinet/if_inarp.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/tcp.h>
71 #include <netinet/udp.h>
72 #endif
73
74
75 #include <net/bpf.h>
76 #include <net/bpfdesc.h>
77
78 #include <dev/mii/mii.h>
79 #include <dev/mii/miivar.h>
80
81 #include <sys/bus.h>
82
83 #include <dev/ic/hmereg.h>
84 #include <dev/ic/hmevar.h>
85
86 static void hme_start(struct ifnet *);
87 static void hme_stop(struct ifnet *, int);
88 static int hme_ioctl(struct ifnet *, u_long, void *);
89 static void hme_tick(void *);
90 static void hme_watchdog(struct ifnet *);
91 static bool hme_shutdown(device_t, int);
92 static int hme_init(struct ifnet *);
93 static void hme_meminit(struct hme_softc *);
94 static void hme_mifinit(struct hme_softc *);
95 static void hme_reset(struct hme_softc *);
96 static void hme_chipreset(struct hme_softc *);
97 static void hme_setladrf(struct hme_softc *);
98
99 /* MII methods & callbacks */
100 static int hme_mii_readreg(device_t, int, int);
101 static void hme_mii_writereg(device_t, int, int, int);
102 static void hme_mii_statchg(device_t);
103
104 static int hme_mediachange(struct ifnet *);
105
106 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
107 static int hme_put(struct hme_softc *, int, struct mbuf *);
108 static void hme_read(struct hme_softc *, int, uint32_t);
109 static int hme_eint(struct hme_softc *, u_int);
110 static int hme_rint(struct hme_softc *);
111 static int hme_tint(struct hme_softc *);
112
113 #if 0
114 /* Default buffer copy routines */
115 static void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
116 static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
117 #endif
118
119 void
120 hme_config(struct hme_softc *sc)
121 {
122 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
123 struct mii_data *mii = &sc->sc_mii;
124 struct mii_softc *child;
125 bus_dma_tag_t dmatag = sc->sc_dmatag;
126 bus_dma_segment_t seg;
127 bus_size_t size;
128 int rseg, error;
129
130 /*
131 * HME common initialization.
132 *
133 * hme_softc fields that must be initialized by the front-end:
134 *
135 * the bus tag:
136 * sc_bustag
137 *
138 * the DMA bus tag:
139 * sc_dmatag
140 *
141 * the bus handles:
142 * sc_seb (Shared Ethernet Block registers)
143 * sc_erx (Receiver Unit registers)
144 * sc_etx (Transmitter Unit registers)
145 * sc_mac (MAC registers)
146 * sc_mif (Management Interface registers)
147 *
148 * the maximum bus burst size:
149 * sc_burst
150 *
151 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
152 * rb_membase, rb_dmabase)
153 *
154 * the local Ethernet address:
155 * sc_enaddr
156 *
157 */
158
159 /* Make sure the chip is stopped. */
160 hme_chipreset(sc);
161
162 /*
163 * Allocate descriptors and buffers
164 * XXX - do all this differently.. and more configurably,
165 * eg. use things as `dma_load_mbuf()' on transmit,
166 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
167 * all the time) on the receiver side.
168 *
169 * Note: receive buffers must be 64-byte aligned.
170 * Also, apparently, the buffers must extend to a DMA burst
171 * boundary beyond the maximum packet size.
172 */
173 #define _HME_NDESC 128
174 #define _HME_BUFSZ 1600
175
176 /* Note: the # of descriptors must be a multiple of 16 */
177 sc->sc_rb.rb_ntbuf = _HME_NDESC;
178 sc->sc_rb.rb_nrbuf = _HME_NDESC;
179
180 /*
181 * Allocate DMA capable memory
182 * Buffer descriptors must be aligned on a 2048 byte boundary;
183 * take this into account when calculating the size. Note that
184 * the maximum number of descriptors (256) occupies 2048 bytes,
185 * so we allocate that much regardless of _HME_NDESC.
186 */
187 size = 2048 + /* TX descriptors */
188 2048 + /* RX descriptors */
189 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
190 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
191
192 /* Allocate DMA buffer */
193 if ((error = bus_dmamem_alloc(dmatag, size,
194 2048, 0,
195 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
196 aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
197 error);
198 return;
199 }
200
201 /* Map DMA memory in CPU addressable space */
202 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
203 &sc->sc_rb.rb_membase,
204 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
205 aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
206 error);
207 bus_dmamap_unload(dmatag, sc->sc_dmamap);
208 bus_dmamem_free(dmatag, &seg, rseg);
209 return;
210 }
211
212 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
213 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
214 aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
215 error);
216 return;
217 }
218
219 /* Load the buffer */
220 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
221 sc->sc_rb.rb_membase, size, NULL,
222 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
223 aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
224 error);
225 bus_dmamem_free(dmatag, &seg, rseg);
226 return;
227 }
228 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
229
230 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
231 ether_sprintf(sc->sc_enaddr));
232
233 /* Initialize ifnet structure. */
234 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
235 ifp->if_softc = sc;
236 ifp->if_start = hme_start;
237 ifp->if_stop = hme_stop;
238 ifp->if_ioctl = hme_ioctl;
239 ifp->if_init = hme_init;
240 ifp->if_watchdog = hme_watchdog;
241 ifp->if_flags =
242 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
243 sc->sc_if_flags = ifp->if_flags;
244 ifp->if_capabilities |=
245 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
246 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
247 IFQ_SET_READY(&ifp->if_snd);
248
249 /* Initialize ifmedia structures and MII info */
250 mii->mii_ifp = ifp;
251 mii->mii_readreg = hme_mii_readreg;
252 mii->mii_writereg = hme_mii_writereg;
253 mii->mii_statchg = hme_mii_statchg;
254
255 sc->sc_ethercom.ec_mii = mii;
256 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
257
258 hme_mifinit(sc);
259
260 /*
261 * Some HME's have an MII connector, as well as RJ45. Try attaching
262 * the RJ45 (internal) PHY first, so that the MII PHY is always
263 * instance 1.
