Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.76
      1 /*	$NetBSD: hme.c,v 1.76 2009/04/16 14:39:11 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.76 2009/04/16 14:39:11 tsutsui Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 #include "bpfilter.h"
     43 #include "rnd.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/socket.h>
     51 #include <sys/device.h>
     52 #include <sys/malloc.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #if NRND > 0
     56 #include <sys/rnd.h>
     57 #endif
     58 
     59 #include <net/if.h>
     60 #include <net/if_dl.h>
     61 #include <net/if_ether.h>
     62 #include <net/if_media.h>
     63 
     64 #ifdef INET
     65 #include <net/if_vlanvar.h>
     66 #include <netinet/in.h>
     67 #include <netinet/if_inarp.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 
     76 #if NBPFILTER > 0
     77 #include <net/bpf.h>
     78 #include <net/bpfdesc.h>
     79 #endif
     80 
     81 #include <dev/mii/mii.h>
     82 #include <dev/mii/miivar.h>
     83 
     84 #include <sys/bus.h>
     85 
     86 #include <dev/ic/hmereg.h>
     87 #include <dev/ic/hmevar.h>
     88 
     89 void		hme_start(struct ifnet *);
     90 void		hme_stop(struct hme_softc *,bool);
     91 int		hme_ioctl(struct ifnet *, u_long, void *);
     92 void		hme_tick(void *);
     93 void		hme_watchdog(struct ifnet *);
     94 void		hme_shutdown(void *);
     95 int		hme_init(struct hme_softc *);
     96 void		hme_meminit(struct hme_softc *);
     97 void		hme_mifinit(struct hme_softc *);
     98 void		hme_reset(struct hme_softc *);
     99 void		hme_setladrf(struct hme_softc *);
    100 
    101 /* MII methods & callbacks */
    102 static int	hme_mii_readreg(struct device *, int, int);
    103 static void	hme_mii_writereg(struct device *, int, int, int);
    104 static void	hme_mii_statchg(struct device *);
    105 
    106 int		hme_mediachange(struct ifnet *);
    107 
    108 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    109 int		hme_put(struct hme_softc *, int, struct mbuf *);
    110 void		hme_read(struct hme_softc *, int, uint32_t);
    111 int		hme_eint(struct hme_softc *, u_int);
    112 int		hme_rint(struct hme_softc *);
    113 int		hme_tint(struct hme_softc *);
    114 
    115 /* Default buffer copy routines */
    116 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    117 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    118 void	hme_zerobuf_contig(struct hme_softc *, int, int);
    119 
    120 
    121 void
    122 hme_config(struct hme_softc *sc)
    123 {
    124 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    125 	struct mii_data *mii = &sc->sc_mii;
    126 	struct mii_softc *child;
    127 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    128 	bus_dma_segment_t seg;
    129 	bus_size_t size;
    130 	int rseg, error;
    131 
    132 	/*
    133 	 * HME common initialization.
    134 	 *
    135 	 * hme_softc fields that must be initialized by the front-end:
    136 	 *
    137 	 * the bus tag:
    138 	 *	sc_bustag
    139 	 *
    140 	 * the DMA bus tag:
    141 	 *	sc_dmatag
    142 	 *
    143 	 * the bus handles:
    144 	 *	sc_seb		(Shared Ethernet Block registers)
    145 	 *	sc_erx		(Receiver Unit registers)
    146 	 *	sc_etx		(Transmitter Unit registers)
    147 	 *	sc_mac		(MAC registers)
    148 	 *	sc_mif		(Management Interface registers)
    149 	 *
    150 	 * the maximum bus burst size:
    151 	 *	sc_burst
    152 	 *
    153 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    154 	 *	rb_membase, rb_dmabase)
    155 	 *
    156 	 * the local Ethernet address:
    157 	 *	sc_enaddr
    158 	 *
    159 	 */
    160 
    161 	/* Make sure the chip is stopped. */
    162 	hme_stop(sc, true);
    163 
    164 
    165 	/*
    166 	 * Allocate descriptors and buffers
    167 	 * XXX - do all this differently.. and more configurably,
    168 	 * eg. use things as `dma_load_mbuf()' on transmit,
    169 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    170 	 *     all the time) on the receiver side.
    171 	 *
    172 	 * Note: receive buffers must be 64-byte aligned.
    173 	 * Also, apparently, the buffers must extend to a DMA burst
    174 	 * boundary beyond the maximum packet size.
    175 	 */
    176 #define _HME_NDESC	128
    177 #define _HME_BUFSZ	1600
    178 
    179 	/* Note: the # of descriptors must be a multiple of 16 */
    180 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    181 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    182 
    183 	/*
    184 	 * Allocate DMA capable memory
    185 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    186 	 * take this into account when calculating the size. Note that
    187 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    188 	 * so we allocate that much regardless of _HME_NDESC.
