hme.c revision 1.7 1 /* $NetBSD: hme.c,v 1.7 2000/02/02 17:09:47 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #define HMEDEBUG
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48 #include "rnd.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/syslog.h>
55 #include <sys/socket.h>
56 #include <sys/device.h>
57 #include <sys/malloc.h>
58 #include <sys/ioctl.h>
59 #include <sys/errno.h>
60 #if NRND > 0
61 #include <sys/rnd.h>
62 #endif
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <net/if_media.h>
68
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/if_inarp.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip.h>
75 #endif
76
77 #ifdef NS
78 #include <netns/ns.h>
79 #include <netns/ns_if.h>
80 #endif
81
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #endif
86
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89
90 #include <machine/bus.h>
91
92 #include <dev/ic/hmereg.h>
93 #include <dev/ic/hmevar.h>
94
95 void hme_start __P((struct ifnet *));
96 void hme_stop __P((struct hme_softc *));
97 int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
98 void hme_tick __P((void *));
99 void hme_watchdog __P((struct ifnet *));
100 void hme_shutdown __P((void *));
101 void hme_init __P((struct hme_softc *));
102 void hme_meminit __P((struct hme_softc *));
103 void hme_mifinit __P((struct hme_softc *));
104 void hme_reset __P((struct hme_softc *));
105 void hme_setladrf __P((struct hme_softc *));
106
107 /* MII methods & callbacks */
108 static int hme_mii_readreg __P((struct device *, int, int));
109 static void hme_mii_writereg __P((struct device *, int, int, int));
110 static void hme_mii_statchg __P((struct device *));
111
112 int hme_mediachange __P((struct ifnet *));
113 void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
114
115 struct mbuf *hme_get __P((struct hme_softc *, int, int));
116 int hme_put __P((struct hme_softc *, int, struct mbuf *));
117 void hme_read __P((struct hme_softc *, int, int));
118 int hme_eint __P((struct hme_softc *, u_int));
119 int hme_rint __P((struct hme_softc *));
120 int hme_tint __P((struct hme_softc *));
121
122 static int ether_cmp __P((u_char *, u_char *));
123
124 /* Default buffer copy routines */
125 void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
126 void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
127 void hme_zerobuf_contig __P((struct hme_softc *, int, int));
128
129
130 void
131 hme_config(sc)
132 struct hme_softc *sc;
133 {
134 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 struct mii_data *mii = &sc->sc_mii;
136 struct mii_softc *child;
137 bus_dma_segment_t seg;
138 bus_size_t size;
139 int rseg, error;
140
141 /*
142 * HME common initialization.
143 *
144 * hme_softc fields that must be initialized by the front-end:
145 *
146 * the bus tag:
147 * sc_bustag
148 *
149 * the dma bus tag:
150 * sc_dmatag
151 *
152 * the bus handles:
153 * sc_seb (Shared Ethernet Block registers)
154 * sc_erx (Receiver Unit registers)
155 * sc_etx (Transmitter Unit registers)
156 * sc_mac (MAC registers)
157 * sc_mif (Managment Interface registers)
158 *
159 * the maximum bus burst size:
160 * sc_burst
161 *
162 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
163 * rb_membase, rb_dmabase)
164 *
165 * the local Ethernet address:
166 * sc_enaddr
167 *
168 */
169
170 /* Make sure the chip is stopped. */
171 hme_stop(sc);
172
173
174 /*
175 * Allocate descriptors and buffers
176 * XXX - do all this differently.. and more configurably,
177 * eg. use things as `dma_load_mbuf()' on transmit,
178 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
179 * all the time) on the reveiver side.
180 */
181 #define _HME_NDESC 32
182 #define _HME_BUFSZ 1536
183
184 /* Note: the # of descriptors must be a multiple of 16 */
185 sc->sc_rb.rb_ntbuf = _HME_NDESC;
186 sc->sc_rb.rb_nrbuf = _HME_NDESC;
187
188 /*
189 * Allocate DMA capable memory
190 * Buffer descriptors must be aligned on a 2048 byte boundary;
191 * take this into account when calculating the size. Note that
192 * the maximum number of descriptors (256) occupies 2048 bytes,
193 * so we allocate that much regardless of _HME_NDESC.
194 */
195 size = 2048 + /* TX descriptors */
196 2048 + /* RX descriptors */
197 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
198 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
199 if ((error = bus_dmamem_alloc(sc->sc_dmatag, size,
200 2048, 0,
201 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
202 printf("%s: DMA buffer alloc error %d\n",
203 sc->sc_dev.dv_xname, error);
204 }
205 sc->sc_rb.rb_dmabase = seg.ds_addr;
206
207 /* Map DMA memory in CPU adressable space */
208 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, size,
209 &sc->sc_rb.rb_membase,
210 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
211 printf("%s: DMA buffer map error %d\n",
212 sc->sc_dev.dv_xname, error);
213 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
214 return;
215 }
216
217 #if 0
218 /*
219 * Install default copy routines if not supplied.