264 */
265 mii_attach(sc->sc_dev, mii, 0xffffffff,
266 HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
267 mii_attach(sc->sc_dev, mii, 0xffffffff,
268 HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
269
270 child = LIST_FIRST(&mii->mii_phys);
271 if (child == NULL) {
272 /* No PHY attached */
273 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
274 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
275 } else {
276 /*
277 * Walk along the list of attached MII devices and
278 * establish an `MII instance' to `phy number'
279 * mapping. We'll use this mapping in media change
280 * requests to determine which phy to use to program
281 * the MIF configuration register.
282 */
283 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
284 /*
285 * Note: we support just two PHYs: the built-in
286 * internal device and an external on the MII
287 * connector.
288 */
289 if (child->mii_phy > 1 || child->mii_inst > 1) {
290 aprint_error_dev(sc->sc_dev,
291 "cannot accommodate MII device %s"
292 " at phy %d, instance %d\n",
293 device_xname(child->mii_dev),
294 child->mii_phy, child->mii_inst);
295 continue;
296 }
297
298 sc->sc_phys[child->mii_inst] = child->mii_phy;
299 }
300
301 /*
302 * Set the default media to auto negotiation if the phy has
303 * the auto negotiation capability.
304 * XXX; What to do otherwise?
305 */
306 if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
307 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
308 /*
309 else
310 ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
311 */
312 }
313
314 /* claim 802.1q capability */
315 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
316
317 /* Attach the interface. */
318 if_attach(ifp);
319 ether_ifattach(ifp, sc->sc_enaddr);
320
321 if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
322 pmf_class_network_register(sc->sc_dev, ifp);
323 else
324 aprint_error_dev(sc->sc_dev,
325 "couldn't establish power handler\n");
326
327 #if NRND > 0
328 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
329 RND_TYPE_NET, 0);
330 #endif
331
332 callout_init(&sc->sc_tick_ch, 0);
333 }
334
335 void
336 hme_tick(void *arg)
337 {
338 struct hme_softc *sc = arg;
339 int s;
340
341 s = splnet();
342 mii_tick(&sc->sc_mii);
343 splx(s);
344
345 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
346 }
347
348 void
349 hme_reset(struct hme_softc *sc)
350 {
351 int s;
352
353 s = splnet();
354 (void)hme_init(&sc->sc_ethercom.ec_if);
355 splx(s);
356 }
357
358 void
359 hme_chipreset(struct hme_softc *sc)
360 {
361 bus_space_tag_t t = sc->sc_bustag;
362 bus_space_handle_t seb = sc->sc_seb;
363 int n;
364
365 /* Mask all interrupts */
366 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
367
368 /* Reset transmitter and receiver */
369 bus_space_write_4(t, seb, HME_SEBI_RESET,
370 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
371
372 for (n = 0; n < 20; n++) {
373 uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
374 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
375 return;
376 DELAY(20);
377 }
378
379 printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
380 }
381
382 void
383 hme_stop(struct ifnet *ifp, int disable)
384 {
385 struct hme_softc *sc;
386
387 sc = ifp->if_softc;
388
389 ifp->if_timer = 0;
390 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
391
392 callout_stop(&sc->sc_tick_ch);
393 mii_down(&sc->sc_mii);
394
395 hme_chipreset(sc);
396 }
397
398 void
399 hme_meminit(struct hme_softc *sc)
400 {
401 bus_addr_t txbufdma, rxbufdma;
402 bus_addr_t dma;
403 char *p;
404 unsigned int ntbuf, nrbuf, i;
405 struct hme_ring *hr = &sc->sc_rb;
406
407 p = hr->rb_membase;
408 dma = hr->rb_dmabase;
409
410 ntbuf = hr->rb_ntbuf;
411 nrbuf = hr->rb_nrbuf;
412
413 /*
414 * Allocate transmit descriptors
415 */
416 hr->rb_txd = p;
417 hr->rb_txddma = dma;
418 p += ntbuf * HME_XD_SIZE;
419 dma += ntbuf * HME_XD_SIZE;
420 /* We have reserved descriptor space until the next 2048 byte boundary.*/
421 dma = (bus_addr_t)roundup((u_long)dma, 2048);
422 p = (void *)roundup((u_long)p, 2048);
423
424 /*
425 * Allocate receive descriptors
426 */
427 hr->rb_rxd = p;
428 hr->rb_rxddma = dma;
429 p += nrbuf * HME_XD_SIZE;
430 dma += nrbuf * HME_XD_SIZE;
431 /* Again move forward to the next 2048 byte boundary.*/
432 dma = (bus_addr_t)roundup((u_long)dma, 2048);
433 p = (void *)roundup((u_long)p, 2048);
434
435
436 /*
437 * Allocate transmit buffers
438 */
439 hr->rb_txbuf = p;
440 txbufdma = dma;
441 p += ntbuf * _HME_BUFSZ;
442 dma += ntbuf * _HME_BUFSZ;
443
444 /*
445 * Allocate receive buffers
446 */
447 hr->rb_rxbuf = p;
448 rxbufdma = dma;
449 p += nrbuf * _HME_BUFSZ;
450 dma += nrbuf * _HME_BUFSZ;
451
452 /*
453 * Initialize transmit buffer descriptors
454 */
455 for (i = 0; i < ntbuf; i++) {
456 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
457 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
458 }
459
460 /*
461 * Initialize receive buffer descriptors
462 */
463 for (i = 0; i < nrbuf; i++) {
464 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
465 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
466 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
467 }
468
469 hr->rb_tdhead = hr->rb_tdtail = 0;
470 hr->rb_td_nbusy = 0;
471 hr->rb_rdtail = 0;
472 }
473
474 /*
475 * Initialization of interface; set up initialization block
476 * and transmit/receive descriptor rings.
