Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.66.14.1
      1 /*	$NetBSD: hme.c,v 1.66.14.1 2010/04/21 00:27:36 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.66.14.1 2010/04/21 00:27:36 matt Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 #include "bpfilter.h"
     43 #include "rnd.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/socket.h>
     51 #include <sys/device.h>
     52 #include <sys/malloc.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #if NRND > 0
     56 #include <sys/rnd.h>
     57 #endif
     58 
     59 #include <net/if.h>
     60 #include <net/if_dl.h>
     61 #include <net/if_ether.h>
     62 #include <net/if_media.h>
     63 
     64 #ifdef INET
     65 #include <netinet/in.h>
     66 #include <netinet/if_inarp.h>
     67 #include <netinet/in_systm.h>
     68 #include <netinet/in_var.h>
     69 #include <netinet/ip.h>
     70 #include <netinet/tcp.h>
     71 #include <netinet/udp.h>
     72 #endif
     73 
     74 
     75 #if NBPFILTER > 0
     76 #include <net/bpf.h>
     77 #include <net/bpfdesc.h>
     78 #endif
     79 
     80 #include <dev/mii/mii.h>
     81 #include <dev/mii/miivar.h>
     82 
     83 #include <sys/bus.h>
     84 
     85 #include <dev/ic/hmereg.h>
     86 #include <dev/ic/hmevar.h>
     87 
     88 void		hme_start(struct ifnet *);
     89 void		hme_stop(struct hme_softc *,bool);
     90 int		hme_ioctl(struct ifnet *, u_long, void *);
     91 void		hme_tick(void *);
     92 void		hme_watchdog(struct ifnet *);
     93 void		hme_shutdown(void *);
     94 int		hme_init(struct ifnet *);
     95 void		hme_meminit(struct hme_softc *);
     96 void		hme_mifinit(struct hme_softc *);
     97 void		hme_reset(struct hme_softc *);
     98 void		hme_setladrf(struct hme_softc *);
     99 
    100 /* MII methods & callbacks */
    101 static int	hme_mii_readreg(struct device *, int, int);
    102 static void	hme_mii_writereg(struct device *, int, int, int);
    103 static void	hme_mii_statchg(struct device *);
    104 
    105 int		hme_mediachange(struct ifnet *);
    106 
    107 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    108 int		hme_put(struct hme_softc *, int, struct mbuf *);
    109 void		hme_read(struct hme_softc *, int, uint32_t);
    110 int		hme_eint(struct hme_softc *, u_int);
    111 int		hme_rint(struct hme_softc *);
    112 int		hme_tint(struct hme_softc *);
    113 
    114 /* Default buffer copy routines */
    115 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    116 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    117 void	hme_zerobuf_contig(struct hme_softc *, int, int);
    118 
    119 
    120 void
    121 hme_config(sc)
    122 	struct hme_softc *sc;
    123 {
    124 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    125 	struct mii_data *mii = &sc->sc_mii;
    126 	struct mii_softc *child;
    127 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    128 	bus_dma_segment_t seg;
    129 	bus_size_t size;
    130 	int rseg, error;
    131 
    132 	/*
    133 	 * HME common initialization.
    134 	 *
    135 	 * hme_softc fields that must be initialized by the front-end:
    136 	 *
    137 	 * the bus tag:
    138 	 *	sc_bustag
    139 	 *
    140 	 * the DMA bus tag:
    141 	 *	sc_dmatag
    142 	 *
    143 	 * the bus handles:
    144 	 *	sc_seb		(Shared Ethernet Block registers)
    145 	 *	sc_erx		(Receiver Unit registers)
    146 	 *	sc_etx		(Transmitter Unit registers)
    147 	 *	sc_mac		(MAC registers)
    148 	 *	sc_mif		(Management Interface registers)
    149 	 *
    150 	 * the maximum bus burst size:
    151 	 *	sc_burst
    152 	 *
    153 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    154 	 *	rb_membase, rb_dmabase)
    155 	 *
    156 	 * the local Ethernet address:
    157 	 *	sc_enaddr
    158 	 *
    159 	 */
    160 
    161 	/* Make sure the chip is stopped. */
    162 	hme_stop(sc, true);
    163 
    164 
    165 	/*
    166 	 * Allocate descriptors and buffers
    167 	 * XXX - do all this differently.. and more configurably,
    168 	 * eg. use things as `dma_load_mbuf()' on transmit,
    169 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    170 	 *     all the time) on the receiver side.
    171 	 *
    172 	 * Note: receive buffers must be 64-byte aligned.
    173 	 * Also, apparently, the buffers must extend to a DMA burst
    174 	 * boundary beyond the maximum packet size.
    175 	 */
    176 #define _HME_NDESC	128
    177 #define _HME_BUFSZ	1600
    178 
    179 	/* Note: the # of descriptors must be a multiple of 16 */
    180 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    181 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    182 
    183 	/*
    184 	 * Allocate DMA capable memory
    185 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    186 	 * take this into account when calculating the size. Note that
    187 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    188 	 * so we allocate that much regardless of _HME_NDESC.
