hme.c revision 1.72 1 /* $NetBSD: hme.c,v 1.72 2009/03/14 21:04:20 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * HME Ethernet module driver.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.72 2009/03/14 21:04:20 dsl Exp $");
38
39 /* #define HMEDEBUG */
40
41 #include "opt_inet.h"
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/socket.h>
51 #include <sys/device.h>
52 #include <sys/malloc.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #if NRND > 0
56 #include <sys/rnd.h>
57 #endif
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63
64 #ifdef INET
65 #include <netinet/in.h>
66 #include <netinet/if_inarp.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/tcp.h>
71 #include <netinet/udp.h>
72 #endif
73
74
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #include <net/bpfdesc.h>
78 #endif
79
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82
83 #include <sys/bus.h>
84
85 #include <dev/ic/hmereg.h>
86 #include <dev/ic/hmevar.h>
87
88 void hme_start(struct ifnet *);
89 void hme_stop(struct hme_softc *,bool);
90 int hme_ioctl(struct ifnet *, u_long, void *);
91 void hme_tick(void *);
92 void hme_watchdog(struct ifnet *);
93 void hme_shutdown(void *);
94 int hme_init(struct hme_softc *);
95 void hme_meminit(struct hme_softc *);
96 void hme_mifinit(struct hme_softc *);
97 void hme_reset(struct hme_softc *);
98 void hme_setladrf(struct hme_softc *);
99
100 /* MII methods & callbacks */
101 static int hme_mii_readreg(struct device *, int, int);
102 static void hme_mii_writereg(struct device *, int, int, int);
103 static void hme_mii_statchg(struct device *);
104
105 int hme_mediachange(struct ifnet *);
106
107 struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
108 int hme_put(struct hme_softc *, int, struct mbuf *);
109 void hme_read(struct hme_softc *, int, uint32_t);
110 int hme_eint(struct hme_softc *, u_int);
111 int hme_rint(struct hme_softc *);
112 int hme_tint(struct hme_softc *);
113
114 /* Default buffer copy routines */
115 void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
116 void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
117 void hme_zerobuf_contig(struct hme_softc *, int, int);
118
119
120 void
121 hme_config(struct hme_softc *sc)
122 {
123 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
124 struct mii_data *mii = &sc->sc_mii;
125 struct mii_softc *child;
126 bus_dma_tag_t dmatag = sc->sc_dmatag;
127 bus_dma_segment_t seg;
128 bus_size_t size;
129 int rseg, error;
130
131 /*
132 * HME common initialization.
133 *
134 * hme_softc fields that must be initialized by the front-end:
135 *
136 * the bus tag:
137 * sc_bustag
138 *
139 * the DMA bus tag:
140 * sc_dmatag
141 *
142 * the bus handles:
143 * sc_seb (Shared Ethernet Block registers)
144 * sc_erx (Receiver Unit registers)
145 * sc_etx (Transmitter Unit registers)
146 * sc_mac (MAC registers)
147 * sc_mif (Management Interface registers)
148 *
149 * the maximum bus burst size:
150 * sc_burst
151 *
152 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
153 * rb_membase, rb_dmabase)
154 *
155 * the local Ethernet address:
156 * sc_enaddr
157 *
158 */
159
160 /* Make sure the chip is stopped. */
161 hme_stop(sc, true);
162
163
164 /*
165 * Allocate descriptors and buffers
166 * XXX - do all this differently.. and more configurably,
167 * eg. use things as `dma_load_mbuf()' on transmit,
168 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
169 * all the time) on the receiver side.
170 *
171 * Note: receive buffers must be 64-byte aligned.
172 * Also, apparently, the buffers must extend to a DMA burst
173 * boundary beyond the maximum packet size.
174 */
175 #define _HME_NDESC 128
176 #define _HME_BUFSZ 1600
177
178 /* Note: the # of descriptors must be a multiple of 16 */
179 sc->sc_rb.rb_ntbuf = _HME_NDESC;
180 sc->sc_rb.rb_nrbuf = _HME_NDESC;
181
182 /*
183 * Allocate DMA capable memory
184 * Buffer descriptors must be aligned on a 2048 byte boundary;
185 * take this into account when calculating the size. Note that
186 * the maximum number of descriptors (256) occupies 2048 bytes,
187 * so we allocate that much regardless of _HME_NDESC.
188 */
189 size = 2048 + /* TX descriptors */
190 2048 + /* RX descriptors */
191 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
192 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
193
194 /* Allocate DMA buffer */
195 if ((error = bus_dmamem_alloc(dmatag, size,
196 2048, 0,
197 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
198 aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
199 error);
200 return;
201 }
202
203 /* Map DMA memory in CPU addressable space */
204 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
205 &sc->sc_rb.rb_membase,
206 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
207 aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
208 error);
209 bus_dmamap_unload(dmatag, sc->sc_dmamap);
210 bus_dmamem_free(dmatag, &seg, rseg);
211 return;
212 }
213
214 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
215 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
216 aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
217 error);
218 return;
219 }
220
221 /* Load the buffer */
222 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
223 sc->sc_rb.rb_membase, size, NULL,
224 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
225 aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
226 error);
227 bus_dmamem_free(dmatag, &seg, rseg);
228 return;
229 }
230 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
231
232 printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
233 ether_sprintf(sc->sc_enaddr));
234
235 /* Initialize ifnet structure. */
236 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
237 ifp->if_softc = sc;
238 ifp->if_start = hme_start;
239 ifp->if_ioctl = hme_ioctl;
240 ifp->if_watchdog = hme_watchdog;
241 ifp->if_flags =
242 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
243 sc->sc_if_flags = ifp->if_flags;
244 ifp->if_capabilities |=
245 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
246 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
247 IFQ_SET_READY(&ifp->if_snd);
248
249 /* Initialize ifmedia structures and MII info */
250 mii->mii_ifp = ifp;
251 mii->mii_readreg = hme_mii_readreg;
252 mii->mii_writereg = hme_mii_writereg;
253 mii->mii_statchg = hme_mii_statchg;
254
255 sc->sc_ethercom.ec_mii = mii;
256 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
257
258 hme_mifinit(sc);
259
260 mii_attach(&sc->sc_dev, mii, 0xffffffff,
261 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
262
263 child = LIST_FIRST(&mii->mii_phys);
264 if (child == NULL) {
265 /* No PHY attached */
266 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
267 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
268 } else {
269 /*
270 * Walk along the list of attached MII devices and
271 * establish an `MII instance' to `phy number'
272 * mapping. We'll use this mapping in media change
273 * requests to determine which phy to use to program
274 * the MIF configuration register.