477 */
478 int
479 hme_init(struct ifnet *ifp)
480 {
481 struct hme_softc *sc = ifp->if_softc;
482 bus_space_tag_t t = sc->sc_bustag;
483 bus_space_handle_t seb = sc->sc_seb;
484 bus_space_handle_t etx = sc->sc_etx;
485 bus_space_handle_t erx = sc->sc_erx;
486 bus_space_handle_t mac = sc->sc_mac;
487 uint8_t *ea;
488 uint32_t v;
489 int rc;
490
491 /*
492 * Initialization sequence. The numbered steps below correspond
493 * to the sequence outlined in section 6.3.5.1 in the Ethernet
494 * Channel Engine manual (part of the PCIO manual).
495 * See also the STP2002-STQ document from Sun Microsystems.
496 */
497
498 /* step 1 & 2. Reset the Ethernet Channel */
499 hme_stop(ifp, 0);
500
501 /* Re-initialize the MIF */
502 hme_mifinit(sc);
503
504 /* Call MI reset function if any */
505 if (sc->sc_hwreset)
506 (*sc->sc_hwreset)(sc);
507
508 #if 0
509 /* Mask all MIF interrupts, just in case */
510 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
511 #endif
512
513 /* step 3. Setup data structures in host memory */
514 hme_meminit(sc);
515
516 /* step 4. TX MAC registers & counters */
517 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
518 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
519 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
520 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
521 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
522 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
523 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
524 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
525
526 /* Load station MAC address */
527 ea = sc->sc_enaddr;
528 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
529 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
530 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
531
532 /*
533 * Init seed for backoff
534 * (source suggested by manual: low 10 bits of MAC address)
535 */
536 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
537 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
538
539
540 /* Note: Accepting power-on default for other MAC registers here.. */
541
542
543 /* step 5. RX MAC registers & counters */
544 hme_setladrf(sc);
545
546 /* step 6 & 7. Program Descriptor Ring Base Addresses */
547 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
548 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
549
550 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
551 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
552 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
553 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
554
555 /* step 8. Global Configuration & Interrupt Mask */
556 bus_space_write_4(t, seb, HME_SEBI_IMASK,
557 ~(
558 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
559 HME_SEB_STAT_HOSTTOTX |
560 HME_SEB_STAT_RXTOHOST |
561 HME_SEB_STAT_TXALL |
562 HME_SEB_STAT_TXPERR |
563 HME_SEB_STAT_RCNTEXP |
564 HME_SEB_STAT_MIFIRQ |
565 HME_SEB_STAT_ALL_ERRORS ));
566
567 switch (sc->sc_burst) {
568 default:
569 v = 0;
570 break;
571 case 16:
572 v = HME_SEB_CFG_BURST16;
573 break;
574 case 32:
575 v = HME_SEB_CFG_BURST32;
576 break;
577 case 64:
578 v = HME_SEB_CFG_BURST64;
579 break;
580 }
581 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
582
583 /* step 9. ETX Configuration: use mostly default values */
584
585 /* Enable DMA */
586 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
587 v |= HME_ETX_CFG_DMAENABLE;
588 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
589
590 /* Transmit Descriptor ring size: in increments of 16 */
591 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
592
593
594 /* step 10. ERX Configuration */
595 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
596
597 /* Encode Receive Descriptor ring size: four possible values */
598 switch (_HME_NDESC /*XXX*/) {
599 case 32:
600 v |= HME_ERX_CFG_RINGSIZE32;
601 break;
602 case 64:
603 v |= HME_ERX_CFG_RINGSIZE64;
604 break;
605 case 128:
606 v |= HME_ERX_CFG_RINGSIZE128;
607 break;
608 case 256:
609 v |= HME_ERX_CFG_RINGSIZE256;
610 break;
611 default:
612 printf("hme: invalid Receive Descriptor ring size\n");
613 break;
614 }
615
616 /* Enable DMA */
617 v |= HME_ERX_CFG_DMAENABLE;
618
619 /* set h/w rx checksum start offset (# of half-words) */
620 #ifdef INET
621 v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
622 << HME_ERX_CFG_CSUMSHIFT) &
623 HME_ERX_CFG_CSUMSTART;
624 #endif
625 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
626
627 /* step 11. XIF Configuration */
628 v = bus_space_read_4(t, mac, HME_MACI_XIF);
629 v |= HME_MAC_XIF_OE;
630 bus_space_write_4(t, mac, HME_MACI_XIF, v);
631
632 /* step 12. RX_MAC Configuration Register */
633 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
634 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
635 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
636
637 /* step 13. TX_MAC Configuration Register */
638 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
639 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
640 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
641
642 /* step 14. Issue Transmit Pending command */
643
644 /* Call MI initialization function if any */
645 if (sc->sc_hwinit)
646 (*sc->sc_hwinit)(sc);
647
648 /* Set the current media. */
649 if ((rc = hme_mediachange(ifp)) != 0)
650 return rc;
651
652 /* Start the one second timer. */
653 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
654
655 ifp->if_flags |= IFF_RUNNING;
656 ifp->if_flags &= ~IFF_OACTIVE;
657 sc->sc_if_flags = ifp->if_flags;
658 ifp->if_timer = 0;
659 hme_start(ifp);
660 return 0;
661 }
662
663 /*
664 * Routine to copy from mbuf chain to transmit buffer in
665 * network buffer memory.
