Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.64.4.7
      1 /*	$NetBSD: hme.c,v 1.64.4.7 2010/08/11 22:53:25 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.64.4.7 2010/08/11 22:53:25 yamt Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 #include "rnd.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/kernel.h>
     47 #include <sys/mbuf.h>
     48 #include <sys/syslog.h>
     49 #include <sys/socket.h>
     50 #include <sys/device.h>
     51 #include <sys/malloc.h>
     52 #include <sys/ioctl.h>
     53 #include <sys/errno.h>
     54 #if NRND > 0
     55 #include <sys/rnd.h>
     56 #endif
     57 
     58 #include <net/if.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_ether.h>
     61 #include <net/if_media.h>
     62 
     63 #ifdef INET
     64 #include <net/if_vlanvar.h>
     65 #include <netinet/in.h>
     66 #include <netinet/if_inarp.h>
     67 #include <netinet/in_systm.h>
     68 #include <netinet/in_var.h>
     69 #include <netinet/ip.h>
     70 #include <netinet/tcp.h>
     71 #include <netinet/udp.h>
     72 #endif
     73 
     74 
     75 #include <net/bpf.h>
     76 #include <net/bpfdesc.h>
     77 
     78 #include <dev/mii/mii.h>
     79 #include <dev/mii/miivar.h>
     80 
     81 #include <sys/bus.h>
     82 
     83 #include <dev/ic/hmereg.h>
     84 #include <dev/ic/hmevar.h>
     85 
     86 static void	hme_start(struct ifnet *);
     87 static void	hme_stop(struct ifnet *, int);
     88 static int	hme_ioctl(struct ifnet *, u_long, void *);
     89 static void	hme_tick(void *);
     90 static void	hme_watchdog(struct ifnet *);
     91 static bool	hme_shutdown(device_t, int);
     92 static int	hme_init(struct ifnet *);
     93 static void	hme_meminit(struct hme_softc *);
     94 static void	hme_mifinit(struct hme_softc *);
     95 static void	hme_reset(struct hme_softc *);
     96 static void	hme_chipreset(struct hme_softc *);
     97 static void	hme_setladrf(struct hme_softc *);
     98 
     99 /* MII methods & callbacks */
    100 static int	hme_mii_readreg(device_t, int, int);
    101 static void	hme_mii_writereg(device_t, int, int, int);
    102 static void	hme_mii_statchg(device_t);
    103 
    104 static int	hme_mediachange(struct ifnet *);
    105 
    106 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
    107 static int	hme_put(struct hme_softc *, int, struct mbuf *);
    108 static void	hme_read(struct hme_softc *, int, uint32_t);
    109 static int	hme_eint(struct hme_softc *, u_int);
    110 static int	hme_rint(struct hme_softc *);
    111 static int	hme_tint(struct hme_softc *);
    112 
    113 #if 0
    114 /* Default buffer copy routines */
    115 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    116 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    117 #endif
    118 
    119 void
    120 hme_config(struct hme_softc *sc)
    121 {
    122 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    123 	struct mii_data *mii = &sc->sc_mii;
    124 	struct mii_softc *child;
    125 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    126 	bus_dma_segment_t seg;
    127 	bus_size_t size;
    128 	int rseg, error;
    129 
    130 	/*
    131 	 * HME common initialization.
    132 	 *
    133 	 * hme_softc fields that must be initialized by the front-end:
    134 	 *
    135 	 * the bus tag:
    136 	 *	sc_bustag
    137 	 *
    138 	 * the DMA bus tag:
    139 	 *	sc_dmatag
    140 	 *
    141 	 * the bus handles:
    142 	 *	sc_seb		(Shared Ethernet Block registers)
    143 	 *	sc_erx		(Receiver Unit registers)
    144 	 *	sc_etx		(Transmitter Unit registers)
    145 	 *	sc_mac		(MAC registers)
    146 	 *	sc_mif		(Management Interface registers)
    147 	 *
    148 	 * the maximum bus burst size:
    149 	 *	sc_burst
    150 	 *
    151 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    152 	 *	rb_membase, rb_dmabase)
    153 	 *
    154 	 * the local Ethernet address:
    155 	 *	sc_enaddr
    156 	 *
    157 	 */
    158 
    159 	/* Make sure the chip is stopped. */
    160 	hme_chipreset(sc);
    161 
    162 	/*
    163 	 * Allocate descriptors and buffers
    164 	 * XXX - do all this differently.. and more configurably,
    165 	 * eg. use things as `dma_load_mbuf()' on transmit,
    166 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    167 	 *     all the time) on the receiver side.
    168 	 *
    169 	 * Note: receive buffers must be 64-byte aligned.
    170 	 * Also, apparently, the buffers must extend to a DMA burst
    171 	 * boundary beyond the maximum packet size.
    172 	 */
    173 #define _HME_NDESC	128
    174 #define _HME_BUFSZ	1600
    175 
    176 	/* Note: the # of descriptors must be a multiple of 16 */
    177 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    178 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    179 
    180 	/*
    181 	 * Allocate DMA capable memory
    182 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    183 	 * take this into account when calculating the size. Note that
    184 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    185 	 * so we allocate that much regardless of _HME_NDESC.
