hme.c revision 1.8 1 /* $NetBSD: hme.c,v 1.8 2000/02/14 17:14:28 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * HME Ethernet module driver.
41 */
42
43 #define HMEDEBUG
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48 #include "rnd.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/syslog.h>
55 #include <sys/socket.h>
56 #include <sys/device.h>
57 #include <sys/malloc.h>
58 #include <sys/ioctl.h>
59 #include <sys/errno.h>
60 #if NRND > 0
61 #include <sys/rnd.h>
62 #endif
63
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <net/if_media.h>
68
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/if_inarp.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip.h>
75 #endif
76
77 #ifdef NS
78 #include <netns/ns.h>
79 #include <netns/ns_if.h>
80 #endif
81
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #include <net/bpfdesc.h>
85 #endif
86
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89
90 #include <machine/bus.h>
91
92 #include <dev/ic/hmereg.h>
93 #include <dev/ic/hmevar.h>
94
95 void hme_start __P((struct ifnet *));
96 void hme_stop __P((struct hme_softc *));
97 int hme_ioctl __P((struct ifnet *, u_long, caddr_t));
98 void hme_tick __P((void *));
99 void hme_watchdog __P((struct ifnet *));
100 void hme_shutdown __P((void *));
101 void hme_init __P((struct hme_softc *));
102 void hme_meminit __P((struct hme_softc *));
103 void hme_mifinit __P((struct hme_softc *));
104 void hme_reset __P((struct hme_softc *));
105 void hme_setladrf __P((struct hme_softc *));
106
107 /* MII methods & callbacks */
108 static int hme_mii_readreg __P((struct device *, int, int));
109 static void hme_mii_writereg __P((struct device *, int, int, int));
110 static void hme_mii_statchg __P((struct device *));
111
112 int hme_mediachange __P((struct ifnet *));
113 void hme_mediastatus __P((struct ifnet *, struct ifmediareq *));
114
115 struct mbuf *hme_get __P((struct hme_softc *, int, int));
116 int hme_put __P((struct hme_softc *, int, struct mbuf *));
117 void hme_read __P((struct hme_softc *, int, int));
118 int hme_eint __P((struct hme_softc *, u_int));
119 int hme_rint __P((struct hme_softc *));
120 int hme_tint __P((struct hme_softc *));
121
122 static int ether_cmp __P((u_char *, u_char *));
123
124 /* Default buffer copy routines */
125 void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int));
126 void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int));
127 void hme_zerobuf_contig __P((struct hme_softc *, int, int));
128
129
130 void
131 hme_config(sc)
132 struct hme_softc *sc;
133 {
134 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
135 struct mii_data *mii = &sc->sc_mii;
136 struct mii_softc *child;
137 bus_dma_segment_t seg;
138 bus_size_t size;
139 int rseg, error;
140
141 /*
142 * HME common initialization.
143 *
144 * hme_softc fields that must be initialized by the front-end:
145 *
146 * the bus tag:
147 * sc_bustag
148 *
149 * the dma bus tag:
150 * sc_dmatag
151 *
152 * the bus handles:
153 * sc_seb (Shared Ethernet Block registers)
154 * sc_erx (Receiver Unit registers)
155 * sc_etx (Transmitter Unit registers)
156 * sc_mac (MAC registers)
157 * sc_mif (Managment Interface registers)
158 *
159 * the maximum bus burst size:
160 * sc_burst
161 *
162 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
163 * rb_membase, rb_dmabase)
164 *
165 * the local Ethernet address:
166 * sc_enaddr
167 *
168 */
169
170 /* Make sure the chip is stopped. */
171 hme_stop(sc);
172
173
174 /*
175 * Allocate descriptors and buffers
176 * XXX - do all this differently.. and more configurably,
177 * eg. use things as `dma_load_mbuf()' on transmit,
178 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
179 * all the time) on the reveiver side.
180 *
181 * Note: receive buffers must be 64-byte aligned.
182 * Also, apparently, the buffers must extend to a DMA burst
183 * boundary beyond the maximum packet size.
184 */
185 #define _HME_NDESC 32
186 #define _HME_BUFSZ 1600
187
188 /* Note: the # of descriptors must be a multiple of 16 */
189 sc->sc_rb.rb_ntbuf = _HME_NDESC;
190 sc->sc_rb.rb_nrbuf = _HME_NDESC;
191
192 /*
193 * Allocate DMA capable memory
194 * Buffer descriptors must be aligned on a 2048 byte boundary;
195 * take this into account when calculating the size. Note that
196 * the maximum number of descriptors (256) occupies 2048 bytes,
197 * so we allocate that much regardless of _HME_NDESC.