666 * Returns the amount of data copied.
667 */
668 int
669 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
670 /* ri: Ring index */
671 {
672 struct mbuf *n;
673 int len, tlen = 0;
674 char *bp;
675
676 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
677 for (; m; m = n) {
678 len = m->m_len;
679 if (len == 0) {
680 MFREE(m, n);
681 continue;
682 }
683 memcpy(bp, mtod(m, void *), len);
684 bp += len;
685 tlen += len;
686 MFREE(m, n);
687 }
688 return (tlen);
689 }
690
691 /*
692 * Pull data off an interface.
693 * Len is length of data, with local net header stripped.
694 * We copy the data into mbufs. When full cluster sized units are present
695 * we copy into clusters.
696 */
697 struct mbuf *
698 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
699 {
700 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
701 struct mbuf *m, *m0, *newm;
702 char *bp;
703 int len, totlen;
704 #ifdef INET
705 int csum_flags;
706 #endif
707
708 totlen = HME_XD_DECODE_RSIZE(flags);
709 MGETHDR(m0, M_DONTWAIT, MT_DATA);
710 if (m0 == 0)
711 return (0);
712 m0->m_pkthdr.rcvif = ifp;
713 m0->m_pkthdr.len = totlen;
714 len = MHLEN;
715 m = m0;
716
717 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
718
719 while (totlen > 0) {
720 if (totlen >= MINCLSIZE) {
721 MCLGET(m, M_DONTWAIT);
722 if ((m->m_flags & M_EXT) == 0)
723 goto bad;
724 len = MCLBYTES;
725 }
726
727 if (m == m0) {
728 char *newdata = (char *)
729 ALIGN(m->m_data + sizeof(struct ether_header)) -
730 sizeof(struct ether_header);
731 len -= newdata - m->m_data;
732 m->m_data = newdata;
733 }
734
735 m->m_len = len = min(totlen, len);
736 memcpy(mtod(m, void *), bp, len);
737 bp += len;
738
739 totlen -= len;
740 if (totlen > 0) {
741 MGET(newm, M_DONTWAIT, MT_DATA);
742 if (newm == 0)
743 goto bad;
744 len = MLEN;
745 m = m->m_next = newm;
746 }
747 }
748
749 #ifdef INET
750 /* hardware checksum */
751 csum_flags = 0;
752 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
753 struct ether_header *eh;
754 struct ether_vlan_header *evh;
755 struct ip *ip;
756 struct udphdr *uh;
757 uint16_t *opts;
758 int32_t hlen, pktlen;
759 uint32_t csum_data;
760
761 eh = mtod(m0, struct ether_header *);
762 if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
763 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
764 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
765 } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
766 evh = (struct ether_vlan_header *)eh;
767 if (ntohs(evh->evl_proto != ETHERTYPE_IP))
768 goto swcsum;
769 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
770 ETHER_VLAN_ENCAP_LEN);
771 pktlen = m0->m_pkthdr.len -
772 ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
773 } else
774 goto swcsum;
775
776 /* IPv4 only */
777 if (ip->ip_v != IPVERSION)
778 goto swcsum;
779
780 hlen = ip->ip_hl << 2;
781 if (hlen < sizeof(struct ip))
782 goto swcsum;
783
784 /*
785 * bail if too short, has random trailing garbage, truncated,
786 * fragment, or has ethernet pad.
787 */
788 if (ntohs(ip->ip_len) < hlen ||
789 ntohs(ip->ip_len) != pktlen ||
790 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
791 goto swcsum;
792
793 switch (ip->ip_p) {
794 case IPPROTO_TCP:
795 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
796 goto swcsum;
797 if (pktlen < (hlen + sizeof(struct tcphdr)))
798 goto swcsum;
799 csum_flags =
800 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
801 break;
802 case IPPROTO_UDP:
803 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
804 goto swcsum;
805 if (pktlen < (hlen + sizeof(struct udphdr)))
806 goto swcsum;
807 uh = (struct udphdr *)((char *)ip + hlen);
808 /* no checksum */
809 if (uh->uh_sum == 0)
810 goto swcsum;
811 csum_flags =
812 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
813 break;
814 default:
815 goto swcsum;
816 }
817
818 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
819 csum_data = ~flags & HME_XD_RXCKSUM;
820
821 /*
822 * If data offset is different from RX cksum start offset,
823 * we have to deduct them.
824 */
825 hlen = ((char *)ip + hlen) -
826 ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
827 if (hlen > 1) {
828 uint32_t optsum;
829
830 optsum = 0;
831 opts = (uint16_t *)((char *)eh +
832 ETHER_HDR_LEN + sizeof(struct ip));
833
834 while (hlen > 1) {
835 optsum += ntohs(*opts++);
836 hlen -= 2;
837 }
838 while (optsum >> 16)
839 optsum = (optsum >> 16) + (optsum & 0xffff);
840
841 /* Deduct the ip opts sum from the hwsum. */
842 csum_data += (uint16_t)~optsum;
843
844 while (csum_data >> 16)
845 csum_data =
846 (csum_data >> 16) + (csum_data & 0xffff);
847 }
848 m0->m_pkthdr.csum_data = csum_data;
849 }
850 swcsum:
851 m0->m_pkthdr.csum_flags = csum_flags;
852 #endif
853
854 return (m0);
855
856 bad:
857 m_freem(m0);
858 return (0);
859 }
860
861 /*
862 * Pass a packet to the higher levels.