    186 	 */
    187 	size =	2048 +					/* TX descriptors */
    188 		2048 +					/* RX descriptors */
    189 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    190 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    191 
    192 	/* Allocate DMA buffer */
    193 	if ((error = bus_dmamem_alloc(dmatag, size,
    194 				      2048, 0,
    195 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    196 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
    197 			error);
    198 		return;
    199 	}
    200 
    201 	/* Map DMA memory in CPU addressable space */
    202 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    203 				    &sc->sc_rb.rb_membase,
    204 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    205 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
    206 			error);
    207 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    208 		bus_dmamem_free(dmatag, &seg, rseg);
    209 		return;
    210 	}
    211 
    212 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    213 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    214 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
    215 			error);
    216 		return;
    217 	}
    218 
    219 	/* Load the buffer */
    220 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    221 	    sc->sc_rb.rb_membase, size, NULL,
    222 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    223 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
    224 			error);
    225 		bus_dmamem_free(dmatag, &seg, rseg);
    226 		return;
    227 	}
    228 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    229 
    230 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    231 	    ether_sprintf(sc->sc_enaddr));
    232 
    233 	/* Initialize ifnet structure. */
    234 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    235 	ifp->if_softc = sc;
    236 	ifp->if_start = hme_start;
    237 	ifp->if_stop = hme_stop;
    238 	ifp->if_ioctl = hme_ioctl;
    239 	ifp->if_init = hme_init;
    240 	ifp->if_watchdog = hme_watchdog;
    241 	ifp->if_flags =
    242 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    243 	sc->sc_if_flags = ifp->if_flags;
    244 	ifp->if_capabilities |=
    245 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    246 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    247 	IFQ_SET_READY(&ifp->if_snd);
    248 
    249 	/* Initialize ifmedia structures and MII info */
    250 	mii->mii_ifp = ifp;
    251 	mii->mii_readreg = hme_mii_readreg;
    252 	mii->mii_writereg = hme_mii_writereg;
    253 	mii->mii_statchg = hme_mii_statchg;
    254 
    255 	sc->sc_ethercom.ec_mii = mii;
    256 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    257 
    258 	hme_mifinit(sc);
    259 
    260 	/*
    261 	 * Some HME's have an MII connector, as well as RJ45.  Try attaching
    262 	 * the RJ45 (internal) PHY first, so that the MII PHY is always
    263 	 * instance 1.
    264 	 */
    265 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    266 			HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
    267 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    268 			HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
    269 
    270 	child = LIST_FIRST(&mii->mii_phys);
    271 	if (child == NULL) {
    272 		/* No PHY attached */
    273 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    274 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    275 	} else {
    276 		/*
    277 		 * Walk along the list of attached MII devices and
    278 		 * establish an `MII instance' to `phy number'
    279 		 * mapping. We'll use this mapping in media change
    280 		 * requests to determine which phy to use to program
    281 		 * the MIF configuration register.
    282 		 */
    283 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    284 			/*
    285 			 * Note: we support just two PHYs: the built-in
    286 			 * internal device and an external on the MII
    287 			 * connector.
    288 			 */
    289 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    290 				aprint_error_dev(sc->sc_dev,
    291 				    "cannot accommodate MII device %s"
    292 				       " at phy %d, instance %d\n",
    293 				       device_xname(child->mii_dev),
    294 				       child->mii_phy, child->mii_inst);
    295 				continue;
    296 			}
    297 
    298 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    299 		}
    300 
    301 		/*
    302 		 * Set the default media to auto negotiation if the phy has
    303 		 * the auto negotiation capability.
    304 		 * XXX; What to do otherwise?
    305 		 */
    306 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
    307 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    308 /*
    309 		else
    310 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
    311 */
    312 	}
    313 
    314 	/* claim 802.1q capability */
    315 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    316 
    317 	/* Attach the interface. */
    318 	if_attach(ifp);
    319 	ether_ifattach(ifp, sc->sc_enaddr);
    320 
    321 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
    322 		pmf_class_network_register(sc->sc_dev, ifp);
    323 	else
    324 		aprint_error_dev(sc->sc_dev,
    325 		    "couldn't establish power handler\n");
    326 
    327 #if NRND > 0
    328 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    329 			  RND_TYPE_NET, 0);
    330 #endif
    331 
    332 	callout_init(&sc->sc_tick_ch, 0);
    333 }
    334 
    335 void
    336 hme_tick(void *arg)
    337 {
    338 	struct hme_softc *sc = arg;
    339 	int s;
    340 
    341 	s = splnet();
    342 	mii_tick(&sc->sc_mii);
    343 	splx(s);
    344 
    345 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    346 }
    347 
    348 void
    349 hme_reset(struct hme_softc *sc)
    350 {
    351 	int s;
    352 
    353 	s = splnet();
    354 	(void)hme_init(&sc->sc_ethercom.ec_if);
    355 	splx(s);
    356 }
    357 
    358 void
    359 hme_chipreset(struct hme_softc *sc)
    360 {
    361 	bus_space_tag_t t = sc->sc_bustag;
    362 	bus_space_handle_t seb = sc->sc_seb;
    363 	int n;
    364 
    365 	/* Mask all interrupts */
    366 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    367 
    368 	/* Reset transmitter and receiver */
    369 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    370 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    371 
    372 	for (n = 0; n < 20; n++) {
    373 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    374 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    375 			return;
    376 		DELAY(20);
    377 	}
    378 
    379 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
    380 }
    381 
    382 void
    383 hme_stop(struct ifnet *ifp, int disable)
    384 {
    385 	struct hme_softc *sc;
    386 
    387 	sc = ifp->if_softc;
    388 
    389 	ifp->if_timer = 0;
    390 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    391 
    392 	callout_stop(&sc->sc_tick_ch);
    393 	mii_down(&sc->sc_mii);
    394 
    395 	hme_chipreset(sc);
    396 }
    397 
    398 void
    399 hme_meminit(struct hme_softc *sc)
    400 {
    401 	bus_addr_t txbufdma, rxbufdma;
    402 	bus_addr_t dma;
    403 	char *p;
    404 	unsigned int ntbuf, nrbuf, i;
    405 	struct hme_ring *hr = &sc->sc_rb;
    406 
    407 	p = hr->rb_membase;
    408 	dma = hr->rb_dmabase;
    409 
    410 	ntbuf = hr->rb_ntbuf;
    411 	nrbuf = hr->rb_nrbuf;
    412 
    413 	/*
    414 	 * Allocate transmit descriptors
    415 	 */
    416 	hr->rb_txd = p;
    417 	hr->rb_txddma = dma;
    418 	p += ntbuf * HME_XD_SIZE;
    419 	dma += ntbuf * HME_XD_SIZE;
    420 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    421 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    422 	p = (void *)roundup((u_long)p, 2048);
    423 
    424 	/*
    425 	 * Allocate receive descriptors
    426 	 */
    427 	hr->rb_rxd = p;
    428 	hr->rb_rxddma = dma;
    429 	p += nrbuf * HME_XD_SIZE;
    430 	dma += nrbuf * HME_XD_SIZE;
    431 	/* Again move forward to the next 2048 byte boundary.*/
    432 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    433 	p = (void *)roundup((u_long)p, 2048);
    434 
    435 
    436 	/*
    437 	 * Allocate transmit buffers
    438 	 */
    439 	hr->rb_txbuf = p;
    440 	txbufdma = dma;
    441 	p += ntbuf * _HME_BUFSZ;
    442 	dma += ntbuf * _HME_BUFSZ;
    443 
    444 	/*
    445 	 * Allocate receive buffers
    446 	 */
    447 	hr->rb_rxbuf = p;
    448 	rxbufdma = dma;
    449 	p += nrbuf * _HME_BUFSZ;
    450 	dma += nrbuf * _HME_BUFSZ;
    451 
    452 	/*
    453 	 * Initialize transmit buffer descriptors
    454 	 */
    455 	for (i = 0; i < ntbuf; i++) {
    456 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    457 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    458 	}
    459 
    460 	/*
    461 	 * Initialize receive buffer descriptors
    462 	 */
    463 	for (i = 0; i < nrbuf; i++) {
    464 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    465 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    466 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    467 	}
    468 
    469 	hr->rb_tdhead = hr->rb_tdtail = 0;
    470 	hr->rb_td_nbusy = 0;
    471 	hr->rb_rdtail = 0;
    472 }
    473 
    474 /*
    475  * Initialization of interface; set up initialization block
    476  * and transmit/receive descriptor rings.
