Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.83
      1 /*	$NetBSD: hme.c,v 1.83 2009/09/19 04:55:45 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.83 2009/09/19 04:55:45 tsutsui Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 #include "bpfilter.h"
     43 #include "rnd.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/kernel.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/syslog.h>
     50 #include <sys/socket.h>
     51 #include <sys/device.h>
     52 #include <sys/malloc.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/errno.h>
     55 #if NRND > 0
     56 #include <sys/rnd.h>
     57 #endif
     58 
     59 #include <net/if.h>
     60 #include <net/if_dl.h>
     61 #include <net/if_ether.h>
     62 #include <net/if_media.h>
     63 
     64 #ifdef INET
     65 #include <net/if_vlanvar.h>
     66 #include <netinet/in.h>
     67 #include <netinet/if_inarp.h>
     68 #include <netinet/in_systm.h>
     69 #include <netinet/in_var.h>
     70 #include <netinet/ip.h>
     71 #include <netinet/tcp.h>
     72 #include <netinet/udp.h>
     73 #endif
     74 
     75 
     76 #if NBPFILTER > 0
     77 #include <net/bpf.h>
     78 #include <net/bpfdesc.h>
     79 #endif
     80 
     81 #include <dev/mii/mii.h>
     82 #include <dev/mii/miivar.h>
     83 
     84 #include <sys/bus.h>
     85 
     86 #include <dev/ic/hmereg.h>
     87 #include <dev/ic/hmevar.h>
     88 
     89 static void	hme_start(struct ifnet *);
     90 static void	hme_stop(struct ifnet *, int);
     91 static int	hme_ioctl(struct ifnet *, u_long, void *);
     92 static void	hme_tick(void *);
     93 static void	hme_watchdog(struct ifnet *);
     94 static bool	hme_shutdown(device_t, int);
     95 static int	hme_init(struct hme_softc *);
     96 static void	hme_meminit(struct hme_softc *);
     97 static void	hme_mifinit(struct hme_softc *);
     98 static void	hme_reset(struct hme_softc *);
     99 static void	hme_chipreset(struct hme_softc *);
    100 static void	hme_setladrf(struct hme_softc *);
    101 
    102 /* MII methods & callbacks */
    103 static int	hme_mii_readreg(device_t, int, int);
    104 static void	hme_mii_writereg(device_t, int, int, int);
    105 static void	hme_mii_statchg(device_t);
    106 
    107 static int	hme_mediachange(struct ifnet *);
    108 
    109 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
    110 static int	hme_put(struct hme_softc *, int, struct mbuf *);
    111 static void	hme_read(struct hme_softc *, int, uint32_t);
    112 static int	hme_eint(struct hme_softc *, u_int);
    113 static int	hme_rint(struct hme_softc *);
    114 static int	hme_tint(struct hme_softc *);
    115 
    116 #if 0
    117 /* Default buffer copy routines */
    118 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    119 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    120 #endif
    121 
    122 void
    123 hme_config(struct hme_softc *sc)
    124 {
    125 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    126 	struct mii_data *mii = &sc->sc_mii;
    127 	struct mii_softc *child;
    128 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    129 	bus_dma_segment_t seg;
    130 	bus_size_t size;
    131 	int rseg, error;
    132 
    133 	/*
    134 	 * HME common initialization.
    135 	 *
    136 	 * hme_softc fields that must be initialized by the front-end:
    137 	 *
    138 	 * the bus tag:
    139 	 *	sc_bustag
    140 	 *
    141 	 * the DMA bus tag:
    142 	 *	sc_dmatag
    143 	 *
    144 	 * the bus handles:
    145 	 *	sc_seb		(Shared Ethernet Block registers)
    146 	 *	sc_erx		(Receiver Unit registers)
    147 	 *	sc_etx		(Transmitter Unit registers)
    148 	 *	sc_mac		(MAC registers)
    149 	 *	sc_mif		(Management Interface registers)
    150 	 *
    151 	 * the maximum bus burst size:
    152 	 *	sc_burst
    153 	 *
    154 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    155 	 *	rb_membase, rb_dmabase)
    156 	 *
    157 	 * the local Ethernet address:
    158 	 *	sc_enaddr
    159 	 *
    160 	 */
    161 
    162 	/* Make sure the chip is stopped. */
    163 	hme_chipreset(sc);
    164 
    165 	/*
    166 	 * Allocate descriptors and buffers
    167 	 * XXX - do all this differently.. and more configurably,
    168 	 * eg. use things as `dma_load_mbuf()' on transmit,
    169 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    170 	 *     all the time) on the receiver side.
    171 	 *
    172 	 * Note: receive buffers must be 64-byte aligned.
    173 	 * Also, apparently, the buffers must extend to a DMA burst
    174 	 * boundary beyond the maximum packet size.
    175 	 */
    176 #define _HME_NDESC	128
    177 #define _HME_BUFSZ	1600
    178 
    179 	/* Note: the # of descriptors must be a multiple of 16 */
    180 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    181 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    182 
    183 	/*
    184 	 * Allocate DMA capable memory
    185 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    186 	 * take this into account when calculating the size. Note that
    187 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    188 	 * so we allocate that much regardless of _HME_NDESC.
