Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.77
      1 /*	$NetBSD: hme.c,v 1.77 2009/05/06 20:40:19 jdc Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.77 2009/05/06 20:40:19 jdc Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 #include "bpfilter.h"
     43 #include "rnd.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/socket.h>
     51 #include <sys/device.h>
     52 #include <sys/malloc.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #if NRND > 0
     56 #include <sys/rnd.h>
     57 #endif
     58 
     59 #include <net/if.h>
     60 #include <net/if_dl.h>
     61 #include <net/if_ether.h>
     62 #include <net/if_media.h>
     63 
     64 #ifdef INET
     65 #include <net/if_vlanvar.h>
     66 #include <netinet/in.h>
     67 #include <netinet/if_inarp.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 
     76 #if NBPFILTER > 0
     77 #include <net/bpf.h>
     78 #include <net/bpfdesc.h>
     79 #endif
     80 
     81 #include <dev/mii/mii.h>
     82 #include <dev/mii/miivar.h>
     83 
     84 #include <sys/bus.h>
     85 
     86 #include <dev/ic/hmereg.h>
     87 #include <dev/ic/hmevar.h>
     88 
     89 void		hme_start(struct ifnet *);
     90 void		hme_stop(struct hme_softc *,bool);
     91 int		hme_ioctl(struct ifnet *, u_long, void *);
     92 void		hme_tick(void *);
     93 void		hme_watchdog(struct ifnet *);
     94 void		hme_shutdown(void *);
     95 int		hme_init(struct hme_softc *);
     96 void		hme_meminit(struct hme_softc *);
     97 void		hme_mifinit(struct hme_softc *);
     98 void		hme_reset(struct hme_softc *);
     99 void		hme_setladrf(struct hme_softc *);
    100 
    101 /* MII methods & callbacks */
    102 static int	hme_mii_readreg(struct device *, int, int);
    103 static void	hme_mii_writereg(struct device *, int, int, int);
    104 static void	hme_mii_statchg(struct device *);
    105 
    106 int		hme_mediachange(struct ifnet *);
    107 
    108 struct mbuf	*hme_get(struct hme_softc *, int, uint32_t);
    109 int		hme_put(struct hme_softc *, int, struct mbuf *);
    110 void		hme_read(struct hme_softc *, int, uint32_t);
    111 int		hme_eint(struct hme_softc *, u_int);
    112 int		hme_rint(struct hme_softc *);
    113 int		hme_tint(struct hme_softc *);
    114 
    115 /* Default buffer copy routines */
    116 void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    117 void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    118 void	hme_zerobuf_contig(struct hme_softc *, int, int);
    119 
    120 
    121 void
    122 hme_config(struct hme_softc *sc)
    123 {
    124 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    125 	struct mii_data *mii = &sc->sc_mii;
    126 	struct mii_softc *child;
    127 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    128 	bus_dma_segment_t seg;
    129 	bus_size_t size;
    130 	int rseg, error;
    131 
    132 	/*
    133 	 * HME common initialization.
    134 	 *
    135 	 * hme_softc fields that must be initialized by the front-end:
    136 	 *
    137 	 * the bus tag:
    138 	 *	sc_bustag
    139 	 *
    140 	 * the DMA bus tag:
    141 	 *	sc_dmatag
    142 	 *
    143 	 * the bus handles:
    144 	 *	sc_seb		(Shared Ethernet Block registers)
    145 	 *	sc_erx		(Receiver Unit registers)
    146 	 *	sc_etx		(Transmitter Unit registers)
    147 	 *	sc_mac		(MAC registers)
    148 	 *	sc_mif		(Management Interface registers)
    149 	 *
    150 	 * the maximum bus burst size:
    151 	 *	sc_burst
    152 	 *
    153 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    154 	 *	rb_membase, rb_dmabase)
    155 	 *
    156 	 * the local Ethernet address:
    157 	 *	sc_enaddr
    158 	 *
    159 	 */
    160 
    161 	/* Make sure the chip is stopped. */
    162 	hme_stop(sc, true);
    163 
    164 
    165 	/*
    166 	 * Allocate descriptors and buffers
    167 	 * XXX - do all this differently.. and more configurably,
    168 	 * eg. use things as `dma_load_mbuf()' on transmit,
    169 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    170 	 *     all the time) on the receiver side.
    171 	 *
    172 	 * Note: receive buffers must be 64-byte aligned.
    173 	 * Also, apparently, the buffers must extend to a DMA burst
    174 	 * boundary beyond the maximum packet size.
    175 	 */
    176 #define _HME_NDESC	128
    177 #define _HME_BUFSZ	1600
    178 
    179 	/* Note: the # of descriptors must be a multiple of 16 */
    180 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    181 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    182 
    183 	/*
    184 	 * Allocate DMA capable memory
    185 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    186 	 * take this into account when calculating the size. Note that
    187 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    188 	 * so we allocate that much regardless of _HME_NDESC.
    189 	 */
    190 	size =	2048 +					/* TX descriptors */
    191 		2048 +					/* RX descriptors */
    192 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    193 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    194 
    195 	/* Allocate DMA buffer */
    196 	if ((error = bus_dmamem_alloc(dmatag, size,
    197 				      2048, 0,
    198 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    199 		aprint_error_dev(&sc->sc_dev, "DMA buffer alloc error %d\n",
    200 			error);
    201 		return;
    202 	}
    203 
    204 	/* Map DMA memory in CPU addressable space */
    205 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    206 				    &sc->sc_rb.rb_membase,
    207 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    208 		aprint_error_dev(&sc->sc_dev, "DMA buffer map error %d\n",
    209 			error);
    210 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    211 		bus_dmamem_free(dmatag, &seg, rseg);
    212 		return;
    213 	}
    214 
    215 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    216 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    217 		aprint_error_dev(&sc->sc_dev, "DMA map create error %d\n",
    218 			error);
    219 		return;
    220 	}
    221 
    222 	/* Load the buffer */
    223 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    224 	    sc->sc_rb.rb_membase, size, NULL,
    225 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    226 		aprint_error_dev(&sc->sc_dev, "DMA buffer map load error %d\n",
    227 			error);
    228 		bus_dmamem_free(dmatag, &seg, rseg);
    229 		return;
    230 	}
    231 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    232 
    233 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    234 	    ether_sprintf(sc->sc_enaddr));
    235 
    236 	/* Initialize ifnet structure. */
    237 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    238 	ifp->if_softc = sc;
    239 	ifp->if_start = hme_start;
    240 	ifp->if_ioctl = hme_ioctl;
    241 	ifp->if_watchdog = hme_watchdog;
    242 	ifp->if_flags =
    243 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    244 	sc->sc_if_flags = ifp->if_flags;
    245 	ifp->if_capabilities |=
    246 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    247 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    248 	IFQ_SET_READY(&ifp->if_snd);
    249 
    250 	/* Initialize ifmedia structures and MII info */
    251 	mii->mii_ifp = ifp;
    252 	mii->mii_readreg = hme_mii_readreg;
    253 	mii->mii_writereg = hme_mii_writereg;
    254 	mii->mii_statchg = hme_mii_statchg;
    255 
    256 	sc->sc_ethercom.ec_mii = mii;
    257 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    258 
    259 	hme_mifinit(sc);
    260 
    261 	/*
    262 	 * Some HME's have an MII connector, as well as RJ45.  Try attaching
    263 	 * the RJ45 (internal) PHY first, so that the MII PHY is always
    264 	 * instance 1.