    189 	 */
    190 	size =	2048 +					/* TX descriptors */
    191 		2048 +					/* RX descriptors */
    192 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    193 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    194 
    195 	/* Allocate DMA buffer */
    196 	if ((error = bus_dmamem_alloc(dmatag, size,
    197 				      2048, 0,
    198 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    199 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
    200 			error);
    201 		return;
    202 	}
    203 
    204 	/* Map DMA memory in CPU addressable space */
    205 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    206 				    &sc->sc_rb.rb_membase,
    207 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    208 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
    209 			error);
    210 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    211 		bus_dmamem_free(dmatag, &seg, rseg);
    212 		return;
    213 	}
    214 
    215 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    216 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    217 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
    218 			error);
    219 		return;
    220 	}
    221 
    222 	/* Load the buffer */
    223 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    224 	    sc->sc_rb.rb_membase, size, NULL,
    225 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    226 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
    227 			error);
    228 		bus_dmamem_free(dmatag, &seg, rseg);
    229 		return;
    230 	}
    231 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    232 
    233 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    234 	    ether_sprintf(sc->sc_enaddr));
    235 
    236 	/* Initialize ifnet structure. */
    237 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    238 	ifp->if_softc = sc;
    239 	ifp->if_start = hme_start;
    240 	ifp->if_ioctl = hme_ioctl;
    241 	ifp->if_watchdog = hme_watchdog;
    242 	ifp->if_flags =
    243 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    244 	sc->sc_if_flags = ifp->if_flags;
    245 	ifp->if_capabilities |=
    246 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    247 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    248 	IFQ_SET_READY(&ifp->if_snd);
    249 
    250 	/* Initialize ifmedia structures and MII info */
    251 	mii->mii_ifp = ifp;
    252 	mii->mii_readreg = hme_mii_readreg;
    253 	mii->mii_writereg = hme_mii_writereg;
    254 	mii->mii_statchg = hme_mii_statchg;
    255 
    256 	sc->sc_ethercom.ec_mii = mii;
    257 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    258 
    259 	hme_mifinit(sc);
    260 
    261 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    262 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    263 
    264 	child = LIST_FIRST(&mii->mii_phys);
    265 	if (child == NULL) {
    266 		/* No PHY attached */
    267 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    268 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    269 	} else {
    270 		/*
    271 		 * Walk along the list of attached MII devices and
    272 		 * establish an `MII instance' to `phy number'
    273 		 * mapping. We'll use this mapping in media change
    274 		 * requests to determine which phy to use to program
    275 		 * the MIF configuration register.
    276 		 */
    277 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    278 			/*
    279 			 * Note: we support just two PHYs: the built-in
    280 			 * internal device and an external on the MII
    281 			 * connector.
    282 			 */
    283 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    284 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
    285 				       " at phy %d, instance %d\n",
    286 				       device_xname(child->mii_dev),
    287 				       child->mii_phy, child->mii_inst);
    288 				continue;
    289 			}
    290 
    291 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    292 		}
    293 
    294 		/*
    295 		 * XXX - we can really do the following ONLY if the
    296 		 * phy indeed has the auto negotiation capability!!
    297 		 */
    298 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    299 	}
    300 
    301 	/* claim 802.1q capability */
    302 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    303 
    304 	/* Attach the interface. */
    305 	if_attach(ifp);
    306 	ether_ifattach(ifp, sc->sc_enaddr);
    307 
    308 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    309 	if (sc->sc_sh == NULL)
    310 		panic("hme_config: can't establish shutdownhook");
    311 
    312 #if NRND > 0
    313 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    314 			  RND_TYPE_NET, 0);
    315 #endif
    316 
    317 	callout_init(&sc->sc_tick_ch, 0);
    318 }
    319 
    320 void
    321 hme_tick(void *arg)
    322 {
    323 	struct hme_softc *sc = arg;
    324 	int s;
    325 
    326 	s = splnet();
    327 	mii_tick(&sc->sc_mii);
    328 	splx(s);
    329 
    330 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    331 }
    332 
    333 void
    334 hme_reset(struct hme_softc *sc)
    335 {
    336 	int s;
    337 
    338 	s = splnet();
    339 	(void)hme_init(sc);
    340 	splx(s);
    341 }
    342 
    343 void
    344 hme_stop(struct hme_softc *sc, bool chip_only)
    345 {
    346 	bus_space_tag_t t = sc->sc_bustag;
    347 	bus_space_handle_t seb = sc->sc_seb;
    348 	int n;
    349 
    350 	if (!chip_only) {
    351 		callout_stop(&sc->sc_tick_ch);
    352 		mii_down(&sc->sc_mii);
    353 	}
    354 
    355 	/* Mask all interrupts */
    356 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    357 
    358 	/* Reset transmitter and receiver */
    359 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    360 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    361 
    362 	for (n = 0; n < 20; n++) {
    363 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    364 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    365 			return;
    366 		DELAY(20);
    367 	}
    368 
    369 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
    370 }
    371 
    372 void
    373 hme_meminit(struct hme_softc *sc)
    374 {
    375 	bus_addr_t txbufdma, rxbufdma;
    376 	bus_addr_t dma;
    377 	char *p;
    378 	unsigned int ntbuf, nrbuf, i;
    379 	struct hme_ring *hr = &sc->sc_rb;
    380 
    381 	p = hr->rb_membase;
    382 	dma = hr->rb_dmabase;
    383 
    384 	ntbuf = hr->rb_ntbuf;
    385 	nrbuf = hr->rb_nrbuf;
    386 
    387 	/*
    388 	 * Allocate transmit descriptors
    389 	 */
    390 	hr->rb_txd = p;
    391 	hr->rb_txddma = dma;
    392 	p += ntbuf * HME_XD_SIZE;
    393 	dma += ntbuf * HME_XD_SIZE;
    394 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    395 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    396 	p = (void *)roundup((u_long)p, 2048);
    397 
    398 	/*
    399 	 * Allocate receive descriptors
    400 	 */
    401 	hr->rb_rxd = p;
    402 	hr->rb_rxddma = dma;
    403 	p += nrbuf * HME_XD_SIZE;
    404 	dma += nrbuf * HME_XD_SIZE;
    405 	/* Again move forward to the next 2048 byte boundary.*/
    406 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    407 	p = (void *)roundup((u_long)p, 2048);
    408 
    409 
    410 	/*
    411 	 * Allocate transmit buffers
    412 	 */
    413 	hr->rb_txbuf = p;
    414 	txbufdma = dma;
    415 	p += ntbuf * _HME_BUFSZ;
    416 	dma += ntbuf * _HME_BUFSZ;
    417 
    418 	/*
    419 	 * Allocate receive buffers
    420 	 */
    421 	hr->rb_rxbuf = p;
    422 	rxbufdma = dma;
    423 	p += nrbuf * _HME_BUFSZ;
    424 	dma += nrbuf * _HME_BUFSZ;
    425 
    426 	/*
    427 	 * Initialize transmit buffer descriptors
    428 	 */
    429 	for (i = 0; i < ntbuf; i++) {
    430 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    431 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    432 	}
    433 
    434 	/*
    435 	 * Initialize receive buffer descriptors
    436 	 */
    437 	for (i = 0; i < nrbuf; i++) {
    438 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    439 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    440 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    441 	}
    442 
    443 	hr->rb_tdhead = hr->rb_tdtail = 0;
    444 	hr->rb_td_nbusy = 0;
    445 	hr->rb_rdtail = 0;
    446 }
    447 
    448 /*
    449  * Initialization of interface; set up initialization block
    450  * and transmit/receive descriptor rings.