    189 	 */
    190 	size =	2048 +					/* TX descriptors */
    191 		2048 +					/* RX descriptors */
    192 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    193 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    194 
    195 	/* Allocate DMA buffer */
    196 	if ((error = bus_dmamem_alloc(dmatag, size,
    197 				      2048, 0,
    198 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    199 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
    200 			error);
    201 		return;
    202 	}
    203 
    204 	/* Map DMA memory in CPU addressable space */
    205 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    206 				    &sc->sc_rb.rb_membase,
    207 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    208 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
    209 			error);
    210 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    211 		bus_dmamem_free(dmatag, &seg, rseg);
    212 		return;
    213 	}
    214 
    215 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    216 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    217 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
    218 			error);
    219 		return;
    220 	}
    221 
    222 	/* Load the buffer */
    223 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    224 	    sc->sc_rb.rb_membase, size, NULL,
    225 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    226 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
    227 			error);
    228 		bus_dmamem_free(dmatag, &seg, rseg);
    229 		return;
    230 	}
    231 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    232 
    233 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    234 	    ether_sprintf(sc->sc_enaddr));
    235 
    236 	/* Initialize ifnet structure. */
    237 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    238 	ifp->if_softc = sc;
    239 	ifp->if_start = hme_start;
    240 	ifp->if_ioctl = hme_ioctl;
    241 	ifp->if_init = hme_init;
    242 	ifp->if_watchdog = hme_watchdog;
    243 	ifp->if_flags =
    244 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    245 	sc->sc_if_flags = ifp->if_flags;
    246 	ifp->if_capabilities |=
    247 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    248 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    249 	IFQ_SET_READY(&ifp->if_snd);
    250 
    251 	/* Initialize ifmedia structures and MII info */
    252 	mii->mii_ifp = ifp;
    253 	mii->mii_readreg = hme_mii_readreg;
    254 	mii->mii_writereg = hme_mii_writereg;
    255 	mii->mii_statchg = hme_mii_statchg;
    256 
    257 	sc->sc_ethercom.ec_mii = mii;
    258 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    259 
    260 	hme_mifinit(sc);
    261 
    262 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    263 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    264 
    265 	child = LIST_FIRST(&mii->mii_phys);
    266 	if (child == NULL) {
    267 		/* No PHY attached */
    268 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    269 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    270 	} else {
    271 		/*
    272 		 * Walk along the list of attached MII devices and
    273 		 * establish an `MII instance' to `phy number'
    274 		 * mapping. We'll use this mapping in media change
    275 		 * requests to determine which phy to use to program
    276 		 * the MIF configuration register.
    277 		 */
    278 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    279 			/*
    280 			 * Note: we support just two PHYs: the built-in
    281 			 * internal device and an external on the MII
    282 			 * connector.
    283 			 */
    284 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    285 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
    286 				       " at phy %d, instance %d\n",
    287 				       device_xname(child->mii_dev),
    288 				       child->mii_phy, child->mii_inst);
    289 				continue;
    290 			}
    291 
    292 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    293 		}
    294 
    295 		/*
    296 		 * XXX - we can really do the following ONLY if the
    297 		 * phy indeed has the auto negotiation capability!!
    298 		 */
    299 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    300 	}
    301 
    302 	/* claim 802.1q capability */
    303 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    304 
    305 	/* Attach the interface. */
    306 	if_attach(ifp);
    307 	ether_ifattach(ifp, sc->sc_enaddr);
    308 
    309 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    310 	if (sc->sc_sh == NULL)
    311 		panic("hme_config: can't establish shutdownhook");
    312 
    313 #if NRND > 0
    314 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    315 			  RND_TYPE_NET, 0);
    316 #endif
    317 
    318 	callout_init(&sc->sc_tick_ch, 0);
    319 }
    320 
    321 void
    322 hme_tick(arg)
    323 	void *arg;
    324 {
    325 	struct hme_softc *sc = arg;
    326 	int s;
    327 
    328 	s = splnet();
    329 	mii_tick(&sc->sc_mii);
    330 	splx(s);
    331 
    332 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    333 }
    334 
    335 void
    336 hme_reset(sc)
    337 	struct hme_softc *sc;
    338 {
    339 	int s;
    340 
    341 	s = splnet();
    342 	(void)hme_init(&sc->sc_ethercom.ec_if);
    343 	splx(s);
    344 }
    345 
    346 void
    347 hme_stop(struct hme_softc *sc, bool chip_only)
    348 {
    349 	bus_space_tag_t t = sc->sc_bustag;
    350 	bus_space_handle_t seb = sc->sc_seb;
    351 	int n;
    352 
    353 	if (!chip_only) {
    354 		callout_stop(&sc->sc_tick_ch);
    355 		mii_down(&sc->sc_mii);
    356 	}
    357 
    358 	/* Mask all interrupts */
    359 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    360 
    361 	/* Reset transmitter and receiver */
    362 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    363 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    364 
    365 	for (n = 0; n < 20; n++) {
    366 		u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    367 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    368 			return;
    369 		DELAY(20);
    370 	}
    371 
    372 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
    373 }
    374 
    375 void
    376 hme_meminit(sc)
    377 	struct hme_softc *sc;
    378 {
    379 	bus_addr_t txbufdma, rxbufdma;
    380 	bus_addr_t dma;
    381 	char *p;
    382 	unsigned int ntbuf, nrbuf, i;
    383 	struct hme_ring *hr = &sc->sc_rb;
    384 
    385 	p = hr->rb_membase;
    386 	dma = hr->rb_dmabase;
    387 
    388 	ntbuf = hr->rb_ntbuf;
    389 	nrbuf = hr->rb_nrbuf;
    390 
    391 	/*
    392 	 * Allocate transmit descriptors
    393 	 */
    394 	hr->rb_txd = p;
    395 	hr->rb_txddma = dma;
    396 	p += ntbuf * HME_XD_SIZE;
    397 	dma += ntbuf * HME_XD_SIZE;
    398 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    399 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    400 	p = (void *)roundup((u_long)p, 2048);
    401 
    402 	/*
    403 	 * Allocate receive descriptors
    404 	 */
    405 	hr->rb_rxd = p;
    406 	hr->rb_rxddma = dma;
    407 	p += nrbuf * HME_XD_SIZE;
    408 	dma += nrbuf * HME_XD_SIZE;
    409 	/* Again move forward to the next 2048 byte boundary.*/
    410 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    411 	p = (void *)roundup((u_long)p, 2048);
    412 
    413 
    414 	/*
    415 	 * Allocate transmit buffers
    416 	 */
    417 	hr->rb_txbuf = p;
    418 	txbufdma = dma;
    419 	p += ntbuf * _HME_BUFSZ;
    420 	dma += ntbuf * _HME_BUFSZ;
    421 
    422 	/*
    423 	 * Allocate receive buffers
    424 	 */
    425 	hr->rb_rxbuf = p;
    426 	rxbufdma = dma;
    427 	p += nrbuf * _HME_BUFSZ;
    428 	dma += nrbuf * _HME_BUFSZ;
    429 
    430 	/*
    431 	 * Initialize transmit buffer descriptors
    432 	 */
    433 	for (i = 0; i < ntbuf; i++) {
    434 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    435 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    436 	}
    437 
    438 	/*
    439 	 * Initialize receive buffer descriptors
    440 	 */
    441 	for (i = 0; i < nrbuf; i++) {
    442 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    443 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    444 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    445 	}
    446 
    447 	hr->rb_tdhead = hr->rb_tdtail = 0;
    448 	hr->rb_td_nbusy = 0;
    449 	hr->rb_rdtail = 0;
    450 }
    451 
    452 /*
    453  * Initialization of interface; set up initialization block
    454  * and transmit/receive descriptor rings.