220 */
221 if (sc->sc_copytobuf == NULL)
222 sc->sc_copytobuf = hme_copytobuf_contig;
223
224 if (sc->sc_copyfrombuf == NULL)
225 sc->sc_copyfrombuf = hme_copyfrombuf_contig;
226 #endif
227
228 printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
229
230 /* Initialize ifnet structure. */
231 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = hme_start;
234 ifp->if_ioctl = hme_ioctl;
235 ifp->if_watchdog = hme_watchdog;
236 ifp->if_flags =
237 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
238
239 /* Initialize ifmedia structures and MII info */
240 mii->mii_ifp = ifp;
241 mii->mii_readreg = hme_mii_readreg;
242 mii->mii_writereg = hme_mii_writereg;
243 mii->mii_statchg = hme_mii_statchg;
244
245 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
246
247 hme_mifinit(sc);
248
249 mii_attach(&sc->sc_dev, mii, 0xffffffff,
250 MII_PHY_ANY, MII_OFFSET_ANY, 0);
251
252 child = LIST_FIRST(&mii->mii_phys);
253 if (child == NULL) {
254 /* No PHY attached */
255 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
256 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
257 } else {
258 /*
259 * Walk along the list of attached MII devices and
260 * establish an `MII instance' to `phy number'
261 * mapping. We'll use this mapping in media change
262 * requests to determine which phy to use to program
263 * the MIF configuration register.
264 */
265 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
266 /*
267 * Note: we support just two PHYs: the built-in
268 * internal device and an external on the MII
269 * connector.
270 */
271 if (child->mii_phy > 1 || child->mii_inst > 1) {
272 printf("%s: cannot accomodate MII device %s"
273 " at phy %d, instance %d\n",
274 sc->sc_dev.dv_xname,
275 child->mii_dev.dv_xname,
276 child->mii_phy, child->mii_inst);
277 continue;
278 }
279
280 sc->sc_phys[child->mii_inst] = child->mii_phy;
281 }
282
283 /*
284 * XXX - we can really do the following ONLY if the
285 * phy indeed has the auto negotiation capability!!
286 */
287 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
288 }
289
290 /* Attach the interface. */
291 if_attach(ifp);
292 ether_ifattach(ifp, sc->sc_enaddr);
293
294 #if NBPFILTER > 0
295 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
296 #endif
297
298 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
299 if (sc->sc_sh == NULL)
300 panic("hme_config: can't establish shutdownhook");
301
302 #if 0
303 printf("%s: %d receive buffers, %d transmit buffers\n",
304 sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
305 sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
306 M_WAITOK);
307 sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
308 M_WAITOK);
309 #endif
310
311 #if NRND > 0
312 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
313 RND_TYPE_NET, 0);
314 #endif
315
316 /* Start the one second clock */
317 timeout(hme_tick, sc, hz);
318 }
319
320 void
321 hme_tick(arg)
322 void *arg;
323 {
324 struct hme_softc *sc = arg;
325 int s;
326
327 s = splnet();
328 mii_tick(&sc->sc_mii);
329 splx(s);
330
331 timeout(hme_tick, sc, hz);
332 }
333
334 void
335 hme_reset(sc)
336 struct hme_softc *sc;
337 {
338 int s;
339
340 s = splnet();
341 hme_init(sc);
342 splx(s);
343 }
344
345 void
346 hme_stop(sc)
347 struct hme_softc *sc;
348 {
349 bus_space_tag_t t = sc->sc_bustag;
350 bus_space_handle_t seb = sc->sc_seb;
351 int n;
352
353 untimeout(hme_tick, sc);
354 mii_down(&sc->sc_mii);
355
356 /* Reset transmitter and receiver */
357 bus_space_write_4(t, seb, HME_SEBI_RESET,
358 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
359
360 for (n = 0; n < 20; n++) {
361 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
362 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
363 return;
364 DELAY(20);
365 }
366
367 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
368 }
369
370 void
371 hme_meminit(sc)
372 struct hme_softc *sc;
373 {
374 bus_addr_t txbufdma, rxbufdma;
375 bus_addr_t dma;
376 caddr_t p;
377 unsigned int ntbuf, nrbuf, i;
378 struct hme_ring *hr = &sc->sc_rb;
379
380 p = hr->rb_membase;
381 dma = hr->rb_dmabase;
382
383 ntbuf = hr->rb_ntbuf;
384 nrbuf = hr->rb_nrbuf;
385
386 /*
387 * Allocate transmit descriptors
388 */
389 hr->rb_txd = p;
390 hr->rb_txddma = dma;
391 p += ntbuf * HME_XD_SIZE;
392 dma += ntbuf * HME_XD_SIZE;
393 /* We have reserved descriptor space until the next 2048 byte boundary.*/