275 */
276 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
277 /*
278 * Note: we support just two PHYs: the built-in
279 * internal device and an external on the MII
280 * connector.
281 */
282 if (child->mii_phy > 1 || child->mii_inst > 1) {
283 aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
284 " at phy %d, instance %d\n",
285 device_xname(child->mii_dev),
286 child->mii_phy, child->mii_inst);
287 continue;
288 }
289
290 sc->sc_phys[child->mii_inst] = child->mii_phy;
291 }
292
293 /*
294 * XXX - we can really do the following ONLY if the
295 * phy indeed has the auto negotiation capability!!
296 */
297 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
298 }
299
300 /* claim 802.1q capability */
301 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
302
303 /* Attach the interface. */
304 if_attach(ifp);
305 ether_ifattach(ifp, sc->sc_enaddr);
306
307 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
308 if (sc->sc_sh == NULL)
309 panic("hme_config: can't establish shutdownhook");
310
311 #if NRND > 0
312 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
313 RND_TYPE_NET, 0);
314 #endif
315
316 callout_init(&sc->sc_tick_ch, 0);
317 }
318
319 void
320 hme_tick(void *arg)
321 {
322 struct hme_softc *sc = arg;
323 int s;
324
325 s = splnet();
326 mii_tick(&sc->sc_mii);
327 splx(s);
328
329 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
330 }
331
332 void
333 hme_reset(struct hme_softc *sc)
334 {
335 int s;
336
337 s = splnet();
338 (void)hme_init(sc);
339 splx(s);
340 }
341
342 void
343 hme_stop(struct hme_softc *sc, bool chip_only)
344 {
345 bus_space_tag_t t = sc->sc_bustag;
346 bus_space_handle_t seb = sc->sc_seb;
347 int n;
348
349 if (!chip_only) {
350 callout_stop(&sc->sc_tick_ch);
351 mii_down(&sc->sc_mii);
352 }
353
354 /* Mask all interrupts */
355 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
356
357 /* Reset transmitter and receiver */
358 bus_space_write_4(t, seb, HME_SEBI_RESET,
359 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
360
361 for (n = 0; n < 20; n++) {
362 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
363 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
364 return;
365 DELAY(20);
366 }
367
368 printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
369 }
370
371 void
372 hme_meminit(struct hme_softc *sc)
373 {
374 bus_addr_t txbufdma, rxbufdma;
375 bus_addr_t dma;
376 char *p;
377 unsigned int ntbuf, nrbuf, i;
378 struct hme_ring *hr = &sc->sc_rb;
379
380 p = hr->rb_membase;
381 dma = hr->rb_dmabase;
382
383 ntbuf = hr->rb_ntbuf;
384 nrbuf = hr->rb_nrbuf;
385
386 /*
387 * Allocate transmit descriptors
388 */
389 hr->rb_txd = p;
390 hr->rb_txddma = dma;
391 p += ntbuf * HME_XD_SIZE;
392 dma += ntbuf * HME_XD_SIZE;
393 /* We have reserved descriptor space until the next 2048 byte boundary.*/
394 dma = (bus_addr_t)roundup((u_long)dma, 2048);
395 p = (void *)roundup((u_long)p, 2048);
396
397 /*
398 * Allocate receive descriptors
399 */
400 hr->rb_rxd = p;
401 hr->rb_rxddma = dma;
402 p += nrbuf * HME_XD_SIZE;
403 dma += nrbuf * HME_XD_SIZE;
404 /* Again move forward to the next 2048 byte boundary.*/
405 dma = (bus_addr_t)roundup((u_long)dma, 2048);
406 p = (void *)roundup((u_long)p, 2048);
407
408
409 /*
410 * Allocate transmit buffers
411 */
412 hr->rb_txbuf = p;
413 txbufdma = dma;
414 p += ntbuf * _HME_BUFSZ;
415 dma += ntbuf * _HME_BUFSZ;
416
417 /*
418 * Allocate receive buffers
419 */
420 hr->rb_rxbuf = p;
421 rxbufdma = dma;
422 p += nrbuf * _HME_BUFSZ;
423 dma += nrbuf * _HME_BUFSZ;
424
425 /*
426 * Initialize transmit buffer descriptors
427 */
428 for (i = 0; i < ntbuf; i++) {
429 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
430 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
431 }
432
433 /*
434 * Initialize receive buffer descriptors
435 */
436 for (i = 0; i < nrbuf; i++) {
437 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
438 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
439 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
440 }
441
442 hr->rb_tdhead = hr->rb_tdtail = 0;
443 hr->rb_td_nbusy = 0;
444 hr->rb_rdtail = 0;
445 }
446
447 /*
448 * Initialization of interface; set up initialization block
449 * and transmit/receive descriptor rings.
