hme.c revision 1.86.12.1 1 /* $NetBSD: hme.c,v 1.86.12.1 2012/02/18 07:34:19 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * HME Ethernet module driver.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.86.12.1 2012/02/18 07:34:19 mrg Exp $");
38
39 /* #define HMEDEBUG */
40
41 #include "opt_inet.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/syslog.h>
48 #include <sys/socket.h>
49 #include <sys/device.h>
50 #include <sys/malloc.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/rnd.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59
60 #ifdef INET
61 #include <net/if_vlanvar.h>
62 #include <netinet/in.h>
63 #include <netinet/if_inarp.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 #endif
70
71
72 #include <net/bpf.h>
73 #include <net/bpfdesc.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77
78 #include <sys/bus.h>
79
80 #include <dev/ic/hmereg.h>
81 #include <dev/ic/hmevar.h>
82
83 static void hme_start(struct ifnet *);
84 static void hme_stop(struct ifnet *, int);
85 static int hme_ioctl(struct ifnet *, u_long, void *);
86 static void hme_tick(void *);
87 static void hme_watchdog(struct ifnet *);
88 static bool hme_shutdown(device_t, int);
89 static int hme_init(struct ifnet *);
90 static void hme_meminit(struct hme_softc *);
91 static void hme_mifinit(struct hme_softc *);
92 static void hme_reset(struct hme_softc *);
93 static void hme_chipreset(struct hme_softc *);
94 static void hme_setladrf(struct hme_softc *);
95
96 /* MII methods & callbacks */
97 static int hme_mii_readreg(device_t, int, int);
98 static void hme_mii_writereg(device_t, int, int, int);
99 static void hme_mii_statchg(device_t);
100
101 static int hme_mediachange(struct ifnet *);
102
103 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
104 static int hme_put(struct hme_softc *, int, struct mbuf *);
105 static void hme_read(struct hme_softc *, int, uint32_t);
106 static int hme_eint(struct hme_softc *, u_int);
107 static int hme_rint(struct hme_softc *);
108 static int hme_tint(struct hme_softc *);
109
110 #if 0
111 /* Default buffer copy routines */
112 static void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
113 static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
114 #endif
115
116 void
117 hme_config(struct hme_softc *sc)
118 {
119 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
120 struct mii_data *mii = &sc->sc_mii;
121 struct mii_softc *child;
122 bus_dma_tag_t dmatag = sc->sc_dmatag;
123 bus_dma_segment_t seg;
124 bus_size_t size;
125 int rseg, error;
126
127 /*
128 * HME common initialization.
129 *
130 * hme_softc fields that must be initialized by the front-end:
131 *
132 * the bus tag:
133 * sc_bustag
134 *
135 * the DMA bus tag:
136 * sc_dmatag
137 *
138 * the bus handles:
139 * sc_seb (Shared Ethernet Block registers)
140 * sc_erx (Receiver Unit registers)
141 * sc_etx (Transmitter Unit registers)
142 * sc_mac (MAC registers)
143 * sc_mif (Management Interface registers)
144 *
145 * the maximum bus burst size:
146 * sc_burst
147 *
148 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
149 * rb_membase, rb_dmabase)
150 *
151 * the local Ethernet address:
152 * sc_enaddr
153 *
154 */
155
156 /* Make sure the chip is stopped. */
157 hme_chipreset(sc);
158
159 /*
160 * Allocate descriptors and buffers
161 * XXX - do all this differently.. and more configurably,
162 * eg. use things as `dma_load_mbuf()' on transmit,
163 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
164 * all the time) on the receiver side.
165 *
166 * Note: receive buffers must be 64-byte aligned.
167 * Also, apparently, the buffers must extend to a DMA burst
168 * boundary beyond the maximum packet size.
169 */
170 #define _HME_NDESC 128
171 #define _HME_BUFSZ 1600
172
173 /* Note: the # of descriptors must be a multiple of 16 */
174 sc->sc_rb.rb_ntbuf = _HME_NDESC;
175 sc->sc_rb.rb_nrbuf = _HME_NDESC;
176
177 /*
178 * Allocate DMA capable memory
179 * Buffer descriptors must be aligned on a 2048 byte boundary;
180 * take this into account when calculating the size. Note that
181 * the maximum number of descriptors (256) occupies 2048 bytes,
182 * so we allocate that much regardless of _HME_NDESC.
183 */
184 size = 2048 + /* TX descriptors */
185 2048 + /* RX descriptors */
186 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
187 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
188
189 /* Allocate DMA buffer */
190 if ((error = bus_dmamem_alloc(dmatag, size,
191 2048, 0,
192 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
193 aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
194 error);
195 return;
196 }
197
198 /* Map DMA memory in CPU addressable space */
199 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
200 &sc->sc_rb.rb_membase,
201 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
202 aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
203 error);
204 bus_dmamap_unload(dmatag, sc->sc_dmamap);
205 bus_dmamem_free(dmatag, &seg, rseg);
206 return;
207 }
208
209 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
210 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
211 aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
212 error);
213 return;
214 }
215
216 /* Load the buffer */
217 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
218 sc->sc_rb.rb_membase, size, NULL,
219 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
220 aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
221 error);
222 bus_dmamem_free(dmatag, &seg, rseg);
223 return;
224 }
225 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
226
227 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
228 ether_sprintf(sc->sc_enaddr));
229
230 /* Initialize ifnet structure. */
231 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = hme_start;
234 ifp->if_stop = hme_stop;
235 ifp->if_ioctl = hme_ioctl;
236 ifp->if_init = hme_init;
237 ifp->if_watchdog = hme_watchdog;
238 ifp->if_flags =
239 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
240 sc->sc_if_flags = ifp->if_flags;
241 ifp->if_capabilities |=
242 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
243 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
244 IFQ_SET_READY(&ifp->if_snd);
245
246 /* Initialize ifmedia structures and MII info */
247 mii->mii_ifp = ifp;
248 mii->mii_readreg = hme_mii_readreg;
249 mii->mii_writereg = hme_mii_writereg;
250 mii->mii_statchg = hme_mii_statchg;
251
252 sc->sc_ethercom.ec_mii = mii;
253 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
254
255 hme_mifinit(sc);
256
257 /*
258 * Some HME's have an MII connector, as well as RJ45. Try attaching
259 * the RJ45 (internal) PHY first, so that the MII PHY is always
260 * instance 1.