    477  */
    478 int
    479 hme_init(struct ifnet *ifp)
    480 {
    481 	struct hme_softc *sc = ifp->if_softc;
    482 	bus_space_tag_t t = sc->sc_bustag;
    483 	bus_space_handle_t seb = sc->sc_seb;
    484 	bus_space_handle_t etx = sc->sc_etx;
    485 	bus_space_handle_t erx = sc->sc_erx;
    486 	bus_space_handle_t mac = sc->sc_mac;
    487 	uint8_t *ea;
    488 	uint32_t v;
    489 	int rc;
    490 
    491 	/*
    492 	 * Initialization sequence. The numbered steps below correspond
    493 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    494 	 * Channel Engine manual (part of the PCIO manual).
    495 	 * See also the STP2002-STQ document from Sun Microsystems.
    496 	 */
    497 
    498 	/* step 1 & 2. Reset the Ethernet Channel */
    499 	hme_stop(ifp, 0);
    500 
    501 	/* Re-initialize the MIF */
    502 	hme_mifinit(sc);
    503 
    504 	/* Call MI reset function if any */
    505 	if (sc->sc_hwreset)
    506 		(*sc->sc_hwreset)(sc);
    507 
    508 #if 0
    509 	/* Mask all MIF interrupts, just in case */
    510 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    511 #endif
    512 
    513 	/* step 3. Setup data structures in host memory */
    514 	hme_meminit(sc);
    515 
    516 	/* step 4. TX MAC registers & counters */
    517 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    518 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    519 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    520 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    521 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    522 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    523 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    524 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    525 
    526 	/* Load station MAC address */
    527 	ea = sc->sc_enaddr;
    528 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    529 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    530 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    531 
    532 	/*
    533 	 * Init seed for backoff
    534 	 * (source suggested by manual: low 10 bits of MAC address)
    535 	 */
    536 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    537 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    538 
    539 
    540 	/* Note: Accepting power-on default for other MAC registers here.. */
    541 
    542 
    543 	/* step 5. RX MAC registers & counters */
    544 	hme_setladrf(sc);
    545 
    546 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    547 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    548 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    549 
    550 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    551 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    552 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    553 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    554 
    555 	/* step 8. Global Configuration & Interrupt Mask */
    556 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    557 			~(
    558 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    559 			  HME_SEB_STAT_HOSTTOTX |
    560 			  HME_SEB_STAT_RXTOHOST |
    561 			  HME_SEB_STAT_TXALL |
    562 			  HME_SEB_STAT_TXPERR |
    563 			  HME_SEB_STAT_RCNTEXP |
    564 			  HME_SEB_STAT_MIFIRQ |
    565 			  HME_SEB_STAT_ALL_ERRORS ));
    566 
    567 	switch (sc->sc_burst) {
    568 	default:
    569 		v = 0;
    570 		break;
    571 	case 16:
    572 		v = HME_SEB_CFG_BURST16;
    573 		break;
    574 	case 32:
    575 		v = HME_SEB_CFG_BURST32;
    576 		break;
    577 	case 64:
    578 		v = HME_SEB_CFG_BURST64;
    579 		break;
    580 	}
    581 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    582 
    583 	/* step 9. ETX Configuration: use mostly default values */
    584 
    585 	/* Enable DMA */
    586 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    587 	v |= HME_ETX_CFG_DMAENABLE;
    588 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    589 
    590 	/* Transmit Descriptor ring size: in increments of 16 */
    591 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    592 
    593 
    594 	/* step 10. ERX Configuration */
    595 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    596 
    597 	/* Encode Receive Descriptor ring size: four possible values */
    598 	switch (_HME_NDESC /*XXX*/) {
    599 	case 32:
    600 		v |= HME_ERX_CFG_RINGSIZE32;
    601 		break;
    602 	case 64:
    603 		v |= HME_ERX_CFG_RINGSIZE64;
    604 		break;
    605 	case 128:
    606 		v |= HME_ERX_CFG_RINGSIZE128;
    607 		break;
    608 	case 256:
    609 		v |= HME_ERX_CFG_RINGSIZE256;
    610 		break;
    611 	default:
    612 		printf("hme: invalid Receive Descriptor ring size\n");
    613 		break;
    614 	}
    615 
    616 	/* Enable DMA */
    617 	v |= HME_ERX_CFG_DMAENABLE;
    618 
    619 	/* set h/w rx checksum start offset (# of half-words) */
    620 #ifdef INET
    621 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    622 		<< HME_ERX_CFG_CSUMSHIFT) &
    623 		HME_ERX_CFG_CSUMSTART;
    624 #endif
    625 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    626 
    627 	/* step 11. XIF Configuration */
    628 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    629 	v |= HME_MAC_XIF_OE;
    630 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    631 
    632 	/* step 12. RX_MAC Configuration Register */
    633 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    634 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    635 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    636 
    637 	/* step 13. TX_MAC Configuration Register */
    638 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    639 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    640 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    641 
    642 	/* step 14. Issue Transmit Pending command */
    643 
    644 	/* Call MI initialization function if any */
    645 	if (sc->sc_hwinit)
    646 		(*sc->sc_hwinit)(sc);
    647 
    648 	/* Set the current media. */
    649 	if ((rc = hme_mediachange(ifp)) != 0)
    650 		return rc;
    651 
    652 	/* Start the one second timer. */
    653 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    654 
    655 	ifp->if_flags |= IFF_RUNNING;
    656 	ifp->if_flags &= ~IFF_OACTIVE;
    657 	sc->sc_if_flags = ifp->if_flags;
    658 	ifp->if_timer = 0;
    659 	hme_start(ifp);
    660 	return 0;
    661 }
    662 
    663 /*
    664  * Routine to copy from mbuf chain to transmit buffer in
    665  * network buffer memory.