    189 	 */
    190 	size =	2048 +					/* TX descriptors */
    191 		2048 +					/* RX descriptors */
    192 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    193 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    194 
    195 	/* Allocate DMA buffer */
    196 	if ((error = bus_dmamem_alloc(dmatag, size,
    197 				      2048, 0,
    198 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    199 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
    200 			error);
    201 		return;
    202 	}
    203 
    204 	/* Map DMA memory in CPU addressable space */
    205 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    206 				    &sc->sc_rb.rb_membase,
    207 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    208 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
    209 			error);
    210 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    211 		bus_dmamem_free(dmatag, &seg, rseg);
    212 		return;
    213 	}
    214 
    215 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    216 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    217 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
    218 			error);
    219 		return;
    220 	}
    221 
    222 	/* Load the buffer */
    223 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    224 	    sc->sc_rb.rb_membase, size, NULL,
    225 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    226 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
    227 			error);
    228 		bus_dmamem_free(dmatag, &seg, rseg);
    229 		return;
    230 	}
    231 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    232 
    233 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    234 	    ether_sprintf(sc->sc_enaddr));
    235 
    236 	/* Initialize ifnet structure. */
    237 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    238 	ifp->if_softc = sc;
    239 	ifp->if_start = hme_start;
    240 	ifp->if_stop = hme_stop;
    241 	ifp->if_ioctl = hme_ioctl;
    242 	ifp->if_watchdog = hme_watchdog;
    243 	ifp->if_flags =
    244 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    245 	sc->sc_if_flags = ifp->if_flags;
    246 	ifp->if_capabilities |=
    247 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    248 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    249 	IFQ_SET_READY(&ifp->if_snd);
    250 
    251 	/* Initialize ifmedia structures and MII info */
    252 	mii->mii_ifp = ifp;
    253 	mii->mii_readreg = hme_mii_readreg;
    254 	mii->mii_writereg = hme_mii_writereg;
    255 	mii->mii_statchg = hme_mii_statchg;
    256 
    257 	sc->sc_ethercom.ec_mii = mii;
    258 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    259 
    260 	hme_mifinit(sc);
    261 
    262 	/*
    263 	 * Some HME's have an MII connector, as well as RJ45.  Try attaching
    264 	 * the RJ45 (internal) PHY first, so that the MII PHY is always
    265 	 * instance 1.
    266 	 */
    267 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    268 			HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
    269 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    270 			HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
    271 
    272 	child = LIST_FIRST(&mii->mii_phys);
    273 	if (child == NULL) {
    274 		/* No PHY attached */
    275 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    276 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    277 	} else {
    278 		/*
    279 		 * Walk along the list of attached MII devices and
    280 		 * establish an `MII instance' to `phy number'
    281 		 * mapping. We'll use this mapping in media change
    282 		 * requests to determine which phy to use to program
    283 		 * the MIF configuration register.
    284 		 */
    285 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    286 			/*
    287 			 * Note: we support just two PHYs: the built-in
    288 			 * internal device and an external on the MII
    289 			 * connector.
    290 			 */
    291 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    292 				aprint_error_dev(sc->sc_dev,
    293 				    "cannot accommodate MII device %s"
    294 				       " at phy %d, instance %d\n",
    295 				       device_xname(child->mii_dev),
    296 				       child->mii_phy, child->mii_inst);
    297 				continue;
    298 			}
    299 
    300 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    301 		}
    302 
    303 		/*
    304 		 * Set the default media to auto negotiation if the phy has
    305 		 * the auto negotiation capability.
    306 		 * XXX; What to do otherwise?
    307 		 */
    308 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
    309 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    310 /*
    311 		else
    312 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
    313 */
    314 	}
    315 
    316 	/* claim 802.1q capability */
    317 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    318 
    319 	/* Attach the interface. */
    320 	if_attach(ifp);
    321 	ether_ifattach(ifp, sc->sc_enaddr);
    322 
    323 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
    324 		pmf_class_network_register(sc->sc_dev, ifp);
    325 	else
    326 		aprint_error_dev(sc->sc_dev,
    327 		    "couldn't establish power handler\n");
    328 
    329 #if NRND > 0
    330 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    331 			  RND_TYPE_NET, 0);
    332 #endif
    333 
    334 	callout_init(&sc->sc_tick_ch, 0);
    335 }
    336 
    337 void
    338 hme_tick(void *arg)
    339 {
    340 	struct hme_softc *sc = arg;
    341 	int s;
    342 
    343 	s = splnet();
    344 	mii_tick(&sc->sc_mii);
    345 	splx(s);
    346 
    347 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    348 }
    349 
    350 void
    351 hme_reset(struct hme_softc *sc)
    352 {
    353 	int s;
    354 
    355 	s = splnet();
    356 	(void)hme_init(sc);
    357 	splx(s);
    358 }
    359 
    360 void
    361 hme_chipreset(struct hme_softc *sc)
    362 {
    363 	bus_space_tag_t t = sc->sc_bustag;
    364 	bus_space_handle_t seb = sc->sc_seb;
    365 	int n;
    366 
    367 	/* Mask all interrupts */
    368 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    369 
    370 	/* Reset transmitter and receiver */
    371 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    372 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    373 
    374 	for (n = 0; n < 20; n++) {
    375 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    376 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    377 			return;
    378 		DELAY(20);
    379 	}
    380 
    381 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
    382 }
    383 
    384 void
    385 hme_stop(struct ifnet *ifp, int disable)
    386 {
    387 	struct hme_softc *sc;
    388 
    389 	sc = ifp->if_softc;
    390 
    391 	ifp->if_timer = 0;
    392 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    393 
    394 	callout_stop(&sc->sc_tick_ch);
    395 	mii_down(&sc->sc_mii);
    396 
    397 	hme_chipreset(sc);
    398 }
    399 
    400 void
    401 hme_meminit(struct hme_softc *sc)
    402 {
    403 	bus_addr_t txbufdma, rxbufdma;
    404 	bus_addr_t dma;
    405 	char *p;
    406 	unsigned int ntbuf, nrbuf, i;
    407 	struct hme_ring *hr = &sc->sc_rb;
    408 
    409 	p = hr->rb_membase;
    410 	dma = hr->rb_dmabase;
    411 
    412 	ntbuf = hr->rb_ntbuf;
    413 	nrbuf = hr->rb_nrbuf;
    414 
    415 	/*
    416 	 * Allocate transmit descriptors
    417 	 */
    418 	hr->rb_txd = p;
    419 	hr->rb_txddma = dma;
    420 	p += ntbuf * HME_XD_SIZE;
    421 	dma += ntbuf * HME_XD_SIZE;
    422 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    423 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    424 	p = (void *)roundup((u_long)p, 2048);
    425 
    426 	/*
    427 	 * Allocate receive descriptors
    428 	 */
    429 	hr->rb_rxd = p;
    430 	hr->rb_rxddma = dma;
    431 	p += nrbuf * HME_XD_SIZE;
    432 	dma += nrbuf * HME_XD_SIZE;
    433 	/* Again move forward to the next 2048 byte boundary.*/
    434 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    435 	p = (void *)roundup((u_long)p, 2048);
    436 
    437 
    438 	/*
    439 	 * Allocate transmit buffers
    440 	 */
    441 	hr->rb_txbuf = p;
    442 	txbufdma = dma;
    443 	p += ntbuf * _HME_BUFSZ;
    444 	dma += ntbuf * _HME_BUFSZ;
    445 
    446 	/*
    447 	 * Allocate receive buffers
    448 	 */
    449 	hr->rb_rxbuf = p;
    450 	rxbufdma = dma;
    451 	p += nrbuf * _HME_BUFSZ;
    452 	dma += nrbuf * _HME_BUFSZ;
    453 
    454 	/*
    455 	 * Initialize transmit buffer descriptors
    456 	 */
    457 	for (i = 0; i < ntbuf; i++) {
    458 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    459 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    460 	}
    461 
    462 	/*
    463 	 * Initialize receive buffer descriptors
    464 	 */
    465 	for (i = 0; i < nrbuf; i++) {
    466 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    467 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    468 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    469 	}
    470 
    471 	hr->rb_tdhead = hr->rb_tdtail = 0;
    472 	hr->rb_td_nbusy = 0;
    473 	hr->rb_rdtail = 0;
    474 }
    475 
    476 /*
    477  * Initialization of interface; set up initialization block
    478  * and transmit/receive descriptor rings.