261 */
262 mii_attach(sc->sc_dev, mii, 0xffffffff,
263 HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
264 mii_attach(sc->sc_dev, mii, 0xffffffff,
265 HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
266
267 child = LIST_FIRST(&mii->mii_phys);
268 if (child == NULL) {
269 /* No PHY attached */
270 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
271 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
272 } else {
273 /*
274 * Walk along the list of attached MII devices and
275 * establish an `MII instance' to `phy number'
276 * mapping. We'll use this mapping in media change
277 * requests to determine which phy to use to program
278 * the MIF configuration register.
279 */
280 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
281 /*
282 * Note: we support just two PHYs: the built-in
283 * internal device and an external on the MII
284 * connector.
285 */
286 if (child->mii_phy > 1 || child->mii_inst > 1) {
287 aprint_error_dev(sc->sc_dev,
288 "cannot accommodate MII device %s"
289 " at phy %d, instance %d\n",
290 device_xname(child->mii_dev),
291 child->mii_phy, child->mii_inst);
292 continue;
293 }
294
295 sc->sc_phys[child->mii_inst] = child->mii_phy;
296 }
297
298 /*
299 * Set the default media to auto negotiation if the phy has
300 * the auto negotiation capability.
301 * XXX; What to do otherwise?
302 */
303 if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
304 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
305 /*
306 else
307 ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
308 */
309 }
310
311 /* claim 802.1q capability */
312 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
313
314 /* Attach the interface. */
315 if_attach(ifp);
316 ether_ifattach(ifp, sc->sc_enaddr);
317
318 if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
319 pmf_class_network_register(sc->sc_dev, ifp);
320 else
321 aprint_error_dev(sc->sc_dev,
322 "couldn't establish power handler\n");
323
324 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
325 RND_TYPE_NET, 0);
326
327 callout_init(&sc->sc_tick_ch, 0);
328 }
329
330 void
331 hme_tick(void *arg)
332 {
333 struct hme_softc *sc = arg;
334 int s;
335
336 s = splnet();
337 mii_tick(&sc->sc_mii);
338 splx(s);
339
340 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
341 }
342
343 void
344 hme_reset(struct hme_softc *sc)
345 {
346 int s;
347
348 s = splnet();
349 (void)hme_init(&sc->sc_ethercom.ec_if);
350 splx(s);
351 }
352
353 void
354 hme_chipreset(struct hme_softc *sc)
355 {
356 bus_space_tag_t t = sc->sc_bustag;
357 bus_space_handle_t seb = sc->sc_seb;
358 int n;
359
360 /* Mask all interrupts */
361 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
362
363 /* Reset transmitter and receiver */
364 bus_space_write_4(t, seb, HME_SEBI_RESET,
365 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
366
367 for (n = 0; n < 20; n++) {
368 uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
369 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
370 return;
371 DELAY(20);
372 }
373
374 printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
375 }
376
377 void
378 hme_stop(struct ifnet *ifp, int disable)
379 {
380 struct hme_softc *sc;
381
382 sc = ifp->if_softc;
383
384 ifp->if_timer = 0;
385 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
386
387 callout_stop(&sc->sc_tick_ch);
388 mii_down(&sc->sc_mii);
389
390 hme_chipreset(sc);
391 }
392
393 void
394 hme_meminit(struct hme_softc *sc)
395 {
396 bus_addr_t txbufdma, rxbufdma;
397 bus_addr_t dma;
398 char *p;
399 unsigned int ntbuf, nrbuf, i;
400 struct hme_ring *hr = &sc->sc_rb;
401
402 p = hr->rb_membase;
403 dma = hr->rb_dmabase;
404
405 ntbuf = hr->rb_ntbuf;
406 nrbuf = hr->rb_nrbuf;
407
408 /*
409 * Allocate transmit descriptors
410 */
411 hr->rb_txd = p;
412 hr->rb_txddma = dma;
413 p += ntbuf * HME_XD_SIZE;
414 dma += ntbuf * HME_XD_SIZE;
415 /* We have reserved descriptor space until the next 2048 byte boundary.*/
416 dma = (bus_addr_t)roundup((u_long)dma, 2048);
417 p = (void *)roundup((u_long)p, 2048);
418
419 /*
420 * Allocate receive descriptors
421 */
422 hr->rb_rxd = p;
423 hr->rb_rxddma = dma;
424 p += nrbuf * HME_XD_SIZE;
425 dma += nrbuf * HME_XD_SIZE;
426 /* Again move forward to the next 2048 byte boundary.*/
427 dma = (bus_addr_t)roundup((u_long)dma, 2048);
428 p = (void *)roundup((u_long)p, 2048);
429
430
431 /*
432 * Allocate transmit buffers
433 */
434 hr->rb_txbuf = p;
435 txbufdma = dma;
436 p += ntbuf * _HME_BUFSZ;
437 dma += ntbuf * _HME_BUFSZ;
438
439 /*
440 * Allocate receive buffers
441 */
442 hr->rb_rxbuf = p;
443 rxbufdma = dma;
444 p += nrbuf * _HME_BUFSZ;
445 dma += nrbuf * _HME_BUFSZ;
446
447 /*
448 * Initialize transmit buffer descriptors
449 */
450 for (i = 0; i < ntbuf; i++) {
451 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
452 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
453 }
454
455 /*
456 * Initialize receive buffer descriptors
457 */
458 for (i = 0; i < nrbuf; i++) {
459 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
460 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
461 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
462 }
463
464 hr->rb_tdhead = hr->rb_tdtail = 0;
465 hr->rb_td_nbusy = 0;
466 hr->rb_rdtail = 0;
467 }
468
469 /*
470 * Initialization of interface; set up initialization block
471 * and transmit/receive descriptor rings.