198 */
199 size = 2048 + /* TX descriptors */
200 2048 + /* RX descriptors */
201 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
202 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */
203 if ((error = bus_dmamem_alloc(sc->sc_dmatag, size,
204 2048, 0,
205 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
206 printf("%s: DMA buffer alloc error %d\n",
207 sc->sc_dev.dv_xname, error);
208 }
209 sc->sc_rb.rb_dmabase = seg.ds_addr;
210
211 /* Map DMA memory in CPU adressable space */
212 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, size,
213 &sc->sc_rb.rb_membase,
214 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
215 printf("%s: DMA buffer map error %d\n",
216 sc->sc_dev.dv_xname, error);
217 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
218 return;
219 }
220
221 #if 0
222 /*
223 * Install default copy routines if not supplied.
224 */
225 if (sc->sc_copytobuf == NULL)
226 sc->sc_copytobuf = hme_copytobuf_contig;
227
228 if (sc->sc_copyfrombuf == NULL)
229 sc->sc_copyfrombuf = hme_copyfrombuf_contig;
230 #endif
231
232 printf(": address %s\n", ether_sprintf(sc->sc_enaddr));
233
234 /* Initialize ifnet structure. */
235 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
236 ifp->if_softc = sc;
237 ifp->if_start = hme_start;
238 ifp->if_ioctl = hme_ioctl;
239 ifp->if_watchdog = hme_watchdog;
240 ifp->if_flags =
241 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
242
243 /* Initialize ifmedia structures and MII info */
244 mii->mii_ifp = ifp;
245 mii->mii_readreg = hme_mii_readreg;
246 mii->mii_writereg = hme_mii_writereg;
247 mii->mii_statchg = hme_mii_statchg;
248
249 ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus);
250
251 hme_mifinit(sc);
252
253 mii_attach(&sc->sc_dev, mii, 0xffffffff,
254 MII_PHY_ANY, MII_OFFSET_ANY, 0);
255
256 child = LIST_FIRST(&mii->mii_phys);
257 if (child == NULL) {
258 /* No PHY attached */
259 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
260 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
261 } else {
262 /*
263 * Walk along the list of attached MII devices and
264 * establish an `MII instance' to `phy number'
265 * mapping. We'll use this mapping in media change
266 * requests to determine which phy to use to program
267 * the MIF configuration register.
268 */
269 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
270 /*
271 * Note: we support just two PHYs: the built-in
272 * internal device and an external on the MII
273 * connector.
274 */
275 if (child->mii_phy > 1 || child->mii_inst > 1) {
276 printf("%s: cannot accomodate MII device %s"
277 " at phy %d, instance %d\n",
278 sc->sc_dev.dv_xname,
279 child->mii_dev.dv_xname,
280 child->mii_phy, child->mii_inst);
281 continue;
282 }
283
284 sc->sc_phys[child->mii_inst] = child->mii_phy;
285 }
286
287 /*
288 * XXX - we can really do the following ONLY if the
289 * phy indeed has the auto negotiation capability!!
290 */
291 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
292 }
293
294 /* Attach the interface. */
295 if_attach(ifp);
296 ether_ifattach(ifp, sc->sc_enaddr);
297
298 #if NBPFILTER > 0
299 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
300 #endif
301
302 sc->sc_sh = shutdownhook_establish(hme_shutdown, sc);
303 if (sc->sc_sh == NULL)
304 panic("hme_config: can't establish shutdownhook");
305
306 #if 0
307 printf("%s: %d receive buffers, %d transmit buffers\n",
308 sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf);
309 sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF,
310 M_WAITOK);
311 sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF,
312 M_WAITOK);
313 #endif
314
315 #if NRND > 0
316 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
317 RND_TYPE_NET, 0);
318 #endif
319
320 /* Start the one second clock */
321 timeout(hme_tick, sc, hz);
322 }
323
324 void
325 hme_tick(arg)
326 void *arg;
327 {
328 struct hme_softc *sc = arg;
329 int s;
330
331 s = splnet();
332 mii_tick(&sc->sc_mii);
333 splx(s);
334
335 timeout(hme_tick, sc, hz);
336 }
337
338 void
339 hme_reset(sc)
340 struct hme_softc *sc;
341 {
342 int s;
343
344 s = splnet();
345 hme_init(sc);
346 splx(s);
347 }
348
349 void
350 hme_stop(sc)
351 struct hme_softc *sc;
352 {
353 bus_space_tag_t t = sc->sc_bustag;
354 bus_space_handle_t seb = sc->sc_seb;
355 int n;
356
357 untimeout(hme_tick, sc);
358 mii_down(&sc->sc_mii);
359
360 /* Reset transmitter and receiver */
361 bus_space_write_4(t, seb, HME_SEBI_RESET,
362 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
363
364 for (n = 0; n < 20; n++) {
365 u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
366 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
367 return;
368 DELAY(20);