    479  */
    480 int
    481 hme_init(struct hme_softc *sc)
    482 {
    483 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    484 	bus_space_tag_t t = sc->sc_bustag;
    485 	bus_space_handle_t seb = sc->sc_seb;
    486 	bus_space_handle_t etx = sc->sc_etx;
    487 	bus_space_handle_t erx = sc->sc_erx;
    488 	bus_space_handle_t mac = sc->sc_mac;
    489 	uint8_t *ea;
    490 	uint32_t v;
    491 	int rc;
    492 
    493 	/*
    494 	 * Initialization sequence. The numbered steps below correspond
    495 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    496 	 * Channel Engine manual (part of the PCIO manual).
    497 	 * See also the STP2002-STQ document from Sun Microsystems.
    498 	 */
    499 
    500 	/* step 1 & 2. Reset the Ethernet Channel */
    501 	hme_stop(ifp, 0);
    502 
    503 	/* Re-initialize the MIF */
    504 	hme_mifinit(sc);
    505 
    506 	/* Call MI reset function if any */
    507 	if (sc->sc_hwreset)
    508 		(*sc->sc_hwreset)(sc);
    509 
    510 #if 0
    511 	/* Mask all MIF interrupts, just in case */
    512 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    513 #endif
    514 
    515 	/* step 3. Setup data structures in host memory */
    516 	hme_meminit(sc);
    517 
    518 	/* step 4. TX MAC registers & counters */
    519 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    520 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    521 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    522 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    523 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    524 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    525 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    526 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    527 
    528 	/* Load station MAC address */
    529 	ea = sc->sc_enaddr;
    530 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    531 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    532 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    533 
    534 	/*
    535 	 * Init seed for backoff
    536 	 * (source suggested by manual: low 10 bits of MAC address)
    537 	 */
    538 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    539 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    540 
    541 
    542 	/* Note: Accepting power-on default for other MAC registers here.. */
    543 
    544 
    545 	/* step 5. RX MAC registers & counters */
    546 	hme_setladrf(sc);
    547 
    548 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    549 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    550 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    551 
    552 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    553 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    554 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    555 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    556 
    557 	/* step 8. Global Configuration & Interrupt Mask */
    558 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    559 			~(
    560 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    561 			  HME_SEB_STAT_HOSTTOTX |
    562 			  HME_SEB_STAT_RXTOHOST |
    563 			  HME_SEB_STAT_TXALL |
    564 			  HME_SEB_STAT_TXPERR |
    565 			  HME_SEB_STAT_RCNTEXP |
    566 			  HME_SEB_STAT_MIFIRQ |
    567 			  HME_SEB_STAT_ALL_ERRORS ));
    568 
    569 	switch (sc->sc_burst) {
    570 	default:
    571 		v = 0;
    572 		break;
    573 	case 16:
    574 		v = HME_SEB_CFG_BURST16;
    575 		break;
    576 	case 32:
    577 		v = HME_SEB_CFG_BURST32;
    578 		break;
    579 	case 64:
    580 		v = HME_SEB_CFG_BURST64;
    581 		break;
    582 	}
    583 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    584 
    585 	/* step 9. ETX Configuration: use mostly default values */
    586 
    587 	/* Enable DMA */
    588 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    589 	v |= HME_ETX_CFG_DMAENABLE;
    590 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    591 
    592 	/* Transmit Descriptor ring size: in increments of 16 */
    593 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    594 
    595 
    596 	/* step 10. ERX Configuration */
    597 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    598 
    599 	/* Encode Receive Descriptor ring size: four possible values */
    600 	switch (_HME_NDESC /*XXX*/) {
    601 	case 32:
    602 		v |= HME_ERX_CFG_RINGSIZE32;
    603 		break;
    604 	case 64:
    605 		v |= HME_ERX_CFG_RINGSIZE64;
    606 		break;
    607 	case 128:
    608 		v |= HME_ERX_CFG_RINGSIZE128;
    609 		break;
    610 	case 256:
    611 		v |= HME_ERX_CFG_RINGSIZE256;
    612 		break;
    613 	default:
    614 		printf("hme: invalid Receive Descriptor ring size\n");
    615 		break;
    616 	}
    617 
    618 	/* Enable DMA */
    619 	v |= HME_ERX_CFG_DMAENABLE;
    620 
    621 	/* set h/w rx checksum start offset (# of half-words) */
    622 #ifdef INET
    623 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    624 		<< HME_ERX_CFG_CSUMSHIFT) &
    625 		HME_ERX_CFG_CSUMSTART;
    626 #endif
    627 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    628 
    629 	/* step 11. XIF Configuration */
    630 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    631 	v |= HME_MAC_XIF_OE;
    632 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    633 
    634 	/* step 12. RX_MAC Configuration Register */
    635 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    636 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    637 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    638 
    639 	/* step 13. TX_MAC Configuration Register */
    640 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    641 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    642 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    643 
    644 	/* step 14. Issue Transmit Pending command */
    645 
    646 	/* Call MI initialization function if any */
    647 	if (sc->sc_hwinit)
    648 		(*sc->sc_hwinit)(sc);
    649 
    650 	/* Set the current media. */
    651 	if ((rc = hme_mediachange(ifp)) != 0)
    652 		return rc;
    653 
    654 	/* Start the one second timer. */
    655 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    656 
    657 	ifp->if_flags |= IFF_RUNNING;
    658 	ifp->if_flags &= ~IFF_OACTIVE;
    659 	sc->sc_if_flags = ifp->if_flags;
    660 	ifp->if_timer = 0;
    661 	hme_start(ifp);
    662 	return 0;
    663 }
    664 
    665 /*
    666  * Routine to copy from mbuf chain to transmit buffer in
    667  * network buffer memory.