    666  * Returns the amount of data copied.
    667  */
    668 int
    669 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    670 	/* ri:			 Ring index */
    671 {
    672 	struct mbuf *n;
    673 	int len, tlen = 0;
    674 	char *bp;
    675 
    676 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    677 	for (; m; m = n) {
    678 		len = m->m_len;
    679 		if (len == 0) {
    680 			MFREE(m, n);
    681 			continue;
    682 		}
    683 		memcpy(bp, mtod(m, void *), len);
    684 		bp += len;
    685 		tlen += len;
    686 		MFREE(m, n);
    687 	}
    688 	return (tlen);
    689 }
    690 
    691 /*
    692  * Pull data off an interface.
    693  * Len is length of data, with local net header stripped.
    694  * We copy the data into mbufs.  When full cluster sized units are present
    695  * we copy into clusters.
    696  */
    697 struct mbuf *
    698 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    699 {
    700 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    701 	struct mbuf *m, *m0, *newm;
    702 	char *bp;
    703 	int len, totlen;
    704 #ifdef INET
    705 	int csum_flags;
    706 #endif
    707 
    708 	totlen = HME_XD_DECODE_RSIZE(flags);
    709 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    710 	if (m0 == 0)
    711 		return (0);
    712 	m0->m_pkthdr.rcvif = ifp;
    713 	m0->m_pkthdr.len = totlen;
    714 	len = MHLEN;
    715 	m = m0;
    716 
    717 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    718 
    719 	while (totlen > 0) {
    720 		if (totlen >= MINCLSIZE) {
    721 			MCLGET(m, M_DONTWAIT);
    722 			if ((m->m_flags & M_EXT) == 0)
    723 				goto bad;
    724 			len = MCLBYTES;
    725 		}
    726 
    727 		if (m == m0) {
    728 			char *newdata = (char *)
    729 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    730 			    sizeof(struct ether_header);
    731 			len -= newdata - m->m_data;
    732 			m->m_data = newdata;
    733 		}
    734 
    735 		m->m_len = len = min(totlen, len);
    736 		memcpy(mtod(m, void *), bp, len);
    737 		bp += len;
    738 
    739 		totlen -= len;
    740 		if (totlen > 0) {
    741 			MGET(newm, M_DONTWAIT, MT_DATA);
    742 			if (newm == 0)
    743 				goto bad;
    744 			len = MLEN;
    745 			m = m->m_next = newm;
    746 		}
    747 	}
    748 
    749 #ifdef INET
    750 	/* hardware checksum */
    751 	csum_flags = 0;
    752 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    753 		struct ether_header *eh;
    754 		struct ether_vlan_header *evh;
    755 		struct ip *ip;
    756 		struct udphdr *uh;
    757 		uint16_t *opts;
    758 		int32_t hlen, pktlen;
    759 		uint32_t csum_data;
    760 
    761 		eh = mtod(m0, struct ether_header *);
    762 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    763 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    764 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    765 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    766 			evh = (struct ether_vlan_header *)eh;
    767 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
    768 				goto swcsum;
    769 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    770 			    ETHER_VLAN_ENCAP_LEN);
    771 			pktlen = m0->m_pkthdr.len -
    772 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    773 		} else
    774 			goto swcsum;
    775 
    776 		/* IPv4 only */
    777 		if (ip->ip_v != IPVERSION)
    778 			goto swcsum;
    779 
    780 		hlen = ip->ip_hl << 2;
    781 		if (hlen < sizeof(struct ip))
    782 			goto swcsum;
    783 
    784 		/*
    785 		 * bail if too short, has random trailing garbage, truncated,
    786 		 * fragment, or has ethernet pad.
    787 		 */
    788 		if (ntohs(ip->ip_len) < hlen ||
    789 		    ntohs(ip->ip_len) != pktlen ||
    790 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    791 			goto swcsum;
    792 
    793 		switch (ip->ip_p) {
    794 		case IPPROTO_TCP:
    795 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    796 				goto swcsum;
    797 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    798 				goto swcsum;
    799 			csum_flags =
    800 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    801 			break;
    802 		case IPPROTO_UDP:
    803 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    804 				goto swcsum;
    805 			if (pktlen < (hlen + sizeof(struct udphdr)))
    806 				goto swcsum;
    807 			uh = (struct udphdr *)((char *)ip + hlen);
    808 			/* no checksum */
    809 			if (uh->uh_sum == 0)
    810 				goto swcsum;
    811 			csum_flags =
    812 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    813 			break;
    814 		default:
    815 			goto swcsum;
    816 		}
    817 
    818 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    819 		csum_data = ~flags & HME_XD_RXCKSUM;
    820 
    821 		/*
    822 		 * If data offset is different from RX cksum start offset,
    823 		 * we have to deduct them.
    824 		 */
    825 		hlen = ((char *)ip + hlen) -
    826 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    827 		if (hlen > 1) {
    828 			uint32_t optsum;
    829 
    830 			optsum = 0;
    831 			opts = (uint16_t *)((char *)eh +
    832 			    ETHER_HDR_LEN + sizeof(struct ip));
    833 
    834 			while (hlen > 1) {
    835 				optsum += ntohs(*opts++);
    836 				hlen -= 2;
    837 			}
    838 			while (optsum >> 16)
    839 				optsum = (optsum >> 16) + (optsum & 0xffff);
    840 
    841 			/* Deduct the ip opts sum from the hwsum. */
    842 			csum_data += (uint16_t)~optsum;
    843 
    844 			while (csum_data >> 16)
    845 				csum_data =
    846 				    (csum_data >> 16) + (csum_data & 0xffff);
    847 		}
    848 		m0->m_pkthdr.csum_data = csum_data;
    849 	}
    850 swcsum:
    851 	m0->m_pkthdr.csum_flags = csum_flags;
    852 #endif
    853 
    854 	return (m0);
    855 
    856 bad:
    857 	m_freem(m0);
    858 	return (0);
    859 }
    860 
    861 /*
    862  * Pass a packet to the higher levels.