450 */
451 int
452 hme_init(struct hme_softc *sc)
453 {
454 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
455 bus_space_tag_t t = sc->sc_bustag;
456 bus_space_handle_t seb = sc->sc_seb;
457 bus_space_handle_t etx = sc->sc_etx;
458 bus_space_handle_t erx = sc->sc_erx;
459 bus_space_handle_t mac = sc->sc_mac;
460 u_int8_t *ea;
461 u_int32_t v;
462 int rc;
463
464 /*
465 * Initialization sequence. The numbered steps below correspond
466 * to the sequence outlined in section 6.3.5.1 in the Ethernet
467 * Channel Engine manual (part of the PCIO manual).
468 * See also the STP2002-STQ document from Sun Microsystems.
469 */
470
471 /* step 1 & 2. Reset the Ethernet Channel */
472 hme_stop(sc, false);
473
474 /* Re-initialize the MIF */
475 hme_mifinit(sc);
476
477 /* Call MI reset function if any */
478 if (sc->sc_hwreset)
479 (*sc->sc_hwreset)(sc);
480
481 #if 0
482 /* Mask all MIF interrupts, just in case */
483 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
484 #endif
485
486 /* step 3. Setup data structures in host memory */
487 hme_meminit(sc);
488
489 /* step 4. TX MAC registers & counters */
490 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
491 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
492 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
493 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
494 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
495 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
496 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
497 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
498
499 /* Load station MAC address */
500 ea = sc->sc_enaddr;
501 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
502 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
503 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
504
505 /*
506 * Init seed for backoff
507 * (source suggested by manual: low 10 bits of MAC address)
508 */
509 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
510 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
511
512
513 /* Note: Accepting power-on default for other MAC registers here.. */
514
515
516 /* step 5. RX MAC registers & counters */
517 hme_setladrf(sc);
518
519 /* step 6 & 7. Program Descriptor Ring Base Addresses */
520 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
521 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
522
523 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
524 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
525 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
526 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
527
528 /* step 8. Global Configuration & Interrupt Mask */
529 bus_space_write_4(t, seb, HME_SEBI_IMASK,
530 ~(
531 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
532 HME_SEB_STAT_HOSTTOTX |
533 HME_SEB_STAT_RXTOHOST |
534 HME_SEB_STAT_TXALL |
535 HME_SEB_STAT_TXPERR |
536 HME_SEB_STAT_RCNTEXP |
537 /*HME_SEB_STAT_MIFIRQ |*/
538 HME_SEB_STAT_ALL_ERRORS ));
539
540 switch (sc->sc_burst) {
541 default:
542 v = 0;
543 break;
544 case 16:
545 v = HME_SEB_CFG_BURST16;
546 break;
547 case 32:
548 v = HME_SEB_CFG_BURST32;
549 break;
550 case 64:
551 v = HME_SEB_CFG_BURST64;
552 break;
553 }
554 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
555
556 /* step 9. ETX Configuration: use mostly default values */
557
558 /* Enable DMA */
559 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
560 v |= HME_ETX_CFG_DMAENABLE;
561 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
562
563 /* Transmit Descriptor ring size: in increments of 16 */
564 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
565
566
567 /* step 10. ERX Configuration */
568 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
569
570 /* Encode Receive Descriptor ring size: four possible values */
571 switch (_HME_NDESC /*XXX*/) {
572 case 32:
573 v |= HME_ERX_CFG_RINGSIZE32;
574 break;
575 case 64:
576 v |= HME_ERX_CFG_RINGSIZE64;
577 break;
578 case 128:
579 v |= HME_ERX_CFG_RINGSIZE128;
580 break;
581 case 256:
582 v |= HME_ERX_CFG_RINGSIZE256;
583 break;
584 default:
585 printf("hme: invalid Receive Descriptor ring size\n");
586 break;
587 }
588
589 /* Enable DMA */
590 v |= HME_ERX_CFG_DMAENABLE;
591
592 /* set h/w rx checksum start offset (# of half-words) */
593 #ifdef INET
594 v |= (((ETHER_HDR_LEN + sizeof(struct ip) +
595 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
596 ETHER_VLAN_ENCAP_LEN : 0)) / 2) << HME_ERX_CFG_CSUMSHIFT) &
597 HME_ERX_CFG_CSUMSTART;
598 #endif
599 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
600
601 /* step 11. XIF Configuration */
602 v = bus_space_read_4(t, mac, HME_MACI_XIF);
603 v |= HME_MAC_XIF_OE;
604 bus_space_write_4(t, mac, HME_MACI_XIF, v);
605
606 /* step 12. RX_MAC Configuration Register */
607 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
608 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
609 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
610
611 /* step 13. TX_MAC Configuration Register */
612 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
613 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
614 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
615
616 /* step 14. Issue Transmit Pending command */
617
618 /* Call MI initialization function if any */
619 if (sc->sc_hwinit)
620 (*sc->sc_hwinit)(sc);
621
622 /* Set the current media. */
623 if ((rc = hme_mediachange(ifp)) != 0)
624 return rc;
625
626 /* Start the one second timer. */
627 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
628
629 ifp->if_flags |= IFF_RUNNING;
630 ifp->if_flags &= ~IFF_OACTIVE;
631 sc->sc_if_flags = ifp->if_flags;
632 ifp->if_timer = 0;
633 hme_start(ifp);
634 return 0;
635 }
636
637 /*
638 * Routine to copy from mbuf chain to transmit buffer in
639 * network buffer memory.