    668  * Returns the amount of data copied.
    669  */
    670 int
    671 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    672 	/* ri:			 Ring index */
    673 {
    674 	struct mbuf *n;
    675 	int len, tlen = 0;
    676 	char *bp;
    677 
    678 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    679 	for (; m; m = n) {
    680 		len = m->m_len;
    681 		if (len == 0) {
    682 			MFREE(m, n);
    683 			continue;
    684 		}
    685 		memcpy(bp, mtod(m, void *), len);
    686 		bp += len;
    687 		tlen += len;
    688 		MFREE(m, n);
    689 	}
    690 	return (tlen);
    691 }
    692 
    693 /*
    694  * Pull data off an interface.
    695  * Len is length of data, with local net header stripped.
    696  * We copy the data into mbufs.  When full cluster sized units are present
    697  * we copy into clusters.
    698  */
    699 struct mbuf *
    700 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    701 {
    702 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    703 	struct mbuf *m, *m0, *newm;
    704 	char *bp;
    705 	int len, totlen;
    706 #ifdef INET
    707 	int csum_flags;
    708 #endif
    709 
    710 	totlen = HME_XD_DECODE_RSIZE(flags);
    711 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    712 	if (m0 == 0)
    713 		return (0);
    714 	m0->m_pkthdr.rcvif = ifp;
    715 	m0->m_pkthdr.len = totlen;
    716 	len = MHLEN;
    717 	m = m0;
    718 
    719 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    720 
    721 	while (totlen > 0) {
    722 		if (totlen >= MINCLSIZE) {
    723 			MCLGET(m, M_DONTWAIT);
    724 			if ((m->m_flags & M_EXT) == 0)
    725 				goto bad;
    726 			len = MCLBYTES;
    727 		}
    728 
    729 		if (m == m0) {
    730 			char *newdata = (char *)
    731 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    732 			    sizeof(struct ether_header);
    733 			len -= newdata - m->m_data;
    734 			m->m_data = newdata;
    735 		}
    736 
    737 		m->m_len = len = min(totlen, len);
    738 		memcpy(mtod(m, void *), bp, len);
    739 		bp += len;
    740 
    741 		totlen -= len;
    742 		if (totlen > 0) {
    743 			MGET(newm, M_DONTWAIT, MT_DATA);
    744 			if (newm == 0)
    745 				goto bad;
    746 			len = MLEN;
    747 			m = m->m_next = newm;
    748 		}
    749 	}
    750 
    751 #ifdef INET
    752 	/* hardware checksum */
    753 	csum_flags = 0;
    754 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    755 		struct ether_header *eh;
    756 		struct ether_vlan_header *evh;
    757 		struct ip *ip;
    758 		struct udphdr *uh;
    759 		uint16_t *opts;
    760 		int32_t hlen, pktlen;
    761 		uint32_t csum_data;
    762 
    763 		eh = mtod(m0, struct ether_header *);
    764 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    765 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    766 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    767 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    768 			evh = (struct ether_vlan_header *)eh;
    769 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
    770 				goto swcsum;
    771 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    772 			    ETHER_VLAN_ENCAP_LEN);
    773 			pktlen = m0->m_pkthdr.len -
    774 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    775 		} else
    776 			goto swcsum;
    777 
    778 		/* IPv4 only */
    779 		if (ip->ip_v != IPVERSION)
    780 			goto swcsum;
    781 
    782 		hlen = ip->ip_hl << 2;
    783 		if (hlen < sizeof(struct ip))
    784 			goto swcsum;
    785 
    786 		/*
    787 		 * bail if too short, has random trailing garbage, truncated,
    788 		 * fragment, or has ethernet pad.
    789 		 */
    790 		if (ntohs(ip->ip_len) < hlen ||
    791 		    ntohs(ip->ip_len) != pktlen ||
    792 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    793 			goto swcsum;
    794 
    795 		switch (ip->ip_p) {
    796 		case IPPROTO_TCP:
    797 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    798 				goto swcsum;
    799 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    800 				goto swcsum;
    801 			csum_flags =
    802 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    803 			break;
    804 		case IPPROTO_UDP:
    805 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    806 				goto swcsum;
    807 			if (pktlen < (hlen + sizeof(struct udphdr)))
    808 				goto swcsum;
    809 			uh = (struct udphdr *)((char *)ip + hlen);
    810 			/* no checksum */
    811 			if (uh->uh_sum == 0)
    812 				goto swcsum;
    813 			csum_flags =
    814 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    815 			break;
    816 		default:
    817 			goto swcsum;
    818 		}
    819 
    820 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    821 		csum_data = ~flags & HME_XD_RXCKSUM;
    822 
    823 		/*
    824 		 * If data offset is different from RX cksum start offset,
    825 		 * we have to deduct them.
    826 		 */
    827 		hlen = ((char *)ip + hlen) -
    828 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    829 		if (hlen > 1) {
    830 			uint32_t optsum;
    831 
    832 			optsum = 0;
    833 			opts = (uint16_t *)((char *)eh +
    834 			    ETHER_HDR_LEN + sizeof(struct ip));
    835 
    836 			while (hlen > 1) {
    837 				optsum += ntohs(*opts++);
    838 				hlen -= 2;
    839 			}
    840 			while (optsum >> 16)
    841 				optsum = (optsum >> 16) + (optsum & 0xffff);
    842 
    843 			/* Deduct the ip opts sum from the hwsum. */
    844 			csum_data += (uint16_t)~optsum;
    845 
    846 			while (csum_data >> 16)
    847 				csum_data =
    848 				    (csum_data >> 16) + (csum_data & 0xffff);
    849 		}
    850 		m0->m_pkthdr.csum_data = csum_data;
    851 	}
    852 swcsum:
    853 	m0->m_pkthdr.csum_flags = csum_flags;
    854 #endif
    855 
    856 	return (m0);
    857 
    858 bad:
    859 	m_freem(m0);
    860 	return (0);
    861 }
    862 
    863 /*
    864  * Pass a packet to the higher levels.