    863  */
    864 void
    865 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    866 {
    867 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    868 	struct mbuf *m;
    869 	int len;
    870 
    871 	len = HME_XD_DECODE_RSIZE(flags);
    872 	if (len <= sizeof(struct ether_header) ||
    873 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    874 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    875 	    ETHERMTU + sizeof(struct ether_header))) {
    876 #ifdef HMEDEBUG
    877 		printf("%s: invalid packet size %d; dropping\n",
    878 		    device_xname(sc->sc_dev), len);
    879 #endif
    880 		ifp->if_ierrors++;
    881 		return;
    882 	}
    883 
    884 	/* Pull packet off interface. */
    885 	m = hme_get(sc, ix, flags);
    886 	if (m == 0) {
    887 		ifp->if_ierrors++;
    888 		return;
    889 	}
    890 
    891 	ifp->if_ipackets++;
    892 
    893 	/*
    894 	 * Check if there's a BPF listener on this interface.
    895 	 * If so, hand off the raw packet to BPF.
    896 	 */
    897 	bpf_mtap(ifp, m);
    898 
    899 	/* Pass the packet up. */
    900 	(*ifp->if_input)(ifp, m);
    901 }
    902 
    903 void
    904 hme_start(struct ifnet *ifp)
    905 {
    906 	struct hme_softc *sc = ifp->if_softc;
    907 	void *txd = sc->sc_rb.rb_txd;
    908 	struct mbuf *m;
    909 	unsigned int txflags;
    910 	unsigned int ri, len, obusy;
    911 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    912 
    913 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    914 		return;
    915 
    916 	ri = sc->sc_rb.rb_tdhead;
    917 	obusy = sc->sc_rb.rb_td_nbusy;
    918 
    919 	for (;;) {
    920 		IFQ_DEQUEUE(&ifp->if_snd, m);
    921 		if (m == 0)
    922 			break;
    923 
    924 		/*
    925 		 * If BPF is listening on this interface, let it see the
    926 		 * packet before we commit it to the wire.
    927 		 */
    928 		bpf_mtap(ifp, m);
    929 
    930 #ifdef INET
    931 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    932 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    933 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    934 			struct ether_header *eh;
    935 			uint16_t offset, start;
    936 
    937 			eh = mtod(m, struct ether_header *);
    938 			switch (ntohs(eh->ether_type)) {
    939 			case ETHERTYPE_IP:
    940 				start = ETHER_HDR_LEN;
    941 				break;
    942 			case ETHERTYPE_VLAN:
    943 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    944 				break;
    945 			default:
    946 				/* unsupported, drop it */
    947 				m_free(m);
    948 				continue;
    949 			}
    950 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    951 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    952 			    + start;
    953 			txflags = HME_XD_TXCKSUM |
    954 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    955 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    956 		} else
    957 #endif
    958 			txflags = 0;
    959 
    960 		/*
    961 		 * Copy the mbuf chain into the transmit buffer.
    962 		 */
    963 		len = hme_put(sc, ri, m);
    964 
    965 		/*
    966 		 * Initialize transmit registers and start transmission
    967 		 */
    968 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    969 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    970 			HME_XD_ENCODE_TSIZE(len) | txflags);
    971 
    972 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    973 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    974 				  HME_ETX_TP_DMAWAKEUP);
    975 
    976 		if (++ri == ntbuf)
    977 			ri = 0;
    978 
    979 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    980 			ifp->if_flags |= IFF_OACTIVE;
    981 			break;
    982 		}
    983 	}
    984 
    985 	if (obusy != sc->sc_rb.rb_td_nbusy) {
    986 		sc->sc_rb.rb_tdhead = ri;
    987 		ifp->if_timer = 5;
    988 	}
    989 }
    990 
    991 /*
    992  * Transmit interrupt.
    993  */
    994 int
    995 hme_tint(struct hme_softc *sc)
    996 {
    997 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    998 	bus_space_tag_t t = sc->sc_bustag;
    999 	bus_space_handle_t mac = sc->sc_mac;
   1000 	unsigned int ri, txflags;
   1001 
   1002 	/*
   1003 	 * Unload collision counters
   1004 	 */
   1005 	ifp->if_collisions +=
   1006 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
   1007 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
   1008 	ifp->if_oerrors +=
   1009 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
   1010 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1011 
   1012 	/*
   1013 	 * then clear the hardware counters.
   1014 	 */
   1015 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1016 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1017 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1018 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1019 
   1020 	/* Fetch current position in the transmit ring */
   1021 	ri = sc->sc_rb.rb_tdtail;
   1022 
   1023 	for (;;) {
   1024 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1025 			break;
   1026 
   1027 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1028 
   1029 		if (txflags & HME_XD_OWN)
   1030 			break;
   1031 
   1032 		ifp->if_flags &= ~IFF_OACTIVE;
   1033 		ifp->if_opackets++;
   1034 
   1035 		if (++ri == sc->sc_rb.rb_ntbuf)
   1036 			ri = 0;
   1037 
   1038 		--sc->sc_rb.rb_td_nbusy;
   1039 	}
   1040 
   1041 	/* Update ring */
   1042 	sc->sc_rb.rb_tdtail = ri;
   1043 
   1044 	hme_start(ifp);
   1045 
   1046 	if (sc->sc_rb.rb_td_nbusy == 0)
   1047 		ifp->if_timer = 0;
   1048 
   1049 	return (1);
   1050 }
   1051 
   1052 /*
   1053  * Receive interrupt.
   1054  */
   1055 int
   1056 hme_rint(struct hme_softc *sc)
   1057 {
   1058 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1059 	bus_space_tag_t t = sc->sc_bustag;
   1060 	bus_space_handle_t mac = sc->sc_mac;
   1061 	void *xdr = sc->sc_rb.rb_rxd;
   1062 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1063 	unsigned int ri;
   1064 	uint32_t flags;
   1065 
   1066 	ri = sc->sc_rb.rb_rdtail;
   1067 
   1068 	/*
   1069 	 * Process all buffers with valid data.