    455  */
    456 int
    457 hme_init(ifp)
    458 	struct ifnet *ifp;
    459 {
    460 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    461 	bus_space_tag_t t = sc->sc_bustag;
    462 	bus_space_handle_t seb = sc->sc_seb;
    463 	bus_space_handle_t etx = sc->sc_etx;
    464 	bus_space_handle_t erx = sc->sc_erx;
    465 	bus_space_handle_t mac = sc->sc_mac;
    466 	u_int8_t *ea;
    467 	u_int32_t v;
    468 	int rc;
    469 
    470 	/*
    471 	 * Initialization sequence. The numbered steps below correspond
    472 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    473 	 * Channel Engine manual (part of the PCIO manual).
    474 	 * See also the STP2002-STQ document from Sun Microsystems.
    475 	 */
    476 
    477 	/* step 1 & 2. Reset the Ethernet Channel */
    478 	hme_stop(sc, false);
    479 
    480 	/* Re-initialize the MIF */
    481 	hme_mifinit(sc);
    482 
    483 	/* Call MI reset function if any */
    484 	if (sc->sc_hwreset)
    485 		(*sc->sc_hwreset)(sc);
    486 
    487 #if 0
    488 	/* Mask all MIF interrupts, just in case */
    489 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    490 #endif
    491 
    492 	/* step 3. Setup data structures in host memory */
    493 	hme_meminit(sc);
    494 
    495 	/* step 4. TX MAC registers & counters */
    496 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    497 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    498 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    499 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    500 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    501 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    502 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    503 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    504 
    505 	/* Load station MAC address */
    506 	ea = sc->sc_enaddr;
    507 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    508 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    509 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    510 
    511 	/*
    512 	 * Init seed for backoff
    513 	 * (source suggested by manual: low 10 bits of MAC address)
    514 	 */
    515 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    516 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    517 
    518 
    519 	/* Note: Accepting power-on default for other MAC registers here.. */
    520 
    521 
    522 	/* step 5. RX MAC registers & counters */
    523 	hme_setladrf(sc);
    524 
    525 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    526 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    527 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    528 
    529 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    530 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    531 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    532 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    533 
    534 	/* step 8. Global Configuration & Interrupt Mask */
    535 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    536 			~(
    537 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    538 			  HME_SEB_STAT_HOSTTOTX |
    539 			  HME_SEB_STAT_RXTOHOST |
    540 			  HME_SEB_STAT_TXALL |
    541 			  HME_SEB_STAT_TXPERR |
    542 			  HME_SEB_STAT_RCNTEXP |
    543 			  /*HME_SEB_STAT_MIFIRQ |*/
    544 			  HME_SEB_STAT_ALL_ERRORS ));
    545 
    546 	switch (sc->sc_burst) {
    547 	default:
    548 		v = 0;
    549 		break;
    550 	case 16:
    551 		v = HME_SEB_CFG_BURST16;
    552 		break;
    553 	case 32:
    554 		v = HME_SEB_CFG_BURST32;
    555 		break;
    556 	case 64:
    557 		v = HME_SEB_CFG_BURST64;
    558 		break;
    559 	}
    560 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    561 
    562 	/* step 9. ETX Configuration: use mostly default values */
    563 
    564 	/* Enable DMA */
    565 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    566 	v |= HME_ETX_CFG_DMAENABLE;
    567 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    568 
    569 	/* Transmit Descriptor ring size: in increments of 16 */
    570 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    571 
    572 
    573 	/* step 10. ERX Configuration */
    574 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    575 
    576 	/* Encode Receive Descriptor ring size: four possible values */
    577 	switch (_HME_NDESC /*XXX*/) {
    578 	case 32:
    579 		v |= HME_ERX_CFG_RINGSIZE32;
    580 		break;
    581 	case 64:
    582 		v |= HME_ERX_CFG_RINGSIZE64;
    583 		break;
    584 	case 128:
    585 		v |= HME_ERX_CFG_RINGSIZE128;
    586 		break;
    587 	case 256:
    588 		v |= HME_ERX_CFG_RINGSIZE256;
    589 		break;
    590 	default:
    591 		printf("hme: invalid Receive Descriptor ring size\n");
    592 		break;
    593 	}
    594 
    595 	/* Enable DMA */
    596 	v |= HME_ERX_CFG_DMAENABLE;
    597 
    598 	/* set h/w rx checksum start offset (# of half-words) */
    599 #ifdef INET
    600 	v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
    601 		((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    602 		ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
    603 		HME_ERX_CFG_CSUMSTART;
    604 #endif
    605 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    606 
    607 	/* step 11. XIF Configuration */
    608 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    609 	v |= HME_MAC_XIF_OE;
    610 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    611 
    612 	/* step 12. RX_MAC Configuration Register */
    613 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    614 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    615 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    616 
    617 	/* step 13. TX_MAC Configuration Register */
    618 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    619 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    620 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    621 
    622 	/* step 14. Issue Transmit Pending command */
    623 
    624 	/* Call MI initialization function if any */
    625 	if (sc->sc_hwinit)
    626 		(*sc->sc_hwinit)(sc);
    627 
    628 	/* Set the current media. */
    629 	if ((rc = hme_mediachange(ifp)) != 0)
    630 		return rc;
    631 
    632 	/* Start the one second timer. */
    633 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    634 
    635 	ifp->if_flags |= IFF_RUNNING;
    636 	ifp->if_flags &= ~IFF_OACTIVE;
    637 	sc->sc_if_flags = ifp->if_flags;
    638 	ifp->if_timer = 0;
    639 	hme_start(ifp);
    640 	return 0;
    641 }
    642 
    643 /*
    644  * Routine to copy from mbuf chain to transmit buffer in
    645  * network buffer memory.