    865  */
    866 void
    867 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    868 {
    869 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    870 	struct mbuf *m;
    871 	int len;
    872 
    873 	len = HME_XD_DECODE_RSIZE(flags);
    874 	if (len <= sizeof(struct ether_header) ||
    875 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    876 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    877 	    ETHERMTU + sizeof(struct ether_header))) {
    878 #ifdef HMEDEBUG
    879 		printf("%s: invalid packet size %d; dropping\n",
    880 		    device_xname(sc->sc_dev), len);
    881 #endif
    882 		ifp->if_ierrors++;
    883 		return;
    884 	}
    885 
    886 	/* Pull packet off interface. */
    887 	m = hme_get(sc, ix, flags);
    888 	if (m == 0) {
    889 		ifp->if_ierrors++;
    890 		return;
    891 	}
    892 
    893 	ifp->if_ipackets++;
    894 
    895 #if NBPFILTER > 0
    896 	/*
    897 	 * Check if there's a BPF listener on this interface.
    898 	 * If so, hand off the raw packet to BPF.
    899 	 */
    900 	if (ifp->if_bpf)
    901 		bpf_mtap(ifp->if_bpf, m);
    902 #endif
    903 
    904 	/* Pass the packet up. */
    905 	(*ifp->if_input)(ifp, m);
    906 }
    907 
    908 void
    909 hme_start(struct ifnet *ifp)
    910 {
    911 	struct hme_softc *sc = ifp->if_softc;
    912 	void *txd = sc->sc_rb.rb_txd;
    913 	struct mbuf *m;
    914 	unsigned int txflags;
    915 	unsigned int ri, len, obusy;
    916 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    917 
    918 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    919 		return;
    920 
    921 	ri = sc->sc_rb.rb_tdhead;
    922 	obusy = sc->sc_rb.rb_td_nbusy;
    923 
    924 	for (;;) {
    925 		IFQ_DEQUEUE(&ifp->if_snd, m);
    926 		if (m == 0)
    927 			break;
    928 
    929 #if NBPFILTER > 0
    930 		/*
    931 		 * If BPF is listening on this interface, let it see the
    932 		 * packet before we commit it to the wire.
    933 		 */
    934 		if (ifp->if_bpf)
    935 			bpf_mtap(ifp->if_bpf, m);
    936 #endif
    937 
    938 #ifdef INET
    939 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    940 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    941 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    942 			struct ether_header *eh;
    943 			uint16_t offset, start;
    944 
    945 			eh = mtod(m, struct ether_header *);
    946 			switch (ntohs(eh->ether_type)) {
    947 			case ETHERTYPE_IP:
    948 				start = ETHER_HDR_LEN;
    949 				break;
    950 			case ETHERTYPE_VLAN:
    951 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    952 				break;
    953 			default:
    954 				/* unsupported, drop it */
    955 				m_free(m);
    956 				continue;
    957 			}
    958 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    959 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    960 			    + start;
    961 			txflags = HME_XD_TXCKSUM |
    962 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    963 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    964 		} else
    965 #endif
    966 			txflags = 0;
    967 
    968 		/*
    969 		 * Copy the mbuf chain into the transmit buffer.
    970 		 */
    971 		len = hme_put(sc, ri, m);
    972 
    973 		/*
    974 		 * Initialize transmit registers and start transmission
    975 		 */
    976 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    977 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    978 			HME_XD_ENCODE_TSIZE(len) | txflags);
    979 
    980 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    981 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    982 				  HME_ETX_TP_DMAWAKEUP);
    983 
    984 		if (++ri == ntbuf)
    985 			ri = 0;
    986 
    987 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    988 			ifp->if_flags |= IFF_OACTIVE;
    989 			break;
    990 		}
    991 	}
    992 
    993 	if (obusy != sc->sc_rb.rb_td_nbusy) {
    994 		sc->sc_rb.rb_tdhead = ri;
    995 		ifp->if_timer = 5;
    996 	}
    997 }
    998 
    999 /*
   1000  * Transmit interrupt.
   1001  */
   1002 int
   1003 hme_tint(struct hme_softc *sc)
   1004 {
   1005 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1006 	bus_space_tag_t t = sc->sc_bustag;
   1007 	bus_space_handle_t mac = sc->sc_mac;
   1008 	unsigned int ri, txflags;
   1009 
   1010 	/*
   1011 	 * Unload collision counters
   1012 	 */
   1013 	ifp->if_collisions +=
   1014 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
   1015 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
   1016 	ifp->if_oerrors +=
   1017 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
   1018 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
   1019 
   1020 	/*
   1021 	 * then clear the hardware counters.
   1022 	 */
   1023 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1024 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1025 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1026 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1027 
   1028 	/* Fetch current position in the transmit ring */
   1029 	ri = sc->sc_rb.rb_tdtail;
   1030 
   1031 	for (;;) {
   1032 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1033 			break;
   1034 
   1035 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1036 
   1037 		if (txflags & HME_XD_OWN)
   1038 			break;
   1039 
   1040 		ifp->if_flags &= ~IFF_OACTIVE;
   1041 		ifp->if_opackets++;
   1042 
   1043 		if (++ri == sc->sc_rb.rb_ntbuf)
   1044 			ri = 0;
   1045 
   1046 		--sc->sc_rb.rb_td_nbusy;
   1047 	}
   1048 
   1049 	/* Update ring */
   1050 	sc->sc_rb.rb_tdtail = ri;
   1051 
   1052 	hme_start(ifp);
   1053 
   1054 	if (sc->sc_rb.rb_td_nbusy == 0)
   1055 		ifp->if_timer = 0;
   1056 
   1057 	return (1);
   1058 }
   1059 
   1060 /*
   1061  * Receive interrupt.
   1062  */
   1063 int
   1064 hme_rint(struct hme_softc *sc)
   1065 {
   1066 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1067 	bus_space_tag_t t = sc->sc_bustag;
   1068 	bus_space_handle_t mac = sc->sc_mac;
   1069 	void *xdr = sc->sc_rb.rb_rxd;
   1070 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1071 	unsigned int ri;
   1072 	uint32_t flags;
   1073 
   1074 	ri = sc->sc_rb.rb_rdtail;
   1075 
   1076 	/*
   1077 	 * Process all buffers with valid data.