    451  */
    452 int
    453 hme_init(struct hme_softc *sc)
    454 {
    455 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    456 	bus_space_tag_t t = sc->sc_bustag;
    457 	bus_space_handle_t seb = sc->sc_seb;
    458 	bus_space_handle_t etx = sc->sc_etx;
    459 	bus_space_handle_t erx = sc->sc_erx;
    460 	bus_space_handle_t mac = sc->sc_mac;
    461 	uint8_t *ea;
    462 	uint32_t v;
    463 	int rc;
    464 
    465 	/*
    466 	 * Initialization sequence. The numbered steps below correspond
    467 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    468 	 * Channel Engine manual (part of the PCIO manual).
    469 	 * See also the STP2002-STQ document from Sun Microsystems.
    470 	 */
    471 
    472 	/* step 1 & 2. Reset the Ethernet Channel */
    473 	hme_stop(sc, false);
    474 
    475 	/* Re-initialize the MIF */
    476 	hme_mifinit(sc);
    477 
    478 	/* Call MI reset function if any */
    479 	if (sc->sc_hwreset)
    480 		(*sc->sc_hwreset)(sc);
    481 
    482 #if 0
    483 	/* Mask all MIF interrupts, just in case */
    484 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    485 #endif
    486 
    487 	/* step 3. Setup data structures in host memory */
    488 	hme_meminit(sc);
    489 
    490 	/* step 4. TX MAC registers & counters */
    491 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    492 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    493 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    494 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    495 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    496 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    497 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    498 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    499 
    500 	/* Load station MAC address */
    501 	ea = sc->sc_enaddr;
    502 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    503 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    504 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    505 
    506 	/*
    507 	 * Init seed for backoff
    508 	 * (source suggested by manual: low 10 bits of MAC address)
    509 	 */
    510 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    511 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    512 
    513 
    514 	/* Note: Accepting power-on default for other MAC registers here.. */
    515 
    516 
    517 	/* step 5. RX MAC registers & counters */
    518 	hme_setladrf(sc);
    519 
    520 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    521 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    522 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    523 
    524 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    525 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    526 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    527 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    528 
    529 	/* step 8. Global Configuration & Interrupt Mask */
    530 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    531 			~(
    532 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    533 			  HME_SEB_STAT_HOSTTOTX |
    534 			  HME_SEB_STAT_RXTOHOST |
    535 			  HME_SEB_STAT_TXALL |
    536 			  HME_SEB_STAT_TXPERR |
    537 			  HME_SEB_STAT_RCNTEXP |
    538 			  /*HME_SEB_STAT_MIFIRQ |*/
    539 			  HME_SEB_STAT_ALL_ERRORS ));
    540 
    541 	switch (sc->sc_burst) {
    542 	default:
    543 		v = 0;
    544 		break;
    545 	case 16:
    546 		v = HME_SEB_CFG_BURST16;
    547 		break;
    548 	case 32:
    549 		v = HME_SEB_CFG_BURST32;
    550 		break;
    551 	case 64:
    552 		v = HME_SEB_CFG_BURST64;
    553 		break;
    554 	}
    555 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    556 
    557 	/* step 9. ETX Configuration: use mostly default values */
    558 
    559 	/* Enable DMA */
    560 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    561 	v |= HME_ETX_CFG_DMAENABLE;
    562 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    563 
    564 	/* Transmit Descriptor ring size: in increments of 16 */
    565 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    566 
    567 
    568 	/* step 10. ERX Configuration */
    569 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    570 
    571 	/* Encode Receive Descriptor ring size: four possible values */
    572 	switch (_HME_NDESC /*XXX*/) {
    573 	case 32:
    574 		v |= HME_ERX_CFG_RINGSIZE32;
    575 		break;
    576 	case 64:
    577 		v |= HME_ERX_CFG_RINGSIZE64;
    578 		break;
    579 	case 128:
    580 		v |= HME_ERX_CFG_RINGSIZE128;
    581 		break;
    582 	case 256:
    583 		v |= HME_ERX_CFG_RINGSIZE256;
    584 		break;
    585 	default:
    586 		printf("hme: invalid Receive Descriptor ring size\n");
    587 		break;
    588 	}
    589 
    590 	/* Enable DMA */
    591 	v |= HME_ERX_CFG_DMAENABLE;
    592 
    593 	/* set h/w rx checksum start offset (# of half-words) */
    594 #ifdef INET
    595 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    596 		<< HME_ERX_CFG_CSUMSHIFT) &
    597 		HME_ERX_CFG_CSUMSTART;
    598 #endif
    599 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    600 
    601 	/* step 11. XIF Configuration */
    602 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    603 	v |= HME_MAC_XIF_OE;
    604 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    605 
    606 	/* step 12. RX_MAC Configuration Register */
    607 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    608 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    609 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    610 
    611 	/* step 13. TX_MAC Configuration Register */
    612 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    613 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    614 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    615 
    616 	/* step 14. Issue Transmit Pending command */
    617 
    618 	/* Call MI initialization function if any */
    619 	if (sc->sc_hwinit)
    620 		(*sc->sc_hwinit)(sc);
    621 
    622 	/* Set the current media. */
    623 	if ((rc = hme_mediachange(ifp)) != 0)
    624 		return rc;
    625 
    626 	/* Start the one second timer. */
    627 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    628 
    629 	ifp->if_flags |= IFF_RUNNING;
    630 	ifp->if_flags &= ~IFF_OACTIVE;
    631 	sc->sc_if_flags = ifp->if_flags;
    632 	ifp->if_timer = 0;
    633 	hme_start(ifp);
    634 	return 0;
    635 }
    636 
    637 /*
    638  * Routine to copy from mbuf chain to transmit buffer in
    639  * network buffer memory.