369 }
370
371 printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname);
372 }
373
374 void
375 hme_meminit(sc)
376 struct hme_softc *sc;
377 {
378 bus_addr_t txbufdma, rxbufdma;
379 bus_addr_t dma;
380 caddr_t p;
381 unsigned int ntbuf, nrbuf, i;
382 struct hme_ring *hr = &sc->sc_rb;
383
384 p = hr->rb_membase;
385 dma = hr->rb_dmabase;
386
387 ntbuf = hr->rb_ntbuf;
388 nrbuf = hr->rb_nrbuf;
389
390 /*
391 * Allocate transmit descriptors
392 */
393 hr->rb_txd = p;
394 hr->rb_txddma = dma;
395 p += ntbuf * HME_XD_SIZE;
396 dma += ntbuf * HME_XD_SIZE;
397 /* We have reserved descriptor space until the next 2048 byte boundary.*/
398 dma = (bus_addr_t)roundup((u_long)dma, 2048);
399 p = (caddr_t)roundup((u_long)p, 2048);
400
401 /*
402 * Allocate receive descriptors
403 */
404 hr->rb_rxd = p;
405 hr->rb_rxddma = dma;
406 p += nrbuf * HME_XD_SIZE;
407 dma += nrbuf * HME_XD_SIZE;
408 /* Again move forward to the next 2048 byte boundary.*/
409 dma = (bus_addr_t)roundup((u_long)dma, 2048);
410 p = (caddr_t)roundup((u_long)p, 2048);
411
412
413 /*
414 * Allocate transmit buffers
415 */
416 hr->rb_txbuf = p;
417 txbufdma = dma;
418 p += ntbuf * _HME_BUFSZ;
419 dma += ntbuf * _HME_BUFSZ;
420
421 /*
422 * Allocate receive buffers
423 */
424 hr->rb_rxbuf = p;
425 rxbufdma = dma;
426 p += nrbuf * _HME_BUFSZ;
427 dma += nrbuf * _HME_BUFSZ;
428
429 /*
430 * Initialize transmit buffer descriptors
431 */
432 for (i = 0; i < ntbuf; i++) {
433 HME_XD_SETADDR(hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
434 HME_XD_SETFLAGS(hr->rb_txd, i, 0);
435 }
436
437 /*
438 * Initialize receive buffer descriptors
439 */
440 for (i = 0; i < nrbuf; i++) {
441 HME_XD_SETADDR(hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
442 HME_XD_SETFLAGS(hr->rb_rxd, i,
443 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
444 }
445
446 hr->rb_tdhead = hr->rb_tdtail = 0;
447 hr->rb_td_nbusy = 0;
448 hr->rb_rdtail = 0;
449 }
450
451 /*
452 * Initialization of interface; set up initialization block
453 * and transmit/receive descriptor rings.
454 */
455 void
456 hme_init(sc)
457 struct hme_softc *sc;
458 {
459 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
460 bus_space_tag_t t = sc->sc_bustag;
461 bus_space_handle_t seb = sc->sc_seb;
462 bus_space_handle_t etx = sc->sc_etx;
463 bus_space_handle_t erx = sc->sc_erx;
464 bus_space_handle_t mac = sc->sc_mac;
465 bus_space_handle_t mif = sc->sc_mif;
466 u_int8_t *ea;
467 u_int32_t v;
468
469 /*
470 * Initialization sequence. The numbered steps below correspond
471 * to the sequence outlined in section 6.3.5.1 in the Ethernet
472 * Channel Engine manual (part of the PCIO manual).
473 * See also the STP2002-STQ document from Sun Microsystems.
474 */
475
476 /* step 1 & 2. Reset the Ethernet Channel */
477 hme_stop(sc);
478
479 /* Re-initialize the MIF */
480 hme_mifinit(sc);
481
482 /* Call MI reset function if any */
483 if (sc->sc_hwreset)
484 (*sc->sc_hwreset)(sc);
485
486 #if 0
487 /* Mask all MIF interrupts, just in case */
488 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
489 #endif
490
491 /* step 3. Setup data structures in host memory */
492 hme_meminit(sc);
493
494 /* step 4. TX MAC registers & counters */
495 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
496 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
497 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
498 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
499
500 /* Load station MAC address */
501 ea = sc->sc_enaddr;
502 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
503 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
504 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
505
506 /*
507 * Init seed for backoff
508 * (source suggested by manual: low 10 bits of MAC address)
509 */
510 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
511 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
512
513
514 /* Note: Accepting power-on default for other MAC registers here.. */
515
516
517 /* step 5. RX MAC registers & counters */
518 hme_setladrf(sc);
519
520 /* step 6 & 7. Program Descriptor Ring Base Addresses */
521 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
522 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
523
524 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
525
526
527 /* step 8. Global Configuration & Interrupt Mask */
528 bus_space_write_4(t, seb, HME_SEBI_IMASK,
529 ~(
530 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
531 HME_SEB_STAT_HOSTTOTX |
532 HME_SEB_STAT_RXTOHOST |
533 HME_SEB_STAT_TXALL |
534 HME_SEB_STAT_TXPERR |
535 HME_SEB_STAT_RCNTEXP |
536 HME_SEB_STAT_ALL_ERRORS ));
537
538 switch (sc->sc_burst) {