    265 	 */
    266 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    267 			HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
    268 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    269 			HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
    270 
    271 	child = LIST_FIRST(&mii->mii_phys);
    272 	if (child == NULL) {
    273 		/* No PHY attached */
    274 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    275 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    276 	} else {
    277 		/*
    278 		 * Walk along the list of attached MII devices and
    279 		 * establish an `MII instance' to `phy number'
    280 		 * mapping. We'll use this mapping in media change
    281 		 * requests to determine which phy to use to program
    282 		 * the MIF configuration register.
    283 		 */
    284 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    285 			/*
    286 			 * Note: we support just two PHYs: the built-in
    287 			 * internal device and an external on the MII
    288 			 * connector.
    289 			 */
    290 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    291 				aprint_error_dev(&sc->sc_dev, "cannot accommodate MII device %s"
    292 				       " at phy %d, instance %d\n",
    293 				       device_xname(child->mii_dev),
    294 				       child->mii_phy, child->mii_inst);
    295 				continue;
    296 			}
    297 
    298 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    299 		}
    300 
    301 		/*
    302 		 * Set the default media to auto negotiation if the phy has
    303 		 * the auto negotiation capability.
    304 		 * XXX; What to do otherwise?
    305 		 */
    306 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
    307 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    308 /*
    309 		else
    310 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
    311 */
    312 	}
    313 
    314 	/* claim 802.1q capability */
    315 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    316 
    317 	/* Attach the interface. */
    318 	if_attach(ifp);
    319 	ether_ifattach(ifp, sc->sc_enaddr);
    320 
    321 	sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
    322 	if (sc->sc_sh == NULL)
    323 		panic("hme_config: can't establish shutdownhook");
    324 
    325 #if NRND > 0
    326 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    327 			  RND_TYPE_NET, 0);
    328 #endif
    329 
    330 	callout_init(&sc->sc_tick_ch, 0);
    331 }
    332 
    333 void
    334 hme_tick(void *arg)
    335 {
    336 	struct hme_softc *sc = arg;
    337 	int s;
    338 
    339 	s = splnet();
    340 	mii_tick(&sc->sc_mii);
    341 	splx(s);
    342 
    343 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    344 }
    345 
    346 void
    347 hme_reset(struct hme_softc *sc)
    348 {
    349 	int s;
    350 
    351 	s = splnet();
    352 	(void)hme_init(sc);
    353 	splx(s);
    354 }
    355 
    356 void
    357 hme_stop(struct hme_softc *sc, bool chip_only)
    358 {
    359 	bus_space_tag_t t = sc->sc_bustag;
    360 	bus_space_handle_t seb = sc->sc_seb;
    361 	int n;
    362 
    363 	if (!chip_only) {
    364 		callout_stop(&sc->sc_tick_ch);
    365 		mii_down(&sc->sc_mii);
    366 	}
    367 
    368 	/* Mask all interrupts */
    369 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    370 
    371 	/* Reset transmitter and receiver */
    372 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    373 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    374 
    375 	for (n = 0; n < 20; n++) {
    376 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    377 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    378 			return;
    379 		DELAY(20);
    380 	}
    381 
    382 	printf("%s: hme_stop: reset failed\n", device_xname(&sc->sc_dev));
    383 }
    384 
    385 void
    386 hme_meminit(struct hme_softc *sc)
    387 {
    388 	bus_addr_t txbufdma, rxbufdma;
    389 	bus_addr_t dma;
    390 	char *p;
    391 	unsigned int ntbuf, nrbuf, i;
    392 	struct hme_ring *hr = &sc->sc_rb;
    393 
    394 	p = hr->rb_membase;
    395 	dma = hr->rb_dmabase;
    396 
    397 	ntbuf = hr->rb_ntbuf;
    398 	nrbuf = hr->rb_nrbuf;
    399 
    400 	/*
    401 	 * Allocate transmit descriptors
    402 	 */
    403 	hr->rb_txd = p;
    404 	hr->rb_txddma = dma;
    405 	p += ntbuf * HME_XD_SIZE;
    406 	dma += ntbuf * HME_XD_SIZE;
    407 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    408 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    409 	p = (void *)roundup((u_long)p, 2048);
    410 
    411 	/*
    412 	 * Allocate receive descriptors
    413 	 */
    414 	hr->rb_rxd = p;
    415 	hr->rb_rxddma = dma;
    416 	p += nrbuf * HME_XD_SIZE;
    417 	dma += nrbuf * HME_XD_SIZE;
    418 	/* Again move forward to the next 2048 byte boundary.*/
    419 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    420 	p = (void *)roundup((u_long)p, 2048);
    421 
    422 
    423 	/*
    424 	 * Allocate transmit buffers
    425 	 */
    426 	hr->rb_txbuf = p;
    427 	txbufdma = dma;
    428 	p += ntbuf * _HME_BUFSZ;
    429 	dma += ntbuf * _HME_BUFSZ;
    430 
    431 	/*
    432 	 * Allocate receive buffers
    433 	 */
    434 	hr->rb_rxbuf = p;
    435 	rxbufdma = dma;
    436 	p += nrbuf * _HME_BUFSZ;
    437 	dma += nrbuf * _HME_BUFSZ;
    438 
    439 	/*
    440 	 * Initialize transmit buffer descriptors
    441 	 */
    442 	for (i = 0; i < ntbuf; i++) {
    443 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    444 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    445 	}
    446 
    447 	/*
    448 	 * Initialize receive buffer descriptors
    449 	 */
    450 	for (i = 0; i < nrbuf; i++) {
    451 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    452 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    453 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    454 	}
    455 
    456 	hr->rb_tdhead = hr->rb_tdtail = 0;
    457 	hr->rb_td_nbusy = 0;
    458 	hr->rb_rdtail = 0;
    459 }
    460 
    461 /*
    462  * Initialization of interface; set up initialization block
    463  * and transmit/receive descriptor rings.