394 dma = (bus_addr_t)roundup((u_long)dma, 2048);
395 p = (caddr_t)roundup((u_long)p, 2048);
396
397 /*
398 * Allocate receive descriptors
399 */
400 hr->rb_rxd = p;
401 hr->rb_rxddma = dma;
402 p += nrbuf * HME_XD_SIZE;
403 dma += nrbuf * HME_XD_SIZE;
404 /* Again move forward to the next 2048 byte boundary.*/
405 dma = (bus_addr_t)roundup((u_long)dma, 2048);
406 p = (caddr_t)roundup((u_long)p, 2048);
407
408
409 /*
410 * Allocate transmit buffers
411 */
412 hr->rb_txbuf = p;
413 txbufdma = dma;
414 p += ntbuf * _HME_BUFSZ;
415 dma += ntbuf * _HME_BUFSZ;
416
417 /*
418 * Allocate receive buffers
419 */
420 hr->rb_rxbuf = p;
421 rxbufdma = dma;
422 p += nrbuf * _HME_BUFSZ;
423 dma += nrbuf * _HME_BUFSZ;
424
425 /*
426 * Initialize transmit buffer descriptors
427 */
428 for (i = 0; i < ntbuf; i++) {
429 HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
430 HME_XD_SETFLAGS(hr->rb_txd, i, 0);
431 }
432
433 /*
434 * Initialize receive buffer descriptors
435 */
436 for (i = 0; i < nrbuf; i++) {
437 HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
438 HME_XD_SETFLAGS(hr->rb_rxd, i,
439 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
440 }
441
442 hr->rb_tdhead = hr->rb_tdtail = 0;
443 hr->rb_td_nbusy = 0;
444 hr->rb_rdtail = 0;
445 }
446
447 /*
448 * Initialization of interface; set up initialization block
449 * and transmit/receive descriptor rings.
450 */
451 void
452 hme_init(sc)
453 struct hme_softc *sc;
454 {
455 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
456 bus_space_tag_t t = sc->sc_bustag;
457 bus_space_handle_t seb = sc->sc_seb;
458 bus_space_handle_t etx = sc->sc_etx;
459 bus_space_handle_t erx = sc->sc_erx;
460 bus_space_handle_t mac = sc->sc_mac;
461 bus_space_handle_t mif = sc->sc_mif;
462 u_int8_t *ea;
463 u_int32_t v;
464
465 /*
466 * Initialization sequence. The numbered steps below correspond
467 * to the sequence outlined in section 6.3.5.1 in the Ethernet
468 * Channel Engine manual (part of the PCIO manual).
469 * See also the STP2002-STQ document from Sun Microsystems.
470 */
471
472 /* step 1 & 2. Reset the Ethernet Channel */
473 hme_stop(sc);
474
475 /* Re-initialize the MIF */
476 hme_mifinit(sc);
477
478 /* Call MI reset function if any */
479 if (sc->sc_hwreset)
480 (*sc->sc_hwreset)(sc);
481
482 #if 0
483 /* Mask all MIF interrupts, just in case */
484 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
485 #endif
486
487 /* step 3. Setup data structures in host memory */
488 hme_meminit(sc);
489
490 /* step 4. TX MAC registers & counters */
491 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
492 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
493 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
494 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
495
496 /* Load station MAC address */
497 ea = sc->sc_enaddr;
498 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
499 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
500 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
501
502 /*
503 * Init seed for backoff
504 * (source suggested by manual: low 10 bits of MAC address)
505 */
506 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
507 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
508
509
510 /* Note: Accepting power-on default for other MAC registers here.. */
511
512
513 /* step 5. RX MAC registers & counters */
514 hme_setladrf(sc);
515
516 /* step 6 & 7. Program Descriptor Ring Base Addresses */
517 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
518 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
519
520 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
521
522
523 /* step 8. Global Configuration & Interrupt Mask */
524 bus_space_write_4(t, seb, HME_SEBI_IMASK,
525 ~(
526 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
527 HME_SEB_STAT_HOSTTOTX |
528 HME_SEB_STAT_RXTOHOST |
529 HME_SEB_STAT_TXALL |
530 HME_SEB_STAT_TXPERR |
531 HME_SEB_STAT_RCNTEXP |
532 HME_SEB_STAT_ALL_ERRORS ));
533
534 switch (sc->sc_burst) {
535 default:
536 v = 0;
537 break;
538 case 16:
539 v = HME_SEB_CFG_BURST16;
540 break;
541 case 32:
542 v = HME_SEB_CFG_BURST32;
543 break;
544 case 64:
545 v = HME_SEB_CFG_BURST64;
546 break;
547 }
548 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
549
550 /* step 9. ETX Configuration: use mostly default values */