   1070 	 */
   1071 	for (;;) {
   1072 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1073 		if (flags & HME_XD_OWN)
   1074 			break;
   1075 
   1076 		if (flags & HME_XD_OFL) {
   1077 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1078 					device_xname(sc->sc_dev), ri, flags);
   1079 		} else
   1080 			hme_read(sc, ri, flags);
   1081 
   1082 		/* This buffer can be used by the hardware again */
   1083 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1084 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1085 
   1086 		if (++ri == nrbuf)
   1087 			ri = 0;
   1088 	}
   1089 
   1090 	sc->sc_rb.rb_rdtail = ri;
   1091 
   1092 	/* Read error counters ... */
   1093 	ifp->if_ierrors +=
   1094 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
   1095 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
   1096 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
   1097 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
   1098 
   1099 	/* ... then clear the hardware counters. */
   1100 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
   1101 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
   1102 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
   1103 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
   1104 	return (1);
   1105 }
   1106 
   1107 int
   1108 hme_eint(struct hme_softc *sc, u_int status)
   1109 {
   1110 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1111 	char bits[128];
   1112 
   1113 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1114 		bus_space_tag_t t = sc->sc_bustag;
   1115 		bus_space_handle_t mif = sc->sc_mif;
   1116 		uint32_t cf, st, sm;
   1117 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1118 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1119 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1120 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1121 			device_xname(sc->sc_dev), cf, st, sm);
   1122 		return (1);
   1123 	}
   1124 
   1125 	/* Receive error counters rolled over */
   1126 	if (status & HME_SEB_STAT_ACNTEXP)
   1127 		ifp->if_ierrors += 0xff;
   1128 	if (status & HME_SEB_STAT_CCNTEXP)
   1129 		ifp->if_ierrors += 0xff;
   1130 	if (status & HME_SEB_STAT_LCNTEXP)
   1131 		ifp->if_ierrors += 0xff;
   1132 	if (status & HME_SEB_STAT_CVCNTEXP)
   1133 		ifp->if_ierrors += 0xff;
   1134 
   1135 	/* RXTERR locks up the interface, so do a reset */
   1136 	if (status & HME_SEB_STAT_RXTERR)
   1137 		hme_reset(sc);
   1138 
   1139 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1140 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   1141 
   1142 	return (1);
   1143 }
   1144 
   1145 int
   1146 hme_intr(void *v)
   1147 {
   1148 	struct hme_softc *sc = v;
   1149 	bus_space_tag_t t = sc->sc_bustag;
   1150 	bus_space_handle_t seb = sc->sc_seb;
   1151 	uint32_t status;
   1152 	int r = 0;
   1153 
   1154 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1155 
   1156 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1157 		r |= hme_eint(sc, status);
   1158 
   1159 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1160 		r |= hme_tint(sc);
   1161 
   1162 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1163 		r |= hme_rint(sc);
   1164 
   1165 #if NRND > 0
   1166 	rnd_add_uint32(&sc->rnd_source, status);
   1167 #endif
   1168 
   1169 	return (r);
   1170 }
   1171 
   1172 
   1173 void
   1174 hme_watchdog(struct ifnet *ifp)
   1175 {
   1176 	struct hme_softc *sc = ifp->if_softc;
   1177 
   1178 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1179 	++ifp->if_oerrors;
   1180 
   1181 	hme_reset(sc);
   1182 }
   1183 
   1184 /*
   1185  * Initialize the MII Management Interface
   1186  */
   1187 void
   1188 hme_mifinit(struct hme_softc *sc)
   1189 {
   1190 	bus_space_tag_t t = sc->sc_bustag;
   1191 	bus_space_handle_t mif = sc->sc_mif;
   1192 	bus_space_handle_t mac = sc->sc_mac;
   1193 	int instance, phy;
   1194 	uint32_t v;
   1195 
   1196 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1197 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1198 		phy = sc->sc_phys[instance];
   1199 	} else
   1200 		/* No media set yet, pick phy arbitrarily.. */
   1201 		phy = HME_PHYAD_EXTERNAL;
   1202 
   1203 	/* Configure the MIF in frame mode, no poll, current phy select */
   1204 	v = 0;
   1205 	if (phy == HME_PHYAD_EXTERNAL)
   1206 		v |= HME_MIF_CFG_PHY;
   1207 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1208 
   1209 	/* If an external transceiver is selected, enable its MII drivers */
   1210 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1211 	v &= ~HME_MAC_XIF_MIIENABLE;
   1212 	if (phy == HME_PHYAD_EXTERNAL)
   1213 		v |= HME_MAC_XIF_MIIENABLE;
   1214 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1215 }
   1216 
   1217 /*
   1218  * MII interface
   1219  */
   1220 static int
   1221 hme_mii_readreg(device_t self, int phy, int reg)
   1222 {
   1223 	struct hme_softc *sc = device_private(self);
   1224 	bus_space_tag_t t = sc->sc_bustag;
   1225 	bus_space_handle_t mif = sc->sc_mif;
   1226 	bus_space_handle_t mac = sc->sc_mac;
   1227 	uint32_t v, xif_cfg, mifi_cfg;
   1228 	int n;
   1229 
   1230 	/* We can at most have two PHYs */
   1231 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1232 		return (0);
   1233 
   1234 	/* Select the desired PHY in the MIF configuration register */
   1235 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1236 	v &= ~HME_MIF_CFG_PHY;
   1237 	if (phy == HME_PHYAD_EXTERNAL)
   1238 		v |= HME_MIF_CFG_PHY;
   1239 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1240 
   1241 	/* Enable MII drivers on external transceiver */
   1242 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1243 	if (phy == HME_PHYAD_EXTERNAL)
   1244 		v |= HME_MAC_XIF_MIIENABLE;
   1245 	else
   1246 		v &= ~HME_MAC_XIF_MIIENABLE;
   1247 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1248 
   1249 #if 0
   1250 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1251 	/*
   1252 	 * Check whether a transceiver is connected by testing
   1253 	 * the MIF configuration register's MDI_X bits. Note that
   1254 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1255 	 */
   1256 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1257 	delay(100);
   1258 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1259 	if ((v & mif_mdi_bit) == 0)
   1260 		return (0);
   1261 #endif
   1262 
   1263 	/* Construct the frame command */
   1264 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1265 	    HME_MIF_FO_TAMSB |
   1266 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1267 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1268 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1269 