    464  */
    465 int
    466 hme_init(struct hme_softc *sc)
    467 {
    468 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    469 	bus_space_tag_t t = sc->sc_bustag;
    470 	bus_space_handle_t seb = sc->sc_seb;
    471 	bus_space_handle_t etx = sc->sc_etx;
    472 	bus_space_handle_t erx = sc->sc_erx;
    473 	bus_space_handle_t mac = sc->sc_mac;
    474 	uint8_t *ea;
    475 	uint32_t v;
    476 	int rc;
    477 
    478 	/*
    479 	 * Initialization sequence. The numbered steps below correspond
    480 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    481 	 * Channel Engine manual (part of the PCIO manual).
    482 	 * See also the STP2002-STQ document from Sun Microsystems.
    483 	 */
    484 
    485 	/* step 1 & 2. Reset the Ethernet Channel */
    486 	hme_stop(sc, false);
    487 
    488 	/* Re-initialize the MIF */
    489 	hme_mifinit(sc);
    490 
    491 	/* Call MI reset function if any */
    492 	if (sc->sc_hwreset)
    493 		(*sc->sc_hwreset)(sc);
    494 
    495 #if 0
    496 	/* Mask all MIF interrupts, just in case */
    497 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    498 #endif
    499 
    500 	/* step 3. Setup data structures in host memory */
    501 	hme_meminit(sc);
    502 
    503 	/* step 4. TX MAC registers & counters */
    504 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    505 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    506 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    507 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    508 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    509 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    510 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    511 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    512 
    513 	/* Load station MAC address */
    514 	ea = sc->sc_enaddr;
    515 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    516 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    517 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    518 
    519 	/*
    520 	 * Init seed for backoff
    521 	 * (source suggested by manual: low 10 bits of MAC address)
    522 	 */
    523 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    524 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    525 
    526 
    527 	/* Note: Accepting power-on default for other MAC registers here.. */
    528 
    529 
    530 	/* step 5. RX MAC registers & counters */
    531 	hme_setladrf(sc);
    532 
    533 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    534 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    535 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    536 
    537 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    538 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    539 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    540 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    541 
    542 	/* step 8. Global Configuration & Interrupt Mask */
    543 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    544 			~(
    545 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    546 			  HME_SEB_STAT_HOSTTOTX |
    547 			  HME_SEB_STAT_RXTOHOST |
    548 			  HME_SEB_STAT_TXALL |
    549 			  HME_SEB_STAT_TXPERR |
    550 			  HME_SEB_STAT_RCNTEXP |
    551 			  HME_SEB_STAT_MIFIRQ |
    552 			  HME_SEB_STAT_ALL_ERRORS ));
    553 
    554 	switch (sc->sc_burst) {
    555 	default:
    556 		v = 0;
    557 		break;
    558 	case 16:
    559 		v = HME_SEB_CFG_BURST16;
    560 		break;
    561 	case 32:
    562 		v = HME_SEB_CFG_BURST32;
    563 		break;
    564 	case 64:
    565 		v = HME_SEB_CFG_BURST64;
    566 		break;
    567 	}
    568 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    569 
    570 	/* step 9. ETX Configuration: use mostly default values */
    571 
    572 	/* Enable DMA */
    573 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    574 	v |= HME_ETX_CFG_DMAENABLE;
    575 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    576 
    577 	/* Transmit Descriptor ring size: in increments of 16 */
    578 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    579 
    580 
    581 	/* step 10. ERX Configuration */
    582 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    583 
    584 	/* Encode Receive Descriptor ring size: four possible values */
    585 	switch (_HME_NDESC /*XXX*/) {
    586 	case 32:
    587 		v |= HME_ERX_CFG_RINGSIZE32;
    588 		break;
    589 	case 64:
    590 		v |= HME_ERX_CFG_RINGSIZE64;
    591 		break;
    592 	case 128:
    593 		v |= HME_ERX_CFG_RINGSIZE128;
    594 		break;
    595 	case 256:
    596 		v |= HME_ERX_CFG_RINGSIZE256;
    597 		break;
    598 	default:
    599 		printf("hme: invalid Receive Descriptor ring size\n");
    600 		break;
    601 	}
    602 
    603 	/* Enable DMA */
    604 	v |= HME_ERX_CFG_DMAENABLE;
    605 
    606 	/* set h/w rx checksum start offset (# of half-words) */
    607 #ifdef INET
    608 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    609 		<< HME_ERX_CFG_CSUMSHIFT) &
    610 		HME_ERX_CFG_CSUMSTART;
    611 #endif
    612 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    613 
    614 	/* step 11. XIF Configuration */
    615 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    616 	v |= HME_MAC_XIF_OE;
    617 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    618 
    619 	/* step 12. RX_MAC Configuration Register */
    620 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    621 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    622 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    623 
    624 	/* step 13. TX_MAC Configuration Register */
    625 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    626 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    627 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    628 
    629 	/* step 14. Issue Transmit Pending command */
    630 
    631 	/* Call MI initialization function if any */
    632 	if (sc->sc_hwinit)
    633 		(*sc->sc_hwinit)(sc);
    634 
    635 	/* Set the current media. */
    636 	if ((rc = hme_mediachange(ifp)) != 0)
    637 		return rc;
    638 
    639 	/* Start the one second timer. */
    640 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    641 
    642 	ifp->if_flags |= IFF_RUNNING;
    643 	ifp->if_flags &= ~IFF_OACTIVE;
    644 	sc->sc_if_flags = ifp->if_flags;
    645 	ifp->if_timer = 0;
    646 	hme_start(ifp);
    647 	return 0;
    648 }
    649 
    650 /*
    651  * Routine to copy from mbuf chain to transmit buffer in
    652  * network buffer memory.