551
552 /* Enable DMA */
553 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
554 v |= HME_ETX_CFG_DMAENABLE;
555 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
556
557 /* Transmit Descriptor ring size: in increments of 16 */
558 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
559
560
561 /* step 10. ERX Configuration */
562 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
563
564 /* Encode Receive Descriptor ring size: four possible values */
565 switch (_HME_NDESC /*XXX*/) {
566 case 32:
567 v |= HME_ERX_CFG_RINGSIZE32;
568 break;
569 case 64:
570 v |= HME_ERX_CFG_RINGSIZE64;
571 break;
572 case 128:
573 v |= HME_ERX_CFG_RINGSIZE128;
574 break;
575 case 256:
576 v |= HME_ERX_CFG_RINGSIZE256;
577 break;
578 default:
579 printf("hme: invalid Receive Descriptor ring size\n");
580 break;
581 }
582
583 /* Enable DMA */
584 v |= HME_ERX_CFG_DMAENABLE;
585 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
586
587 /* step 11. XIF Configuration */
588 v = bus_space_read_4(t, mac, HME_MACI_XIF);
589 v |= HME_MAC_XIF_OE;
590 /* If an external transceiver is connected, enable its MII drivers */
591 if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
592 v |= HME_MAC_XIF_MIIENABLE;
593 bus_space_write_4(t, mac, HME_MACI_XIF, v);
594
595
596 /* step 12. RX_MAC Configuration Register */
597 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
598 v |= HME_MAC_RXCFG_ENABLE;
599 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
600
601 /* step 13. TX_MAC Configuration Register */
602 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
603 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
604 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
605
606 /* step 14. Issue Transmit Pending command */
607
608 /* Call MI initialization function if any */
609 if (sc->sc_hwinit)
610 (*sc->sc_hwinit)(sc);
611
612 ifp->if_flags |= IFF_RUNNING;
613 ifp->if_flags &= ~IFF_OACTIVE;
614 ifp->if_timer = 0;
615 hme_start(ifp);
616 }
617
618 /*
619 * Compare two Ether/802 addresses for equality, inlined and unrolled for
620 * speed.
621 */
622 static __inline__ int
623 ether_cmp(a, b)
624 u_char *a, *b;
625 {
626
627 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
628 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
629 return (0);
630 return (1);
631 }
632
633
634 /*
635 * Routine to copy from mbuf chain to transmit buffer in
636 * network buffer memory.
637 * Returns the amount of data copied.
638 */
639 int
640 hme_put(sc, ri, m)
641 struct hme_softc *sc;
642 int ri; /* Ring index */
643 struct mbuf *m;
644 {
645 struct mbuf *n;
646 int len, tlen = 0;
647 caddr_t bp;
648
649 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
650 for (; m; m = n) {
651 len = m->m_len;
652 if (len == 0) {
653 MFREE(m, n);
654 continue;
655 }
656 bcopy(mtod(m, caddr_t), bp, len);
657 bp += len;
658 tlen += len;
659 MFREE(m, n);
660 }
661 return (tlen);
662 }
663
664 /*
665 * Pull data off an interface.
666 * Len is length of data, with local net header stripped.
667 * We copy the data into mbufs. When full cluster sized units are present
668 * we copy into clusters.
669 */
670 struct mbuf *
671 hme_get(sc, ri, totlen)
672 struct hme_softc *sc;
673 int ri, totlen;
674 {
675 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
676 struct mbuf *m, *m0, *newm;
677 caddr_t bp;
678 int len;
679
680 MGETHDR(m0, M_DONTWAIT, MT_DATA);
681 if (m0 == 0)
682 return (0);
683 m0->m_pkthdr.rcvif = ifp;
684 m0->m_pkthdr.len = totlen;
685 len = MHLEN;
686 m = m0;
687
688 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
689
690 while (totlen > 0) {
691 if (totlen >= MINCLSIZE) {
692 MCLGET(m, M_DONTWAIT);
693 if ((m->m_flags & M_EXT) == 0)
694 goto bad;
695 len = MCLBYTES;
696 }
697
698 if (m == m0) {
699 caddr_t newdata = (caddr_t)
700 ALIGN(m->m_data + sizeof(struct ether_header)) -
701 sizeof(struct ether_header);
702 len -= newdata - m->m_data;
703 m->m_data = newdata;
704 }
705
706 m->m_len = len = min(totlen, len);
707 bcopy(bp, mtod(m, caddr_t), len);
708 bp += len;
709
710 totlen -= len;
711 if (totlen > 0) {
712 MGET(newm, M_DONTWAIT, MT_DATA);
713 if (newm == 0)
714 goto bad;
715 len = MLEN;
716 m = m->m_next = newm;
717 }
718 }
719
720 return (m0);
721
722 bad:
723 m_freem(m0);
724 return (0);
725 }
726
727 /*
728 * Pass a packet to the higher levels.