472 */
473 int
474 hme_init(struct ifnet *ifp)
475 {
476 struct hme_softc *sc = ifp->if_softc;
477 bus_space_tag_t t = sc->sc_bustag;
478 bus_space_handle_t seb = sc->sc_seb;
479 bus_space_handle_t etx = sc->sc_etx;
480 bus_space_handle_t erx = sc->sc_erx;
481 bus_space_handle_t mac = sc->sc_mac;
482 uint8_t *ea;
483 uint32_t v;
484 int rc;
485
486 /*
487 * Initialization sequence. The numbered steps below correspond
488 * to the sequence outlined in section 6.3.5.1 in the Ethernet
489 * Channel Engine manual (part of the PCIO manual).
490 * See also the STP2002-STQ document from Sun Microsystems.
491 */
492
493 /* step 1 & 2. Reset the Ethernet Channel */
494 hme_stop(ifp, 0);
495
496 /* Re-initialize the MIF */
497 hme_mifinit(sc);
498
499 /* Call MI reset function if any */
500 if (sc->sc_hwreset)
501 (*sc->sc_hwreset)(sc);
502
503 #if 0
504 /* Mask all MIF interrupts, just in case */
505 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
506 #endif
507
508 /* step 3. Setup data structures in host memory */
509 hme_meminit(sc);
510
511 /* step 4. TX MAC registers & counters */
512 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
513 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
514 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
515 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
516 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
517 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
518 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
519 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
520
521 /* Load station MAC address */
522 ea = sc->sc_enaddr;
523 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
524 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
525 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
526
527 /*
528 * Init seed for backoff
529 * (source suggested by manual: low 10 bits of MAC address)
530 */
531 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
532 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
533
534
535 /* Note: Accepting power-on default for other MAC registers here.. */
536
537
538 /* step 5. RX MAC registers & counters */
539 hme_setladrf(sc);
540
541 /* step 6 & 7. Program Descriptor Ring Base Addresses */
542 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
543 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
544
545 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
546 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
547 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
548 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
549
550 /* step 8. Global Configuration & Interrupt Mask */
551 bus_space_write_4(t, seb, HME_SEBI_IMASK,
552 ~(
553 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
554 HME_SEB_STAT_HOSTTOTX |
555 HME_SEB_STAT_RXTOHOST |
556 HME_SEB_STAT_TXALL |
557 HME_SEB_STAT_TXPERR |
558 HME_SEB_STAT_RCNTEXP |
559 HME_SEB_STAT_MIFIRQ |
560 HME_SEB_STAT_ALL_ERRORS ));
561
562 switch (sc->sc_burst) {
563 default:
564 v = 0;
565 break;
566 case 16:
567 v = HME_SEB_CFG_BURST16;
568 break;
569 case 32:
570 v = HME_SEB_CFG_BURST32;
571 break;
572 case 64:
573 v = HME_SEB_CFG_BURST64;
574 break;
575 }
576 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
577
578 /* step 9. ETX Configuration: use mostly default values */
579
580 /* Enable DMA */
581 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
582 v |= HME_ETX_CFG_DMAENABLE;
583 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
584
585 /* Transmit Descriptor ring size: in increments of 16 */
586 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
587
588
589 /* step 10. ERX Configuration */
590 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
591
592 /* Encode Receive Descriptor ring size: four possible values */
593 switch (_HME_NDESC /*XXX*/) {
594 case 32:
595 v |= HME_ERX_CFG_RINGSIZE32;
596 break;
597 case 64:
598 v |= HME_ERX_CFG_RINGSIZE64;
599 break;
600 case 128:
601 v |= HME_ERX_CFG_RINGSIZE128;
602 break;
603 case 256:
604 v |= HME_ERX_CFG_RINGSIZE256;
605 break;
606 default:
607 printf("hme: invalid Receive Descriptor ring size\n");
608 break;
609 }
610
611 /* Enable DMA */
612 v |= HME_ERX_CFG_DMAENABLE;
613
614 /* set h/w rx checksum start offset (# of half-words) */
615 #ifdef INET
616 v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
617 << HME_ERX_CFG_CSUMSHIFT) &
618 HME_ERX_CFG_CSUMSTART;
619 #endif
620 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
621
622 /* step 11. XIF Configuration */
623 v = bus_space_read_4(t, mac, HME_MACI_XIF);
624 v |= HME_MAC_XIF_OE;
625 bus_space_write_4(t, mac, HME_MACI_XIF, v);
626
627 /* step 12. RX_MAC Configuration Register */
628 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
629 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
630 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
631
632 /* step 13. TX_MAC Configuration Register */
633 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
634 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
635 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
636
637 /* step 14. Issue Transmit Pending command */
638
639 /* Call MI initialization function if any */
640 if (sc->sc_hwinit)
641 (*sc->sc_hwinit)(sc);
642
643 /* Set the current media. */
644 if ((rc = hme_mediachange(ifp)) != 0)
645 return rc;
646
647 /* Start the one second timer. */
648 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
649
650 ifp->if_flags |= IFF_RUNNING;
651 ifp->if_flags &= ~IFF_OACTIVE;
652 sc->sc_if_flags = ifp->if_flags;
653 ifp->if_timer = 0;
654 hme_start(ifp);
655 return 0;
656 }
657
658 /*
659 * Routine to copy from mbuf chain to transmit buffer in
660 * network buffer memory.