    646  * Returns the amount of data copied.
    647  */
    648 int
    649 hme_put(sc, ri, m)
    650 	struct hme_softc *sc;
    651 	int ri;			/* Ring index */
    652 	struct mbuf *m;
    653 {
    654 	struct mbuf *n;
    655 	int len, tlen = 0;
    656 	char *bp;
    657 
    658 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    659 	for (; m; m = n) {
    660 		len = m->m_len;
    661 		if (len == 0) {
    662 			MFREE(m, n);
    663 			continue;
    664 		}
    665 		memcpy(bp, mtod(m, void *), len);
    666 		bp += len;
    667 		tlen += len;
    668 		MFREE(m, n);
    669 	}
    670 	return (tlen);
    671 }
    672 
    673 /*
    674  * Pull data off an interface.
    675  * Len is length of data, with local net header stripped.
    676  * We copy the data into mbufs.  When full cluster sized units are present
    677  * we copy into clusters.
    678  */
    679 struct mbuf *
    680 hme_get(sc, ri, flags)
    681 	struct hme_softc *sc;
    682 	int ri;
    683 	u_int32_t flags;
    684 {
    685 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    686 	struct mbuf *m, *m0, *newm;
    687 	char *bp;
    688 	int len, totlen;
    689 
    690 	totlen = HME_XD_DECODE_RSIZE(flags);
    691 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    692 	if (m0 == 0)
    693 		return (0);
    694 	m0->m_pkthdr.rcvif = ifp;
    695 	m0->m_pkthdr.len = totlen;
    696 	len = MHLEN;
    697 	m = m0;
    698 
    699 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    700 
    701 	while (totlen > 0) {
    702 		if (totlen >= MINCLSIZE) {
    703 			MCLGET(m, M_DONTWAIT);
    704 			if ((m->m_flags & M_EXT) == 0)
    705 				goto bad;
    706 			len = MCLBYTES;
    707 		}
    708 
    709 		if (m == m0) {
    710 			char *newdata = (char *)
    711 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    712 			    sizeof(struct ether_header);
    713 			len -= newdata - m->m_data;
    714 			m->m_data = newdata;
    715 		}
    716 
    717 		m->m_len = len = min(totlen, len);
    718 		memcpy(mtod(m, void *), bp, len);
    719 		bp += len;
    720 
    721 		totlen -= len;
    722 		if (totlen > 0) {
    723 			MGET(newm, M_DONTWAIT, MT_DATA);
    724 			if (newm == 0)
    725 				goto bad;
    726 			len = MLEN;
    727 			m = m->m_next = newm;
    728 		}
    729 	}
    730 
    731 #ifdef INET
    732 	/* hardware checksum */
    733 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    734 		struct ether_header *eh;
    735 		struct ip *ip;
    736 		struct udphdr *uh;
    737 		uint16_t *opts;
    738 		int32_t hlen, pktlen;
    739 		uint32_t temp;
    740 
    741 		if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
    742 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
    743 				ETHER_VLAN_ENCAP_LEN;
    744 			eh = (struct ether_header *) mtod(m0, void *) +
    745 				ETHER_VLAN_ENCAP_LEN;
    746 		} else {
    747 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    748 			eh = mtod(m0, struct ether_header *);
    749 		}
    750 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
    751 			goto swcsum;
    752 		ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
    753 
    754 		/* IPv4 only */
    755 		if (ip->ip_v != IPVERSION)
    756 			goto swcsum;
    757 
    758 		hlen = ip->ip_hl << 2;
    759 		if (hlen < sizeof(struct ip))
    760 			goto swcsum;
    761 
    762 		/*
    763 		 * bail if too short, has random trailing garbage, truncated,
    764 		 * fragment, or has ethernet pad.
    765 		 */
    766 		if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
    767 		    || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
    768 			goto swcsum;
    769 
    770 		switch (ip->ip_p) {
    771 		case IPPROTO_TCP:
    772 			if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
    773 				goto swcsum;
    774 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    775 				goto swcsum;
    776 			m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
    777 			break;
    778 		case IPPROTO_UDP:
    779 			if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
    780 				goto swcsum;
    781 			if (pktlen < (hlen + sizeof(struct udphdr)))
    782 				goto swcsum;
    783 			uh = (struct udphdr *)((char *)ip + hlen);
    784 			/* no checksum */
    785 			if (uh->uh_sum == 0)
    786 				goto swcsum;
    787 			m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
    788 			break;
    789 		default:
    790 			goto swcsum;
    791 		}
    792 
    793 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    794 		m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
    795 
    796 		/* if the pkt had ip options, we have to deduct them */
    797 		if (hlen > sizeof(struct ip)) {
    798 			uint32_t optsum;
    799 
    800 			optsum = 0;
    801 			temp = hlen - sizeof(struct ip);
    802 			opts = (uint16_t *)((char *)ip + sizeof(struct ip));
    803 
    804 			while (temp > 1) {
    805 				optsum += ntohs(*opts++);
    806 				temp -= 2;
    807 			}
    808 			while (optsum >> 16)
    809 				optsum = (optsum >> 16) + (optsum & 0xffff);
    810 
    811 			/* Deduct the ip opts sum from the hwsum. */
    812 			m0->m_pkthdr.csum_data += (uint16_t)~optsum;
    813 
    814 			while (m0->m_pkthdr.csum_data >> 16)
    815 				m0->m_pkthdr.csum_data =
    816 					(m0->m_pkthdr.csum_data >> 16) +
    817 					(m0->m_pkthdr.csum_data & 0xffff);
    818 		}
    819 
    820 		m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    821 	} else
    822 swcsum:
    823 		m0->m_pkthdr.csum_flags = 0;
    824 #endif
    825 
    826 	return (m0);
    827 
    828 bad:
    829 	m_freem(m0);
    830 	return (0);
    831 }
    832 
    833 /*
    834  * Pass a packet to the higher levels.