729 */
730 void
731 hme_read(sc, ix, len)
732 struct hme_softc *sc;
733 int ix, len;
734 {
735 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
736 struct mbuf *m;
737
738 if (len <= sizeof(struct ether_header) ||
739 len > ETHERMTU + sizeof(struct ether_header)) {
740 #ifdef HMEDEBUG
741 printf("%s: invalid packet size %d; dropping\n",
742 sc->sc_dev.dv_xname, len);
743 #endif
744 ifp->if_ierrors++;
745 return;
746 }
747
748 /* Pull packet off interface. */
749 m = hme_get(sc, ix, len);
750 if (m == 0) {
751 ifp->if_ierrors++;
752 return;
753 }
754
755 ifp->if_ipackets++;
756
757 #if NBPFILTER > 0
758 /*
759 * Check if there's a BPF listener on this interface.
760 * If so, hand off the raw packet to BPF.
761 */
762 if (ifp->if_bpf) {
763 struct ether_header *eh;
764
765 bpf_mtap(ifp->if_bpf, m);
766
767 /*
768 * Note that the interface cannot be in promiscuous mode if
769 * there are no BPF listeners. And if we are in promiscuous
770 * mode, we have to check if this packet is really ours.
771 */
772
773 /* We assume that the header fit entirely in one mbuf. */
774 eh = mtod(m, struct ether_header *);
775
776 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
777 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
778 ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
779 m_freem(m);
780 return;
781 }
782 }
783 #endif
784
785 /* Pass the packet up. */
786 (*ifp->if_input)(ifp, m);
787 }
788
789 void
790 hme_start(ifp)
791 struct ifnet *ifp;
792 {
793 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
794 caddr_t txd = sc->sc_rb.rb_txd;
795 struct mbuf *m;
796 unsigned int ri, len;
797 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
798
799 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
800 return;
801
802 ri = sc->sc_rb.rb_tdhead;
803
804 for (;;) {
805 IF_DEQUEUE(&ifp->if_snd, m);
806 if (m == 0)
807 break;
808
809 #if NBPFILTER > 0
810 /*
811 * If BPF is listening on this interface, let it see the
812 * packet before we commit it to the wire.
813 */
814 if (ifp->if_bpf)
815 bpf_mtap(ifp->if_bpf, m);
816 #endif
817
818 /*
819 * Copy the mbuf chain into the transmit buffer.
820 */
821 len = hme_put(sc, ri, m);
822
823 /*
824 * Initialize transmit registers and start transmission
825 */
826 HME_XD_SETFLAGS(txd, ri,
827 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
828 HME_XD_ENCODE_TSIZE(len));
829
830 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
831 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
832 HME_ETX_TP_DMAWAKEUP);
833
834 if (++ri == ntbuf)
835 ri = 0;
836
837 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
838 ifp->if_flags |= IFF_OACTIVE;
839 break;
840 }
841 }
842
843 sc->sc_rb.rb_tdhead = ri;
844 }
845
846 /*
847 * Transmit interrupt.
848 */
849 int
850 hme_tint(sc)
851 struct hme_softc *sc;
852 {
853 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
854 bus_space_tag_t t = sc->sc_bustag;
855 bus_space_handle_t mac = sc->sc_mac;
856 unsigned int ri, txflags;
857
858 /*
859 * Unload collision counters
860 */
861 ifp->if_collisions +=
862 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
863 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
864 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
865 bus_space_read_4(t, mac, HME_MACI_LTCNT);
866
867 /*
868 * then clear the hardware counters.
869 */
870 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
871 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
872 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
873 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
874
875 /* Fetch current position in the transmit ring */
876 ri = sc->sc_rb.rb_tdtail;
877
878 for (;;) {
879 if (sc->sc_rb.rb_td_nbusy <= 0)
880 break;
881
882 txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
883
884 if (txflags & HME_XD_OWN)
885 break;
886
887 ifp->if_flags &= ~IFF_OACTIVE;
888 ifp->if_opackets++;
889
890 if (++ri == sc->sc_rb.rb_ntbuf)
891 ri = 0;
892
893 --sc->sc_rb.rb_td_nbusy;
894 }
895
896 /* Update ring */
897 sc->sc_rb.rb_tdtail = ri;
898
899 hme_start(ifp);
900
901 if (sc->sc_rb.rb_td_nbusy == 0)
902 ifp->if_timer = 0;
903
904 return (1);
905 }
906
907 /*
908 * Receive interrupt.