640 * Returns the amount of data copied.
641 */
642 int
643 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
644 /* ri: Ring index */
645 {
646 struct mbuf *n;
647 int len, tlen = 0;
648 char *bp;
649
650 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
651 for (; m; m = n) {
652 len = m->m_len;
653 if (len == 0) {
654 MFREE(m, n);
655 continue;
656 }
657 memcpy(bp, mtod(m, void *), len);
658 bp += len;
659 tlen += len;
660 MFREE(m, n);
661 }
662 return (tlen);
663 }
664
665 /*
666 * Pull data off an interface.
667 * Len is length of data, with local net header stripped.
668 * We copy the data into mbufs. When full cluster sized units are present
669 * we copy into clusters.
670 */
671 struct mbuf *
672 hme_get(struct hme_softc *sc, int ri, u_int32_t flags)
673 {
674 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
675 struct mbuf *m, *m0, *newm;
676 char *bp;
677 int len, totlen;
678
679 totlen = HME_XD_DECODE_RSIZE(flags);
680 MGETHDR(m0, M_DONTWAIT, MT_DATA);
681 if (m0 == 0)
682 return (0);
683 m0->m_pkthdr.rcvif = ifp;
684 m0->m_pkthdr.len = totlen;
685 len = MHLEN;
686 m = m0;
687
688 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
689
690 while (totlen > 0) {
691 if (totlen >= MINCLSIZE) {
692 MCLGET(m, M_DONTWAIT);
693 if ((m->m_flags & M_EXT) == 0)
694 goto bad;
695 len = MCLBYTES;
696 }
697
698 if (m == m0) {
699 char *newdata = (char *)
700 ALIGN(m->m_data + sizeof(struct ether_header)) -
701 sizeof(struct ether_header);
702 len -= newdata - m->m_data;
703 m->m_data = newdata;
704 }
705
706 m->m_len = len = min(totlen, len);
707 memcpy(mtod(m, void *), bp, len);
708 bp += len;
709
710 totlen -= len;
711 if (totlen > 0) {
712 MGET(newm, M_DONTWAIT, MT_DATA);
713 if (newm == 0)
714 goto bad;
715 len = MLEN;
716 m = m->m_next = newm;
717 }
718 }
719
720 #ifdef INET
721 /* hardware checksum */
722 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
723 struct ether_header *eh;
724 struct ip *ip;
725 struct udphdr *uh;
726 uint16_t *opts;
727 int32_t hlen, pktlen;
728 uint32_t temp;
729
730 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
731 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN -
732 ETHER_VLAN_ENCAP_LEN;
733 eh = (struct ether_header *) mtod(m0, void *) +
734 ETHER_VLAN_ENCAP_LEN;
735 } else {
736 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
737 eh = mtod(m0, struct ether_header *);
738 }
739 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
740 goto swcsum;
741 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
742
743 /* IPv4 only */
744 if (ip->ip_v != IPVERSION)
745 goto swcsum;
746
747 hlen = ip->ip_hl << 2;
748 if (hlen < sizeof(struct ip))
749 goto swcsum;
750
751 /*
752 * bail if too short, has random trailing garbage, truncated,
753 * fragment, or has ethernet pad.
754 */
755 if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen)
756 || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
757 goto swcsum;
758
759 switch (ip->ip_p) {
760 case IPPROTO_TCP:
761 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
762 goto swcsum;
763 if (pktlen < (hlen + sizeof(struct tcphdr)))
764 goto swcsum;
765 m0->m_pkthdr.csum_flags = M_CSUM_TCPv4;
766 break;
767 case IPPROTO_UDP:
768 if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
769 goto swcsum;
770 if (pktlen < (hlen + sizeof(struct udphdr)))
771 goto swcsum;
772 uh = (struct udphdr *)((char *)ip + hlen);
773 /* no checksum */
774 if (uh->uh_sum == 0)
775 goto swcsum;
776 m0->m_pkthdr.csum_flags = M_CSUM_UDPv4;
777 break;
778 default:
779 goto swcsum;
780 }
781
782 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
783 m0->m_pkthdr.csum_data = (~flags) & HME_XD_RXCKSUM;
784
785 /* if the pkt had ip options, we have to deduct them */
786 if (hlen > sizeof(struct ip)) {
787 uint32_t optsum;
788
789 optsum = 0;
790 temp = hlen - sizeof(struct ip);
791 opts = (uint16_t *)((char *)ip + sizeof(struct ip));
792
793 while (temp > 1) {
794 optsum += ntohs(*opts++);
795 temp -= 2;
796 }
797 while (optsum >> 16)
798 optsum = (optsum >> 16) + (optsum & 0xffff);
799
800 /* Deduct the ip opts sum from the hwsum (rfc 1624). */
801 m0->m_pkthdr.csum_data = ~((~m0->m_pkthdr.csum_data) -
802 ~optsum);
803
804 while (m0->m_pkthdr.csum_data >> 16)
805 m0->m_pkthdr.csum_data =
806 (m0->m_pkthdr.csum_data >> 16) +
807 (m0->m_pkthdr.csum_data & 0xffff);
808 }
809
810 m0->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
811 } else
812 swcsum:
813 m0->m_pkthdr.csum_flags = 0;
814 #endif
815
816 return (m0);
817
818 bad:
819 m_freem(m0);
820 return (0);
821 }
822
823 /*
824 * Pass a packet to the higher levels.