661 * Returns the amount of data copied.
662 */
663 int
664 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
665 /* ri: Ring index */
666 {
667 struct mbuf *n;
668 int len, tlen = 0;
669 char *bp;
670
671 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
672 for (; m; m = n) {
673 len = m->m_len;
674 if (len == 0) {
675 MFREE(m, n);
676 continue;
677 }
678 memcpy(bp, mtod(m, void *), len);
679 bp += len;
680 tlen += len;
681 MFREE(m, n);
682 }
683 return (tlen);
684 }
685
686 /*
687 * Pull data off an interface.
688 * Len is length of data, with local net header stripped.
689 * We copy the data into mbufs. When full cluster sized units are present
690 * we copy into clusters.
691 */
692 struct mbuf *
693 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
694 {
695 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
696 struct mbuf *m, *m0, *newm;
697 char *bp;
698 int len, totlen;
699 #ifdef INET
700 int csum_flags;
701 #endif
702
703 totlen = HME_XD_DECODE_RSIZE(flags);
704 MGETHDR(m0, M_DONTWAIT, MT_DATA);
705 if (m0 == 0)
706 return (0);
707 m0->m_pkthdr.rcvif = ifp;
708 m0->m_pkthdr.len = totlen;
709 len = MHLEN;
710 m = m0;
711
712 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
713
714 while (totlen > 0) {
715 if (totlen >= MINCLSIZE) {
716 MCLGET(m, M_DONTWAIT);
717 if ((m->m_flags & M_EXT) == 0)
718 goto bad;
719 len = MCLBYTES;
720 }
721
722 if (m == m0) {
723 char *newdata = (char *)
724 ALIGN(m->m_data + sizeof(struct ether_header)) -
725 sizeof(struct ether_header);
726 len -= newdata - m->m_data;
727 m->m_data = newdata;
728 }
729
730 m->m_len = len = min(totlen, len);
731 memcpy(mtod(m, void *), bp, len);
732 bp += len;
733
734 totlen -= len;
735 if (totlen > 0) {
736 MGET(newm, M_DONTWAIT, MT_DATA);
737 if (newm == 0)
738 goto bad;
739 len = MLEN;
740 m = m->m_next = newm;
741 }
742 }
743
744 #ifdef INET
745 /* hardware checksum */
746 csum_flags = 0;
747 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
748 struct ether_header *eh;
749 struct ether_vlan_header *evh;
750 struct ip *ip;
751 struct udphdr *uh;
752 uint16_t *opts;
753 int32_t hlen, pktlen;
754 uint32_t csum_data;
755
756 eh = mtod(m0, struct ether_header *);
757 if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
758 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
759 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
760 } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
761 evh = (struct ether_vlan_header *)eh;
762 if (ntohs(evh->evl_proto != ETHERTYPE_IP))
763 goto swcsum;
764 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
765 ETHER_VLAN_ENCAP_LEN);
766 pktlen = m0->m_pkthdr.len -
767 ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
768 } else
769 goto swcsum;
770
771 /* IPv4 only */
772 if (ip->ip_v != IPVERSION)
773 goto swcsum;
774
775 hlen = ip->ip_hl << 2;
776 if (hlen < sizeof(struct ip))
777 goto swcsum;
778
779 /*
780 * bail if too short, has random trailing garbage, truncated,
781 * fragment, or has ethernet pad.
782 */
783 if (ntohs(ip->ip_len) < hlen ||
784 ntohs(ip->ip_len) != pktlen ||
785 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
786 goto swcsum;
787
788 switch (ip->ip_p) {
789 case IPPROTO_TCP:
790 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
791 goto swcsum;
792 if (pktlen < (hlen + sizeof(struct tcphdr)))
793 goto swcsum;
794 csum_flags =
795 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
796 break;
797 case IPPROTO_UDP:
798 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
799 goto swcsum;
800 if (pktlen < (hlen + sizeof(struct udphdr)))
801 goto swcsum;
802 uh = (struct udphdr *)((char *)ip + hlen);
803 /* no checksum */
804 if (uh->uh_sum == 0)
805 goto swcsum;
806 csum_flags =
807 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
808 break;
809 default:
810 goto swcsum;
811 }
812
813 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
814 csum_data = ~flags & HME_XD_RXCKSUM;
815
816 /*
817 * If data offset is different from RX cksum start offset,
818 * we have to deduct them.
819 */
820 hlen = ((char *)ip + hlen) -
821 ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
822 if (hlen > 1) {
823 uint32_t optsum;
824
825 optsum = 0;
826 opts = (uint16_t *)((char *)eh +
827 ETHER_HDR_LEN + sizeof(struct ip));
828
829 while (hlen > 1) {
830 optsum += ntohs(*opts++);
831 hlen -= 2;
832 }
833 while (optsum >> 16)
834 optsum = (optsum >> 16) + (optsum & 0xffff);
835
836 /* Deduct the ip opts sum from the hwsum. */
837 csum_data += (uint16_t)~optsum;
838
839 while (csum_data >> 16)
840 csum_data =
841 (csum_data >> 16) + (csum_data & 0xffff);
842 }
843 m0->m_pkthdr.csum_data = csum_data;
844 }
845 swcsum:
846 m0->m_pkthdr.csum_flags = csum_flags;
847 #endif
848
849 return (m0);
850
851 bad:
852 m_freem(m0);
853 return (0);
854 }
855
856 /*
857 * Pass a packet to the higher levels.