   1270 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1271 	for (n = 0; n < 100; n++) {
   1272 		DELAY(1);
   1273 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1274 		if (v & HME_MIF_FO_TALSB) {
   1275 			v &= HME_MIF_FO_DATA;
   1276 			goto out;
   1277 		}
   1278 	}
   1279 
   1280 	v = 0;
   1281 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   1282 
   1283 out:
   1284 	/* Restore MIFI_CFG register */
   1285 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1286 	/* Restore XIF register */
   1287 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1288 	return (v);
   1289 }
   1290 
   1291 static void
   1292 hme_mii_writereg(device_t self, int phy, int reg, int val)
   1293 {
   1294 	struct hme_softc *sc = device_private(self);
   1295 	bus_space_tag_t t = sc->sc_bustag;
   1296 	bus_space_handle_t mif = sc->sc_mif;
   1297 	bus_space_handle_t mac = sc->sc_mac;
   1298 	uint32_t v, xif_cfg, mifi_cfg;
   1299 	int n;
   1300 
   1301 	/* We can at most have two PHYs */
   1302 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1303 		return;
   1304 
   1305 	/* Select the desired PHY in the MIF configuration register */
   1306 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1307 	v &= ~HME_MIF_CFG_PHY;
   1308 	if (phy == HME_PHYAD_EXTERNAL)
   1309 		v |= HME_MIF_CFG_PHY;
   1310 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1311 
   1312 	/* Enable MII drivers on external transceiver */
   1313 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1314 	if (phy == HME_PHYAD_EXTERNAL)
   1315 		v |= HME_MAC_XIF_MIIENABLE;
   1316 	else
   1317 		v &= ~HME_MAC_XIF_MIIENABLE;
   1318 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1319 
   1320 #if 0
   1321 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1322 	/*
   1323 	 * Check whether a transceiver is connected by testing
   1324 	 * the MIF configuration register's MDI_X bits. Note that
   1325 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1326 	 */
   1327 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1328 	delay(100);
   1329 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1330 	if ((v & mif_mdi_bit) == 0)
   1331 		return;
   1332 #endif
   1333 
   1334 	/* Construct the frame command */
   1335 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1336 	    HME_MIF_FO_TAMSB				|
   1337 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1338 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1339 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1340 	    (val & HME_MIF_FO_DATA);
   1341 
   1342 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1343 	for (n = 0; n < 100; n++) {
   1344 		DELAY(1);
   1345 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1346 		if (v & HME_MIF_FO_TALSB)
   1347 			goto out;
   1348 	}
   1349 
   1350 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   1351 out:
   1352 	/* Restore MIFI_CFG register */
   1353 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1354 	/* Restore XIF register */
   1355 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1356 }
   1357 
   1358 static void
   1359 hme_mii_statchg(device_t dev)
   1360 {
   1361 	struct hme_softc *sc = device_private(dev);
   1362 	bus_space_tag_t t = sc->sc_bustag;
   1363 	bus_space_handle_t mac = sc->sc_mac;
   1364 	uint32_t v;
   1365 
   1366 #ifdef HMEDEBUG
   1367 	if (sc->sc_debug)
   1368 		printf("hme_mii_statchg: status change\n");
   1369 #endif
   1370 
   1371 	/* Set the MAC Full Duplex bit appropriately */
   1372 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1373 	   but not otherwise. */
   1374 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1375 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1376 		v |= HME_MAC_TXCFG_FULLDPLX;
   1377 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1378 	} else {
   1379 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1380 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1381 	}
   1382 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1383 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1384 }
   1385 
   1386 int
   1387 hme_mediachange(struct ifnet *ifp)
   1388 {
   1389 	struct hme_softc *sc = ifp->if_softc;
   1390 	bus_space_tag_t t = sc->sc_bustag;
   1391 	bus_space_handle_t mif = sc->sc_mif;
   1392 	bus_space_handle_t mac = sc->sc_mac;
   1393 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1394 	int phy = sc->sc_phys[instance];
   1395 	int rc;
   1396 	uint32_t v;
   1397 
   1398 #ifdef HMEDEBUG
   1399 	if (sc->sc_debug)
   1400 		printf("hme_mediachange: phy = %d\n", phy);
   1401 #endif
   1402 
   1403 	/* Select the current PHY in the MIF configuration register */
   1404 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1405 	v &= ~HME_MIF_CFG_PHY;
   1406 	if (phy == HME_PHYAD_EXTERNAL)
   1407 		v |= HME_MIF_CFG_PHY;
   1408 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1409 
   1410 	/* If an external transceiver is selected, enable its MII drivers */
   1411 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1412 	v &= ~HME_MAC_XIF_MIIENABLE;
   1413 	if (phy == HME_PHYAD_EXTERNAL)
   1414 		v |= HME_MAC_XIF_MIIENABLE;
   1415 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1416 
   1417 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1418 		return 0;
   1419 	return rc;
   1420 }
   1421 
   1422 /*
   1423  * Process an ioctl request.
   1424  */
   1425 int
   1426 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1427 {
   1428 	struct hme_softc *sc = ifp->if_softc;
   1429 	struct ifaddr *ifa = (struct ifaddr *)data;
   1430 	int s, error = 0;
   1431 
   1432 	s = splnet();
   1433 
   1434 	switch (cmd) {
   1435 
   1436 	case SIOCINITIFADDR:
   1437 		switch (ifa->ifa_addr->sa_family) {
   1438 #ifdef INET
   1439 		case AF_INET:
   1440 			if (ifp->if_flags & IFF_UP)
   1441 				hme_setladrf(sc);
   1442 			else {
   1443 				ifp->if_flags |= IFF_UP;
   1444 				error = hme_init(ifp);
   1445 			}
   1446 			arp_ifinit(ifp, ifa);
   1447 			break;
   1448 #endif
   1449 		default:
   1450 			ifp->if_flags |= IFF_UP;
   1451 			error = hme_init(ifp);
   1452 			break;
   1453 		}
   1454 		break;
   1455 
   1456 	case SIOCSIFFLAGS:
   1457 #ifdef HMEDEBUG
   1458 		{
   1459 			struct ifreq *ifr = data;
   1460 			sc->sc_debug =
   1461 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1462 		}
   1463 #endif
   1464 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1465 			break;
   1466 
   1467 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1468 		case IFF_RUNNING:
   1469 			/*
   1470 			 * If interface is marked down and it is running, then
   1471 			 * stop it.