863 */
864 void
865 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
866 {
867 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
868 struct mbuf *m;
869 int len;
870
871 len = HME_XD_DECODE_RSIZE(flags);
872 if (len <= sizeof(struct ether_header) ||
873 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
874 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
875 ETHERMTU + sizeof(struct ether_header))) {
876 #ifdef HMEDEBUG
877 printf("%s: invalid packet size %d; dropping\n",
878 device_xname(sc->sc_dev), len);
879 #endif
880 ifp->if_ierrors++;
881 return;
882 }
883
884 /* Pull packet off interface. */
885 m = hme_get(sc, ix, flags);
886 if (m == 0) {
887 ifp->if_ierrors++;
888 return;
889 }
890
891 ifp->if_ipackets++;
892
893 /*
894 * Check if there's a BPF listener on this interface.
895 * If so, hand off the raw packet to BPF.
896 */
897 bpf_mtap(ifp, m);
898
899 /* Pass the packet up. */
900 (*ifp->if_input)(ifp, m);
901 }
902
903 void
904 hme_start(struct ifnet *ifp)
905 {
906 struct hme_softc *sc = ifp->if_softc;
907 void *txd = sc->sc_rb.rb_txd;
908 struct mbuf *m;
909 unsigned int txflags;
910 unsigned int ri, len, obusy;
911 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
912
913 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
914 return;
915
916 ri = sc->sc_rb.rb_tdhead;
917 obusy = sc->sc_rb.rb_td_nbusy;
918
919 for (;;) {
920 IFQ_DEQUEUE(&ifp->if_snd, m);
921 if (m == 0)
922 break;
923
924 /*
925 * If BPF is listening on this interface, let it see the
926 * packet before we commit it to the wire.
927 */
928 bpf_mtap(ifp, m);
929
930 #ifdef INET
931 /* collect bits for h/w csum, before hme_put frees the mbuf */
932 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
933 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
934 struct ether_header *eh;
935 uint16_t offset, start;
936
937 eh = mtod(m, struct ether_header *);
938 switch (ntohs(eh->ether_type)) {
939 case ETHERTYPE_IP:
940 start = ETHER_HDR_LEN;
941 break;
942 case ETHERTYPE_VLAN:
943 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
944 break;
945 default:
946 /* unsupported, drop it */
947 m_free(m);
948 continue;
949 }
950 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
951 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
952 + start;
953 txflags = HME_XD_TXCKSUM |
954 (offset << HME_XD_TXCSSTUFFSHIFT) |
955 (start << HME_XD_TXCSSTARTSHIFT);
956 } else
957 #endif
958 txflags = 0;
959
960 /*
961 * Copy the mbuf chain into the transmit buffer.
962 */
963 len = hme_put(sc, ri, m);
964
965 /*
966 * Initialize transmit registers and start transmission
967 */
968 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
969 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
970 HME_XD_ENCODE_TSIZE(len) | txflags);
971
972 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
973 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
974 HME_ETX_TP_DMAWAKEUP);
975
976 if (++ri == ntbuf)
977 ri = 0;
978
979 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
980 ifp->if_flags |= IFF_OACTIVE;
981 break;
982 }
983 }
984
985 if (obusy != sc->sc_rb.rb_td_nbusy) {
986 sc->sc_rb.rb_tdhead = ri;
987 ifp->if_timer = 5;
988 }
989 }
990
991 /*
992 * Transmit interrupt.
993 */
994 int
995 hme_tint(struct hme_softc *sc)
996 {
997 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
998 bus_space_tag_t t = sc->sc_bustag;
999 bus_space_handle_t mac = sc->sc_mac;
1000 unsigned int ri, txflags;
1001
1002 /*
1003 * Unload collision counters
1004 */
1005 ifp->if_collisions +=
1006 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1007 bus_space_read_4(t, mac, HME_MACI_FCCNT);
1008 ifp->if_oerrors +=
1009 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1010 bus_space_read_4(t, mac, HME_MACI_LTCNT);
1011
1012 /*
1013 * then clear the hardware counters.
1014 */
1015 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1016 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1017 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1018 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1019
1020 /* Fetch current position in the transmit ring */
1021 ri = sc->sc_rb.rb_tdtail;
1022
1023 for (;;) {
1024 if (sc->sc_rb.rb_td_nbusy <= 0)
1025 break;
1026
1027 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1028
1029 if (txflags & HME_XD_OWN)
1030 break;
1031
1032 ifp->if_flags &= ~IFF_OACTIVE;
1033 ifp->if_opackets++;
1034
1035 if (++ri == sc->sc_rb.rb_ntbuf)
1036 ri = 0;
1037
1038 --sc->sc_rb.rb_td_nbusy;
1039 }
1040
1041 /* Update ring */
1042 sc->sc_rb.rb_tdtail = ri;
1043
1044 hme_start(ifp);
1045
1046 if (sc->sc_rb.rb_td_nbusy == 0)
1047 ifp->if_timer = 0;
1048
1049 return (1);
1050 }
1051
1052 /*
1053 * Receive interrupt.
1054 */
1055 int
1056 hme_rint(struct hme_softc *sc)
1057 {
1058 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1059 bus_space_tag_t t = sc->sc_bustag;
1060 bus_space_handle_t mac = sc->sc_mac;
1061 void *xdr = sc->sc_rb.rb_rxd;
1062 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1063 unsigned int ri;
1064 uint32_t flags;
1065
1066 ri = sc->sc_rb.rb_rdtail;
1067
1068 /*
1069 * Process all buffers with valid data.