858 */
859 void
860 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
861 {
862 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
863 struct mbuf *m;
864 int len;
865
866 len = HME_XD_DECODE_RSIZE(flags);
867 if (len <= sizeof(struct ether_header) ||
868 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
869 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
870 ETHERMTU + sizeof(struct ether_header))) {
871 #ifdef HMEDEBUG
872 printf("%s: invalid packet size %d; dropping\n",
873 device_xname(sc->sc_dev), len);
874 #endif
875 ifp->if_ierrors++;
876 return;
877 }
878
879 /* Pull packet off interface. */
880 m = hme_get(sc, ix, flags);
881 if (m == 0) {
882 ifp->if_ierrors++;
883 return;
884 }
885
886 ifp->if_ipackets++;
887
888 /*
889 * Check if there's a BPF listener on this interface.
890 * If so, hand off the raw packet to BPF.
891 */
892 bpf_mtap(ifp, m);
893
894 /* Pass the packet up. */
895 (*ifp->if_input)(ifp, m);
896 }
897
898 void
899 hme_start(struct ifnet *ifp)
900 {
901 struct hme_softc *sc = ifp->if_softc;
902 void *txd = sc->sc_rb.rb_txd;
903 struct mbuf *m;
904 unsigned int txflags;
905 unsigned int ri, len, obusy;
906 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
907
908 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
909 return;
910
911 ri = sc->sc_rb.rb_tdhead;
912 obusy = sc->sc_rb.rb_td_nbusy;
913
914 for (;;) {
915 IFQ_DEQUEUE(&ifp->if_snd, m);
916 if (m == 0)
917 break;
918
919 /*
920 * If BPF is listening on this interface, let it see the
921 * packet before we commit it to the wire.
922 */
923 bpf_mtap(ifp, m);
924
925 #ifdef INET
926 /* collect bits for h/w csum, before hme_put frees the mbuf */
927 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
928 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
929 struct ether_header *eh;
930 uint16_t offset, start;
931
932 eh = mtod(m, struct ether_header *);
933 switch (ntohs(eh->ether_type)) {
934 case ETHERTYPE_IP:
935 start = ETHER_HDR_LEN;
936 break;
937 case ETHERTYPE_VLAN:
938 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
939 break;
940 default:
941 /* unsupported, drop it */
942 m_free(m);
943 continue;
944 }
945 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
946 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
947 + start;
948 txflags = HME_XD_TXCKSUM |
949 (offset << HME_XD_TXCSSTUFFSHIFT) |
950 (start << HME_XD_TXCSSTARTSHIFT);
951 } else
952 #endif
953 txflags = 0;
954
955 /*
956 * Copy the mbuf chain into the transmit buffer.
957 */
958 len = hme_put(sc, ri, m);
959
960 /*
961 * Initialize transmit registers and start transmission
962 */
963 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
964 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
965 HME_XD_ENCODE_TSIZE(len) | txflags);
966
967 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
968 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
969 HME_ETX_TP_DMAWAKEUP);
970
971 if (++ri == ntbuf)
972 ri = 0;
973
974 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
975 ifp->if_flags |= IFF_OACTIVE;
976 break;
977 }
978 }
979
980 if (obusy != sc->sc_rb.rb_td_nbusy) {
981 sc->sc_rb.rb_tdhead = ri;
982 ifp->if_timer = 5;
983 }
984 }
985
986 /*
987 * Transmit interrupt.
988 */
989 int
990 hme_tint(struct hme_softc *sc)
991 {
992 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
993 bus_space_tag_t t = sc->sc_bustag;
994 bus_space_handle_t mac = sc->sc_mac;
995 unsigned int ri, txflags;
996
997 /*
998 * Unload collision counters
999 */
1000 ifp->if_collisions +=
1001 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1002 bus_space_read_4(t, mac, HME_MACI_FCCNT);
1003 ifp->if_oerrors +=
1004 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1005 bus_space_read_4(t, mac, HME_MACI_LTCNT);
1006
1007 /*
1008 * then clear the hardware counters.
1009 */
1010 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1011 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1012 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1013 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1014
1015 /* Fetch current position in the transmit ring */
1016 ri = sc->sc_rb.rb_tdtail;
1017
1018 for (;;) {
1019 if (sc->sc_rb.rb_td_nbusy <= 0)
1020 break;
1021
1022 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1023
1024 if (txflags & HME_XD_OWN)
1025 break;
1026
1027 ifp->if_flags &= ~IFF_OACTIVE;
1028 ifp->if_opackets++;
1029
1030 if (++ri == sc->sc_rb.rb_ntbuf)
1031 ri = 0;
1032
1033 --sc->sc_rb.rb_td_nbusy;
1034 }
1035
1036 /* Update ring */
1037 sc->sc_rb.rb_tdtail = ri;
1038
1039 hme_start(ifp);
1040
1041 if (sc->sc_rb.rb_td_nbusy == 0)
1042 ifp->if_timer = 0;
1043
1044 return (1);
1045 }
1046
1047 /*
1048 * Receive interrupt.
1049 */
1050 int
1051 hme_rint(struct hme_softc *sc)
1052 {
1053 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1054 bus_space_tag_t t = sc->sc_bustag;
1055 bus_space_handle_t mac = sc->sc_mac;
1056 void *xdr = sc->sc_rb.rb_rxd;
1057 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1058 unsigned int ri;
1059 uint32_t flags;
1060
1061 ri = sc->sc_rb.rb_rdtail;
1062
1063 /*
1064 * Process all buffers with valid data.