    653  * Returns the amount of data copied.
    654  */
    655 int
    656 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    657 	/* ri:			 Ring index */
    658 {
    659 	struct mbuf *n;
    660 	int len, tlen = 0;
    661 	char *bp;
    662 
    663 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    664 	for (; m; m = n) {
    665 		len = m->m_len;
    666 		if (len == 0) {
    667 			MFREE(m, n);
    668 			continue;
    669 		}
    670 		memcpy(bp, mtod(m, void *), len);
    671 		bp += len;
    672 		tlen += len;
    673 		MFREE(m, n);
    674 	}
    675 	return (tlen);
    676 }
    677 
    678 /*
    679  * Pull data off an interface.
    680  * Len is length of data, with local net header stripped.
    681  * We copy the data into mbufs.  When full cluster sized units are present
    682  * we copy into clusters.
    683  */
    684 struct mbuf *
    685 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    686 {
    687 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    688 	struct mbuf *m, *m0, *newm;
    689 	char *bp;
    690 	int len, totlen;
    691 #ifdef INET
    692 	int csum_flags;
    693 #endif
    694 
    695 	totlen = HME_XD_DECODE_RSIZE(flags);
    696 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    697 	if (m0 == 0)
    698 		return (0);
    699 	m0->m_pkthdr.rcvif = ifp;
    700 	m0->m_pkthdr.len = totlen;
    701 	len = MHLEN;
    702 	m = m0;
    703 
    704 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    705 
    706 	while (totlen > 0) {
    707 		if (totlen >= MINCLSIZE) {
    708 			MCLGET(m, M_DONTWAIT);
    709 			if ((m->m_flags & M_EXT) == 0)
    710 				goto bad;
    711 			len = MCLBYTES;
    712 		}
    713 
    714 		if (m == m0) {
    715 			char *newdata = (char *)
    716 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    717 			    sizeof(struct ether_header);
    718 			len -= newdata - m->m_data;
    719 			m->m_data = newdata;
    720 		}
    721 
    722 		m->m_len = len = min(totlen, len);
    723 		memcpy(mtod(m, void *), bp, len);
    724 		bp += len;
    725 
    726 		totlen -= len;
    727 		if (totlen > 0) {
    728 			MGET(newm, M_DONTWAIT, MT_DATA);
    729 			if (newm == 0)
    730 				goto bad;
    731 			len = MLEN;
    732 			m = m->m_next = newm;
    733 		}
    734 	}
    735 
    736 #ifdef INET
    737 	/* hardware checksum */
    738 	csum_flags = 0;
    739 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    740 		struct ether_header *eh;
    741 		struct ether_vlan_header *evh;
    742 		struct ip *ip;
    743 		struct udphdr *uh;
    744 		uint16_t *opts;
    745 		int32_t hlen, pktlen;
    746 		uint32_t csum_data;
    747 
    748 		eh = mtod(m0, struct ether_header *);
    749 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    750 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    751 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    752 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    753 			evh = (struct ether_vlan_header *)eh;
    754 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
    755 				goto swcsum;
    756 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    757 			    ETHER_VLAN_ENCAP_LEN);
    758 			pktlen = m0->m_pkthdr.len -
    759 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    760 		} else
    761 			goto swcsum;
    762 
    763 		/* IPv4 only */
    764 		if (ip->ip_v != IPVERSION)
    765 			goto swcsum;
    766 
    767 		hlen = ip->ip_hl << 2;
    768 		if (hlen < sizeof(struct ip))
    769 			goto swcsum;
    770 
    771 		/*
    772 		 * bail if too short, has random trailing garbage, truncated,
    773 		 * fragment, or has ethernet pad.
    774 		 */
    775 		if (ntohs(ip->ip_len) < hlen ||
    776 		    ntohs(ip->ip_len) != pktlen ||
    777 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    778 			goto swcsum;
    779 
    780 		switch (ip->ip_p) {
    781 		case IPPROTO_TCP:
    782 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    783 				goto swcsum;
    784 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    785 				goto swcsum;
    786 			csum_flags =
    787 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    788 			break;
    789 		case IPPROTO_UDP:
    790 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    791 				goto swcsum;
    792 			if (pktlen < (hlen + sizeof(struct udphdr)))
    793 				goto swcsum;
    794 			uh = (struct udphdr *)((char *)ip + hlen);
    795 			/* no checksum */
    796 			if (uh->uh_sum == 0)
    797 				goto swcsum;
    798 			csum_flags =
    799 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    800 			break;
    801 		default:
    802 			goto swcsum;
    803 		}
    804 
    805 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    806 		csum_data = ~flags & HME_XD_RXCKSUM;
    807 
    808 		/*
    809 		 * If data offset is different from RX cksum start offset,
    810 		 * we have to deduct them.
    811 		 */
    812 		hlen = ((char *)ip + hlen) -
    813 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    814 		if (hlen > 1) {
    815 			uint32_t optsum;
    816 
    817 			optsum = 0;
    818 			opts = (uint16_t *)((char *)eh +
    819 			    ETHER_HDR_LEN + sizeof(struct ip));
    820 
    821 			while (hlen > 1) {
    822 				optsum += ntohs(*opts++);
    823 				hlen -= 2;
    824 			}
    825 			while (optsum >> 16)
    826 				optsum = (optsum >> 16) + (optsum & 0xffff);
    827 
    828 			/* Deduct the ip opts sum from the hwsum. */
    829 			csum_data += (uint16_t)~optsum;
    830 
    831 			while (csum_data >> 16)
    832 				csum_data =
    833 				    (csum_data >> 16) + (csum_data & 0xffff);
    834 		}
    835 		m0->m_pkthdr.csum_data = csum_data;
    836 	}
    837 swcsum:
    838 	m0->m_pkthdr.csum_flags = csum_flags;
    839 #endif
    840 
    841 	return (m0);
    842 
    843 bad:
    844 	m_freem(m0);
    845 	return (0);
    846 }
    847 
    848 /*
    849  * Pass a packet to the higher levels.