539 default:
540 v = 0;
541 break;
542 case 16:
543 v = HME_SEB_CFG_BURST16;
544 break;
545 case 32:
546 v = HME_SEB_CFG_BURST32;
547 break;
548 case 64:
549 v = HME_SEB_CFG_BURST64;
550 break;
551 }
552 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
553
554 /* step 9. ETX Configuration: use mostly default values */
555
556 /* Enable DMA */
557 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
558 v |= HME_ETX_CFG_DMAENABLE;
559 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
560
561 /* Transmit Descriptor ring size: in increments of 16 */
562 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
563
564
565 /* step 10. ERX Configuration */
566 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
567
568 /* Encode Receive Descriptor ring size: four possible values */
569 switch (_HME_NDESC /*XXX*/) {
570 case 32:
571 v |= HME_ERX_CFG_RINGSIZE32;
572 break;
573 case 64:
574 v |= HME_ERX_CFG_RINGSIZE64;
575 break;
576 case 128:
577 v |= HME_ERX_CFG_RINGSIZE128;
578 break;
579 case 256:
580 v |= HME_ERX_CFG_RINGSIZE256;
581 break;
582 default:
583 printf("hme: invalid Receive Descriptor ring size\n");
584 break;
585 }
586
587 /* Enable DMA */
588 v |= HME_ERX_CFG_DMAENABLE;
589 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
590
591 /* step 11. XIF Configuration */
592 v = bus_space_read_4(t, mac, HME_MACI_XIF);
593 v |= HME_MAC_XIF_OE;
594 /* If an external transceiver is connected, enable its MII drivers */
595 if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0)
596 v |= HME_MAC_XIF_MIIENABLE;
597 bus_space_write_4(t, mac, HME_MACI_XIF, v);
598
599
600 /* step 12. RX_MAC Configuration Register */
601 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
602 v |= HME_MAC_RXCFG_ENABLE;
603 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
604
605 /* step 13. TX_MAC Configuration Register */
606 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
607 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
608 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
609
610 /* step 14. Issue Transmit Pending command */
611
612 /* Call MI initialization function if any */
613 if (sc->sc_hwinit)
614 (*sc->sc_hwinit)(sc);
615
616 ifp->if_flags |= IFF_RUNNING;
617 ifp->if_flags &= ~IFF_OACTIVE;
618 ifp->if_timer = 0;
619 hme_start(ifp);
620 }
621
622 /*
623 * Compare two Ether/802 addresses for equality, inlined and unrolled for
624 * speed.
625 */
626 static __inline__ int
627 ether_cmp(a, b)
628 u_char *a, *b;
629 {
630
631 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
632 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
633 return (0);
634 return (1);
635 }
636
637
638 /*
639 * Routine to copy from mbuf chain to transmit buffer in
640 * network buffer memory.
641 * Returns the amount of data copied.
642 */
643 int
644 hme_put(sc, ri, m)
645 struct hme_softc *sc;
646 int ri; /* Ring index */
647 struct mbuf *m;
648 {
649 struct mbuf *n;
650 int len, tlen = 0;
651 caddr_t bp;
652
653 bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
654 for (; m; m = n) {
655 len = m->m_len;
656 if (len == 0) {
657 MFREE(m, n);
658 continue;
659 }
660 bcopy(mtod(m, caddr_t), bp, len);
661 bp += len;
662 tlen += len;
663 MFREE(m, n);
664 }
665 return (tlen);
666 }
667
668 /*
669 * Pull data off an interface.
670 * Len is length of data, with local net header stripped.
671 * We copy the data into mbufs. When full cluster sized units are present
672 * we copy into clusters.
673 */
674 struct mbuf *
675 hme_get(sc, ri, totlen)
676 struct hme_softc *sc;
677 int ri, totlen;
678 {
679 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
680 struct mbuf *m, *m0, *newm;
681 caddr_t bp;
682 int len;
683
684 MGETHDR(m0, M_DONTWAIT, MT_DATA);
685 if (m0 == 0)
686 return (0);
687 m0->m_pkthdr.rcvif = ifp;
688 m0->m_pkthdr.len = totlen;
689 len = MHLEN;
690 m = m0;
691
692 bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
693
694 while (totlen > 0) {
695 if (totlen >= MINCLSIZE) {
696 MCLGET(m, M_DONTWAIT);
697 if ((m->m_flags & M_EXT) == 0)
698 goto bad;
699 len = MCLBYTES;
700 }
701
702 if (m == m0) {
703 caddr_t newdata = (caddr_t)
704 ALIGN(m->m_data + sizeof(struct ether_header)) -
705 sizeof(struct ether_header);
706 len -= newdata - m->m_data;
707 m->m_data = newdata;
708 }
709
710 m->m_len = len = min(totlen, len);
711 bcopy(bp, mtod(m, caddr_t), len);
712 bp += len;
713
714 totlen -= len;
715 if (totlen > 0) {
716 MGET(newm, M_DONTWAIT, MT_DATA);
717 if (newm == 0)
718 goto bad;
719 len = MLEN;
720 m = m->m_next = newm;
721 }
722 }
723
724 return (m0);
725
726 bad:
727 m_freem(m0);
728 return (0);
729 }
730
731 /*
732 * Pass a packet to the higher levels.