825 */
826 void
827 hme_read(struct hme_softc *sc, int ix, u_int32_t flags)
828 {
829 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
830 struct mbuf *m;
831 int len;
832
833 len = HME_XD_DECODE_RSIZE(flags);
834 if (len <= sizeof(struct ether_header) ||
835 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
836 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
837 ETHERMTU + sizeof(struct ether_header))) {
838 #ifdef HMEDEBUG
839 printf("%s: invalid packet size %d; dropping\n",
840 device_xname(&sc->sc_dev), len);
841 #endif
842 ifp->if_ierrors++;
843 return;
844 }
845
846 /* Pull packet off interface. */
847 m = hme_get(sc, ix, flags);
848 if (m == 0) {
849 ifp->if_ierrors++;
850 return;
851 }
852
853 ifp->if_ipackets++;
854
855 #if NBPFILTER > 0
856 /*
857 * Check if there's a BPF listener on this interface.
858 * If so, hand off the raw packet to BPF.
859 */
860 if (ifp->if_bpf)
861 bpf_mtap(ifp->if_bpf, m);
862 #endif
863
864 /* Pass the packet up. */
865 (*ifp->if_input)(ifp, m);
866 }
867
868 void
869 hme_start(struct ifnet *ifp)
870 {
871 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
872 void *txd = sc->sc_rb.rb_txd;
873 struct mbuf *m;
874 unsigned int txflags;
875 unsigned int ri, len;
876 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
877
878 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
879 return;
880
881 ri = sc->sc_rb.rb_tdhead;
882
883 for (;;) {
884 IFQ_DEQUEUE(&ifp->if_snd, m);
885 if (m == 0)
886 break;
887
888 #if NBPFILTER > 0
889 /*
890 * If BPF is listening on this interface, let it see the
891 * packet before we commit it to the wire.
892 */
893 if (ifp->if_bpf)
894 bpf_mtap(ifp->if_bpf, m);
895 #endif
896
897 #ifdef INET
898 /* collect bits for h/w csum, before hme_put frees the mbuf */
899 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
900 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
901 struct ether_header *eh;
902 uint16_t offset, start;
903
904 eh = mtod(m, struct ether_header *);
905 switch (ntohs(eh->ether_type)) {
906 case ETHERTYPE_IP:
907 start = ETHER_HDR_LEN;
908 break;
909 case ETHERTYPE_VLAN:
910 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
911 break;
912 default:
913 /* unsupported, drop it */
914 m_free(m);
915 continue;
916 }
917 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
918 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
919 + start;
920 txflags = HME_XD_TXCKSUM |
921 (offset << HME_XD_TXCSSTUFFSHIFT) |
922 (start << HME_XD_TXCSSTARTSHIFT);
923 } else
924 #endif
925 txflags = 0;
926
927 /*
928 * Copy the mbuf chain into the transmit buffer.
929 */
930 len = hme_put(sc, ri, m);
931
932 /*
933 * Initialize transmit registers and start transmission
934 */
935 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
936 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
937 HME_XD_ENCODE_TSIZE(len) | txflags);
938
939 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
940 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
941 HME_ETX_TP_DMAWAKEUP);
942
943 if (++ri == ntbuf)
944 ri = 0;
945
946 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
947 ifp->if_flags |= IFF_OACTIVE;
948 break;
949 }
950 }
951
952 sc->sc_rb.rb_tdhead = ri;
953 }
954
955 /*
956 * Transmit interrupt.
957 */
958 int
959 hme_tint(struct hme_softc *sc)
960 {
961 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
962 bus_space_tag_t t = sc->sc_bustag;
963 bus_space_handle_t mac = sc->sc_mac;
964 unsigned int ri, txflags;
965
966 /*
967 * Unload collision counters
968 */
969 ifp->if_collisions +=
970 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
971 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
972 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
973 bus_space_read_4(t, mac, HME_MACI_LTCNT);
974
975 /*
976 * then clear the hardware counters.
977 */
978 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
979 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
980 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
981 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
982
983 /* Fetch current position in the transmit ring */
984 ri = sc->sc_rb.rb_tdtail;
985
986 for (;;) {
987 if (sc->sc_rb.rb_td_nbusy <= 0)
988 break;
989
990 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
991
992 if (txflags & HME_XD_OWN)
993 break;
994
995 ifp->if_flags &= ~IFF_OACTIVE;
996 ifp->if_opackets++;
997
998 if (++ri == sc->sc_rb.rb_ntbuf)
999 ri = 0;
1000
1001 --sc->sc_rb.rb_td_nbusy;
1002 }
1003
1004 /* Update ring */
1005 sc->sc_rb.rb_tdtail = ri;
1006
1007 hme_start(ifp);
1008
1009 if (sc->sc_rb.rb_td_nbusy == 0)
1010 ifp->if_timer = 0;
1011
1012 return (1);
1013 }
1014
1015 /*
1016 * Receive interrupt.
1017 */
1018 int
1019 hme_rint(struct hme_softc *sc)
1020 {
1021 void *xdr = sc->sc_rb.rb_rxd;
1022 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1023 unsigned int ri;
1024 u_int32_t flags;
1025
1026 ri = sc->sc_rb.rb_rdtail;
1027
1028 /*
1029 * Process all buffers with valid data.