    850  */
    851 void
    852 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    853 {
    854 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    855 	struct mbuf *m;
    856 	int len;
    857 
    858 	len = HME_XD_DECODE_RSIZE(flags);
    859 	if (len <= sizeof(struct ether_header) ||
    860 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    861 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    862 	    ETHERMTU + sizeof(struct ether_header))) {
    863 #ifdef HMEDEBUG
    864 		printf("%s: invalid packet size %d; dropping\n",
    865 		    device_xname(&sc->sc_dev), len);
    866 #endif
    867 		ifp->if_ierrors++;
    868 		return;
    869 	}
    870 
    871 	/* Pull packet off interface. */
    872 	m = hme_get(sc, ix, flags);
    873 	if (m == 0) {
    874 		ifp->if_ierrors++;
    875 		return;
    876 	}
    877 
    878 	ifp->if_ipackets++;
    879 
    880 #if NBPFILTER > 0
    881 	/*
    882 	 * Check if there's a BPF listener on this interface.
    883 	 * If so, hand off the raw packet to BPF.
    884 	 */
    885 	if (ifp->if_bpf)
    886 		bpf_mtap(ifp->if_bpf, m);
    887 #endif
    888 
    889 	/* Pass the packet up. */
    890 	(*ifp->if_input)(ifp, m);
    891 }
    892 
    893 void
    894 hme_start(struct ifnet *ifp)
    895 {
    896 	struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
    897 	void *txd = sc->sc_rb.rb_txd;
    898 	struct mbuf *m;
    899 	unsigned int txflags;
    900 	unsigned int ri, len;
    901 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    902 
    903 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    904 		return;
    905 
    906 	ri = sc->sc_rb.rb_tdhead;
    907 
    908 	for (;;) {
    909 		IFQ_DEQUEUE(&ifp->if_snd, m);
    910 		if (m == 0)
    911 			break;
    912 
    913 #if NBPFILTER > 0
    914 		/*
    915 		 * If BPF is listening on this interface, let it see the
    916 		 * packet before we commit it to the wire.
    917 		 */
    918 		if (ifp->if_bpf)
    919 			bpf_mtap(ifp->if_bpf, m);
    920 #endif
    921 
    922 #ifdef INET
    923 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    924 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    925 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    926 			struct ether_header *eh;
    927 			uint16_t offset, start;
    928 
    929 			eh = mtod(m, struct ether_header *);
    930 			switch (ntohs(eh->ether_type)) {
    931 			case ETHERTYPE_IP:
    932 				start = ETHER_HDR_LEN;
    933 				break;
    934 			case ETHERTYPE_VLAN:
    935 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    936 				break;
    937 			default:
    938 				/* unsupported, drop it */
    939 				m_free(m);
    940 				continue;
    941 			}
    942 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    943 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    944 			    + start;
    945 			txflags = HME_XD_TXCKSUM |
    946 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    947 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    948 		} else
    949 #endif
    950 			txflags = 0;
    951 
    952 		/*
    953 		 * Copy the mbuf chain into the transmit buffer.
    954 		 */
    955 		len = hme_put(sc, ri, m);
    956 
    957 		/*
    958 		 * Initialize transmit registers and start transmission
    959 		 */
    960 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    961 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    962 			HME_XD_ENCODE_TSIZE(len) | txflags);
    963 
    964 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    965 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    966 				  HME_ETX_TP_DMAWAKEUP);
    967 
    968 		if (++ri == ntbuf)
    969 			ri = 0;
    970 
    971 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    972 			ifp->if_flags |= IFF_OACTIVE;
    973 			break;
    974 		}
    975 	}
    976 
    977 	sc->sc_rb.rb_tdhead = ri;
    978 }
    979 
    980 /*
    981  * Transmit interrupt.
    982  */
    983 int
    984 hme_tint(struct hme_softc *sc)
    985 {
    986 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    987 	bus_space_tag_t t = sc->sc_bustag;
    988 	bus_space_handle_t mac = sc->sc_mac;
    989 	unsigned int ri, txflags;
    990 
    991 	/*
    992 	 * Unload collision counters
    993 	 */
    994 	ifp->if_collisions +=
    995 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    996 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
    997 	ifp->if_oerrors +=
    998 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    999 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1000 
   1001 	/*
   1002 	 * then clear the hardware counters.
   1003 	 */
   1004 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1005 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1006 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1007 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1008 
   1009 	/* Fetch current position in the transmit ring */
   1010 	ri = sc->sc_rb.rb_tdtail;
   1011 
   1012 	for (;;) {
   1013 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1014 			break;
   1015 
   1016 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1017 
   1018 		if (txflags & HME_XD_OWN)
   1019 			break;
   1020 
   1021 		ifp->if_flags &= ~IFF_OACTIVE;
   1022 		ifp->if_opackets++;
   1023 
   1024 		if (++ri == sc->sc_rb.rb_ntbuf)
   1025 			ri = 0;
   1026 
   1027 		--sc->sc_rb.rb_td_nbusy;
   1028 	}
   1029 
   1030 	/* Update ring */
   1031 	sc->sc_rb.rb_tdtail = ri;
   1032 
   1033 	hme_start(ifp);
   1034 
   1035 	if (sc->sc_rb.rb_td_nbusy == 0)
   1036 		ifp->if_timer = 0;
   1037 
   1038 	return (1);
   1039 }
   1040 
   1041 /*
   1042  * Receive interrupt.
   1043  */
   1044 int
   1045 hme_rint(struct hme_softc *sc)
   1046 {
   1047 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1048 	bus_space_tag_t t = sc->sc_bustag;
   1049 	bus_space_handle_t mac = sc->sc_mac;
   1050 	void *xdr = sc->sc_rb.rb_rxd;
   1051 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1052 	unsigned int ri;
   1053 	uint32_t flags;
   1054 
   1055 	ri = sc->sc_rb.rb_rdtail;
   1056 
   1057 	/*
   1058 	 * Process all buffers with valid data.