733 */
734 void
735 hme_read(sc, ix, len)
736 struct hme_softc *sc;
737 int ix, len;
738 {
739 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
740 struct mbuf *m;
741
742 if (len <= sizeof(struct ether_header) ||
743 len > ETHERMTU + sizeof(struct ether_header)) {
744 #ifdef HMEDEBUG
745 printf("%s: invalid packet size %d; dropping\n",
746 sc->sc_dev.dv_xname, len);
747 #endif
748 ifp->if_ierrors++;
749 return;
750 }
751
752 /* Pull packet off interface. */
753 m = hme_get(sc, ix, len);
754 if (m == 0) {
755 ifp->if_ierrors++;
756 return;
757 }
758
759 ifp->if_ipackets++;
760
761 #if NBPFILTER > 0
762 /*
763 * Check if there's a BPF listener on this interface.
764 * If so, hand off the raw packet to BPF.
765 */
766 if (ifp->if_bpf) {
767 struct ether_header *eh;
768
769 bpf_mtap(ifp->if_bpf, m);
770
771 /*
772 * Note that the interface cannot be in promiscuous mode if
773 * there are no BPF listeners. And if we are in promiscuous
774 * mode, we have to check if this packet is really ours.
775 */
776
777 /* We assume that the header fit entirely in one mbuf. */
778 eh = mtod(m, struct ether_header *);
779
780 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
781 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
782 ether_cmp(eh->ether_dhost, sc->sc_enaddr) == 0) {
783 m_freem(m);
784 return;
785 }
786 }
787 #endif
788
789 /* Pass the packet up. */
790 (*ifp->if_input)(ifp, m);
791 }
792
793 void
794 hme_start(ifp)
795 struct ifnet *ifp;
796 {
797 struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
798 caddr_t txd = sc->sc_rb.rb_txd;
799 struct mbuf *m;
800 unsigned int ri, len;
801 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
802
803 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
804 return;
805
806 ri = sc->sc_rb.rb_tdhead;
807
808 for (;;) {
809 IF_DEQUEUE(&ifp->if_snd, m);
810 if (m == 0)
811 break;
812
813 #if NBPFILTER > 0
814 /*
815 * If BPF is listening on this interface, let it see the
816 * packet before we commit it to the wire.
817 */
818 if (ifp->if_bpf)
819 bpf_mtap(ifp->if_bpf, m);
820 #endif
821
822 /*
823 * Copy the mbuf chain into the transmit buffer.
824 */
825 len = hme_put(sc, ri, m);
826
827 /*
828 * Initialize transmit registers and start transmission
829 */
830 HME_XD_SETFLAGS(txd, ri,
831 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
832 HME_XD_ENCODE_TSIZE(len));
833
834 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
835 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
836 HME_ETX_TP_DMAWAKEUP);
837
838 if (++ri == ntbuf)
839 ri = 0;
840
841 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
842 ifp->if_flags |= IFF_OACTIVE;
843 break;
844 }
845 }
846
847 sc->sc_rb.rb_tdhead = ri;
848 }
849
850 /*
851 * Transmit interrupt.
852 */
853 int
854 hme_tint(sc)
855 struct hme_softc *sc;
856 {
857 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
858 bus_space_tag_t t = sc->sc_bustag;
859 bus_space_handle_t mac = sc->sc_mac;
860 unsigned int ri, txflags;
861
862 /*
863 * Unload collision counters
864 */
865 ifp->if_collisions +=
866 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
867 bus_space_read_4(t, mac, HME_MACI_FCCNT) +
868 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
869 bus_space_read_4(t, mac, HME_MACI_LTCNT);
870
871 /*
872 * then clear the hardware counters.
873 */
874 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
875 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
876 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
877 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
878
879 /* Fetch current position in the transmit ring */
880 ri = sc->sc_rb.rb_tdtail;
881
882 for (;;) {
883 if (sc->sc_rb.rb_td_nbusy <= 0)
884 break;
885
886 txflags = HME_XD_GETFLAGS(sc->sc_rb.rb_txd, ri);
887
888 if (txflags & HME_XD_OWN)
889 break;
890
891 ifp->if_flags &= ~IFF_OACTIVE;
892 ifp->if_opackets++;
893
894 if (++ri == sc->sc_rb.rb_ntbuf)
895 ri = 0;
896
897 --sc->sc_rb.rb_td_nbusy;
898 }
899
900 /* Update ring */
901 sc->sc_rb.rb_tdtail = ri;
902
903 hme_start(ifp);
904
905 if (sc->sc_rb.rb_td_nbusy == 0)
906 ifp->if_timer = 0;
907
908 return (1);
909 }
910
911 /*
912 * Receive interrupt.