1030 */
1031 for (;;) {
1032 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1033 if (flags & HME_XD_OWN)
1034 break;
1035
1036 if (flags & HME_XD_OFL) {
1037 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1038 device_xname(&sc->sc_dev), ri, flags);
1039 } else
1040 hme_read(sc, ri, flags);
1041
1042 /* This buffer can be used by the hardware again */
1043 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1044 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1045
1046 if (++ri == nrbuf)
1047 ri = 0;
1048 }
1049
1050 sc->sc_rb.rb_rdtail = ri;
1051
1052 return (1);
1053 }
1054
1055 int
1056 hme_eint(struct hme_softc *sc, u_int status)
1057 {
1058 char bits[128];
1059
1060 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1061 bus_space_tag_t t = sc->sc_bustag;
1062 bus_space_handle_t mif = sc->sc_mif;
1063 u_int32_t cf, st, sm;
1064 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1065 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1066 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1067 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1068 device_xname(&sc->sc_dev), cf, st, sm);
1069 return (1);
1070 }
1071 snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1072 printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
1073
1074 return (1);
1075 }
1076
1077 int
1078 hme_intr(void *v)
1079 {
1080 struct hme_softc *sc = (struct hme_softc *)v;
1081 bus_space_tag_t t = sc->sc_bustag;
1082 bus_space_handle_t seb = sc->sc_seb;
1083 u_int32_t status;
1084 int r = 0;
1085
1086 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1087
1088 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1089 r |= hme_eint(sc, status);
1090
1091 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1092 r |= hme_tint(sc);
1093
1094 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1095 r |= hme_rint(sc);
1096
1097 #if NRND > 0
1098 rnd_add_uint32(&sc->rnd_source, status);
1099 #endif
1100
1101 return (r);
1102 }
1103
1104
1105 void
1106 hme_watchdog(struct ifnet *ifp)
1107 {
1108 struct hme_softc *sc = ifp->if_softc;
1109
1110 log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
1111 ++ifp->if_oerrors;
1112
1113 hme_reset(sc);
1114 }
1115
1116 /*
1117 * Initialize the MII Management Interface
1118 */
1119 void
1120 hme_mifinit(struct hme_softc *sc)
1121 {
1122 bus_space_tag_t t = sc->sc_bustag;
1123 bus_space_handle_t mif = sc->sc_mif;
1124 bus_space_handle_t mac = sc->sc_mac;
1125 int instance, phy;
1126 u_int32_t v;
1127
1128 if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1129 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1130 phy = sc->sc_phys[instance];
1131 } else
1132 /* No media set yet, pick phy arbitrarily.. */
1133 phy = HME_PHYAD_EXTERNAL;
1134
1135 /* Configure the MIF in frame mode, no poll, current phy select */
1136 v = 0;
1137 if (phy == HME_PHYAD_EXTERNAL)
1138 v |= HME_MIF_CFG_PHY;
1139 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1140
1141 /* If an external transceiver is selected, enable its MII drivers */
1142 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1143 v &= ~HME_MAC_XIF_MIIENABLE;
1144 if (phy == HME_PHYAD_EXTERNAL)
1145 v |= HME_MAC_XIF_MIIENABLE;
1146 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1147 }
1148
1149 /*
1150 * MII interface
1151 */
1152 static int
1153 hme_mii_readreg(struct device *self, int phy, int reg)
1154 {
1155 struct hme_softc *sc = (void *)self;
1156 bus_space_tag_t t = sc->sc_bustag;
1157 bus_space_handle_t mif = sc->sc_mif;
1158 bus_space_handle_t mac = sc->sc_mac;
1159 u_int32_t v, xif_cfg, mifi_cfg;
1160 int n;
1161
1162 /* We can at most have two PHYs */
1163 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1164 return (0);
1165
1166 /* Select the desired PHY in the MIF configuration register */
1167 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1168 v &= ~HME_MIF_CFG_PHY;
1169 if (phy == HME_PHYAD_EXTERNAL)
1170 v |= HME_MIF_CFG_PHY;
1171 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1172
1173 /* Enable MII drivers on external transceiver */
1174 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1175 if (phy == HME_PHYAD_EXTERNAL)
1176 v |= HME_MAC_XIF_MIIENABLE;
1177 else
1178 v &= ~HME_MAC_XIF_MIIENABLE;
1179 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1180
1181 #if 0
1182 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1183 /*
1184 * Check whether a transceiver is connected by testing
1185 * the MIF configuration register's MDI_X bits. Note that
1186 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1187 */
1188 mif_mdi_bit = 1 << (8 + (1 - phy));
1189 delay(100);
1190 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1191 if ((v & mif_mdi_bit) == 0)
1192 return (0);
1193 #endif
1194
1195 /* Construct the frame command */
1196 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1197 HME_MIF_FO_TAMSB |
1198 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1199 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1200 (reg << HME_MIF_FO_REGAD_SHIFT);
1201
1202 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1203 for (n = 0; n < 100; n++) {
1204 DELAY(1);
1205 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1206 if (v & HME_MIF_FO_TALSB) {
1207 v &= HME_MIF_FO_DATA;
1208 goto out;
1209 }
1210 }
1211
1212 v = 0;
1213 printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
1214
1215 out:
1216 /* Restore MIFI_CFG register */
1217 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1218 /* Restore XIF register */