909 */
910 int
911 hme_rint(sc)
912 struct hme_softc *sc;
913 {
914 caddr_t xdr = sc->sc_rb.rb_rxd;
915 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
916 unsigned int ri, len;
917 u_int32_t flags;
918
919 ri = sc->sc_rb.rb_rdtail;
920
921 /*
922 * Process all buffers with valid data.
923 */
924 for (;;) {
925 flags = HME_XD_GETFLAGS(xdr, ri);
926 if (flags & HME_XD_OWN)
927 break;
928
929 if (flags & HME_XD_OFL) {
930 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
931 sc->sc_dev.dv_xname, ri, flags);
932 } else {
933 len = HME_XD_DECODE_RSIZE(flags);
934 hme_read(sc, ri, len);
935 }
936
937 /* This buffer can be used by the hardware again */
938 HME_XD_SETFLAGS(xdr, ri,
939 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
940
941 if (++ri == nrbuf)
942 ri = 0;
943 }
944
945 sc->sc_rb.rb_rdtail = ri;
946
947 return (1);
948 }
949
950 int
951 hme_eint(sc, status)
952 struct hme_softc *sc;
953 u_int status;
954 {
955 char bits[128];
956
957 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
958 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
959 return (1);
960 }
961
962 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
963 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
964 return (1);
965 }
966
967 int
968 hme_intr(v)
969 void *v;
970 {
971 struct hme_softc *sc = (struct hme_softc *)v;
972 bus_space_tag_t t = sc->sc_bustag;
973 bus_space_handle_t seb = sc->sc_seb;
974 u_int32_t status;
975 int r = 0;
976
977 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
978
979 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
980 r |= hme_eint(sc, status);
981
982 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
983 r |= hme_tint(sc);
984
985 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
986 r |= hme_rint(sc);
987
988 return (r);
989 }
990
991
992 void
993 hme_watchdog(ifp)
994 struct ifnet *ifp;
995 {
996 struct hme_softc *sc = ifp->if_softc;
997
998 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
999 ++ifp->if_oerrors;
1000
1001 hme_reset(sc);
1002 }
1003
1004 /*
1005 * Initialize the MII Management Interface
1006 */
1007 void
1008 hme_mifinit(sc)
1009 struct hme_softc *sc;
1010 {
1011 bus_space_tag_t t = sc->sc_bustag;
1012 bus_space_handle_t mif = sc->sc_mif;
1013 u_int32_t v;
1014
1015 /* Configure the MIF in frame mode */
1016 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1017 v &= ~HME_MIF_CFG_BBMODE;
1018 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1019 }
1020
1021 /*
1022 * MII interface
1023 */
1024 static int
1025 hme_mii_readreg(self, phy, reg)
1026 struct device *self;
1027 int phy, reg;
1028 {
1029 struct hme_softc *sc = (void *)self;
1030 bus_space_tag_t t = sc->sc_bustag;
1031 bus_space_handle_t mif = sc->sc_mif;
1032 int n;
1033 u_int32_t v;
1034
1035 /* Select the desired PHY in the MIF configuration register */
1036 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1037 /* Clear PHY select bit */
1038 v &= ~HME_MIF_CFG_PHY;
1039 if (phy == HME_PHYAD_EXTERNAL)
1040 /* Set PHY select bit to get at external device */
1041 v |= HME_MIF_CFG_PHY;
1042 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1043
1044 /* Construct the frame command */
1045 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1046 HME_MIF_FO_TAMSB |
1047 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1048 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1049 (reg << HME_MIF_FO_REGAD_SHIFT);
1050
1051 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1052 for (n = 0; n < 100; n++) {
1053 DELAY(1);
1054 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1055 if (v & HME_MIF_FO_TALSB)
1056 return (v & HME_MIF_FO_DATA);
1057 }
1058
1059 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1060 return (0);
1061 }
1062
1063 static void
1064 hme_mii_writereg(self, phy, reg, val)
1065 struct device *self;
1066 int phy, reg, val;
1067 {
1068 struct hme_softc *sc = (void *)self;
1069 bus_space_tag_t t = sc->sc_bustag;
1070 bus_space_handle_t mif = sc->sc_mif;
1071 int n;
1072 u_int32_t v;
1073
1074 /* Select the desired PHY in the MIF configuration register */
1075 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1076 /* Clear PHY select bit */
1077 v &= ~HME_MIF_CFG_PHY;
1078 if (phy == HME_PHYAD_EXTERNAL)
1079 /* Set PHY select bit to get at external device */
1080 v |= HME_MIF_CFG_PHY;
1081 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1082
1083 /* Construct the frame command */