913 */
914 int
915 hme_rint(sc)
916 struct hme_softc *sc;
917 {
918 caddr_t xdr = sc->sc_rb.rb_rxd;
919 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
920 unsigned int ri, len;
921 u_int32_t flags;
922
923 ri = sc->sc_rb.rb_rdtail;
924
925 /*
926 * Process all buffers with valid data.
927 */
928 for (;;) {
929 flags = HME_XD_GETFLAGS(xdr, ri);
930 if (flags & HME_XD_OWN)
931 break;
932
933 if (flags & HME_XD_OFL) {
934 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
935 sc->sc_dev.dv_xname, ri, flags);
936 } else {
937 len = HME_XD_DECODE_RSIZE(flags);
938 hme_read(sc, ri, len);
939 }
940
941 /* This buffer can be used by the hardware again */
942 HME_XD_SETFLAGS(xdr, ri,
943 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
944
945 if (++ri == nrbuf)
946 ri = 0;
947 }
948
949 sc->sc_rb.rb_rdtail = ri;
950
951 return (1);
952 }
953
954 int
955 hme_eint(sc, status)
956 struct hme_softc *sc;
957 u_int status;
958 {
959 char bits[128];
960
961 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
962 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
963 return (1);
964 }
965
966 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
967 bitmask_snprintf(status, HME_SEB_STAT_BITS, bits,sizeof(bits)));
968 return (1);
969 }
970
971 int
972 hme_intr(v)
973 void *v;
974 {
975 struct hme_softc *sc = (struct hme_softc *)v;
976 bus_space_tag_t t = sc->sc_bustag;
977 bus_space_handle_t seb = sc->sc_seb;
978 u_int32_t status;
979 int r = 0;
980
981 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
982
983 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
984 r |= hme_eint(sc, status);
985
986 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
987 r |= hme_tint(sc);
988
989 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
990 r |= hme_rint(sc);
991
992 return (r);
993 }
994
995
996 void
997 hme_watchdog(ifp)
998 struct ifnet *ifp;
999 {
1000 struct hme_softc *sc = ifp->if_softc;
1001
1002 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1003 ++ifp->if_oerrors;
1004
1005 hme_reset(sc);
1006 }
1007
1008 /*
1009 * Initialize the MII Management Interface
1010 */
1011 void
1012 hme_mifinit(sc)
1013 struct hme_softc *sc;
1014 {
1015 bus_space_tag_t t = sc->sc_bustag;
1016 bus_space_handle_t mif = sc->sc_mif;
1017 u_int32_t v;
1018
1019 /* Configure the MIF in frame mode */
1020 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1021 v &= ~HME_MIF_CFG_BBMODE;
1022 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1023 }
1024
1025 /*
1026 * MII interface
1027 */
1028 static int
1029 hme_mii_readreg(self, phy, reg)
1030 struct device *self;
1031 int phy, reg;
1032 {
1033 struct hme_softc *sc = (void *)self;
1034 bus_space_tag_t t = sc->sc_bustag;
1035 bus_space_handle_t mif = sc->sc_mif;
1036 int n;
1037 u_int32_t v;
1038
1039 /* Select the desired PHY in the MIF configuration register */
1040 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1041 /* Clear PHY select bit */
1042 v &= ~HME_MIF_CFG_PHY;
1043 if (phy == HME_PHYAD_EXTERNAL)
1044 /* Set PHY select bit to get at external device */
1045 v |= HME_MIF_CFG_PHY;
1046 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1047
1048 /* Construct the frame command */
1049 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1050 HME_MIF_FO_TAMSB |
1051 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1052 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1053 (reg << HME_MIF_FO_REGAD_SHIFT);
1054
1055 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1056 for (n = 0; n < 100; n++) {
1057 DELAY(1);
1058 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1059 if (v & HME_MIF_FO_TALSB)
1060 return (v & HME_MIF_FO_DATA);
1061 }
1062
1063 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1064 return (0);
1065 }
1066
1067 static void
1068 hme_mii_writereg(self, phy, reg, val)
1069 struct device *self;
1070 int phy, reg, val;
1071 {
1072 struct hme_softc *sc = (void *)self;
1073 bus_space_tag_t t = sc->sc_bustag;
1074 bus_space_handle_t mif = sc->sc_mif;
1075 int n;
1076 u_int32_t v;
1077
1078 /* Select the desired PHY in the MIF configuration register */
1079 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1080 /* Clear PHY select bit */
1081 v &= ~HME_MIF_CFG_PHY;
1082 if (phy == HME_PHYAD_EXTERNAL)
1083 /* Set PHY select bit to get at external device */