1219 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1220 return (v);
1221 }
1222
1223 static void
1224 hme_mii_writereg(struct device *self, int phy, int reg, int val)
1225 {
1226 struct hme_softc *sc = (void *)self;
1227 bus_space_tag_t t = sc->sc_bustag;
1228 bus_space_handle_t mif = sc->sc_mif;
1229 bus_space_handle_t mac = sc->sc_mac;
1230 u_int32_t v, xif_cfg, mifi_cfg;
1231 int n;
1232
1233 /* We can at most have two PHYs */
1234 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1235 return;
1236
1237 /* Select the desired PHY in the MIF configuration register */
1238 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1239 v &= ~HME_MIF_CFG_PHY;
1240 if (phy == HME_PHYAD_EXTERNAL)
1241 v |= HME_MIF_CFG_PHY;
1242 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1243
1244 /* Enable MII drivers on external transceiver */
1245 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1246 if (phy == HME_PHYAD_EXTERNAL)
1247 v |= HME_MAC_XIF_MIIENABLE;
1248 else
1249 v &= ~HME_MAC_XIF_MIIENABLE;
1250 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1251
1252 #if 0
1253 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1254 /*
1255 * Check whether a transceiver is connected by testing
1256 * the MIF configuration register's MDI_X bits. Note that
1257 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1258 */
1259 mif_mdi_bit = 1 << (8 + (1 - phy));
1260 delay(100);
1261 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1262 if ((v & mif_mdi_bit) == 0)
1263 return;
1264 #endif
1265
1266 /* Construct the frame command */
1267 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1268 HME_MIF_FO_TAMSB |
1269 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1270 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1271 (reg << HME_MIF_FO_REGAD_SHIFT) |
1272 (val & HME_MIF_FO_DATA);
1273
1274 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1275 for (n = 0; n < 100; n++) {
1276 DELAY(1);
1277 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1278 if (v & HME_MIF_FO_TALSB)
1279 goto out;
1280 }
1281
1282 printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
1283 out:
1284 /* Restore MIFI_CFG register */
1285 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1286 /* Restore XIF register */
1287 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1288 }
1289
1290 static void
1291 hme_mii_statchg(struct device *dev)
1292 {
1293 struct hme_softc *sc = (void *)dev;
1294 bus_space_tag_t t = sc->sc_bustag;
1295 bus_space_handle_t mac = sc->sc_mac;
1296 u_int32_t v;
1297
1298 #ifdef HMEDEBUG
1299 if (sc->sc_debug)
1300 printf("hme_mii_statchg: status change\n");
1301 #endif
1302
1303 /* Set the MAC Full Duplex bit appropriately */
1304 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1305 but not otherwise. */
1306 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1307 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1308 v |= HME_MAC_TXCFG_FULLDPLX;
1309 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1310 } else {
1311 v &= ~HME_MAC_TXCFG_FULLDPLX;
1312 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1313 }
1314 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1315 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1316 }
1317
1318 int
1319 hme_mediachange(struct ifnet *ifp)
1320 {
1321 struct hme_softc *sc = ifp->if_softc;
1322 bus_space_tag_t t = sc->sc_bustag;
1323 bus_space_handle_t mif = sc->sc_mif;
1324 bus_space_handle_t mac = sc->sc_mac;
1325 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1326 int phy = sc->sc_phys[instance];
1327 int rc;
1328 u_int32_t v;
1329
1330 #ifdef HMEDEBUG
1331 if (sc->sc_debug)
1332 printf("hme_mediachange: phy = %d\n", phy);
1333 #endif
1334
1335 /* Select the current PHY in the MIF configuration register */
1336 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1337 v &= ~HME_MIF_CFG_PHY;
1338 if (phy == HME_PHYAD_EXTERNAL)
1339 v |= HME_MIF_CFG_PHY;
1340 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1341
1342 /* If an external transceiver is selected, enable its MII drivers */
1343 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1344 v &= ~HME_MAC_XIF_MIIENABLE;
1345 if (phy == HME_PHYAD_EXTERNAL)
1346 v |= HME_MAC_XIF_MIIENABLE;
1347 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1348
1349 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1350 return 0;
1351 return rc;
1352 }
1353
1354 /*
1355 * Process an ioctl request.
1356 */
1357 int
1358 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1359 {
1360 struct hme_softc *sc = ifp->if_softc;
1361 struct ifaddr *ifa = (struct ifaddr *)data;
1362 int s, error = 0;
1363
1364 s = splnet();
1365
1366 switch (cmd) {
1367
1368 case SIOCINITIFADDR:
1369 switch (ifa->ifa_addr->sa_family) {
1370 #ifdef INET
1371 case AF_INET:
1372 if (ifp->if_flags & IFF_UP)
1373 hme_setladrf(sc);
1374 else {
1375 ifp->if_flags |= IFF_UP;
1376 error = hme_init(sc);
1377 }
1378 arp_ifinit(ifp, ifa);
1379 break;
1380 #endif
1381 default:
1382 ifp->if_flags |= IFF_UP;
1383 error = hme_init(sc);
1384 break;
1385 }
1386 break;
1387
1388 case SIOCSIFFLAGS:
1389 #ifdef HMEDEBUG
1390 {
1391 struct ifreq *ifr = data;
1392 sc->sc_debug =
1393 (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1394 }
1395 #endif
1396 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1397 break;
1398
1399 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1400 case IFF_RUNNING:
1401 /*
1402 * If interface is marked down and it is running, then
1403 * stop it.