    835  */
    836 void
    837 hme_read(sc, ix, flags)
    838 	struct hme_softc *sc;
    839 	int ix;
    840 	u_int32_t flags;
    841 {
    842 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    843 	struct mbuf *m;
    844 	int len;
    845 
    846 	len = HME_XD_DECODE_RSIZE(flags);
    847 	if (len <= sizeof(struct ether_header) ||
    848 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    849 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    850 	    ETHERMTU + sizeof(struct ether_header))) {
    851 #ifdef HMEDEBUG
    852 		printf("%s: invalid packet size %d; dropping\n",
    853 		    device_xname(&sc->sc_dev), len);
    854 #endif
    855 		ifp->if_ierrors++;
    856 		return;
    857 	}
    858 
    859 	/* Pull packet off interface. */
    860 	m = hme_get(sc, ix, flags);
    861 	if (m == 0) {
    862 		ifp->if_ierrors++;
    863 		return;
    864 	}
    865 
    866 	ifp->if_ipackets++;
    867 
    868 #if NBPFILTER > 0
    869 	/*
    870 	 * Check if there's a BPF listener on this interface.
    871 	 * If so, hand off the raw packet to BPF.
    872 	 */
    873 	if (ifp->if_bpf)
    874 		bpf_mtap(ifp->if_bpf, m);
    875 #endif
    876 
    877 	/* Pass the packet up. */
    878 	(*ifp->if_input)(ifp, m);
    879 }
    880 
    881 void
    882 hme_start(ifp)
    883 	struct ifnet *ifp;
    884 {
    885 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    886 	void *txd = sc->sc_rb.rb_txd;
    887 	struct mbuf *m;
    888 	unsigned int txflags;
    889 	unsigned int ri, len;
    890 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    891 
    892 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    893 		return;
    894 
    895 	ri = sc->sc_rb.rb_tdhead;
    896 
    897 	for (;;) {
    898 		IFQ_DEQUEUE(&ifp->if_snd, m);
    899 		if (m == 0)
    900 			break;
    901 
    902 #if NBPFILTER > 0
    903 		/*
    904 		 * If BPF is listening on this interface, let it see the
    905 		 * packet before we commit it to the wire.
    906 		 */
    907 		if (ifp->if_bpf)
    908 			bpf_mtap(ifp->if_bpf, m);
    909 #endif
    910 
    911 #ifdef INET
    912 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    913 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    914 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    915 			struct ether_header *eh;
    916 			uint16_t offset, start;
    917 
    918 			eh = mtod(m, struct ether_header *);
    919 			switch (ntohs(eh->ether_type)) {
    920 			case ETHERTYPE_IP:
    921 				start = ETHER_HDR_LEN;
    922 				break;
    923 			case ETHERTYPE_VLAN:
    924 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    925 				break;
    926 			default:
    927 				/* unsupported, drop it */
    928 				m_free(m);
    929 				continue;
    930 			}
    931 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    932 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    933 			    + start;
    934 			txflags = HME_XD_TXCKSUM |
    935 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    936 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    937 		} else
    938 #endif
    939 			txflags = 0;
    940 
    941 		/*
    942 		 * Copy the mbuf chain into the transmit buffer.
    943 		 */
    944 		len = hme_put(sc, ri, m);
    945 
    946 		/*
    947 		 * Initialize transmit registers and start transmission
    948 		 */
    949 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    950 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    951 			HME_XD_ENCODE_TSIZE(len) | txflags);
    952 
    953 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    954 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    955 				  HME_ETX_TP_DMAWAKEUP);
    956 
    957 		if (++ri == ntbuf)
    958 			ri = 0;
    959 
    960 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    961 			ifp->if_flags |= IFF_OACTIVE;
    962 			break;
    963 		}
    964 	}
    965 
    966 	sc->sc_rb.rb_tdhead = ri;
    967 }
    968 
    969 /*
    970  * Transmit interrupt.
    971  */
    972 int
    973 hme_tint(sc)
    974 	struct hme_softc *sc;
    975 {
    976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    977 	bus_space_tag_t t = sc->sc_bustag;
    978 	bus_space_handle_t mac = sc->sc_mac;
    979 	unsigned int ri, txflags;
    980 
    981 	/*
    982 	 * Unload collision counters
    983 	 */
    984 	ifp->if_collisions +=
    985 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    986 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
    987 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    988 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    989 
    990 	/*
    991 	 * then clear the hardware counters.
    992 	 */
    993 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    994 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    995 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    996 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    997 
    998 	/* Fetch current position in the transmit ring */
    999 	ri = sc->sc_rb.rb_tdtail;
   1000 
   1001 	for (;;) {
   1002 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1003 			break;
   1004 
   1005 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1006 
   1007 		if (txflags & HME_XD_OWN)
   1008 			break;
   1009 
   1010 		ifp->if_flags &= ~IFF_OACTIVE;
   1011 		ifp->if_opackets++;
   1012 
   1013 		if (++ri == sc->sc_rb.rb_ntbuf)
   1014 			ri = 0;
   1015 
   1016 		--sc->sc_rb.rb_td_nbusy;
   1017 	}
   1018 
   1019 	/* Update ring */
   1020 	sc->sc_rb.rb_tdtail = ri;
   1021 
   1022 	hme_start(ifp);
   1023 
   1024 	if (sc->sc_rb.rb_td_nbusy == 0)
   1025 		ifp->if_timer = 0;
   1026 
   1027 	return (1);
   1028 }
   1029 
   1030 /*
   1031  * Receive interrupt.
   1032  */
   1033 int
   1034 hme_rint(sc)
   1035 	struct hme_softc *sc;
   1036 {
   1037 	void *xdr = sc->sc_rb.rb_rxd;
   1038 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1039 	unsigned int ri;
   1040 	u_int32_t flags;
   1041 
   1042 	ri = sc->sc_rb.rb_rdtail;
   1043 
   1044 	/*
   1045 	 * Process all buffers with valid data.