    640  * Returns the amount of data copied.
    641  */
    642 int
    643 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    644 	/* ri:			 Ring index */
    645 {
    646 	struct mbuf *n;
    647 	int len, tlen = 0;
    648 	char *bp;
    649 
    650 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    651 	for (; m; m = n) {
    652 		len = m->m_len;
    653 		if (len == 0) {
    654 			MFREE(m, n);
    655 			continue;
    656 		}
    657 		memcpy(bp, mtod(m, void *), len);
    658 		bp += len;
    659 		tlen += len;
    660 		MFREE(m, n);
    661 	}
    662 	return (tlen);
    663 }
    664 
    665 /*
    666  * Pull data off an interface.
    667  * Len is length of data, with local net header stripped.
    668  * We copy the data into mbufs.  When full cluster sized units are present
    669  * we copy into clusters.
    670  */
    671 struct mbuf *
    672 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    673 {
    674 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    675 	struct mbuf *m, *m0, *newm;
    676 	char *bp;
    677 	int len, totlen;
    678 #ifdef INET
    679 	int csum_flags;
    680 #endif
    681 
    682 	totlen = HME_XD_DECODE_RSIZE(flags);
    683 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    684 	if (m0 == 0)
    685 		return (0);
    686 	m0->m_pkthdr.rcvif = ifp;
    687 	m0->m_pkthdr.len = totlen;
    688 	len = MHLEN;
    689 	m = m0;
    690 
    691 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    692 
    693 	while (totlen > 0) {
    694 		if (totlen >= MINCLSIZE) {
    695 			MCLGET(m, M_DONTWAIT);
    696 			if ((m->m_flags & M_EXT) == 0)
    697 				goto bad;
    698 			len = MCLBYTES;
    699 		}
    700 
    701 		if (m == m0) {
    702 			char *newdata = (char *)
    703 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    704 			    sizeof(struct ether_header);
    705 			len -= newdata - m->m_data;
    706 			m->m_data = newdata;
    707 		}
    708 
    709 		m->m_len = len = min(totlen, len);
    710 		memcpy(mtod(m, void *), bp, len);
    711 		bp += len;
    712 
    713 		totlen -= len;
    714 		if (totlen > 0) {
    715 			MGET(newm, M_DONTWAIT, MT_DATA);
    716 			if (newm == 0)
    717 				goto bad;
    718 			len = MLEN;
    719 			m = m->m_next = newm;
    720 		}
    721 	}
    722 
    723 #ifdef INET
    724 	/* hardware checksum */
    725 	csum_flags = 0;
    726 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    727 		struct ether_header *eh;
    728 		struct ether_vlan_header *evh;
    729 		struct ip *ip;
    730 		struct udphdr *uh;
    731 		uint16_t *opts;
    732 		int32_t hlen, pktlen;
    733 		uint32_t csum_data;
    734 
    735 		eh = mtod(m0, struct ether_header *);
    736 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    737 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    738 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    739 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    740 			evh = (struct ether_vlan_header *)eh;
    741 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
    742 				goto swcsum;
    743 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    744 			    ETHER_VLAN_ENCAP_LEN);
    745 			pktlen = m0->m_pkthdr.len -
    746 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    747 		} else
    748 			goto swcsum;
    749 
    750 		/* IPv4 only */
    751 		if (ip->ip_v != IPVERSION)
    752 			goto swcsum;
    753 
    754 		hlen = ip->ip_hl << 2;
    755 		if (hlen < sizeof(struct ip))
    756 			goto swcsum;
    757 
    758 		/*
    759 		 * bail if too short, has random trailing garbage, truncated,
    760 		 * fragment, or has ethernet pad.
    761 		 */
    762 		if (ntohs(ip->ip_len) < hlen ||
    763 		    ntohs(ip->ip_len) != pktlen ||
    764 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    765 			goto swcsum;
    766 
    767 		switch (ip->ip_p) {
    768 		case IPPROTO_TCP:
    769 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    770 				goto swcsum;
    771 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    772 				goto swcsum;
    773 			csum_flags =
    774 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    775 			break;
    776 		case IPPROTO_UDP:
    777 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    778 				goto swcsum;
    779 			if (pktlen < (hlen + sizeof(struct udphdr)))
    780 				goto swcsum;
    781 			uh = (struct udphdr *)((char *)ip + hlen);
    782 			/* no checksum */
    783 			if (uh->uh_sum == 0)
    784 				goto swcsum;
    785 			csum_flags =
    786 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    787 			break;
    788 		default:
    789 			goto swcsum;
    790 		}
    791 
    792 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    793 		csum_data = ~flags & HME_XD_RXCKSUM;
    794 
    795 		/*
    796 		 * If data offset is different from RX cksum start offset,
    797 		 * we have to deduct them.
    798 		 */
    799 		hlen = ((char *)ip + hlen) -
    800 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    801 		if (hlen > 1) {
    802 			uint32_t optsum;
    803 
    804 			optsum = 0;
    805 			opts = (uint16_t *)((char *)eh +
    806 			    ETHER_HDR_LEN + sizeof(struct ip));
    807 
    808 			while (hlen > 1) {
    809 				optsum += ntohs(*opts++);
    810 				hlen -= 2;
    811 			}
    812 			while (optsum >> 16)
    813 				optsum = (optsum >> 16) + (optsum & 0xffff);
    814 
    815 			/* Deduct the ip opts sum from the hwsum. */
    816 			csum_data += (uint16_t)~optsum;
    817 
    818 			while (csum_data >> 16)
    819 				csum_data =
    820 				    (csum_data >> 16) + (csum_data & 0xffff);
    821 		}
    822 		m0->m_pkthdr.csum_data = csum_data;
    823 	}
    824 swcsum:
    825 	m0->m_pkthdr.csum_flags = csum_flags;
    826 #endif
    827 
    828 	return (m0);
    829 
    830 bad:
    831 	m_freem(m0);
    832 	return (0);
    833 }
    834 
    835 /*
    836  * Pass a packet to the higher levels.