1084 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1085 HME_MIF_FO_TAMSB |
1086 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1087 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1088 (reg << HME_MIF_FO_REGAD_SHIFT) |
1089 (val & HME_MIF_FO_DATA);
1090
1091 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1092 for (n = 0; n < 100; n++) {
1093 DELAY(1);
1094 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1095 if (v & HME_MIF_FO_TALSB)
1096 return;
1097 }
1098
1099 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1100 }
1101
1102 static void
1103 hme_mii_statchg(dev)
1104 struct device *dev;
1105 {
1106 struct hme_softc *sc = (void *)dev;
1107 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1108 int phy = sc->sc_phys[instance];
1109 bus_space_tag_t t = sc->sc_bustag;
1110 bus_space_handle_t mif = sc->sc_mif;
1111 bus_space_handle_t mac = sc->sc_mac;
1112 u_int32_t v;
1113
1114 #ifdef HMEDEBUG
1115 if (sc->sc_debug)
1116 printf("hme_mii_statchg: status change: phy = %d\n", phy);
1117 #endif
1118
1119 /* Select the current PHY in the MIF configuration register */
1120 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1121 v &= ~HME_MIF_CFG_PHY;
1122 if (phy == HME_PHYAD_EXTERNAL)
1123 v |= HME_MIF_CFG_PHY;
1124 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1125
1126 /* Set the MAC Full Duplex bit appropriately */
1127 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1128 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1129 v |= HME_MAC_TXCFG_FULLDPLX;
1130 else
1131 v &= ~HME_MAC_TXCFG_FULLDPLX;
1132 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1133
1134 /* If an external transceiver is selected, enable its MII drivers */
1135 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1136 v &= ~HME_MAC_XIF_MIIENABLE;
1137 if (phy == HME_PHYAD_EXTERNAL)
1138 v |= HME_MAC_XIF_MIIENABLE;
1139 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1140 }
1141
1142 int
1143 hme_mediachange(ifp)
1144 struct ifnet *ifp;
1145 {
1146 struct hme_softc *sc = ifp->if_softc;
1147
1148 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1149 return (EINVAL);
1150
1151 return (mii_mediachg(&sc->sc_mii));
1152 }
1153
1154 void
1155 hme_mediastatus(ifp, ifmr)
1156 struct ifnet *ifp;
1157 struct ifmediareq *ifmr;
1158 {
1159 struct hme_softc *sc = ifp->if_softc;
1160
1161 if ((ifp->if_flags & IFF_UP) == 0)
1162 return;
1163
1164 mii_pollstat(&sc->sc_mii);
1165 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1166 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1167 }
1168
1169 /*
1170 * Process an ioctl request.
1171 */
1172 int
1173 hme_ioctl(ifp, cmd, data)
1174 struct ifnet *ifp;
1175 u_long cmd;
1176 caddr_t data;
1177 {
1178 struct hme_softc *sc = ifp->if_softc;
1179 struct ifaddr *ifa = (struct ifaddr *)data;
1180 struct ifreq *ifr = (struct ifreq *)data;
1181 int s, error = 0;
1182
1183 s = splnet();
1184
1185 switch (cmd) {
1186
1187 case SIOCSIFADDR:
1188 ifp->if_flags |= IFF_UP;
1189
1190 switch (ifa->ifa_addr->sa_family) {
1191 #ifdef INET
1192 case AF_INET:
1193 hme_init(sc);
1194 arp_ifinit(ifp, ifa);
1195 break;
1196 #endif
1197 #ifdef NS
1198 case AF_NS:
1199 {
1200 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1201
1202 if (ns_nullhost(*ina))
1203 ina->x_host =
1204 *(union ns_host *)LLADDR(ifp->if_sadl);
1205 else {
1206 bcopy(ina->x_host.c_host,
1207 LLADDR(ifp->if_sadl),
1208 sizeof(sc->sc_enaddr));
1209 }
1210 /* Set new address. */
1211 hme_init(sc);
1212 break;
1213 }
1214 #endif
1215 default:
1216 hme_init(sc);
1217 break;
1218 }
1219 break;
1220
1221 case SIOCSIFFLAGS:
1222 if ((ifp->if_flags & IFF_UP) == 0 &&
1223 (ifp->if_flags & IFF_RUNNING) != 0) {
1224 /*
1225 * If interface is marked down and it is running, then
1226 * stop it.
1227 */
1228 hme_stop(sc);
1229 ifp->if_flags &= ~IFF_RUNNING;
1230 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1231 (ifp->if_flags & IFF_RUNNING) == 0) {
1232 /*
1233 * If interface is marked up and it is stopped, then
1234 * start it.
1235 */
1236 hme_init(sc);
1237 } else if ((ifp->if_flags & IFF_UP) != 0) {
1238 /*
1239 * Reset the interface to pick up changes in any other
1240 * flags that affect hardware registers.
1241 */
1242 /*hme_stop(sc);*/
1243 hme_init(sc);
1244 }
1245 #ifdef HMEDEBUG
1246 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1247 #endif
1248 break;
1249
1250 case SIOCADDMULTI:
1251 case SIOCDELMULTI:
1252 error = (cmd == SIOCADDMULTI) ?