1070 */
1071 for (;;) {
1072 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1073 if (flags & HME_XD_OWN)
1074 break;
1075
1076 if (flags & HME_XD_OFL) {
1077 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1078 device_xname(sc->sc_dev), ri, flags);
1079 } else
1080 hme_read(sc, ri, flags);
1081
1082 /* This buffer can be used by the hardware again */
1083 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1084 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1085
1086 if (++ri == nrbuf)
1087 ri = 0;
1088 }
1089
1090 sc->sc_rb.rb_rdtail = ri;
1091
1092 /* Read error counters ... */
1093 ifp->if_ierrors +=
1094 bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1095 bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1096 bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1097 bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1098
1099 /* ... then clear the hardware counters. */
1100 bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1101 bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1102 bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1103 bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1104 return (1);
1105 }
1106
1107 int
1108 hme_eint(struct hme_softc *sc, u_int status)
1109 {
1110 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1111 char bits[128];
1112
1113 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1114 bus_space_tag_t t = sc->sc_bustag;
1115 bus_space_handle_t mif = sc->sc_mif;
1116 uint32_t cf, st, sm;
1117 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1118 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1119 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1120 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1121 device_xname(sc->sc_dev), cf, st, sm);
1122 return (1);
1123 }
1124
1125 /* Receive error counters rolled over */
1126 if (status & HME_SEB_STAT_ACNTEXP)
1127 ifp->if_ierrors += 0xff;
1128 if (status & HME_SEB_STAT_CCNTEXP)
1129 ifp->if_ierrors += 0xff;
1130 if (status & HME_SEB_STAT_LCNTEXP)
1131 ifp->if_ierrors += 0xff;
1132 if (status & HME_SEB_STAT_CVCNTEXP)
1133 ifp->if_ierrors += 0xff;
1134
1135 /* RXTERR locks up the interface, so do a reset */
1136 if (status & HME_SEB_STAT_RXTERR)
1137 hme_reset(sc);
1138
1139 snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1140 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1141
1142 return (1);
1143 }
1144
1145 int
1146 hme_intr(void *v)
1147 {
1148 struct hme_softc *sc = v;
1149 bus_space_tag_t t = sc->sc_bustag;
1150 bus_space_handle_t seb = sc->sc_seb;
1151 uint32_t status;
1152 int r = 0;
1153
1154 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1155
1156 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1157 r |= hme_eint(sc, status);
1158
1159 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1160 r |= hme_tint(sc);
1161
1162 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1163 r |= hme_rint(sc);
1164
1165 #if NRND > 0
1166 rnd_add_uint32(&sc->rnd_source, status);
1167 #endif
1168
1169 return (r);
1170 }
1171
1172
1173 void
1174 hme_watchdog(struct ifnet *ifp)
1175 {
1176 struct hme_softc *sc = ifp->if_softc;
1177
1178 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1179 ++ifp->if_oerrors;
1180
1181 hme_reset(sc);
1182 }
1183
1184 /*
1185 * Initialize the MII Management Interface
1186 */
1187 void
1188 hme_mifinit(struct hme_softc *sc)
1189 {
1190 bus_space_tag_t t = sc->sc_bustag;
1191 bus_space_handle_t mif = sc->sc_mif;
1192 bus_space_handle_t mac = sc->sc_mac;
1193 int instance, phy;
1194 uint32_t v;
1195
1196 if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1197 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1198 phy = sc->sc_phys[instance];
1199 } else
1200 /* No media set yet, pick phy arbitrarily.. */
1201 phy = HME_PHYAD_EXTERNAL;
1202
1203 /* Configure the MIF in frame mode, no poll, current phy select */
1204 v = 0;
1205 if (phy == HME_PHYAD_EXTERNAL)
1206 v |= HME_MIF_CFG_PHY;
1207 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1208
1209 /* If an external transceiver is selected, enable its MII drivers */
1210 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1211 v &= ~HME_MAC_XIF_MIIENABLE;
1212 if (phy == HME_PHYAD_EXTERNAL)
1213 v |= HME_MAC_XIF_MIIENABLE;
1214 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1215 }
1216
1217 /*
1218 * MII interface
1219 */
1220 static int
1221 hme_mii_readreg(device_t self, int phy, int reg)
1222 {
1223 struct hme_softc *sc = device_private(self);
1224 bus_space_tag_t t = sc->sc_bustag;
1225 bus_space_handle_t mif = sc->sc_mif;
1226 bus_space_handle_t mac = sc->sc_mac;
1227 uint32_t v, xif_cfg, mifi_cfg;
1228 int n;
1229
1230 /* We can at most have two PHYs */
1231 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1232 return (0);
1233
1234 /* Select the desired PHY in the MIF configuration register */
1235 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1236 v &= ~HME_MIF_CFG_PHY;
1237 if (phy == HME_PHYAD_EXTERNAL)
1238 v |= HME_MIF_CFG_PHY;
1239 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1240
1241 /* Enable MII drivers on external transceiver */
1242 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1243 if (phy == HME_PHYAD_EXTERNAL)
1244 v |= HME_MAC_XIF_MIIENABLE;
1245 else
1246 v &= ~HME_MAC_XIF_MIIENABLE;
1247 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1248
1249 #if 0
1250 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1251 /*
1252 * Check whether a transceiver is connected by testing
1253 * the MIF configuration register's MDI_X bits. Note that
1254 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1255 */
1256 mif_mdi_bit = 1 << (8 + (1 - phy));
1257 delay(100);
1258 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1259 if ((v & mif_mdi_bit) == 0)
1260 return (0);
1261 #endif
1262
1263 /* Construct the frame command */
1264 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1265 HME_MIF_FO_TAMSB |
1266 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1267 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1268 (reg << HME_MIF_FO_REGAD_SHIFT);