   1078 	 */
   1079 	for (;;) {
   1080 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1081 		if (flags & HME_XD_OWN)
   1082 			break;
   1083 
   1084 		if (flags & HME_XD_OFL) {
   1085 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1086 					device_xname(sc->sc_dev), ri, flags);
   1087 		} else
   1088 			hme_read(sc, ri, flags);
   1089 
   1090 		/* This buffer can be used by the hardware again */
   1091 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1092 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1093 
   1094 		if (++ri == nrbuf)
   1095 			ri = 0;
   1096 	}
   1097 
   1098 	sc->sc_rb.rb_rdtail = ri;
   1099 
   1100 	/* Read error counters ... */
   1101 	ifp->if_ierrors +=
   1102 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
   1103 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
   1104 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
   1105 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
   1106 
   1107 	/* ... then clear the hardware counters. */
   1108 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
   1109 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
   1110 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
   1111 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
   1112 	return (1);
   1113 }
   1114 
   1115 int
   1116 hme_eint(struct hme_softc *sc, u_int status)
   1117 {
   1118 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1119 	char bits[128];
   1120 
   1121 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1122 		bus_space_tag_t t = sc->sc_bustag;
   1123 		bus_space_handle_t mif = sc->sc_mif;
   1124 		uint32_t cf, st, sm;
   1125 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1126 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1127 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1128 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1129 			device_xname(sc->sc_dev), cf, st, sm);
   1130 		return (1);
   1131 	}
   1132 
   1133 	/* Receive error counters rolled over */
   1134 	if (status & HME_SEB_STAT_ACNTEXP)
   1135 		ifp->if_ierrors += 0xff;
   1136 	if (status & HME_SEB_STAT_CCNTEXP)
   1137 		ifp->if_ierrors += 0xff;
   1138 	if (status & HME_SEB_STAT_LCNTEXP)
   1139 		ifp->if_ierrors += 0xff;
   1140 	if (status & HME_SEB_STAT_CVCNTEXP)
   1141 		ifp->if_ierrors += 0xff;
   1142 
   1143 	/* RXTERR locks up the interface, so do a reset */
   1144 	if (status & HME_SEB_STAT_RXTERR)
   1145 		hme_reset(sc);
   1146 
   1147 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1148 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   1149 
   1150 	return (1);
   1151 }
   1152 
   1153 int
   1154 hme_intr(void *v)
   1155 {
   1156 	struct hme_softc *sc = v;
   1157 	bus_space_tag_t t = sc->sc_bustag;
   1158 	bus_space_handle_t seb = sc->sc_seb;
   1159 	uint32_t status;
   1160 	int r = 0;
   1161 
   1162 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1163 
   1164 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1165 		r |= hme_eint(sc, status);
   1166 
   1167 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1168 		r |= hme_tint(sc);
   1169 
   1170 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1171 		r |= hme_rint(sc);
   1172 
   1173 #if NRND > 0
   1174 	rnd_add_uint32(&sc->rnd_source, status);
   1175 #endif
   1176 
   1177 	return (r);
   1178 }
   1179 
   1180 
   1181 void
   1182 hme_watchdog(struct ifnet *ifp)
   1183 {
   1184 	struct hme_softc *sc = ifp->if_softc;
   1185 
   1186 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1187 	++ifp->if_oerrors;
   1188 
   1189 	hme_reset(sc);
   1190 }
   1191 
   1192 /*
   1193  * Initialize the MII Management Interface
   1194  */
   1195 void
   1196 hme_mifinit(struct hme_softc *sc)
   1197 {
   1198 	bus_space_tag_t t = sc->sc_bustag;
   1199 	bus_space_handle_t mif = sc->sc_mif;
   1200 	bus_space_handle_t mac = sc->sc_mac;
   1201 	int instance, phy;
   1202 	uint32_t v;
   1203 
   1204 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1205 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1206 		phy = sc->sc_phys[instance];
   1207 	} else
   1208 		/* No media set yet, pick phy arbitrarily.. */
   1209 		phy = HME_PHYAD_EXTERNAL;
   1210 
   1211 	/* Configure the MIF in frame mode, no poll, current phy select */
   1212 	v = 0;
   1213 	if (phy == HME_PHYAD_EXTERNAL)
   1214 		v |= HME_MIF_CFG_PHY;
   1215 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1216 
   1217 	/* If an external transceiver is selected, enable its MII drivers */
   1218 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1219 	v &= ~HME_MAC_XIF_MIIENABLE;
   1220 	if (phy == HME_PHYAD_EXTERNAL)
   1221 		v |= HME_MAC_XIF_MIIENABLE;
   1222 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1223 }
   1224 
   1225 /*
   1226  * MII interface
   1227  */
   1228 static int
   1229 hme_mii_readreg(device_t self, int phy, int reg)
   1230 {
   1231 	struct hme_softc *sc = device_private(self);
   1232 	bus_space_tag_t t = sc->sc_bustag;
   1233 	bus_space_handle_t mif = sc->sc_mif;
   1234 	bus_space_handle_t mac = sc->sc_mac;
   1235 	uint32_t v, xif_cfg, mifi_cfg;
   1236 	int n;
   1237 
   1238 	/* We can at most have two PHYs */
   1239 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1240 		return (0);
   1241 
   1242 	/* Select the desired PHY in the MIF configuration register */
   1243 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1244 	v &= ~HME_MIF_CFG_PHY;
   1245 	if (phy == HME_PHYAD_EXTERNAL)
   1246 		v |= HME_MIF_CFG_PHY;
   1247 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1248 
   1249 	/* Enable MII drivers on external transceiver */
   1250 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1251 	if (phy == HME_PHYAD_EXTERNAL)
   1252 		v |= HME_MAC_XIF_MIIENABLE;
   1253 	else
   1254 		v &= ~HME_MAC_XIF_MIIENABLE;
   1255 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1256 
   1257 #if 0
   1258 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1259 	/*
   1260 	 * Check whether a transceiver is connected by testing
   1261 	 * the MIF configuration register's MDI_X bits. Note that
   1262 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1263 	 */
   1264 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1265 	delay(100);
   1266 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1267 	if ((v & mif_mdi_bit) == 0)
   1268 		return (0);
   1269 #endif
   1270 
   1271 	/* Construct the frame command */
   1272 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1273 	    HME_MIF_FO_TAMSB |
   1274 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1275 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1276 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1277 