   1046 	 */
   1047 	for (;;) {
   1048 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1049 		if (flags & HME_XD_OWN)
   1050 			break;
   1051 
   1052 		if (flags & HME_XD_OFL) {
   1053 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1054 					device_xname(&sc->sc_dev), ri, flags);
   1055 		} else
   1056 			hme_read(sc, ri, flags);
   1057 
   1058 		/* This buffer can be used by the hardware again */
   1059 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1060 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1061 
   1062 		if (++ri == nrbuf)
   1063 			ri = 0;
   1064 	}
   1065 
   1066 	sc->sc_rb.rb_rdtail = ri;
   1067 
   1068 	return (1);
   1069 }
   1070 
   1071 int
   1072 hme_eint(sc, status)
   1073 	struct hme_softc *sc;
   1074 	u_int status;
   1075 {
   1076 	char bits[128];
   1077 
   1078 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1079 		bus_space_tag_t t = sc->sc_bustag;
   1080 		bus_space_handle_t mif = sc->sc_mif;
   1081 		u_int32_t cf, st, sm;
   1082 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1083 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1084 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1085 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1086 			device_xname(&sc->sc_dev), cf, st, sm);
   1087 		return (1);
   1088 	}
   1089 
   1090 	printf("%s: status=%s\n", device_xname(&sc->sc_dev),
   1091 		bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
   1092 	return (1);
   1093 }
   1094 
   1095 int
   1096 hme_intr(v)
   1097 	void *v;
   1098 {
   1099 	struct hme_softc *sc = (struct hme_softc *)v;
   1100 	bus_space_tag_t t = sc->sc_bustag;
   1101 	bus_space_handle_t seb = sc->sc_seb;
   1102 	u_int32_t status;
   1103 	int r = 0;
   1104 
   1105 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1106 
   1107 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1108 		r |= hme_eint(sc, status);
   1109 
   1110 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1111 		r |= hme_tint(sc);
   1112 
   1113 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1114 		r |= hme_rint(sc);
   1115 
   1116 #if NRND > 0
   1117 	rnd_add_uint32(&sc->rnd_source, status);
   1118 #endif
   1119 
   1120 	return (r);
   1121 }
   1122 
   1123 
   1124 void
   1125 hme_watchdog(ifp)
   1126 	struct ifnet *ifp;
   1127 {
   1128 	struct hme_softc *sc = ifp->if_softc;
   1129 
   1130 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   1131 	++ifp->if_oerrors;
   1132 
   1133 	hme_reset(sc);
   1134 }
   1135 
   1136 /*
   1137  * Initialize the MII Management Interface
   1138  */
   1139 void
   1140 hme_mifinit(sc)
   1141 	struct hme_softc *sc;
   1142 {
   1143 	bus_space_tag_t t = sc->sc_bustag;
   1144 	bus_space_handle_t mif = sc->sc_mif;
   1145 	bus_space_handle_t mac = sc->sc_mac;
   1146 	int instance, phy;
   1147 	u_int32_t v;
   1148 
   1149 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1150 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1151 		phy = sc->sc_phys[instance];
   1152 	} else
   1153 		/* No media set yet, pick phy arbitrarily.. */
   1154 		phy = HME_PHYAD_EXTERNAL;
   1155 
   1156 	/* Configure the MIF in frame mode, no poll, current phy select */
   1157 	v = 0;
   1158 	if (phy == HME_PHYAD_EXTERNAL)
   1159 		v |= HME_MIF_CFG_PHY;
   1160 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1161 
   1162 	/* If an external transceiver is selected, enable its MII drivers */
   1163 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1164 	v &= ~HME_MAC_XIF_MIIENABLE;
   1165 	if (phy == HME_PHYAD_EXTERNAL)
   1166 		v |= HME_MAC_XIF_MIIENABLE;
   1167 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1168 }
   1169 
   1170 /*
   1171  * MII interface
   1172  */
   1173 static int
   1174 hme_mii_readreg(self, phy, reg)
   1175 	struct device *self;
   1176 	int phy, reg;
   1177 {
   1178 	struct hme_softc *sc = (void *)self;
   1179 	bus_space_tag_t t = sc->sc_bustag;
   1180 	bus_space_handle_t mif = sc->sc_mif;
   1181 	bus_space_handle_t mac = sc->sc_mac;
   1182 	u_int32_t v, xif_cfg, mifi_cfg;
   1183 	int n;
   1184 
   1185 	/* We can at most have two PHYs */
   1186 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1187 		return (0);
   1188 
   1189 	/* Select the desired PHY in the MIF configuration register */
   1190 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1191 	v &= ~HME_MIF_CFG_PHY;
   1192 	if (phy == HME_PHYAD_EXTERNAL)
   1193 		v |= HME_MIF_CFG_PHY;
   1194 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1195 
   1196 	/* Enable MII drivers on external transceiver */
   1197 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1198 	if (phy == HME_PHYAD_EXTERNAL)
   1199 		v |= HME_MAC_XIF_MIIENABLE;
   1200 	else
   1201 		v &= ~HME_MAC_XIF_MIIENABLE;
   1202 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1203 
   1204 #if 0
   1205 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1206 	/*
   1207 	 * Check whether a transceiver is connected by testing
   1208 	 * the MIF configuration register's MDI_X bits. Note that
   1209 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1210 	 */
   1211 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1212 	delay(100);
   1213 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1214 	if ((v & mif_mdi_bit) == 0)
   1215 		return (0);
   1216 #endif
   1217 
   1218 	/* Construct the frame command */
   1219 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1220 	    HME_MIF_FO_TAMSB |
   1221 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1222 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1223 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1224 
   1225 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1226 	for (n = 0; n < 100; n++) {
   1227 		DELAY(1);
   1228 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1229 		if (v & HME_MIF_FO_TALSB) {
   1230 			v &= HME_MIF_FO_DATA;
   1231 			goto out;
   1232 		}
   1233 	}
   1234 
   1235 	v = 0;
   1236 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   1237 
   1238 out:
   1239 	/* Restore MIFI_CFG register */
   1240 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1241 	/* Restore XIF register */
   1242 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1243 	return (v);
   1244 }
   1245 
   1246 static void
   1247 hme_mii_writereg(self, phy, reg, val)
   1248 	struct device *self;
   1249 	int phy, reg, val;
   1250 {