1404 */
1405 hme_stop(sc, false);
1406 ifp->if_flags &= ~IFF_RUNNING;
1407 break;
1408 case IFF_UP:
1409 /*
1410 * If interface is marked up and it is stopped, then
1411 * start it.
1412 */
1413 error = hme_init(sc);
1414 break;
1415 case IFF_UP|IFF_RUNNING:
1416 /*
1417 * If setting debug or promiscuous mode, do not reset
1418 * the chip; for everything else, call hme_init()
1419 * which will trigger a reset.
1420 */
1421 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1422 if (ifp->if_flags != sc->sc_if_flags) {
1423 if ((ifp->if_flags & (~RESETIGN))
1424 == (sc->sc_if_flags & (~RESETIGN)))
1425 hme_setladrf(sc);
1426 else
1427 error = hme_init(sc);
1428 }
1429 #undef RESETIGN
1430 break;
1431 case 0:
1432 break;
1433 }
1434
1435 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1436 error = hme_init(sc);
1437
1438 break;
1439
1440 default:
1441 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1442 break;
1443
1444 error = 0;
1445
1446 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1447 ;
1448 else if (ifp->if_flags & IFF_RUNNING) {
1449 /*
1450 * Multicast list has changed; set the hardware filter
1451 * accordingly.
1452 */
1453 hme_setladrf(sc);
1454 }
1455 break;
1456 }
1457
1458 sc->sc_if_flags = ifp->if_flags;
1459 splx(s);
1460 return (error);
1461 }
1462
1463 void
1464 hme_shutdown(void *arg)
1465 {
1466
1467 hme_stop((struct hme_softc *)arg, false);
1468 }
1469
1470 /*
1471 * Set up the logical address filter.
1472 */
1473 void
1474 hme_setladrf(struct hme_softc *sc)
1475 {
1476 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1477 struct ether_multi *enm;
1478 struct ether_multistep step;
1479 struct ethercom *ec = &sc->sc_ethercom;
1480 bus_space_tag_t t = sc->sc_bustag;
1481 bus_space_handle_t mac = sc->sc_mac;
1482 u_char *cp;
1483 u_int32_t crc;
1484 u_int32_t hash[4];
1485 u_int32_t v;
1486 int len;
1487
1488 /* Clear hash table */
1489 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1490
1491 /* Get current RX configuration */
1492 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1493
1494 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1495 /* Turn on promiscuous mode; turn off the hash filter */
1496 v |= HME_MAC_RXCFG_PMISC;
1497 v &= ~HME_MAC_RXCFG_HENABLE;
1498 ifp->if_flags |= IFF_ALLMULTI;
1499 goto chipit;
1500 }
1501
1502 /* Turn off promiscuous mode; turn on the hash filter */
1503 v &= ~HME_MAC_RXCFG_PMISC;
1504 v |= HME_MAC_RXCFG_HENABLE;
1505
1506 /*
1507 * Set up multicast address filter by passing all multicast addresses
1508 * through a crc generator, and then using the high order 6 bits as an
1509 * index into the 64 bit logical address filter. The high order bit
1510 * selects the word, while the rest of the bits select the bit within
1511 * the word.
1512 */
1513
1514 ETHER_FIRST_MULTI(step, ec, enm);
1515 while (enm != NULL) {
1516 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1517 /*
1518 * We must listen to a range of multicast addresses.
1519 * For now, just accept all multicasts, rather than
1520 * trying to set only those filter bits needed to match
1521 * the range. (At this time, the only use of address
1522 * ranges is for IP multicast routing, for which the
1523 * range is big enough to require all bits set.)
1524 */
1525 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1526 ifp->if_flags |= IFF_ALLMULTI;
1527 goto chipit;
1528 }
1529
1530 cp = enm->enm_addrlo;
1531 crc = 0xffffffff;
1532 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1533 int octet = *cp++;
1534 int i;
1535
1536 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1537 for (i = 0; i < 8; i++) {
1538 if ((crc & 1) ^ (octet & 1)) {
1539 crc >>= 1;
1540 crc ^= MC_POLY_LE;
1541 } else {
1542 crc >>= 1;
1543 }
1544 octet >>= 1;
1545 }
1546 }
1547 /* Just want the 6 most significant bits. */
1548 crc >>= 26;
1549
1550 /* Set the corresponding bit in the filter. */
1551 hash[crc >> 4] |= 1 << (crc & 0xf);
1552
1553 ETHER_NEXT_MULTI(step, enm);
1554 }
1555
1556 ifp->if_flags &= ~IFF_ALLMULTI;
1557
1558 chipit:
1559 /* Now load the hash table into the chip */
1560 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1561 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1562 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1563 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1564 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1565 }
1566
1567 /*
1568 * Routines for accessing the transmit and receive buffers.
1569 * The various CPU and adapter configurations supported by this
1570 * driver require three different access methods for buffers
1571 * and descriptors:
1572 * (1) contig (contiguous data; no padding),
1573 * (2) gap2 (two bytes of data followed by two bytes of padding),
1574 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1575 */
1576
1577 #if 0
1578 /*
1579 * contig: contiguous data with no padding.
1580 *
1581 * Buffers may have any alignment.
1582 */
1583
1584 void
1585 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1586 {
1587 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1588
1589 /*
1590 * Just call memcpy() to do the work.
1591 */
1592 memcpy(buf, from, len);
1593 }
1594
1595 void
1596 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1597 {
1598 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1599
1600 /*
1601 * Just call memcpy() to do the work.
1602 */
1603 memcpy(to, buf, len);
1604 }
1605 #endif
1606