   1278 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1279 	for (n = 0; n < 100; n++) {
   1280 		DELAY(1);
   1281 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1282 		if (v & HME_MIF_FO_TALSB) {
   1283 			v &= HME_MIF_FO_DATA;
   1284 			goto out;
   1285 		}
   1286 	}
   1287 
   1288 	v = 0;
   1289 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   1290 
   1291 out:
   1292 	/* Restore MIFI_CFG register */
   1293 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1294 	/* Restore XIF register */
   1295 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1296 	return (v);
   1297 }
   1298 
   1299 static void
   1300 hme_mii_writereg(device_t self, int phy, int reg, int val)
   1301 {
   1302 	struct hme_softc *sc = device_private(self);
   1303 	bus_space_tag_t t = sc->sc_bustag;
   1304 	bus_space_handle_t mif = sc->sc_mif;
   1305 	bus_space_handle_t mac = sc->sc_mac;
   1306 	uint32_t v, xif_cfg, mifi_cfg;
   1307 	int n;
   1308 
   1309 	/* We can at most have two PHYs */
   1310 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1311 		return;
   1312 
   1313 	/* Select the desired PHY in the MIF configuration register */
   1314 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1315 	v &= ~HME_MIF_CFG_PHY;
   1316 	if (phy == HME_PHYAD_EXTERNAL)
   1317 		v |= HME_MIF_CFG_PHY;
   1318 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1319 
   1320 	/* Enable MII drivers on external transceiver */
   1321 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1322 	if (phy == HME_PHYAD_EXTERNAL)
   1323 		v |= HME_MAC_XIF_MIIENABLE;
   1324 	else
   1325 		v &= ~HME_MAC_XIF_MIIENABLE;
   1326 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1327 
   1328 #if 0
   1329 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1330 	/*
   1331 	 * Check whether a transceiver is connected by testing
   1332 	 * the MIF configuration register's MDI_X bits. Note that
   1333 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1334 	 */
   1335 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1336 	delay(100);
   1337 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1338 	if ((v & mif_mdi_bit) == 0)
   1339 		return;
   1340 #endif
   1341 
   1342 	/* Construct the frame command */
   1343 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1344 	    HME_MIF_FO_TAMSB				|
   1345 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1346 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1347 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1348 	    (val & HME_MIF_FO_DATA);
   1349 
   1350 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1351 	for (n = 0; n < 100; n++) {
   1352 		DELAY(1);
   1353 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1354 		if (v & HME_MIF_FO_TALSB)
   1355 			goto out;
   1356 	}
   1357 
   1358 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   1359 out:
   1360 	/* Restore MIFI_CFG register */
   1361 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1362 	/* Restore XIF register */
   1363 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1364 }
   1365 
   1366 static void
   1367 hme_mii_statchg(device_t dev)
   1368 {
   1369 	struct hme_softc *sc = device_private(dev);
   1370 	bus_space_tag_t t = sc->sc_bustag;
   1371 	bus_space_handle_t mac = sc->sc_mac;
   1372 	uint32_t v;
   1373 
   1374 #ifdef HMEDEBUG
   1375 	if (sc->sc_debug)
   1376 		printf("hme_mii_statchg: status change\n");
   1377 #endif
   1378 
   1379 	/* Set the MAC Full Duplex bit appropriately */
   1380 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1381 	   but not otherwise. */
   1382 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1383 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1384 		v |= HME_MAC_TXCFG_FULLDPLX;
   1385 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1386 	} else {
   1387 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1388 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1389 	}
   1390 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1391 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1392 }
   1393 
   1394 int
   1395 hme_mediachange(struct ifnet *ifp)
   1396 {
   1397 	struct hme_softc *sc = ifp->if_softc;
   1398 	bus_space_tag_t t = sc->sc_bustag;
   1399 	bus_space_handle_t mif = sc->sc_mif;
   1400 	bus_space_handle_t mac = sc->sc_mac;
   1401 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1402 	int phy = sc->sc_phys[instance];
   1403 	int rc;
   1404 	uint32_t v;
   1405 
   1406 #ifdef HMEDEBUG
   1407 	if (sc->sc_debug)
   1408 		printf("hme_mediachange: phy = %d\n", phy);
   1409 #endif
   1410 
   1411 	/* Select the current PHY in the MIF configuration register */
   1412 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1413 	v &= ~HME_MIF_CFG_PHY;
   1414 	if (phy == HME_PHYAD_EXTERNAL)
   1415 		v |= HME_MIF_CFG_PHY;
   1416 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1417 
   1418 	/* If an external transceiver is selected, enable its MII drivers */
   1419 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1420 	v &= ~HME_MAC_XIF_MIIENABLE;
   1421 	if (phy == HME_PHYAD_EXTERNAL)
   1422 		v |= HME_MAC_XIF_MIIENABLE;
   1423 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1424 
   1425 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1426 		return 0;
   1427 	return rc;
   1428 }
   1429 
   1430 /*
   1431  * Process an ioctl request.
   1432  */
   1433 int
   1434 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1435 {
   1436 	struct hme_softc *sc = ifp->if_softc;
   1437 	struct ifaddr *ifa = (struct ifaddr *)data;
   1438 	int s, error = 0;
   1439 
   1440 	s = splnet();
   1441 
   1442 	switch (cmd) {
   1443 
   1444 	case SIOCINITIFADDR:
   1445 		switch (ifa->ifa_addr->sa_family) {
   1446 #ifdef INET
   1447 		case AF_INET:
   1448 			if (ifp->if_flags & IFF_UP)
   1449 				hme_setladrf(sc);
   1450 			else {
   1451 				ifp->if_flags |= IFF_UP;
   1452 				error = hme_init(sc);
   1453 			}
   1454 			arp_ifinit(ifp, ifa);
   1455 			break;
   1456 #endif
   1457 		default:
   1458 			ifp->if_flags |= IFF_UP;
   1459 			error = hme_init(sc);
   1460 			break;
   1461 		}
   1462 		break;
   1463 
   1464 	case SIOCSIFFLAGS:
   1465 #ifdef HMEDEBUG
   1466 		{
   1467 			struct ifreq *ifr = data;
   1468 			sc->sc_debug =
   1469 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1470 		}
   1471 #endif
   1472 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1473 			break;
   1474 
   1475 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1476 		case IFF_RUNNING:
   1477 			/*
   1478 			 * If interface is marked down and it is running, then
   1479 			 * stop it.