1084 v |= HME_MIF_CFG_PHY;
1085 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1086
1087 /* Construct the frame command */
1088 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1089 HME_MIF_FO_TAMSB |
1090 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1091 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1092 (reg << HME_MIF_FO_REGAD_SHIFT) |
1093 (val & HME_MIF_FO_DATA);
1094
1095 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1096 for (n = 0; n < 100; n++) {
1097 DELAY(1);
1098 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1099 if (v & HME_MIF_FO_TALSB)
1100 return;
1101 }
1102
1103 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1104 }
1105
1106 static void
1107 hme_mii_statchg(dev)
1108 struct device *dev;
1109 {
1110 struct hme_softc *sc = (void *)dev;
1111 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1112 int phy = sc->sc_phys[instance];
1113 bus_space_tag_t t = sc->sc_bustag;
1114 bus_space_handle_t mif = sc->sc_mif;
1115 bus_space_handle_t mac = sc->sc_mac;
1116 u_int32_t v;
1117
1118 #ifdef HMEDEBUG
1119 if (sc->sc_debug)
1120 printf("hme_mii_statchg: status change: phy = %d\n", phy);
1121 #endif
1122
1123 /* Select the current PHY in the MIF configuration register */
1124 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1125 v &= ~HME_MIF_CFG_PHY;
1126 if (phy == HME_PHYAD_EXTERNAL)
1127 v |= HME_MIF_CFG_PHY;
1128 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1129
1130 /* Set the MAC Full Duplex bit appropriately */
1131 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1132 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1133 v |= HME_MAC_TXCFG_FULLDPLX;
1134 else
1135 v &= ~HME_MAC_TXCFG_FULLDPLX;
1136 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1137
1138 /* If an external transceiver is selected, enable its MII drivers */
1139 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1140 v &= ~HME_MAC_XIF_MIIENABLE;
1141 if (phy == HME_PHYAD_EXTERNAL)
1142 v |= HME_MAC_XIF_MIIENABLE;
1143 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1144 }
1145
1146 int
1147 hme_mediachange(ifp)
1148 struct ifnet *ifp;
1149 {
1150 struct hme_softc *sc = ifp->if_softc;
1151
1152 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1153 return (EINVAL);
1154
1155 return (mii_mediachg(&sc->sc_mii));
1156 }
1157
1158 void
1159 hme_mediastatus(ifp, ifmr)
1160 struct ifnet *ifp;
1161 struct ifmediareq *ifmr;
1162 {
1163 struct hme_softc *sc = ifp->if_softc;
1164
1165 if ((ifp->if_flags & IFF_UP) == 0)
1166 return;
1167
1168 mii_pollstat(&sc->sc_mii);
1169 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1170 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1171 }
1172
1173 /*
1174 * Process an ioctl request.
1175 */
1176 int
1177 hme_ioctl(ifp, cmd, data)
1178 struct ifnet *ifp;
1179 u_long cmd;
1180 caddr_t data;
1181 {
1182 struct hme_softc *sc = ifp->if_softc;
1183 struct ifaddr *ifa = (struct ifaddr *)data;
1184 struct ifreq *ifr = (struct ifreq *)data;
1185 int s, error = 0;
1186
1187 s = splnet();
1188
1189 switch (cmd) {
1190
1191 case SIOCSIFADDR:
1192 ifp->if_flags |= IFF_UP;
1193
1194 switch (ifa->ifa_addr->sa_family) {
1195 #ifdef INET
1196 case AF_INET:
1197 hme_init(sc);
1198 arp_ifinit(ifp, ifa);
1199 break;
1200 #endif
1201 #ifdef NS
1202 case AF_NS:
1203 {
1204 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1205
1206 if (ns_nullhost(*ina))
1207 ina->x_host =
1208 *(union ns_host *)LLADDR(ifp->if_sadl);
1209 else {
1210 bcopy(ina->x_host.c_host,
1211 LLADDR(ifp->if_sadl),
1212 sizeof(sc->sc_enaddr));
1213 }
1214 /* Set new address. */
1215 hme_init(sc);
1216 break;
1217 }
1218 #endif
1219 default:
1220 hme_init(sc);
1221 break;
1222 }
1223 break;
1224
1225 case SIOCSIFFLAGS:
1226 if ((ifp->if_flags & IFF_UP) == 0 &&
1227 (ifp->if_flags & IFF_RUNNING) != 0) {
1228 /*
1229 * If interface is marked down and it is running, then
1230 * stop it.
1231 */
1232 hme_stop(sc);
1233 ifp->if_flags &= ~IFF_RUNNING;
1234 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1235 (ifp->if_flags & IFF_RUNNING) == 0) {
1236 /*
1237 * If interface is marked up and it is stopped, then
1238 * start it.
1239 */
1240 hme_init(sc);
1241 } else if ((ifp->if_flags & IFF_UP) != 0) {
1242 /*
1243 * Reset the interface to pick up changes in any other
1244 * flags that affect hardware registers.