1065 */
1066 for (;;) {
1067 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1068 if (flags & HME_XD_OWN)
1069 break;
1070
1071 if (flags & HME_XD_OFL) {
1072 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1073 device_xname(sc->sc_dev), ri, flags);
1074 } else
1075 hme_read(sc, ri, flags);
1076
1077 /* This buffer can be used by the hardware again */
1078 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1079 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1080
1081 if (++ri == nrbuf)
1082 ri = 0;
1083 }
1084
1085 sc->sc_rb.rb_rdtail = ri;
1086
1087 /* Read error counters ... */
1088 ifp->if_ierrors +=
1089 bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1090 bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1091 bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1092 bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1093
1094 /* ... then clear the hardware counters. */
1095 bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1096 bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1097 bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1098 bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1099 return (1);
1100 }
1101
1102 int
1103 hme_eint(struct hme_softc *sc, u_int status)
1104 {
1105 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1106 char bits[128];
1107
1108 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1109 bus_space_tag_t t = sc->sc_bustag;
1110 bus_space_handle_t mif = sc->sc_mif;
1111 uint32_t cf, st, sm;
1112 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1113 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1114 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1115 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1116 device_xname(sc->sc_dev), cf, st, sm);
1117 return (1);
1118 }
1119
1120 /* Receive error counters rolled over */
1121 if (status & HME_SEB_STAT_ACNTEXP)
1122 ifp->if_ierrors += 0xff;
1123 if (status & HME_SEB_STAT_CCNTEXP)
1124 ifp->if_ierrors += 0xff;
1125 if (status & HME_SEB_STAT_LCNTEXP)
1126 ifp->if_ierrors += 0xff;
1127 if (status & HME_SEB_STAT_CVCNTEXP)
1128 ifp->if_ierrors += 0xff;
1129
1130 /* RXTERR locks up the interface, so do a reset */
1131 if (status & HME_SEB_STAT_RXTERR)
1132 hme_reset(sc);
1133
1134 snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1135 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1136
1137 return (1);
1138 }
1139
1140 int
1141 hme_intr(void *v)
1142 {
1143 struct hme_softc *sc = v;
1144 bus_space_tag_t t = sc->sc_bustag;
1145 bus_space_handle_t seb = sc->sc_seb;
1146 uint32_t status;
1147 int r = 0;
1148
1149 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1150
1151 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1152 r |= hme_eint(sc, status);
1153
1154 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1155 r |= hme_tint(sc);
1156
1157 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1158 r |= hme_rint(sc);
1159
1160 rnd_add_uint32(&sc->rnd_source, status);
1161
1162 return (r);
1163 }
1164
1165
1166 void
1167 hme_watchdog(struct ifnet *ifp)
1168 {
1169 struct hme_softc *sc = ifp->if_softc;
1170
1171 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1172 ++ifp->if_oerrors;
1173
1174 hme_reset(sc);
1175 }
1176
1177 /*
1178 * Initialize the MII Management Interface
1179 */
1180 void
1181 hme_mifinit(struct hme_softc *sc)
1182 {
1183 bus_space_tag_t t = sc->sc_bustag;
1184 bus_space_handle_t mif = sc->sc_mif;
1185 bus_space_handle_t mac = sc->sc_mac;
1186 int instance, phy;
1187 uint32_t v;
1188
1189 if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1190 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1191 phy = sc->sc_phys[instance];
1192 } else
1193 /* No media set yet, pick phy arbitrarily.. */
1194 phy = HME_PHYAD_EXTERNAL;
1195
1196 /* Configure the MIF in frame mode, no poll, current phy select */
1197 v = 0;
1198 if (phy == HME_PHYAD_EXTERNAL)
1199 v |= HME_MIF_CFG_PHY;
1200 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1201
1202 /* If an external transceiver is selected, enable its MII drivers */
1203 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1204 v &= ~HME_MAC_XIF_MIIENABLE;
1205 if (phy == HME_PHYAD_EXTERNAL)
1206 v |= HME_MAC_XIF_MIIENABLE;
1207 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1208 }
1209
1210 /*
1211 * MII interface
1212 */
1213 static int
1214 hme_mii_readreg(device_t self, int phy, int reg)
1215 {
1216 struct hme_softc *sc = device_private(self);
1217 bus_space_tag_t t = sc->sc_bustag;
1218 bus_space_handle_t mif = sc->sc_mif;
1219 bus_space_handle_t mac = sc->sc_mac;
1220 uint32_t v, xif_cfg, mifi_cfg;
1221 int n;
1222
1223 /* We can at most have two PHYs */
1224 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1225 return (0);
1226
1227 /* Select the desired PHY in the MIF configuration register */
1228 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1229 v &= ~HME_MIF_CFG_PHY;
1230 if (phy == HME_PHYAD_EXTERNAL)
1231 v |= HME_MIF_CFG_PHY;
1232 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1233
1234 /* Enable MII drivers on external transceiver */
1235 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1236 if (phy == HME_PHYAD_EXTERNAL)
1237 v |= HME_MAC_XIF_MIIENABLE;
1238 else
1239 v &= ~HME_MAC_XIF_MIIENABLE;
1240 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1241
1242 #if 0
1243 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1244 /*
1245 * Check whether a transceiver is connected by testing
1246 * the MIF configuration register's MDI_X bits. Note that
1247 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1248 */
1249 mif_mdi_bit = 1 << (8 + (1 - phy));
1250 delay(100);
1251 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1252 if ((v & mif_mdi_bit) == 0)
1253 return (0);
1254 #endif
1255
1256 /* Construct the frame command */
1257 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1258 HME_MIF_FO_TAMSB |
1259 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1260 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1261 (reg << HME_MIF_FO_REGAD_SHIFT);