1269
1270 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1271 for (n = 0; n < 100; n++) {
1272 DELAY(1);
1273 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1274 if (v & HME_MIF_FO_TALSB) {
1275 v &= HME_MIF_FO_DATA;
1276 goto out;
1277 }
1278 }
1279
1280 v = 0;
1281 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1282
1283 out:
1284 /* Restore MIFI_CFG register */
1285 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1286 /* Restore XIF register */
1287 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1288 return (v);
1289 }
1290
1291 static void
1292 hme_mii_writereg(device_t self, int phy, int reg, int val)
1293 {
1294 struct hme_softc *sc = device_private(self);
1295 bus_space_tag_t t = sc->sc_bustag;
1296 bus_space_handle_t mif = sc->sc_mif;
1297 bus_space_handle_t mac = sc->sc_mac;
1298 uint32_t v, xif_cfg, mifi_cfg;
1299 int n;
1300
1301 /* We can at most have two PHYs */
1302 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1303 return;
1304
1305 /* Select the desired PHY in the MIF configuration register */
1306 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1307 v &= ~HME_MIF_CFG_PHY;
1308 if (phy == HME_PHYAD_EXTERNAL)
1309 v |= HME_MIF_CFG_PHY;
1310 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1311
1312 /* Enable MII drivers on external transceiver */
1313 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1314 if (phy == HME_PHYAD_EXTERNAL)
1315 v |= HME_MAC_XIF_MIIENABLE;
1316 else
1317 v &= ~HME_MAC_XIF_MIIENABLE;
1318 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1319
1320 #if 0
1321 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1322 /*
1323 * Check whether a transceiver is connected by testing
1324 * the MIF configuration register's MDI_X bits. Note that
1325 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1326 */
1327 mif_mdi_bit = 1 << (8 + (1 - phy));
1328 delay(100);
1329 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1330 if ((v & mif_mdi_bit) == 0)
1331 return;
1332 #endif
1333
1334 /* Construct the frame command */
1335 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1336 HME_MIF_FO_TAMSB |
1337 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1338 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1339 (reg << HME_MIF_FO_REGAD_SHIFT) |
1340 (val & HME_MIF_FO_DATA);
1341
1342 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1343 for (n = 0; n < 100; n++) {
1344 DELAY(1);
1345 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1346 if (v & HME_MIF_FO_TALSB)
1347 goto out;
1348 }
1349
1350 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1351 out:
1352 /* Restore MIFI_CFG register */
1353 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1354 /* Restore XIF register */
1355 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1356 }
1357
1358 static void
1359 hme_mii_statchg(device_t dev)
1360 {
1361 struct hme_softc *sc = device_private(dev);
1362 bus_space_tag_t t = sc->sc_bustag;
1363 bus_space_handle_t mac = sc->sc_mac;
1364 uint32_t v;
1365
1366 #ifdef HMEDEBUG
1367 if (sc->sc_debug)
1368 printf("hme_mii_statchg: status change\n");
1369 #endif
1370
1371 /* Set the MAC Full Duplex bit appropriately */
1372 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1373 but not otherwise. */
1374 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1375 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1376 v |= HME_MAC_TXCFG_FULLDPLX;
1377 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1378 } else {
1379 v &= ~HME_MAC_TXCFG_FULLDPLX;
1380 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1381 }
1382 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1383 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1384 }
1385
1386 int
1387 hme_mediachange(struct ifnet *ifp)
1388 {
1389 struct hme_softc *sc = ifp->if_softc;
1390 bus_space_tag_t t = sc->sc_bustag;
1391 bus_space_handle_t mif = sc->sc_mif;
1392 bus_space_handle_t mac = sc->sc_mac;
1393 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1394 int phy = sc->sc_phys[instance];
1395 int rc;
1396 uint32_t v;
1397
1398 #ifdef HMEDEBUG
1399 if (sc->sc_debug)
1400 printf("hme_mediachange: phy = %d\n", phy);
1401 #endif
1402
1403 /* Select the current PHY in the MIF configuration register */
1404 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1405 v &= ~HME_MIF_CFG_PHY;
1406 if (phy == HME_PHYAD_EXTERNAL)
1407 v |= HME_MIF_CFG_PHY;
1408 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1409
1410 /* If an external transceiver is selected, enable its MII drivers */
1411 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1412 v &= ~HME_MAC_XIF_MIIENABLE;
1413 if (phy == HME_PHYAD_EXTERNAL)
1414 v |= HME_MAC_XIF_MIIENABLE;
1415 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1416
1417 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1418 return 0;
1419 return rc;
1420 }
1421
1422 /*
1423 * Process an ioctl request.
1424 */
1425 int
1426 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1427 {
1428 struct hme_softc *sc = ifp->if_softc;
1429 struct ifaddr *ifa = (struct ifaddr *)data;
1430 int s, error = 0;
1431
1432 s = splnet();
1433
1434 switch (cmd) {
1435
1436 case SIOCINITIFADDR:
1437 switch (ifa->ifa_addr->sa_family) {
1438 #ifdef INET
1439 case AF_INET:
1440 if (ifp->if_flags & IFF_UP)
1441 hme_setladrf(sc);
1442 else {
1443 ifp->if_flags |= IFF_UP;
1444 error = hme_init(ifp);
1445 }
1446 arp_ifinit(ifp, ifa);
1447 break;
1448 #endif
1449 default:
1450 ifp->if_flags |= IFF_UP;
1451 error = hme_init(ifp);
1452 break;
1453 }
1454 break;
1455
1456 case SIOCSIFFLAGS:
1457 #ifdef HMEDEBUG
1458 {
1459 struct ifreq *ifr = data;
1460 sc->sc_debug =
1461 (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1462 }
1463 #endif
1464 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1465 break;
1466
1467 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1468 case IFF_RUNNING:
1469 /*
1470 * If interface is marked down and it is running, then
1471 * stop it.