   1059 	 */
   1060 	for (;;) {
   1061 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1062 		if (flags & HME_XD_OWN)
   1063 			break;
   1064 
   1065 		if (flags & HME_XD_OFL) {
   1066 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1067 					device_xname(&sc->sc_dev), ri, flags);
   1068 		} else
   1069 			hme_read(sc, ri, flags);
   1070 
   1071 		/* This buffer can be used by the hardware again */
   1072 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1073 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1074 
   1075 		if (++ri == nrbuf)
   1076 			ri = 0;
   1077 	}
   1078 
   1079 	sc->sc_rb.rb_rdtail = ri;
   1080 
   1081 	/* Read error counters ... */
   1082 	ifp->if_ierrors +=
   1083 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
   1084 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
   1085 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
   1086 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
   1087 
   1088 	/* ... then clear the hardware counters. */
   1089 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
   1090 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
   1091 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
   1092 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
   1093 	return (1);
   1094 }
   1095 
   1096 int
   1097 hme_eint(struct hme_softc *sc, u_int status)
   1098 {
   1099 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1100 	char bits[128];
   1101 
   1102 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1103 		bus_space_tag_t t = sc->sc_bustag;
   1104 		bus_space_handle_t mif = sc->sc_mif;
   1105 		uint32_t cf, st, sm;
   1106 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1107 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1108 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1109 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1110 			device_xname(&sc->sc_dev), cf, st, sm);
   1111 		return (1);
   1112 	}
   1113 
   1114 	/* Receive error counters rolled over */
   1115 	if (status & HME_SEB_STAT_ACNTEXP)
   1116 		ifp->if_ierrors += 0xff;
   1117 	if (status & HME_SEB_STAT_CCNTEXP)
   1118 		ifp->if_ierrors += 0xff;
   1119 	if (status & HME_SEB_STAT_LCNTEXP)
   1120 		ifp->if_ierrors += 0xff;
   1121 	if (status & HME_SEB_STAT_CVCNTEXP)
   1122 		ifp->if_ierrors += 0xff;
   1123 
   1124 	/* RXTERR locks up the interface, so do a reset */
   1125 	if (status & HME_SEB_STAT_RXTERR)
   1126 		hme_reset(sc);
   1127 
   1128 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1129 	printf("%s: status=%s\n", device_xname(&sc->sc_dev), bits);
   1130 
   1131 	return (1);
   1132 }
   1133 
   1134 int
   1135 hme_intr(void *v)
   1136 {
   1137 	struct hme_softc *sc = (struct hme_softc *)v;
   1138 	bus_space_tag_t t = sc->sc_bustag;
   1139 	bus_space_handle_t seb = sc->sc_seb;
   1140 	uint32_t status;
   1141 	int r = 0;
   1142 
   1143 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1144 
   1145 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1146 		r |= hme_eint(sc, status);
   1147 
   1148 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1149 		r |= hme_tint(sc);
   1150 
   1151 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1152 		r |= hme_rint(sc);
   1153 
   1154 #if NRND > 0
   1155 	rnd_add_uint32(&sc->rnd_source, status);
   1156 #endif
   1157 
   1158 	return (r);
   1159 }
   1160 
   1161 
   1162 void
   1163 hme_watchdog(struct ifnet *ifp)
   1164 {
   1165 	struct hme_softc *sc = ifp->if_softc;
   1166 
   1167 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   1168 	++ifp->if_oerrors;
   1169 
   1170 	hme_reset(sc);
   1171 }
   1172 
   1173 /*
   1174  * Initialize the MII Management Interface
   1175  */
   1176 void
   1177 hme_mifinit(struct hme_softc *sc)
   1178 {
   1179 	bus_space_tag_t t = sc->sc_bustag;
   1180 	bus_space_handle_t mif = sc->sc_mif;
   1181 	bus_space_handle_t mac = sc->sc_mac;
   1182 	int instance, phy;
   1183 	uint32_t v;
   1184 
   1185 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1186 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1187 		phy = sc->sc_phys[instance];
   1188 	} else
   1189 		/* No media set yet, pick phy arbitrarily.. */
   1190 		phy = HME_PHYAD_EXTERNAL;
   1191 
   1192 	/* Configure the MIF in frame mode, no poll, current phy select */
   1193 	v = 0;
   1194 	if (phy == HME_PHYAD_EXTERNAL)
   1195 		v |= HME_MIF_CFG_PHY;
   1196 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1197 
   1198 	/* If an external transceiver is selected, enable its MII drivers */
   1199 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1200 	v &= ~HME_MAC_XIF_MIIENABLE;
   1201 	if (phy == HME_PHYAD_EXTERNAL)
   1202 		v |= HME_MAC_XIF_MIIENABLE;
   1203 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1204 }
   1205 
   1206 /*
   1207  * MII interface
   1208  */
   1209 static int
   1210 hme_mii_readreg(struct device *self, int phy, int reg)
   1211 {
   1212 	struct hme_softc *sc = (void *)self;
   1213 	bus_space_tag_t t = sc->sc_bustag;
   1214 	bus_space_handle_t mif = sc->sc_mif;
   1215 	bus_space_handle_t mac = sc->sc_mac;
   1216 	uint32_t v, xif_cfg, mifi_cfg;
   1217 	int n;
   1218 
   1219 	/* We can at most have two PHYs */
   1220 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1221 		return (0);
   1222 
   1223 	/* Select the desired PHY in the MIF configuration register */
   1224 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1225 	v &= ~HME_MIF_CFG_PHY;
   1226 	if (phy == HME_PHYAD_EXTERNAL)
   1227 		v |= HME_MIF_CFG_PHY;
   1228 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1229 
   1230 	/* Enable MII drivers on external transceiver */
   1231 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1232 	if (phy == HME_PHYAD_EXTERNAL)
   1233 		v |= HME_MAC_XIF_MIIENABLE;
   1234 	else
   1235 		v &= ~HME_MAC_XIF_MIIENABLE;
   1236 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1237 
   1238 #if 0
   1239 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1240 	/*
   1241 	 * Check whether a transceiver is connected by testing
   1242 	 * the MIF configuration register's MDI_X bits. Note that
   1243 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1244 	 */
   1245 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1246 	delay(100);
   1247 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1248 	if ((v & mif_mdi_bit) == 0)
   1249 		return (0);
   1250 #endif
   1251 
   1252 	/* Construct the frame command */
   1253 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1254 	    HME_MIF_FO_TAMSB |
   1255 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1256 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1257 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1258 