1262
1263 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1264 for (n = 0; n < 100; n++) {
1265 DELAY(1);
1266 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1267 if (v & HME_MIF_FO_TALSB) {
1268 v &= HME_MIF_FO_DATA;
1269 goto out;
1270 }
1271 }
1272
1273 v = 0;
1274 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1275
1276 out:
1277 /* Restore MIFI_CFG register */
1278 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1279 /* Restore XIF register */
1280 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1281 return (v);
1282 }
1283
1284 static void
1285 hme_mii_writereg(device_t self, int phy, int reg, int val)
1286 {
1287 struct hme_softc *sc = device_private(self);
1288 bus_space_tag_t t = sc->sc_bustag;
1289 bus_space_handle_t mif = sc->sc_mif;
1290 bus_space_handle_t mac = sc->sc_mac;
1291 uint32_t v, xif_cfg, mifi_cfg;
1292 int n;
1293
1294 /* We can at most have two PHYs */
1295 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1296 return;
1297
1298 /* Select the desired PHY in the MIF configuration register */
1299 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1300 v &= ~HME_MIF_CFG_PHY;
1301 if (phy == HME_PHYAD_EXTERNAL)
1302 v |= HME_MIF_CFG_PHY;
1303 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1304
1305 /* Enable MII drivers on external transceiver */
1306 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1307 if (phy == HME_PHYAD_EXTERNAL)
1308 v |= HME_MAC_XIF_MIIENABLE;
1309 else
1310 v &= ~HME_MAC_XIF_MIIENABLE;
1311 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1312
1313 #if 0
1314 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1315 /*
1316 * Check whether a transceiver is connected by testing
1317 * the MIF configuration register's MDI_X bits. Note that
1318 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1319 */
1320 mif_mdi_bit = 1 << (8 + (1 - phy));
1321 delay(100);
1322 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1323 if ((v & mif_mdi_bit) == 0)
1324 return;
1325 #endif
1326
1327 /* Construct the frame command */
1328 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1329 HME_MIF_FO_TAMSB |
1330 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1331 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1332 (reg << HME_MIF_FO_REGAD_SHIFT) |
1333 (val & HME_MIF_FO_DATA);
1334
1335 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1336 for (n = 0; n < 100; n++) {
1337 DELAY(1);
1338 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1339 if (v & HME_MIF_FO_TALSB)
1340 goto out;
1341 }
1342
1343 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1344 out:
1345 /* Restore MIFI_CFG register */
1346 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1347 /* Restore XIF register */
1348 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1349 }
1350
1351 static void
1352 hme_mii_statchg(device_t dev)
1353 {
1354 struct hme_softc *sc = device_private(dev);
1355 bus_space_tag_t t = sc->sc_bustag;
1356 bus_space_handle_t mac = sc->sc_mac;
1357 uint32_t v;
1358
1359 #ifdef HMEDEBUG
1360 if (sc->sc_debug)
1361 printf("hme_mii_statchg: status change\n");
1362 #endif
1363
1364 /* Set the MAC Full Duplex bit appropriately */
1365 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1366 but not otherwise. */
1367 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1368 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1369 v |= HME_MAC_TXCFG_FULLDPLX;
1370 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1371 } else {
1372 v &= ~HME_MAC_TXCFG_FULLDPLX;
1373 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1374 }
1375 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1376 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1377 }
1378
1379 int
1380 hme_mediachange(struct ifnet *ifp)
1381 {
1382 struct hme_softc *sc = ifp->if_softc;
1383 bus_space_tag_t t = sc->sc_bustag;
1384 bus_space_handle_t mif = sc->sc_mif;
1385 bus_space_handle_t mac = sc->sc_mac;
1386 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1387 int phy = sc->sc_phys[instance];
1388 int rc;
1389 uint32_t v;
1390
1391 #ifdef HMEDEBUG
1392 if (sc->sc_debug)
1393 printf("hme_mediachange: phy = %d\n", phy);
1394 #endif
1395
1396 /* Select the current PHY in the MIF configuration register */
1397 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1398 v &= ~HME_MIF_CFG_PHY;
1399 if (phy == HME_PHYAD_EXTERNAL)
1400 v |= HME_MIF_CFG_PHY;
1401 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1402
1403 /* If an external transceiver is selected, enable its MII drivers */
1404 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1405 v &= ~HME_MAC_XIF_MIIENABLE;
1406 if (phy == HME_PHYAD_EXTERNAL)
1407 v |= HME_MAC_XIF_MIIENABLE;
1408 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1409
1410 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1411 return 0;
1412 return rc;
1413 }
1414
1415 /*
1416 * Process an ioctl request.
1417 */
1418 int
1419 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1420 {
1421 struct hme_softc *sc = ifp->if_softc;
1422 struct ifaddr *ifa = (struct ifaddr *)data;
1423 int s, error = 0;
1424
1425 s = splnet();
1426
1427 switch (cmd) {
1428
1429 case SIOCINITIFADDR:
1430 switch (ifa->ifa_addr->sa_family) {
1431 #ifdef INET
1432 case AF_INET:
1433 if (ifp->if_flags & IFF_UP)
1434 hme_setladrf(sc);
1435 else {
1436 ifp->if_flags |= IFF_UP;
1437 error = hme_init(ifp);
1438 }
1439 arp_ifinit(ifp, ifa);
1440 break;
1441 #endif
1442 default:
1443 ifp->if_flags |= IFF_UP;
1444 error = hme_init(ifp);
1445 break;
1446 }
1447 break;
1448
1449 case SIOCSIFFLAGS:
1450 #ifdef HMEDEBUG
1451 {
1452 struct ifreq *ifr = data;
1453 sc->sc_debug =
1454 (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1455 }
1456 #endif
1457 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1458 break;
1459
1460 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1461 case IFF_RUNNING:
1462 /*
1463 * If interface is marked down and it is running, then
1464 * stop it.