   1251 	struct hme_softc *sc = (void *)self;
   1252 	bus_space_tag_t t = sc->sc_bustag;
   1253 	bus_space_handle_t mif = sc->sc_mif;
   1254 	bus_space_handle_t mac = sc->sc_mac;
   1255 	u_int32_t v, xif_cfg, mifi_cfg;
   1256 	int n;
   1257 
   1258 	/* We can at most have two PHYs */
   1259 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1260 		return;
   1261 
   1262 	/* Select the desired PHY in the MIF configuration register */
   1263 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1264 	v &= ~HME_MIF_CFG_PHY;
   1265 	if (phy == HME_PHYAD_EXTERNAL)
   1266 		v |= HME_MIF_CFG_PHY;
   1267 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1268 
   1269 	/* Enable MII drivers on external transceiver */
   1270 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1271 	if (phy == HME_PHYAD_EXTERNAL)
   1272 		v |= HME_MAC_XIF_MIIENABLE;
   1273 	else
   1274 		v &= ~HME_MAC_XIF_MIIENABLE;
   1275 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1276 
   1277 #if 0
   1278 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1279 	/*
   1280 	 * Check whether a transceiver is connected by testing
   1281 	 * the MIF configuration register's MDI_X bits. Note that
   1282 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1283 	 */
   1284 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1285 	delay(100);
   1286 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1287 	if ((v & mif_mdi_bit) == 0)
   1288 		return;
   1289 #endif
   1290 
   1291 	/* Construct the frame command */
   1292 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1293 	    HME_MIF_FO_TAMSB				|
   1294 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1295 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1296 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1297 	    (val & HME_MIF_FO_DATA);
   1298 
   1299 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1300 	for (n = 0; n < 100; n++) {
   1301 		DELAY(1);
   1302 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1303 		if (v & HME_MIF_FO_TALSB)
   1304 			goto out;
   1305 	}
   1306 
   1307 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   1308 out:
   1309 	/* Restore MIFI_CFG register */
   1310 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1311 	/* Restore XIF register */
   1312 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1313 }
   1314 
   1315 static void
   1316 hme_mii_statchg(dev)
   1317 	struct device *dev;
   1318 {
   1319 	struct hme_softc *sc = (void *)dev;
   1320 	bus_space_tag_t t = sc->sc_bustag;
   1321 	bus_space_handle_t mac = sc->sc_mac;
   1322 	u_int32_t v;
   1323 
   1324 #ifdef HMEDEBUG
   1325 	if (sc->sc_debug)
   1326 		printf("hme_mii_statchg: status change\n");
   1327 #endif
   1328 
   1329 	/* Set the MAC Full Duplex bit appropriately */
   1330 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1331 	   but not otherwise. */
   1332 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1333 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1334 		v |= HME_MAC_TXCFG_FULLDPLX;
   1335 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1336 	} else {
   1337 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1338 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1339 	}
   1340 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1341 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1342 }
   1343 
   1344 int
   1345 hme_mediachange(ifp)
   1346 	struct ifnet *ifp;
   1347 {
   1348 	struct hme_softc *sc = ifp->if_softc;
   1349 	bus_space_tag_t t = sc->sc_bustag;
   1350 	bus_space_handle_t mif = sc->sc_mif;
   1351 	bus_space_handle_t mac = sc->sc_mac;
   1352 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1353 	int phy = sc->sc_phys[instance];
   1354 	int rc;
   1355 	u_int32_t v;
   1356 
   1357 #ifdef HMEDEBUG
   1358 	if (sc->sc_debug)
   1359 		printf("hme_mediachange: phy = %d\n", phy);
   1360 #endif
   1361 
   1362 	/* Select the current PHY in the MIF configuration register */
   1363 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1364 	v &= ~HME_MIF_CFG_PHY;
   1365 	if (phy == HME_PHYAD_EXTERNAL)
   1366 		v |= HME_MIF_CFG_PHY;
   1367 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1368 
   1369 	/* If an external transceiver is selected, enable its MII drivers */
   1370 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1371 	v &= ~HME_MAC_XIF_MIIENABLE;
   1372 	if (phy == HME_PHYAD_EXTERNAL)
   1373 		v |= HME_MAC_XIF_MIIENABLE;
   1374 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1375 
   1376 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1377 		return 0;
   1378 	return rc;
   1379 }
   1380 
   1381 /*
   1382  * Process an ioctl request.
   1383  */
   1384 int
   1385 hme_ioctl(ifp, cmd, data)
   1386 	struct ifnet *ifp;
   1387 	u_long cmd;
   1388 	void *data;
   1389 {
   1390 	struct hme_softc *sc = ifp->if_softc;
   1391 	struct ifaddr *ifa = (struct ifaddr *)data;
   1392 	int s, error = 0;
   1393 
   1394 	s = splnet();
   1395 
   1396 	switch (cmd) {
   1397 
   1398 	case SIOCSIFADDR:
   1399 		switch (ifa->ifa_addr->sa_family) {
   1400 #ifdef INET
   1401 		case AF_INET:
   1402 			if (ifp->if_flags & IFF_UP)
   1403 				hme_setladrf(sc);
   1404 			else {
   1405 				ifp->if_flags |= IFF_UP;
   1406 				error = hme_init(ifp);
   1407 			}
   1408 			arp_ifinit(ifp, ifa);
   1409 			break;
   1410 #endif
   1411 		default:
   1412 			ifp->if_flags |= IFF_UP;
   1413 			error = hme_init(ifp);
   1414 			break;
   1415 		}
   1416 		break;
   1417 
   1418 	case SIOCSIFFLAGS:
   1419 #ifdef HMEDEBUG
   1420 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1421 #endif
   1422 
   1423 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1424 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1425 			/*
   1426 			 * If interface is marked down and it is running, then
   1427 			 * stop it.
   1428 			 */
   1429 			hme_stop(sc, false);
   1430 			ifp->if_flags &= ~IFF_RUNNING;
   1431 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1432 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
   1433 			/*
   1434 			 * If interface is marked up and it is stopped, then
   1435 			 * start it.
   1436 			 */
   1437 			error = hme_init(ifp);
   1438 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1439 			/*
   1440 			 * If setting debug or promiscuous mode, do not reset
   1441 			 * the chip; for everything else, call hme_init()
   1442 			 * which will trigger a reset.