    837  */
    838 void
    839 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    840 {
    841 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    842 	struct mbuf *m;
    843 	int len;
    844 
    845 	len = HME_XD_DECODE_RSIZE(flags);
    846 	if (len <= sizeof(struct ether_header) ||
    847 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    848 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    849 	    ETHERMTU + sizeof(struct ether_header))) {
    850 #ifdef HMEDEBUG
    851 		printf("%s: invalid packet size %d; dropping\n",
    852 		    device_xname(&sc->sc_dev), len);
    853 #endif
    854 		ifp->if_ierrors++;
    855 		return;
    856 	}
    857 
    858 	/* Pull packet off interface. */
    859 	m = hme_get(sc, ix, flags);
    860 	if (m == 0) {
    861 		ifp->if_ierrors++;
    862 		return;
    863 	}
    864 
    865 	ifp->if_ipackets++;
    866 
    867 #if NBPFILTER > 0
    868 	/*
    869 	 * Check if there's a BPF listener on this interface.
    870 	 * If so, hand off the raw packet to BPF.
    871 	 */
    872 	if (ifp->if_bpf)
    873 		bpf_mtap(ifp->if_bpf, m);
    874 #endif
    875 
    876 	/* Pass the packet up. */
    877 	(*ifp->if_input)(ifp, m);
    878 }
    879 
    880 void
    881 hme_start(struct ifnet *ifp)
    882 {
    883 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    884 	void *txd = sc->sc_rb.rb_txd;
    885 	struct mbuf *m;
    886 	unsigned int txflags;
    887 	unsigned int ri, len;
    888 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    889 
    890 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    891 		return;
    892 
    893 	ri = sc->sc_rb.rb_tdhead;
    894 
    895 	for (;;) {
    896 		IFQ_DEQUEUE(&ifp->if_snd, m);
    897 		if (m == 0)
    898 			break;
    899 
    900 #if NBPFILTER > 0
    901 		/*
    902 		 * If BPF is listening on this interface, let it see the
    903 		 * packet before we commit it to the wire.
    904 		 */
    905 		if (ifp->if_bpf)
    906 			bpf_mtap(ifp->if_bpf, m);
    907 #endif
    908 
    909 #ifdef INET
    910 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    911 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    912 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    913 			struct ether_header *eh;
    914 			uint16_t offset, start;
    915 
    916 			eh = mtod(m, struct ether_header *);
    917 			switch (ntohs(eh->ether_type)) {
    918 			case ETHERTYPE_IP:
    919 				start = ETHER_HDR_LEN;
    920 				break;
    921 			case ETHERTYPE_VLAN:
    922 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    923 				break;
    924 			default:
    925 				/* unsupported, drop it */
    926 				m_free(m);
    927 				continue;
    928 			}
    929 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    930 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    931 			    + start;
    932 			txflags = HME_XD_TXCKSUM |
    933 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    934 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    935 		} else
    936 #endif
    937 			txflags = 0;
    938 
    939 		/*
    940 		 * Copy the mbuf chain into the transmit buffer.
    941 		 */
    942 		len = hme_put(sc, ri, m);
    943 
    944 		/*
    945 		 * Initialize transmit registers and start transmission
    946 		 */
    947 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    948 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    949 			HME_XD_ENCODE_TSIZE(len) | txflags);
    950 
    951 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    952 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    953 				  HME_ETX_TP_DMAWAKEUP);
    954 
    955 		if (++ri == ntbuf)
    956 			ri = 0;
    957 
    958 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    959 			ifp->if_flags |= IFF_OACTIVE;
    960 			break;
    961 		}
    962 	}
    963 
    964 	sc->sc_rb.rb_tdhead = ri;
    965 }
    966 
    967 /*
    968  * Transmit interrupt.
    969  */
    970 int
    971 hme_tint(struct hme_softc *sc)
    972 {
    973 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    974 	bus_space_tag_t t = sc->sc_bustag;
    975 	bus_space_handle_t mac = sc->sc_mac;
    976 	unsigned int ri, txflags;
    977 
    978 	/*
    979 	 * Unload collision counters
    980 	 */
    981 	ifp->if_collisions +=
    982 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    983 		bus_space_read_4(t, mac, HME_MACI_FCCNT) +
    984 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    985 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    986 
    987 	/*
    988 	 * then clear the hardware counters.
    989 	 */
    990 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    991 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    992 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    993 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    994 
    995 	/* Fetch current position in the transmit ring */
    996 	ri = sc->sc_rb.rb_tdtail;
    997 
    998 	for (;;) {
    999 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1000 			break;
   1001 
   1002 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1003 
   1004 		if (txflags & HME_XD_OWN)
   1005 			break;
   1006 
   1007 		ifp->if_flags &= ~IFF_OACTIVE;
   1008 		ifp->if_opackets++;
   1009 
   1010 		if (++ri == sc->sc_rb.rb_ntbuf)
   1011 			ri = 0;
   1012 
   1013 		--sc->sc_rb.rb_td_nbusy;
   1014 	}
   1015 
   1016 	/* Update ring */
   1017 	sc->sc_rb.rb_tdtail = ri;
   1018 
   1019 	hme_start(ifp);
   1020 
   1021 	if (sc->sc_rb.rb_td_nbusy == 0)
   1022 		ifp->if_timer = 0;
   1023 
   1024 	return (1);
   1025 }
   1026 
   1027 /*
   1028  * Receive interrupt.
   1029  */
   1030 int
   1031 hme_rint(struct hme_softc *sc)
   1032 {
   1033 	void *xdr = sc->sc_rb.rb_rxd;
   1034 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1035 	unsigned int ri;
   1036 	uint32_t flags;
   1037 
   1038 	ri = sc->sc_rb.rb_rdtail;
   1039 
   1040 	/*
   1041 	 * Process all buffers with valid data.