   1259 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1260 	for (n = 0; n < 100; n++) {
   1261 		DELAY(1);
   1262 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1263 		if (v & HME_MIF_FO_TALSB) {
   1264 			v &= HME_MIF_FO_DATA;
   1265 			goto out;
   1266 		}
   1267 	}
   1268 
   1269 	v = 0;
   1270 	printf("%s: mii_read timeout\n", device_xname(&sc->sc_dev));
   1271 
   1272 out:
   1273 	/* Restore MIFI_CFG register */
   1274 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1275 	/* Restore XIF register */
   1276 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1277 	return (v);
   1278 }
   1279 
   1280 static void
   1281 hme_mii_writereg(struct device *self, int phy, int reg, int val)
   1282 {
   1283 	struct hme_softc *sc = (void *)self;
   1284 	bus_space_tag_t t = sc->sc_bustag;
   1285 	bus_space_handle_t mif = sc->sc_mif;
   1286 	bus_space_handle_t mac = sc->sc_mac;
   1287 	uint32_t v, xif_cfg, mifi_cfg;
   1288 	int n;
   1289 
   1290 	/* We can at most have two PHYs */
   1291 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1292 		return;
   1293 
   1294 	/* Select the desired PHY in the MIF configuration register */
   1295 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1296 	v &= ~HME_MIF_CFG_PHY;
   1297 	if (phy == HME_PHYAD_EXTERNAL)
   1298 		v |= HME_MIF_CFG_PHY;
   1299 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1300 
   1301 	/* Enable MII drivers on external transceiver */
   1302 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1303 	if (phy == HME_PHYAD_EXTERNAL)
   1304 		v |= HME_MAC_XIF_MIIENABLE;
   1305 	else
   1306 		v &= ~HME_MAC_XIF_MIIENABLE;
   1307 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1308 
   1309 #if 0
   1310 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1311 	/*
   1312 	 * Check whether a transceiver is connected by testing
   1313 	 * the MIF configuration register's MDI_X bits. Note that
   1314 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1315 	 */
   1316 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1317 	delay(100);
   1318 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1319 	if ((v & mif_mdi_bit) == 0)
   1320 		return;
   1321 #endif
   1322 
   1323 	/* Construct the frame command */
   1324 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1325 	    HME_MIF_FO_TAMSB				|
   1326 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1327 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1328 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1329 	    (val & HME_MIF_FO_DATA);
   1330 
   1331 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1332 	for (n = 0; n < 100; n++) {
   1333 		DELAY(1);
   1334 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1335 		if (v & HME_MIF_FO_TALSB)
   1336 			goto out;
   1337 	}
   1338 
   1339 	printf("%s: mii_write timeout\n", device_xname(&sc->sc_dev));
   1340 out:
   1341 	/* Restore MIFI_CFG register */
   1342 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1343 	/* Restore XIF register */
   1344 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1345 }
   1346 
   1347 static void
   1348 hme_mii_statchg(struct device *dev)
   1349 {
   1350 	struct hme_softc *sc = (void *)dev;
   1351 	bus_space_tag_t t = sc->sc_bustag;
   1352 	bus_space_handle_t mac = sc->sc_mac;
   1353 	uint32_t v;
   1354 
   1355 #ifdef HMEDEBUG
   1356 	if (sc->sc_debug)
   1357 		printf("hme_mii_statchg: status change\n");
   1358 #endif
   1359 
   1360 	/* Set the MAC Full Duplex bit appropriately */
   1361 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1362 	   but not otherwise. */
   1363 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1364 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1365 		v |= HME_MAC_TXCFG_FULLDPLX;
   1366 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1367 	} else {
   1368 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1369 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1370 	}
   1371 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1372 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1373 }
   1374 
   1375 int
   1376 hme_mediachange(struct ifnet *ifp)
   1377 {
   1378 	struct hme_softc *sc = ifp->if_softc;
   1379 	bus_space_tag_t t = sc->sc_bustag;
   1380 	bus_space_handle_t mif = sc->sc_mif;
   1381 	bus_space_handle_t mac = sc->sc_mac;
   1382 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1383 	int phy = sc->sc_phys[instance];
   1384 	int rc;
   1385 	uint32_t v;
   1386 
   1387 #ifdef HMEDEBUG
   1388 	if (sc->sc_debug)
   1389 		printf("hme_mediachange: phy = %d\n", phy);
   1390 #endif
   1391 
   1392 	/* Select the current PHY in the MIF configuration register */
   1393 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1394 	v &= ~HME_MIF_CFG_PHY;
   1395 	if (phy == HME_PHYAD_EXTERNAL)
   1396 		v |= HME_MIF_CFG_PHY;
   1397 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1398 
   1399 	/* If an external transceiver is selected, enable its MII drivers */
   1400 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1401 	v &= ~HME_MAC_XIF_MIIENABLE;
   1402 	if (phy == HME_PHYAD_EXTERNAL)
   1403 		v |= HME_MAC_XIF_MIIENABLE;
   1404 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1405 
   1406 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1407 		return 0;
   1408 	return rc;
   1409 }
   1410 
   1411 /*
   1412  * Process an ioctl request.
   1413  */
   1414 int
   1415 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1416 {
   1417 	struct hme_softc *sc = ifp->if_softc;
   1418 	struct ifaddr *ifa = (struct ifaddr *)data;
   1419 	int s, error = 0;
   1420 
   1421 	s = splnet();
   1422 
   1423 	switch (cmd) {
   1424 
   1425 	case SIOCINITIFADDR:
   1426 		switch (ifa->ifa_addr->sa_family) {
   1427 #ifdef INET
   1428 		case AF_INET:
   1429 			if (ifp->if_flags & IFF_UP)
   1430 				hme_setladrf(sc);
   1431 			else {
   1432 				ifp->if_flags |= IFF_UP;
   1433 				error = hme_init(sc);
   1434 			}
   1435 			arp_ifinit(ifp, ifa);
   1436 			break;
   1437 #endif
   1438 		default:
   1439 			ifp->if_flags |= IFF_UP;
   1440 			error = hme_init(sc);
   1441 			break;
   1442 		}
   1443 		break;
   1444 
   1445 	case SIOCSIFFLAGS:
   1446 #ifdef HMEDEBUG
   1447 		{
   1448 			struct ifreq *ifr = data;
   1449 			sc->sc_debug =
   1450 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1451 		}
   1452 #endif
   1453 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1454 			break;
   1455 
   1456 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1457 		case IFF_RUNNING:
   1458 			/*
   1459 			 * If interface is marked down and it is running, then
   1460 			 * stop it.