   1472 			 */
   1473 			hme_stop(ifp, 0);
   1474 			ifp->if_flags &= ~IFF_RUNNING;
   1475 			break;
   1476 		case IFF_UP:
   1477 			/*
   1478 			 * If interface is marked up and it is stopped, then
   1479 			 * start it.
   1480 			 */
   1481 			error = hme_init(ifp);
   1482 			break;
   1483 		case IFF_UP|IFF_RUNNING:
   1484 			/*
   1485 			 * If setting debug or promiscuous mode, do not reset
   1486 			 * the chip; for everything else, call hme_init()
   1487 			 * which will trigger a reset.
   1488 			 */
   1489 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1490 			if (ifp->if_flags != sc->sc_if_flags) {
   1491 				if ((ifp->if_flags & (~RESETIGN))
   1492 				    == (sc->sc_if_flags & (~RESETIGN)))
   1493 					hme_setladrf(sc);
   1494 				else
   1495 					error = hme_init(ifp);
   1496 			}
   1497 #undef RESETIGN
   1498 			break;
   1499 		case 0:
   1500 			break;
   1501 		}
   1502 
   1503 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1504 			error = hme_init(ifp);
   1505 
   1506 		break;
   1507 
   1508 	default:
   1509 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1510 			break;
   1511 
   1512 		error = 0;
   1513 
   1514 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1515 			;
   1516 		else if (ifp->if_flags & IFF_RUNNING) {
   1517 			/*
   1518 			 * Multicast list has changed; set the hardware filter
   1519 			 * accordingly.
   1520 			 */
   1521 			hme_setladrf(sc);
   1522 		}
   1523 		break;
   1524 	}
   1525 
   1526 	sc->sc_if_flags = ifp->if_flags;
   1527 	splx(s);
   1528 	return (error);
   1529 }
   1530 
   1531 bool
   1532 hme_shutdown(device_t self, int howto)
   1533 {
   1534 	struct hme_softc *sc;
   1535 	struct ifnet *ifp;
   1536 
   1537 	sc = device_private(self);
   1538 	ifp = &sc->sc_ethercom.ec_if;
   1539 	hme_stop(ifp, 1);
   1540 
   1541 	return true;
   1542 }
   1543 
   1544 /*
   1545  * Set up the logical address filter.
   1546  */
   1547 void
   1548 hme_setladrf(struct hme_softc *sc)
   1549 {
   1550 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1551 	struct ether_multi *enm;
   1552 	struct ether_multistep step;
   1553 	struct ethercom *ec = &sc->sc_ethercom;
   1554 	bus_space_tag_t t = sc->sc_bustag;
   1555 	bus_space_handle_t mac = sc->sc_mac;
   1556 	uint32_t v;
   1557 	uint32_t crc;
   1558 	uint32_t hash[4];
   1559 
   1560 	/* Clear hash table */
   1561 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1562 
   1563 	/* Get current RX configuration */
   1564 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1565 
   1566 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1567 		/* Turn on promiscuous mode; turn off the hash filter */
   1568 		v |= HME_MAC_RXCFG_PMISC;
   1569 		v &= ~HME_MAC_RXCFG_HENABLE;
   1570 		ifp->if_flags |= IFF_ALLMULTI;
   1571 		goto chipit;
   1572 	}
   1573 
   1574 	/* Turn off promiscuous mode; turn on the hash filter */
   1575 	v &= ~HME_MAC_RXCFG_PMISC;
   1576 	v |= HME_MAC_RXCFG_HENABLE;
   1577 
   1578 	/*
   1579 	 * Set up multicast address filter by passing all multicast addresses
   1580 	 * through a crc generator, and then using the high order 6 bits as an
   1581 	 * index into the 64 bit logical address filter.  The high order bit
   1582 	 * selects the word, while the rest of the bits select the bit within
   1583 	 * the word.
   1584 	 */
   1585 
   1586 	ETHER_FIRST_MULTI(step, ec, enm);
   1587 	while (enm != NULL) {
   1588 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1589 			/*
   1590 			 * We must listen to a range of multicast addresses.
   1591 			 * For now, just accept all multicasts, rather than
   1592 			 * trying to set only those filter bits needed to match
   1593 			 * the range.  (At this time, the only use of address
   1594 			 * ranges is for IP multicast routing, for which the
   1595 			 * range is big enough to require all bits set.)
   1596 			 */
   1597 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1598 			ifp->if_flags |= IFF_ALLMULTI;
   1599 			goto chipit;
   1600 		}
   1601 
   1602 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1603 
   1604 		/* Just want the 6 most significant bits. */
   1605 		crc >>= 26;
   1606 
   1607 		/* Set the corresponding bit in the filter. */
   1608 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1609 
   1610 		ETHER_NEXT_MULTI(step, enm);
   1611 	}
   1612 
   1613 	ifp->if_flags &= ~IFF_ALLMULTI;
   1614 
   1615 chipit:
   1616 	/* Now load the hash table into the chip */
   1617 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1618 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1619 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1620 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1621 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1622 }
   1623 
   1624 /*
   1625  * Routines for accessing the transmit and receive buffers.
   1626  * The various CPU and adapter configurations supported by this
   1627  * driver require three different access methods for buffers
   1628  * and descriptors:
   1629  *	(1) contig (contiguous data; no padding),
   1630  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1631  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1632  */
   1633 
   1634 #if 0
   1635 /*
   1636  * contig: contiguous data with no padding.
   1637  *
   1638  * Buffers may have any alignment.
   1639  */
   1640 
   1641 void
   1642 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1643 {
   1644 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1645 
   1646 	/*
   1647 	 * Just call memcpy() to do the work.
   1648 	 */
   1649 	memcpy(buf, from, len);
   1650 }
   1651 
   1652 void
   1653 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1654 {
   1655 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1656 
   1657 	/*
   1658 	 * Just call memcpy() to do the work.
   1659 	 */
   1660 	memcpy(to, buf, len);
   1661 }
   1662 #endif
   1663