   1042 	 */
   1043 	for (;;) {
   1044 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1045 		if (flags & HME_XD_OWN)
   1046 			break;
   1047 
   1048 		if (flags & HME_XD_OFL) {
   1049 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1050 					device_xname(&sc->sc_dev), ri, flags);
   1051 		} else
   1052 			hme_read(sc, ri, flags);
   1053 
   1054 		/* This buffer can be used by the hardware again */
   1055 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1056 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1057 
   1058 		if (++ri == nrbuf)
   1059 			ri = 0;
   1060 	}
   1061 
   1062 	sc->sc_rb.rb_rdtail = ri;
   1063 
   1064 	return (1);
   1065 }
   1066 
   1067 int
   1068 hme_eint(struct hme_softc *sc, u_int status)
   1069 {
   1070 	char bits[128];
   1071 
   1072 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1073 		bus_space_tag_t t = sc->sc_bustag;
   1074 		bus_space_handle_t mif = sc->sc_mif;
   1075 		uint32_t cf, st, sm;
   1076 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1077 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1078 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1079 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1080 			device_xname(&sc->sc_dev), cf, st, sm);
   1081 		return (1);
   1082 	}
   1083 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1084 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
   1085 
   1086 	return (1);
   1087 }
   1088 
   1089 int
   1090 hme_intr(void *v)
   1091 {
   1092 	struct hme_softc *sc = (struct hme_softc *)v;
   1093 	bus_space_tag_t t = sc->sc_bustag;
   1094 	bus_space_handle_t seb = sc->sc_seb;
   1095 	uint32_t status;
   1096 	int r = 0;
   1097 
   1098 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1099 
   1100 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1101 		r |= hme_eint(sc, status);
   1102 
   1103 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1104 		r |= hme_tint(sc);
   1105 
   1106 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1107 		r |= hme_rint(sc);
   1108 
   1109 #if NRND > 0
   1110 	rnd_add_uint32(&sc->rnd_source, status);
   1111 #endif
   1112 
   1113 	return (r);
   1114 }
   1115 
   1116 
   1117 void
   1118 hme_watchdog(struct ifnet *ifp)
   1119 {
   1120 	struct hme_softc *sc = ifp->if_softc;
   1121 
   1122 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   1123 	++ifp->if_oerrors;
   1124 
   1125 	hme_reset(sc);
   1126 }
   1127 
   1128 /*
   1129  * Initialize the MII Management Interface
   1130  */
   1131 void
   1132 hme_mifinit(struct hme_softc *sc)
   1133 {
   1134 	bus_space_tag_t t = sc->sc_bustag;
   1135 	bus_space_handle_t mif = sc->sc_mif;
   1136 	bus_space_handle_t mac = sc->sc_mac;
   1137 	int instance, phy;
   1138 	uint32_t v;
   1139 
   1140 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1141 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1142 		phy = sc->sc_phys[instance];
   1143 	} else
   1144 		/* No media set yet, pick phy arbitrarily.. */
   1145 		phy = HME_PHYAD_EXTERNAL;
   1146 
   1147 	/* Configure the MIF in frame mode, no poll, current phy select */
   1148 	v = 0;
   1149 	if (phy == HME_PHYAD_EXTERNAL)
   1150 		v |= HME_MIF_CFG_PHY;
   1151 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1152 
   1153 	/* If an external transceiver is selected, enable its MII drivers */
   1154 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1155 	v &= ~HME_MAC_XIF_MIIENABLE;
   1156 	if (phy == HME_PHYAD_EXTERNAL)
   1157 		v |= HME_MAC_XIF_MIIENABLE;
   1158 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1159 }
   1160 
   1161 /*
   1162  * MII interface
   1163  */
   1164 static int
   1165 hme_mii_readreg(struct device *self, int phy, int reg)
   1166 {
   1167 	struct hme_softc *sc = (void *)self;
   1168 	bus_space_tag_t t = sc->sc_bustag;
   1169 	bus_space_handle_t mif = sc->sc_mif;
   1170 	bus_space_handle_t mac = sc->sc_mac;
   1171 	uint32_t v, xif_cfg, mifi_cfg;
   1172 	int n;
   1173 
   1174 	/* We can at most have two PHYs */
   1175 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1176 		return (0);
   1177 
   1178 	/* Select the desired PHY in the MIF configuration register */
   1179 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1180 	v &= ~HME_MIF_CFG_PHY;
   1181 	if (phy == HME_PHYAD_EXTERNAL)
   1182 		v |= HME_MIF_CFG_PHY;
   1183 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1184 
   1185 	/* Enable MII drivers on external transceiver */
   1186 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1187 	if (phy == HME_PHYAD_EXTERNAL)
   1188 		v |= HME_MAC_XIF_MIIENABLE;
   1189 	else
   1190 		v &= ~HME_MAC_XIF_MIIENABLE;
   1191 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1192 
   1193 #if 0
   1194 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1195 	/*
   1196 	 * Check whether a transceiver is connected by testing
   1197 	 * the MIF configuration register's MDI_X bits. Note that
   1198 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1199 	 */
   1200 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1201 	delay(100);
   1202 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1203 	if ((v & mif_mdi_bit) == 0)
   1204 		return (0);
   1205 #endif
   1206 
   1207 	/* Construct the frame command */
   1208 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1209 	    HME_MIF_FO_TAMSB |
   1210 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1211 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1212 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1213 
   1214 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1215 	for (n = 0; n < 100; n++) {
   1216 		DELAY(1);
   1217 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1218 		if (v & HME_MIF_FO_TALSB) {
   1219 			v &= HME_MIF_FO_DATA;
   1220 			goto out;
   1221 		}
   1222 	}
   1223 
   1224 	v = 0;
   1225 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   1226 
   1227 out:
   1228 	/* Restore MIFI_CFG register */
   1229 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1230 	/* Restore XIF register */
   1231 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1232 	return (v);
   1233 }
   1234 
   1235 static void