1253 ether_addmulti(ifr, &sc->sc_ethercom) :
1254 ether_delmulti(ifr, &sc->sc_ethercom);
1255
1256 if (error == ENETRESET) {
1257 /*
1258 * Multicast list has changed; set the hardware filter
1259 * accordingly.
1260 */
1261 hme_setladrf(sc);
1262 error = 0;
1263 }
1264 break;
1265
1266 case SIOCGIFMEDIA:
1267 case SIOCSIFMEDIA:
1268 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1269 break;
1270
1271 default:
1272 error = EINVAL;
1273 break;
1274 }
1275
1276 splx(s);
1277 return (error);
1278 }
1279
1280 void
1281 hme_shutdown(arg)
1282 void *arg;
1283 {
1284
1285 hme_stop((struct hme_softc *)arg);
1286 }
1287
1288 /*
1289 * Set up the logical address filter.
1290 */
1291 void
1292 hme_setladrf(sc)
1293 struct hme_softc *sc;
1294 {
1295 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1296 struct ether_multi *enm;
1297 struct ether_multistep step;
1298 struct ethercom *ec = &sc->sc_ethercom;
1299 bus_space_tag_t t = sc->sc_bustag;
1300 bus_space_handle_t mac = sc->sc_mac;
1301 u_char *cp;
1302 u_int32_t crc;
1303 u_int32_t hash[4];
1304 int len;
1305
1306 /*
1307 * Set up multicast address filter by passing all multicast addresses
1308 * through a crc generator, and then using the high order 6 bits as an
1309 * index into the 64 bit logical address filter. The high order bit
1310 * selects the word, while the rest of the bits select the bit within
1311 * the word.
1312 */
1313
1314 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1315 u_int32_t v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1316 v |= HME_MAC_RXCFG_PMISC;
1317 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1318 goto allmulti;
1319 }
1320
1321 /* Clear hash table */
1322 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1323 ETHER_FIRST_MULTI(step, ec, enm);
1324 while (enm != NULL) {
1325 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1326 /*
1327 * We must listen to a range of multicast addresses.
1328 * For now, just accept all multicasts, rather than
1329 * trying to set only those filter bits needed to match
1330 * the range. (At this time, the only use of address
1331 * ranges is for IP multicast routing, for which the
1332 * range is big enough to require all bits set.)
1333 */
1334 goto allmulti;
1335 }
1336
1337 cp = enm->enm_addrlo;
1338 crc = 0xffffffff;
1339 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1340 int octet = *cp++;
1341 int i;
1342
1343 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1344 for (i = 0; i < 8; i++) {
1345 if ((crc & 1) ^ (octet & 1)) {
1346 crc >>= 1;
1347 crc ^= MC_POLY_LE;
1348 } else {
1349 crc >>= 1;
1350 }
1351 octet >>= 1;
1352 }
1353 }
1354 /* Just want the 6 most significant bits. */
1355 crc >>= 26;
1356
1357 /* Set the corresponding bit in the filter. */
1358 hash[crc >> 4] |= 1 << (crc & 0xf);
1359
1360 ETHER_NEXT_MULTI(step, enm);
1361 }
1362
1363 /* Now load the hash table onto the chip */
1364 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1365 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1366 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1367 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1368
1369 ifp->if_flags &= ~IFF_ALLMULTI;
1370 return;
1371
1372 allmulti:
1373 ifp->if_flags |= IFF_ALLMULTI;
1374 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, 0xffff);
1375 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, 0xffff);
1376 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, 0xffff);
1377 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, 0xffff);
1378 }
1379
1380 /*
1381 * Routines for accessing the transmit and receive buffers.
1382 * The various CPU and adapter configurations supported by this
1383 * driver require three different access methods for buffers
1384 * and descriptors:
1385 * (1) contig (contiguous data; no padding),
1386 * (2) gap2 (two bytes of data followed by two bytes of padding),
1387 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1388 */
1389
1390 #if 0
1391 /*
1392 * contig: contiguous data with no padding.
1393 *
1394 * Buffers may have any alignment.
1395 */
1396
1397 void
1398 hme_copytobuf_contig(sc, from, ri, len)
1399 struct hme_softc *sc;
1400 void *from;
1401 int ri, len;
1402 {
1403 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1404
1405 /*
1406 * Just call bcopy() to do the work.
1407 */
1408 bcopy(from, buf, len);
1409 }
1410
1411 void
1412 hme_copyfrombuf_contig(sc, to, boff, len)
1413 struct hme_softc *sc;
1414 void *to;
1415 int boff, len;
1416 {
1417 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1418
1419 /*
1420 * Just call bcopy() to do the work.
1421 */
1422 bcopy(buf, to, len);
1423 }
1424 #endif
1425