   1461 			 */
   1462 			hme_stop(sc, false);
   1463 			ifp->if_flags &= ~IFF_RUNNING;
   1464 			break;
   1465 		case IFF_UP:
   1466 			/*
   1467 			 * If interface is marked up and it is stopped, then
   1468 			 * start it.
   1469 			 */
   1470 			error = hme_init(sc);
   1471 			break;
   1472 		case IFF_UP|IFF_RUNNING:
   1473 			/*
   1474 			 * If setting debug or promiscuous mode, do not reset
   1475 			 * the chip; for everything else, call hme_init()
   1476 			 * which will trigger a reset.
   1477 			 */
   1478 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1479 			if (ifp->if_flags != sc->sc_if_flags) {
   1480 				if ((ifp->if_flags & (~RESETIGN))
   1481 				    == (sc->sc_if_flags & (~RESETIGN)))
   1482 					hme_setladrf(sc);
   1483 				else
   1484 					error = hme_init(sc);
   1485 			}
   1486 #undef RESETIGN
   1487 			break;
   1488 		case 0:
   1489 			break;
   1490 		}
   1491 
   1492 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1493 			error = hme_init(sc);
   1494 
   1495 		break;
   1496 
   1497 	default:
   1498 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1499 			break;
   1500 
   1501 		error = 0;
   1502 
   1503 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1504 			;
   1505 		else if (ifp->if_flags & IFF_RUNNING) {
   1506 			/*
   1507 			 * Multicast list has changed; set the hardware filter
   1508 			 * accordingly.
   1509 			 */
   1510 			hme_setladrf(sc);
   1511 		}
   1512 		break;
   1513 	}
   1514 
   1515 	sc->sc_if_flags = ifp->if_flags;
   1516 	splx(s);
   1517 	return (error);
   1518 }
   1519 
   1520 void
   1521 hme_shutdown(void *arg)
   1522 {
   1523 
   1524 	hme_stop((struct hme_softc *)arg, false);
   1525 }
   1526 
   1527 /*
   1528  * Set up the logical address filter.
   1529  */
   1530 void
   1531 hme_setladrf(struct hme_softc *sc)
   1532 {
   1533 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1534 	struct ether_multi *enm;
   1535 	struct ether_multistep step;
   1536 	struct ethercom *ec = &sc->sc_ethercom;
   1537 	bus_space_tag_t t = sc->sc_bustag;
   1538 	bus_space_handle_t mac = sc->sc_mac;
   1539 	u_char *cp;
   1540 	uint32_t crc;
   1541 	uint32_t hash[4];
   1542 	uint32_t v;
   1543 	int len;
   1544 
   1545 	/* Clear hash table */
   1546 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1547 
   1548 	/* Get current RX configuration */
   1549 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1550 
   1551 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1552 		/* Turn on promiscuous mode; turn off the hash filter */
   1553 		v |= HME_MAC_RXCFG_PMISC;
   1554 		v &= ~HME_MAC_RXCFG_HENABLE;
   1555 		ifp->if_flags |= IFF_ALLMULTI;
   1556 		goto chipit;
   1557 	}
   1558 
   1559 	/* Turn off promiscuous mode; turn on the hash filter */
   1560 	v &= ~HME_MAC_RXCFG_PMISC;
   1561 	v |= HME_MAC_RXCFG_HENABLE;
   1562 
   1563 	/*
   1564 	 * Set up multicast address filter by passing all multicast addresses
   1565 	 * through a crc generator, and then using the high order 6 bits as an
   1566 	 * index into the 64 bit logical address filter.  The high order bit
   1567 	 * selects the word, while the rest of the bits select the bit within
   1568 	 * the word.
   1569 	 */
   1570 
   1571 	ETHER_FIRST_MULTI(step, ec, enm);
   1572 	while (enm != NULL) {
   1573 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1574 			/*
   1575 			 * We must listen to a range of multicast addresses.
   1576 			 * For now, just accept all multicasts, rather than
   1577 			 * trying to set only those filter bits needed to match
   1578 			 * the range.  (At this time, the only use of address
   1579 			 * ranges is for IP multicast routing, for which the
   1580 			 * range is big enough to require all bits set.)
   1581 			 */
   1582 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1583 			ifp->if_flags |= IFF_ALLMULTI;
   1584 			goto chipit;
   1585 		}
   1586 
   1587 		cp = enm->enm_addrlo;
   1588 		crc = 0xffffffff;
   1589 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
   1590 			int octet = *cp++;
   1591 			int i;
   1592 
   1593 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
   1594 			for (i = 0; i < 8; i++) {
   1595 				if ((crc & 1) ^ (octet & 1)) {
   1596 					crc >>= 1;
   1597 					crc ^= MC_POLY_LE;
   1598 				} else {
   1599 					crc >>= 1;
   1600 				}
   1601 				octet >>= 1;
   1602 			}
   1603 		}
   1604 		/* Just want the 6 most significant bits. */
   1605 		crc >>= 26;
   1606 
   1607 		/* Set the corresponding bit in the filter. */
   1608 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1609 
   1610 		ETHER_NEXT_MULTI(step, enm);
   1611 	}
   1612 
   1613 	ifp->if_flags &= ~IFF_ALLMULTI;
   1614 
   1615 chipit:
   1616 	/* Now load the hash table into the chip */
   1617 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1618 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1619 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1620 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1621 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1622 }
   1623 
   1624 /*
   1625  * Routines for accessing the transmit and receive buffers.
   1626  * The various CPU and adapter configurations supported by this
   1627  * driver require three different access methods for buffers
   1628  * and descriptors:
   1629  *	(1) contig (contiguous data; no padding),
   1630  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1631  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1632  */
   1633 
   1634 #if 0
   1635 /*
   1636  * contig: contiguous data with no padding.
   1637  *
   1638  * Buffers may have any alignment.
   1639  */
   1640 
   1641 void
   1642 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1643 {
   1644 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1645 
   1646 	/*
   1647 	 * Just call memcpy() to do the work.
   1648 	 */
   1649 	memcpy(buf, from, len);
   1650 }
   1651 
   1652 void
   1653 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1654 {
   1655 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1656 
   1657 	/*
   1658 	 * Just call memcpy() to do the work.
   1659 	 */
   1660 	memcpy(to, buf, len);
   1661 }
   1662 #endif
   1663