   1480 			 */
   1481 			hme_stop(ifp, 0);
   1482 			ifp->if_flags &= ~IFF_RUNNING;
   1483 			break;
   1484 		case IFF_UP:
   1485 			/*
   1486 			 * If interface is marked up and it is stopped, then
   1487 			 * start it.
   1488 			 */
   1489 			error = hme_init(sc);
   1490 			break;
   1491 		case IFF_UP|IFF_RUNNING:
   1492 			/*
   1493 			 * If setting debug or promiscuous mode, do not reset
   1494 			 * the chip; for everything else, call hme_init()
   1495 			 * which will trigger a reset.
   1496 			 */
   1497 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1498 			if (ifp->if_flags != sc->sc_if_flags) {
   1499 				if ((ifp->if_flags & (~RESETIGN))
   1500 				    == (sc->sc_if_flags & (~RESETIGN)))
   1501 					hme_setladrf(sc);
   1502 				else
   1503 					error = hme_init(sc);
   1504 			}
   1505 #undef RESETIGN
   1506 			break;
   1507 		case 0:
   1508 			break;
   1509 		}
   1510 
   1511 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1512 			error = hme_init(sc);
   1513 
   1514 		break;
   1515 
   1516 	default:
   1517 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1518 			break;
   1519 
   1520 		error = 0;
   1521 
   1522 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1523 			;
   1524 		else if (ifp->if_flags & IFF_RUNNING) {
   1525 			/*
   1526 			 * Multicast list has changed; set the hardware filter
   1527 			 * accordingly.
   1528 			 */
   1529 			hme_setladrf(sc);
   1530 		}
   1531 		break;
   1532 	}
   1533 
   1534 	sc->sc_if_flags = ifp->if_flags;
   1535 	splx(s);
   1536 	return (error);
   1537 }
   1538 
   1539 bool
   1540 hme_shutdown(device_t self, int howto)
   1541 {
   1542 	struct hme_softc *sc;
   1543 	struct ifnet *ifp;
   1544 
   1545 	sc = device_private(self);
   1546 	ifp = &sc->sc_ethercom.ec_if;
   1547 	hme_stop(ifp, 1);
   1548 
   1549 	return true;
   1550 }
   1551 
   1552 /*
   1553  * Set up the logical address filter.
   1554  */
   1555 void
   1556 hme_setladrf(struct hme_softc *sc)
   1557 {
   1558 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1559 	struct ether_multi *enm;
   1560 	struct ether_multistep step;
   1561 	struct ethercom *ec = &sc->sc_ethercom;
   1562 	bus_space_tag_t t = sc->sc_bustag;
   1563 	bus_space_handle_t mac = sc->sc_mac;
   1564 	uint32_t v;
   1565 	uint32_t crc;
   1566 	uint32_t hash[4];
   1567 
   1568 	/* Clear hash table */
   1569 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1570 
   1571 	/* Get current RX configuration */
   1572 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1573 
   1574 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1575 		/* Turn on promiscuous mode; turn off the hash filter */
   1576 		v |= HME_MAC_RXCFG_PMISC;
   1577 		v &= ~HME_MAC_RXCFG_HENABLE;
   1578 		ifp->if_flags |= IFF_ALLMULTI;
   1579 		goto chipit;
   1580 	}
   1581 
   1582 	/* Turn off promiscuous mode; turn on the hash filter */
   1583 	v &= ~HME_MAC_RXCFG_PMISC;
   1584 	v |= HME_MAC_RXCFG_HENABLE;
   1585 
   1586 	/*
   1587 	 * Set up multicast address filter by passing all multicast addresses
   1588 	 * through a crc generator, and then using the high order 6 bits as an
   1589 	 * index into the 64 bit logical address filter.  The high order bit
   1590 	 * selects the word, while the rest of the bits select the bit within
   1591 	 * the word.
   1592 	 */
   1593 
   1594 	ETHER_FIRST_MULTI(step, ec, enm);
   1595 	while (enm != NULL) {
   1596 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1597 			/*
   1598 			 * We must listen to a range of multicast addresses.
   1599 			 * For now, just accept all multicasts, rather than
   1600 			 * trying to set only those filter bits needed to match
   1601 			 * the range.  (At this time, the only use of address
   1602 			 * ranges is for IP multicast routing, for which the
   1603 			 * range is big enough to require all bits set.)
   1604 			 */
   1605 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1606 			ifp->if_flags |= IFF_ALLMULTI;
   1607 			goto chipit;
   1608 		}
   1609 
   1610 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1611 
   1612 		/* Just want the 6 most significant bits. */
   1613 		crc >>= 26;
   1614 
   1615 		/* Set the corresponding bit in the filter. */
   1616 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1617 
   1618 		ETHER_NEXT_MULTI(step, enm);
   1619 	}
   1620 
   1621 	ifp->if_flags &= ~IFF_ALLMULTI;
   1622 
   1623 chipit:
   1624 	/* Now load the hash table into the chip */
   1625 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1626 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1627 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1628 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1629 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1630 }
   1631 
   1632 /*
   1633  * Routines for accessing the transmit and receive buffers.
   1634  * The various CPU and adapter configurations supported by this
   1635  * driver require three different access methods for buffers
   1636  * and descriptors:
   1637  *	(1) contig (contiguous data; no padding),
   1638  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1639  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1640  */
   1641 
   1642 #if 0
   1643 /*
   1644  * contig: contiguous data with no padding.
   1645  *
   1646  * Buffers may have any alignment.
   1647  */
   1648 
   1649 void
   1650 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1651 {
   1652 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1653 
   1654 	/*
   1655 	 * Just call memcpy() to do the work.
   1656 	 */
   1657 	memcpy(buf, from, len);
   1658 }
   1659 
   1660 void
   1661 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1662 {
   1663 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1664 
   1665 	/*
   1666 	 * Just call memcpy() to do the work.
   1667 	 */
   1668 	memcpy(to, buf, len);
   1669 }
   1670 #endif
   1671