1472 */
1473 hme_stop(ifp, 0);
1474 ifp->if_flags &= ~IFF_RUNNING;
1475 break;
1476 case IFF_UP:
1477 /*
1478 * If interface is marked up and it is stopped, then
1479 * start it.
1480 */
1481 error = hme_init(ifp);
1482 break;
1483 case IFF_UP|IFF_RUNNING:
1484 /*
1485 * If setting debug or promiscuous mode, do not reset
1486 * the chip; for everything else, call hme_init()
1487 * which will trigger a reset.
1488 */
1489 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1490 if (ifp->if_flags != sc->sc_if_flags) {
1491 if ((ifp->if_flags & (~RESETIGN))
1492 == (sc->sc_if_flags & (~RESETIGN)))
1493 hme_setladrf(sc);
1494 else
1495 error = hme_init(ifp);
1496 }
1497 #undef RESETIGN
1498 break;
1499 case 0:
1500 break;
1501 }
1502
1503 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1504 error = hme_init(ifp);
1505
1506 break;
1507
1508 default:
1509 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1510 break;
1511
1512 error = 0;
1513
1514 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1515 ;
1516 else if (ifp->if_flags & IFF_RUNNING) {
1517 /*
1518 * Multicast list has changed; set the hardware filter
1519 * accordingly.
1520 */
1521 hme_setladrf(sc);
1522 }
1523 break;
1524 }
1525
1526 sc->sc_if_flags = ifp->if_flags;
1527 splx(s);
1528 return (error);
1529 }
1530
1531 bool
1532 hme_shutdown(device_t self, int howto)
1533 {
1534 struct hme_softc *sc;
1535 struct ifnet *ifp;
1536
1537 sc = device_private(self);
1538 ifp = &sc->sc_ethercom.ec_if;
1539 hme_stop(ifp, 1);
1540
1541 return true;
1542 }
1543
1544 /*
1545 * Set up the logical address filter.
1546 */
1547 void
1548 hme_setladrf(struct hme_softc *sc)
1549 {
1550 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1551 struct ether_multi *enm;
1552 struct ether_multistep step;
1553 struct ethercom *ec = &sc->sc_ethercom;
1554 bus_space_tag_t t = sc->sc_bustag;
1555 bus_space_handle_t mac = sc->sc_mac;
1556 uint32_t v;
1557 uint32_t crc;
1558 uint32_t hash[4];
1559
1560 /* Clear hash table */
1561 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1562
1563 /* Get current RX configuration */
1564 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1565
1566 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1567 /* Turn on promiscuous mode; turn off the hash filter */
1568 v |= HME_MAC_RXCFG_PMISC;
1569 v &= ~HME_MAC_RXCFG_HENABLE;
1570 ifp->if_flags |= IFF_ALLMULTI;
1571 goto chipit;
1572 }
1573
1574 /* Turn off promiscuous mode; turn on the hash filter */
1575 v &= ~HME_MAC_RXCFG_PMISC;
1576 v |= HME_MAC_RXCFG_HENABLE;
1577
1578 /*
1579 * Set up multicast address filter by passing all multicast addresses
1580 * through a crc generator, and then using the high order 6 bits as an
1581 * index into the 64 bit logical address filter. The high order bit
1582 * selects the word, while the rest of the bits select the bit within
1583 * the word.
1584 */
1585
1586 ETHER_FIRST_MULTI(step, ec, enm);
1587 while (enm != NULL) {
1588 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1589 /*
1590 * We must listen to a range of multicast addresses.
1591 * For now, just accept all multicasts, rather than
1592 * trying to set only those filter bits needed to match
1593 * the range. (At this time, the only use of address
1594 * ranges is for IP multicast routing, for which the
1595 * range is big enough to require all bits set.)
1596 */
1597 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1598 ifp->if_flags |= IFF_ALLMULTI;
1599 goto chipit;
1600 }
1601
1602 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1603
1604 /* Just want the 6 most significant bits. */
1605 crc >>= 26;
1606
1607 /* Set the corresponding bit in the filter. */
1608 hash[crc >> 4] |= 1 << (crc & 0xf);
1609
1610 ETHER_NEXT_MULTI(step, enm);
1611 }
1612
1613 ifp->if_flags &= ~IFF_ALLMULTI;
1614
1615 chipit:
1616 /* Now load the hash table into the chip */
1617 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1618 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1619 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1620 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1621 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1622 }
1623
1624 /*
1625 * Routines for accessing the transmit and receive buffers.
1626 * The various CPU and adapter configurations supported by this
1627 * driver require three different access methods for buffers
1628 * and descriptors:
1629 * (1) contig (contiguous data; no padding),
1630 * (2) gap2 (two bytes of data followed by two bytes of padding),
1631 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1632 */
1633
1634 #if 0
1635 /*
1636 * contig: contiguous data with no padding.
1637 *
1638 * Buffers may have any alignment.
1639 */
1640
1641 void
1642 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1643 {
1644 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1645
1646 /*
1647 * Just call memcpy() to do the work.
1648 */
1649 memcpy(buf, from, len);
1650 }
1651
1652 void
1653 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1654 {
1655 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1656
1657 /*
1658 * Just call memcpy() to do the work.
1659 */
1660 memcpy(to, buf, len);
1661 }
1662 #endif
1663