   1443 			 */
   1444 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1445 			if (ifp->if_flags != sc->sc_if_flags) {
   1446 				if ((ifp->if_flags & (~RESETIGN))
   1447 				    == (sc->sc_if_flags & (~RESETIGN)))
   1448 					hme_setladrf(sc);
   1449 				else
   1450 					error = hme_init(ifp);
   1451 			}
   1452 #undef RESETIGN
   1453 		}
   1454 
   1455 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1456 			error = hme_init(ifp);
   1457 
   1458 		break;
   1459 
   1460 	default:
   1461 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1462 			break;
   1463 
   1464 		error = 0;
   1465 
   1466 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1467 			;
   1468 		else if (ifp->if_flags & IFF_RUNNING) {
   1469 			/*
   1470 			 * Multicast list has changed; set the hardware filter
   1471 			 * accordingly.
   1472 			 */
   1473 			hme_setladrf(sc);
   1474 		}
   1475 		break;
   1476 	}
   1477 
   1478 	sc->sc_if_flags = ifp->if_flags;
   1479 	splx(s);
   1480 	return (error);
   1481 }
   1482 
   1483 void
   1484 hme_shutdown(arg)
   1485 	void *arg;
   1486 {
   1487 
   1488 	hme_stop((struct hme_softc *)arg, false);
   1489 }
   1490 
   1491 /*
   1492  * Set up the logical address filter.
   1493  */
   1494 void
   1495 hme_setladrf(sc)
   1496 	struct hme_softc *sc;
   1497 {
   1498 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1499 	struct ether_multi *enm;
   1500 	struct ether_multistep step;
   1501 	struct ethercom *ec = &sc->sc_ethercom;
   1502 	bus_space_tag_t t = sc->sc_bustag;
   1503 	bus_space_handle_t mac = sc->sc_mac;
   1504 	u_char *cp;
   1505 	u_int32_t crc;
   1506 	u_int32_t hash[4];
   1507 	u_int32_t v;
   1508 	int len;
   1509 
   1510 	/* Clear hash table */
   1511 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1512 
   1513 	/* Get current RX configuration */
   1514 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1515 
   1516 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1517 		/* Turn on promiscuous mode; turn off the hash filter */
   1518 		v |= HME_MAC_RXCFG_PMISC;
   1519 		v &= ~HME_MAC_RXCFG_HENABLE;
   1520 		ifp->if_flags |= IFF_ALLMULTI;
   1521 		goto chipit;
   1522 	}
   1523 
   1524 	/* Turn off promiscuous mode; turn on the hash filter */
   1525 	v &= ~HME_MAC_RXCFG_PMISC;
   1526 	v |= HME_MAC_RXCFG_HENABLE;
   1527 
   1528 	/*
   1529 	 * Set up multicast address filter by passing all multicast addresses
   1530 	 * through a crc generator, and then using the high order 6 bits as an
   1531 	 * index into the 64 bit logical address filter.  The high order bit
   1532 	 * selects the word, while the rest of the bits select the bit within
   1533 	 * the word.
   1534 	 */
   1535 
   1536 	ETHER_FIRST_MULTI(step, ec, enm);
   1537 	while (enm != NULL) {
   1538 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1539 			/*
   1540 			 * We must listen to a range of multicast addresses.
   1541 			 * For now, just accept all multicasts, rather than
   1542 			 * trying to set only those filter bits needed to match
   1543 			 * the range.  (At this time, the only use of address
   1544 			 * ranges is for IP multicast routing, for which the
   1545 			 * range is big enough to require all bits set.)
   1546 			 */
   1547 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1548 			ifp->if_flags |= IFF_ALLMULTI;
   1549 			goto chipit;
   1550 		}
   1551 
   1552 		cp = enm->enm_addrlo;
   1553 		crc = 0xffffffff;
   1554 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1555 			int octet = *cp++;
   1556 			int i;
   1557 
   1558 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1559 			for (i = 0; i < 8; i++) {
   1560 				if ((crc & 1) ^ (octet & 1)) {
   1561 					crc >>= 1;
   1562 					crc ^= MC_POLY_LE;
   1563 				} else {
   1564 					crc >>= 1;
   1565 				}
   1566 				octet >>= 1;
   1567 			}
   1568 		}
   1569 		/* Just want the 6 most significant bits. */
   1570 		crc >>= 26;
   1571 
   1572 		/* Set the corresponding bit in the filter. */
   1573 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1574 
   1575 		ETHER_NEXT_MULTI(step, enm);
   1576 	}
   1577 
   1578 	ifp->if_flags &= ~IFF_ALLMULTI;
   1579 
   1580 chipit:
   1581 	/* Now load the hash table into the chip */
   1582 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1583 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1584 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1585 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1586 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1587 }
   1588 
   1589 /*
   1590  * Routines for accessing the transmit and receive buffers.
   1591  * The various CPU and adapter configurations supported by this
   1592  * driver require three different access methods for buffers
   1593  * and descriptors:
   1594  *	(1) contig (contiguous data; no padding),
   1595  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1596  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1597  */
   1598 
   1599 #if 0
   1600 /*
   1601  * contig: contiguous data with no padding.
   1602  *
   1603  * Buffers may have any alignment.
   1604  */
   1605 
   1606 void
   1607 hme_copytobuf_contig(sc, from, ri, len)
   1608 	struct hme_softc *sc;
   1609 	void *from;
   1610 	int ri, len;
   1611 {
   1612 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1613 
   1614 	/*
   1615 	 * Just call memcpy() to do the work.
   1616 	 */
   1617 	memcpy(buf, from, len);
   1618 }
   1619 
   1620 void
   1621 hme_copyfrombuf_contig(sc, to, boff, len)
   1622 	struct hme_softc *sc;
   1623 	void *to;
   1624 	int boff, len;
   1625 {
   1626 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1627 
   1628 	/*
   1629 	 * Just call memcpy() to do the work.
   1630 	 */
   1631 	memcpy(to, buf, len);
   1632 }
   1633 #endif
   1634