1465 */
1466 hme_stop(ifp, 0);
1467 ifp->if_flags &= ~IFF_RUNNING;
1468 break;
1469 case IFF_UP:
1470 /*
1471 * If interface is marked up and it is stopped, then
1472 * start it.
1473 */
1474 error = hme_init(ifp);
1475 break;
1476 case IFF_UP|IFF_RUNNING:
1477 /*
1478 * If setting debug or promiscuous mode, do not reset
1479 * the chip; for everything else, call hme_init()
1480 * which will trigger a reset.
1481 */
1482 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1483 if (ifp->if_flags != sc->sc_if_flags) {
1484 if ((ifp->if_flags & (~RESETIGN))
1485 == (sc->sc_if_flags & (~RESETIGN)))
1486 hme_setladrf(sc);
1487 else
1488 error = hme_init(ifp);
1489 }
1490 #undef RESETIGN
1491 break;
1492 case 0:
1493 break;
1494 }
1495
1496 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1497 error = hme_init(ifp);
1498
1499 break;
1500
1501 default:
1502 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1503 break;
1504
1505 error = 0;
1506
1507 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1508 ;
1509 else if (ifp->if_flags & IFF_RUNNING) {
1510 /*
1511 * Multicast list has changed; set the hardware filter
1512 * accordingly.
1513 */
1514 hme_setladrf(sc);
1515 }
1516 break;
1517 }
1518
1519 sc->sc_if_flags = ifp->if_flags;
1520 splx(s);
1521 return (error);
1522 }
1523
1524 bool
1525 hme_shutdown(device_t self, int howto)
1526 {
1527 struct hme_softc *sc;
1528 struct ifnet *ifp;
1529
1530 sc = device_private(self);
1531 ifp = &sc->sc_ethercom.ec_if;
1532 hme_stop(ifp, 1);
1533
1534 return true;
1535 }
1536
1537 /*
1538 * Set up the logical address filter.
1539 */
1540 void
1541 hme_setladrf(struct hme_softc *sc)
1542 {
1543 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1544 struct ether_multi *enm;
1545 struct ether_multistep step;
1546 struct ethercom *ec = &sc->sc_ethercom;
1547 bus_space_tag_t t = sc->sc_bustag;
1548 bus_space_handle_t mac = sc->sc_mac;
1549 uint32_t v;
1550 uint32_t crc;
1551 uint32_t hash[4];
1552
1553 /* Clear hash table */
1554 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1555
1556 /* Get current RX configuration */
1557 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1558
1559 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1560 /* Turn on promiscuous mode; turn off the hash filter */
1561 v |= HME_MAC_RXCFG_PMISC;
1562 v &= ~HME_MAC_RXCFG_HENABLE;
1563 ifp->if_flags |= IFF_ALLMULTI;
1564 goto chipit;
1565 }
1566
1567 /* Turn off promiscuous mode; turn on the hash filter */
1568 v &= ~HME_MAC_RXCFG_PMISC;
1569 v |= HME_MAC_RXCFG_HENABLE;
1570
1571 /*
1572 * Set up multicast address filter by passing all multicast addresses
1573 * through a crc generator, and then using the high order 6 bits as an
1574 * index into the 64 bit logical address filter. The high order bit
1575 * selects the word, while the rest of the bits select the bit within
1576 * the word.
1577 */
1578
1579 ETHER_FIRST_MULTI(step, ec, enm);
1580 while (enm != NULL) {
1581 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1582 /*
1583 * We must listen to a range of multicast addresses.
1584 * For now, just accept all multicasts, rather than
1585 * trying to set only those filter bits needed to match
1586 * the range. (At this time, the only use of address
1587 * ranges is for IP multicast routing, for which the
1588 * range is big enough to require all bits set.)
1589 */
1590 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1591 ifp->if_flags |= IFF_ALLMULTI;
1592 goto chipit;
1593 }
1594
1595 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1596
1597 /* Just want the 6 most significant bits. */
1598 crc >>= 26;
1599
1600 /* Set the corresponding bit in the filter. */
1601 hash[crc >> 4] |= 1 << (crc & 0xf);
1602
1603 ETHER_NEXT_MULTI(step, enm);
1604 }
1605
1606 ifp->if_flags &= ~IFF_ALLMULTI;
1607
1608 chipit:
1609 /* Now load the hash table into the chip */
1610 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1611 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1612 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1613 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1614 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1615 }
1616
1617 /*
1618 * Routines for accessing the transmit and receive buffers.
1619 * The various CPU and adapter configurations supported by this
1620 * driver require three different access methods for buffers
1621 * and descriptors:
1622 * (1) contig (contiguous data; no padding),
1623 * (2) gap2 (two bytes of data followed by two bytes of padding),
1624 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1625 */
1626
1627 #if 0
1628 /*
1629 * contig: contiguous data with no padding.
1630 *
1631 * Buffers may have any alignment.
1632 */
1633
1634 void
1635 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1636 {
1637 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1638
1639 /*
1640 * Just call memcpy() to do the work.
1641 */
1642 memcpy(buf, from, len);
1643 }
1644
1645 void
1646 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1647 {
1648 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1649
1650 /*
1651 * Just call memcpy() to do the work.
1652 */
1653 memcpy(to, buf, len);
1654 }
1655 #endif
1656