   1236 hme_mii_writereg(struct device *self, int phy, int reg, int val)
   1237 {
   1238 	struct hme_softc *sc = (void *)self;
   1239 	bus_space_tag_t t = sc->sc_bustag;
   1240 	bus_space_handle_t mif = sc->sc_mif;
   1241 	bus_space_handle_t mac = sc->sc_mac;
   1242 	uint32_t v, xif_cfg, mifi_cfg;
   1243 	int n;
   1244 
   1245 	/* We can at most have two PHYs */
   1246 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1247 		return;
   1248 
   1249 	/* Select the desired PHY in the MIF configuration register */
   1250 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1251 	v &= ~HME_MIF_CFG_PHY;
   1252 	if (phy == HME_PHYAD_EXTERNAL)
   1253 		v |= HME_MIF_CFG_PHY;
   1254 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1255 
   1256 	/* Enable MII drivers on external transceiver */
   1257 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1258 	if (phy == HME_PHYAD_EXTERNAL)
   1259 		v |= HME_MAC_XIF_MIIENABLE;
   1260 	else
   1261 		v &= ~HME_MAC_XIF_MIIENABLE;
   1262 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1263 
   1264 #if 0
   1265 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1266 	/*
   1267 	 * Check whether a transceiver is connected by testing
   1268 	 * the MIF configuration register's MDI_X bits. Note that
   1269 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1270 	 */
   1271 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1272 	delay(100);
   1273 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1274 	if ((v & mif_mdi_bit) == 0)
   1275 		return;
   1276 #endif
   1277 
   1278 	/* Construct the frame command */
   1279 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1280 	    HME_MIF_FO_TAMSB				|
   1281 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1282 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1283 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1284 	    (val & HME_MIF_FO_DATA);
   1285 
   1286 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1287 	for (n = 0; n < 100; n++) {
   1288 		DELAY(1);
   1289 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1290 		if (v & HME_MIF_FO_TALSB)
   1291 			goto out;
   1292 	}
   1293 
   1294 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   1295 out:
   1296 	/* Restore MIFI_CFG register */
   1297 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1298 	/* Restore XIF register */
   1299 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1300 }
   1301 
   1302 static void
   1303 hme_mii_statchg(struct device *dev)
   1304 {
   1305 	struct hme_softc *sc = (void *)dev;
   1306 	bus_space_tag_t t = sc->sc_bustag;
   1307 	bus_space_handle_t mac = sc->sc_mac;
   1308 	uint32_t v;
   1309 
   1310 #ifdef HMEDEBUG
   1311 	if (sc->sc_debug)
   1312 		printf("hme_mii_statchg: status change\n");
   1313 #endif
   1314 
   1315 	/* Set the MAC Full Duplex bit appropriately */
   1316 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1317 	   but not otherwise. */
   1318 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1319 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1320 		v |= HME_MAC_TXCFG_FULLDPLX;
   1321 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1322 	} else {
   1323 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1324 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1325 	}
   1326 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1327 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1328 }
   1329 
   1330 int
   1331 hme_mediachange(struct ifnet *ifp)
   1332 {
   1333 	struct hme_softc *sc = ifp->if_softc;
   1334 	bus_space_tag_t t = sc->sc_bustag;
   1335 	bus_space_handle_t mif = sc->sc_mif;
   1336 	bus_space_handle_t mac = sc->sc_mac;
   1337 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1338 	int phy = sc->sc_phys[instance];
   1339 	int rc;
   1340 	uint32_t v;
   1341 
   1342 #ifdef HMEDEBUG
   1343 	if (sc->sc_debug)
   1344 		printf("hme_mediachange: phy = %d\n", phy);
   1345 #endif
   1346 
   1347 	/* Select the current PHY in the MIF configuration register */
   1348 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1349 	v &= ~HME_MIF_CFG_PHY;
   1350 	if (phy == HME_PHYAD_EXTERNAL)
   1351 		v |= HME_MIF_CFG_PHY;
   1352 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1353 
   1354 	/* If an external transceiver is selected, enable its MII drivers */
   1355 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1356 	v &= ~HME_MAC_XIF_MIIENABLE;
   1357 	if (phy == HME_PHYAD_EXTERNAL)
   1358 		v |= HME_MAC_XIF_MIIENABLE;
   1359 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1360 
   1361 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1362 		return 0;
   1363 	return rc;
   1364 }
   1365 
   1366 /*
   1367  * Process an ioctl request.
   1368  */
   1369 int
   1370 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1371 {
   1372 	struct hme_softc *sc = ifp->if_softc;
   1373 	struct ifaddr *ifa = (struct ifaddr *)data;
   1374 	int s, error = 0;
   1375 
   1376 	s = splnet();
   1377 
   1378 	switch (cmd) {
   1379 
   1380 	case SIOCINITIFADDR:
   1381 		switch (ifa->ifa_addr->sa_family) {
   1382 #ifdef INET
   1383 		case AF_INET:
   1384 			if (ifp->if_flags & IFF_UP)
   1385 				hme_setladrf(sc);
   1386 			else {
   1387 				ifp->if_flags |= IFF_UP;
   1388 				error = hme_init(sc);
   1389 			}
   1390 			arp_ifinit(ifp, ifa);
   1391 			break;
   1392 #endif
   1393 		default:
   1394 			ifp->if_flags |= IFF_UP;
   1395 			error = hme_init(sc);
   1396 			break;
   1397 		}
   1398 		break;
   1399 
   1400 	case SIOCSIFFLAGS:
   1401 #ifdef HMEDEBUG
   1402 		{
   1403 			struct ifreq *ifr = data;
   1404 			sc->sc_debug =
   1405 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1406 		}
   1407 #endif
   1408 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1409 			break;
   1410 
   1411 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1412 		case IFF_RUNNING:
   1413 			/*
   1414 			 * If interface is marked down and it is running, then
   1415 			 * stop it.
   1416 			 */
   1417 			hme_stop(sc, false);
   1418 			ifp->if_flags &= ~IFF_RUNNING;
   1419 			break;
   1420 		case IFF_UP:
   1421 			/*
   1422 			 * If interface is marked up and it is stopped, then
   1423 			 * start it.