1245 */
1246 /*hme_stop(sc);*/
1247 hme_init(sc);
1248 }
1249 #ifdef HMEDEBUG
1250 sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1251 #endif
1252 break;
1253
1254 case SIOCADDMULTI:
1255 case SIOCDELMULTI:
1256 error = (cmd == SIOCADDMULTI) ?
1257 ether_addmulti(ifr, &sc->sc_ethercom) :
1258 ether_delmulti(ifr, &sc->sc_ethercom);
1259
1260 if (error == ENETRESET) {
1261 /*
1262 * Multicast list has changed; set the hardware filter
1263 * accordingly.
1264 */
1265 hme_setladrf(sc);
1266 error = 0;
1267 }
1268 break;
1269
1270 case SIOCGIFMEDIA:
1271 case SIOCSIFMEDIA:
1272 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1273 break;
1274
1275 default:
1276 error = EINVAL;
1277 break;
1278 }
1279
1280 splx(s);
1281 return (error);
1282 }
1283
1284 void
1285 hme_shutdown(arg)
1286 void *arg;
1287 {
1288
1289 hme_stop((struct hme_softc *)arg);
1290 }
1291
1292 /*
1293 * Set up the logical address filter.
1294 */
1295 void
1296 hme_setladrf(sc)
1297 struct hme_softc *sc;
1298 {
1299 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1300 struct ether_multi *enm;
1301 struct ether_multistep step;
1302 struct ethercom *ec = &sc->sc_ethercom;
1303 bus_space_tag_t t = sc->sc_bustag;
1304 bus_space_handle_t mac = sc->sc_mac;
1305 u_char *cp;
1306 u_int32_t crc;
1307 u_int32_t hash[4];
1308 int len;
1309
1310 /*
1311 * Set up multicast address filter by passing all multicast addresses
1312 * through a crc generator, and then using the high order 6 bits as an
1313 * index into the 64 bit logical address filter. The high order bit
1314 * selects the word, while the rest of the bits select the bit within
1315 * the word.
1316 */
1317
1318 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1319 u_int32_t v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1320 v |= HME_MAC_RXCFG_PMISC;
1321 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1322 goto allmulti;
1323 }
1324
1325 /* Clear hash table */
1326 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1327 ETHER_FIRST_MULTI(step, ec, enm);
1328 while (enm != NULL) {
1329 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1330 /*
1331 * We must listen to a range of multicast addresses.
1332 * For now, just accept all multicasts, rather than
1333 * trying to set only those filter bits needed to match
1334 * the range. (At this time, the only use of address
1335 * ranges is for IP multicast routing, for which the
1336 * range is big enough to require all bits set.)
1337 */
1338 goto allmulti;
1339 }
1340
1341 cp = enm->enm_addrlo;
1342 crc = 0xffffffff;
1343 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1344 int octet = *cp++;
1345 int i;
1346
1347 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1348 for (i = 0; i < 8; i++) {
1349 if ((crc & 1) ^ (octet & 1)) {
1350 crc >>= 1;
1351 crc ^= MC_POLY_LE;
1352 } else {
1353 crc >>= 1;
1354 }
1355 octet >>= 1;
1356 }
1357 }
1358 /* Just want the 6 most significant bits. */
1359 crc >>= 26;
1360
1361 /* Set the corresponding bit in the filter. */
1362 hash[crc >> 4] |= 1 << (crc & 0xf);
1363
1364 ETHER_NEXT_MULTI(step, enm);
1365 }
1366
1367 /* Now load the hash table onto the chip */
1368 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1369 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1370 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1371 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1372
1373 ifp->if_flags &= ~IFF_ALLMULTI;
1374 return;
1375
1376 allmulti:
1377 ifp->if_flags |= IFF_ALLMULTI;
1378 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, 0xffff);
1379 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, 0xffff);
1380 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, 0xffff);
1381 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, 0xffff);
1382 }
1383
1384 /*
1385 * Routines for accessing the transmit and receive buffers.
1386 * The various CPU and adapter configurations supported by this
1387 * driver require three different access methods for buffers
1388 * and descriptors:
1389 * (1) contig (contiguous data; no padding),
1390 * (2) gap2 (two bytes of data followed by two bytes of padding),
1391 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1392 */
1393
1394 #if 0
1395 /*
1396 * contig: contiguous data with no padding.
1397 *
1398 * Buffers may have any alignment.
1399 */
1400
1401 void
1402 hme_copytobuf_contig(sc, from, ri, len)
1403 struct hme_softc *sc;
1404 void *from;
1405 int ri, len;
1406 {
1407 volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1408
1409 /*
1410 * Just call bcopy() to do the work.
1411 */
1412 bcopy(from, buf, len);
1413 }
1414
1415 void
1416 hme_copyfrombuf_contig(sc, to, boff, len)
1417 struct hme_softc *sc;
1418 void *to;
1419 int boff, len;
1420 {
1421 volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1422
1423 /*
1424 * Just call bcopy() to do the work.
1425 */
1426 bcopy(buf, to, len);
1427 }
1428 #endif
1429