   1424 			 */
   1425 			error = hme_init(sc);
   1426 			break;
   1427 		case IFF_UP|IFF_RUNNING:
   1428 			/*
   1429 			 * If setting debug or promiscuous mode, do not reset
   1430 			 * the chip; for everything else, call hme_init()
   1431 			 * which will trigger a reset.
   1432 			 */
   1433 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1434 			if (ifp->if_flags != sc->sc_if_flags) {
   1435 				if ((ifp->if_flags & (~RESETIGN))
   1436 				    == (sc->sc_if_flags & (~RESETIGN)))
   1437 					hme_setladrf(sc);
   1438 				else
   1439 					error = hme_init(sc);
   1440 			}
   1441 #undef RESETIGN
   1442 			break;
   1443 		case 0:
   1444 			break;
   1445 		}
   1446 
   1447 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1448 			error = hme_init(sc);
   1449 
   1450 		break;
   1451 
   1452 	default:
   1453 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1454 			break;
   1455 
   1456 		error = 0;
   1457 
   1458 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1459 			;
   1460 		else if (ifp->if_flags & IFF_RUNNING) {
   1461 			/*
   1462 			 * Multicast list has changed; set the hardware filter
   1463 			 * accordingly.
   1464 			 */
   1465 			hme_setladrf(sc);
   1466 		}
   1467 		break;
   1468 	}
   1469 
   1470 	sc->sc_if_flags = ifp->if_flags;
   1471 	splx(s);
   1472 	return (error);
   1473 }
   1474 
   1475 void
   1476 hme_shutdown(void *arg)
   1477 {
   1478 
   1479 	hme_stop((struct hme_softc *)arg, false);
   1480 }
   1481 
   1482 /*
   1483  * Set up the logical address filter.
   1484  */
   1485 void
   1486 hme_setladrf(struct hme_softc *sc)
   1487 {
   1488 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1489 	struct ether_multi *enm;
   1490 	struct ether_multistep step;
   1491 	struct ethercom *ec = &sc->sc_ethercom;
   1492 	bus_space_tag_t t = sc->sc_bustag;
   1493 	bus_space_handle_t mac = sc->sc_mac;
   1494 	u_char *cp;
   1495 	uint32_t crc;
   1496 	uint32_t hash[4];
   1497 	uint32_t v;
   1498 	int len;
   1499 
   1500 	/* Clear hash table */
   1501 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1502 
   1503 	/* Get current RX configuration */
   1504 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1505 
   1506 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1507 		/* Turn on promiscuous mode; turn off the hash filter */
   1508 		v |= HME_MAC_RXCFG_PMISC;
   1509 		v &= ~HME_MAC_RXCFG_HENABLE;
   1510 		ifp->if_flags |= IFF_ALLMULTI;
   1511 		goto chipit;
   1512 	}
   1513 
   1514 	/* Turn off promiscuous mode; turn on the hash filter */
   1515 	v &= ~HME_MAC_RXCFG_PMISC;
   1516 	v |= HME_MAC_RXCFG_HENABLE;
   1517 
   1518 	/*
   1519 	 * Set up multicast address filter by passing all multicast addresses
   1520 	 * through a crc generator, and then using the high order 6 bits as an
   1521 	 * index into the 64 bit logical address filter.  The high order bit
   1522 	 * selects the word, while the rest of the bits select the bit within
   1523 	 * the word.
   1524 	 */
   1525 
   1526 	ETHER_FIRST_MULTI(step, ec, enm);
   1527 	while (enm != NULL) {
   1528 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1529 			/*
   1530 			 * We must listen to a range of multicast addresses.
   1531 			 * For now, just accept all multicasts, rather than
   1532 			 * trying to set only those filter bits needed to match
   1533 			 * the range.  (At this time, the only use of address
   1534 			 * ranges is for IP multicast routing, for which the
   1535 			 * range is big enough to require all bits set.)
   1536 			 */
   1537 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1538 			ifp->if_flags |= IFF_ALLMULTI;
   1539 			goto chipit;
   1540 		}
   1541 
   1542 		cp = enm->enm_addrlo;
   1543 		crc = 0xffffffff;
   1544 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1545 			int octet = *cp++;
   1546 			int i;
   1547 
   1548 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1549 			for (i = 0; i < 8; i++) {
   1550 				if ((crc & 1) ^ (octet & 1)) {
   1551 					crc >>= 1;
   1552 					crc ^= MC_POLY_LE;
   1553 				} else {
   1554 					crc >>= 1;
   1555 				}
   1556 				octet >>= 1;
   1557 			}
   1558 		}
   1559 		/* Just want the 6 most significant bits. */
   1560 		crc >>= 26;
   1561 
   1562 		/* Set the corresponding bit in the filter. */
   1563 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1564 
   1565 		ETHER_NEXT_MULTI(step, enm);
   1566 	}
   1567 
   1568 	ifp->if_flags &= ~IFF_ALLMULTI;
   1569 
   1570 chipit:
   1571 	/* Now load the hash table into the chip */
   1572 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1573 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1574 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1575 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1576 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1577 }
   1578 
   1579 /*
   1580  * Routines for accessing the transmit and receive buffers.
   1581  * The various CPU and adapter configurations supported by this
   1582  * driver require three different access methods for buffers
   1583  * and descriptors:
   1584  *	(1) contig (contiguous data; no padding),
   1585  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1586  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1587  */
   1588 
   1589 #if 0
   1590 /*
   1591  * contig: contiguous data with no padding.
   1592  *
   1593  * Buffers may have any alignment.
   1594  */
   1595 
   1596 void
   1597 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1598 {
   1599 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1600 
   1601 	/*
   1602 	 * Just call memcpy() to do the work.
   1603 	 */
   1604 	memcpy(buf, from, len);
   1605 }
   1606 
   1607 void
   1608 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1609 {
   1610 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1611 
   1612 	/*
   1613 	 * Just call memcpy() to do the work.
   1614 	 */
   1615 	memcpy(to, buf, len);
   1616 }
   1617 #endif
   1618