Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.89
      1 /*	$NetBSD: hme.c,v 1.89 2012/07/22 14:32:57 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.89 2012/07/22 14:32:57 matt Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/syslog.h>
     48 #include <sys/socket.h>
     49 #include <sys/device.h>
     50 #include <sys/malloc.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/errno.h>
     53 #include <sys/rnd.h>
     54 
     55 #include <net/if.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_ether.h>
     58 #include <net/if_media.h>
     59 
     60 #ifdef INET
     61 #include <net/if_vlanvar.h>
     62 #include <netinet/in.h>
     63 #include <netinet/if_inarp.h>
     64 #include <netinet/in_systm.h>
     65 #include <netinet/in_var.h>
     66 #include <netinet/ip.h>
     67 #include <netinet/tcp.h>
     68 #include <netinet/udp.h>
     69 #endif
     70 
     71 
     72 #include <net/bpf.h>
     73 #include <net/bpfdesc.h>
     74 
     75 #include <dev/mii/mii.h>
     76 #include <dev/mii/miivar.h>
     77 
     78 #include <sys/bus.h>
     79 
     80 #include <dev/ic/hmereg.h>
     81 #include <dev/ic/hmevar.h>
     82 
     83 static void	hme_start(struct ifnet *);
     84 static void	hme_stop(struct ifnet *, int);
     85 static int	hme_ioctl(struct ifnet *, u_long, void *);
     86 static void	hme_tick(void *);
     87 static void	hme_watchdog(struct ifnet *);
     88 static bool	hme_shutdown(device_t, int);
     89 static int	hme_init(struct ifnet *);
     90 static void	hme_meminit(struct hme_softc *);
     91 static void	hme_mifinit(struct hme_softc *);
     92 static void	hme_reset(struct hme_softc *);
     93 static void	hme_chipreset(struct hme_softc *);
     94 static void	hme_setladrf(struct hme_softc *);
     95 
     96 /* MII methods & callbacks */
     97 static int	hme_mii_readreg(device_t, int, int);
     98 static void	hme_mii_writereg(device_t, int, int, int);
     99 static void	hme_mii_statchg(struct ifnet *);
    100 
    101 static int	hme_mediachange(struct ifnet *);
    102 
    103 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
    104 static int	hme_put(struct hme_softc *, int, struct mbuf *);
    105 static void	hme_read(struct hme_softc *, int, uint32_t);
    106 static int	hme_eint(struct hme_softc *, u_int);
    107 static int	hme_rint(struct hme_softc *);
    108 static int	hme_tint(struct hme_softc *);
    109 
    110 #if 0
    111 /* Default buffer copy routines */
    112 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    113 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    114 #endif
    115 
    116 void
    117 hme_config(struct hme_softc *sc)
    118 {
    119 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    120 	struct mii_data *mii = &sc->sc_mii;
    121 	struct mii_softc *child;
    122 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    123 	bus_dma_segment_t seg;
    124 	bus_size_t size;
    125 	int rseg, error;
    126 
    127 	/*
    128 	 * HME common initialization.
    129 	 *
    130 	 * hme_softc fields that must be initialized by the front-end:
    131 	 *
    132 	 * the bus tag:
    133 	 *	sc_bustag
    134 	 *
    135 	 * the DMA bus tag:
    136 	 *	sc_dmatag
    137 	 *
    138 	 * the bus handles:
    139 	 *	sc_seb		(Shared Ethernet Block registers)
    140 	 *	sc_erx		(Receiver Unit registers)
    141 	 *	sc_etx		(Transmitter Unit registers)
    142 	 *	sc_mac		(MAC registers)
    143 	 *	sc_mif		(Management Interface registers)
    144 	 *
    145 	 * the maximum bus burst size:
    146 	 *	sc_burst
    147 	 *
    148 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    149 	 *	rb_membase, rb_dmabase)
    150 	 *
    151 	 * the local Ethernet address:
    152 	 *	sc_enaddr
    153 	 *
    154 	 */
    155 
    156 	/* Make sure the chip is stopped. */
    157 	hme_chipreset(sc);
    158 
    159 	/*
    160 	 * Allocate descriptors and buffers
    161 	 * XXX - do all this differently.. and more configurably,
    162 	 * eg. use things as `dma_load_mbuf()' on transmit,
    163 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    164 	 *     all the time) on the receiver side.
    165 	 *
    166 	 * Note: receive buffers must be 64-byte aligned.
    167 	 * Also, apparently, the buffers must extend to a DMA burst
    168 	 * boundary beyond the maximum packet size.
    169 	 */
    170 #define _HME_NDESC	128
    171 #define _HME_BUFSZ	1600
    172 
    173 	/* Note: the # of descriptors must be a multiple of 16 */
    174 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    175 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    176 
    177 	/*
    178 	 * Allocate DMA capable memory
    179 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    180 	 * take this into account when calculating the size. Note that
    181 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    182 	 * so we allocate that much regardless of _HME_NDESC.
    183 	 */
    184 	size =	2048 +					/* TX descriptors */
    185 		2048 +					/* RX descriptors */
    186 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    187 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    188 
    189 	/* Allocate DMA buffer */
    190 	if ((error = bus_dmamem_alloc(dmatag, size,
    191 				      2048, 0,
    192 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    193 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
    194 			error);
    195 		return;
    196 	}
    197 
    198 	/* Map DMA memory in CPU addressable space */
    199 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    200 				    &sc->sc_rb.rb_membase,
    201 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    202 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
    203 			error);
    204 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    205 		bus_dmamem_free(dmatag, &seg, rseg);
    206 		return;
    207 	}
    208 
    209 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    210 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    211 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
    212 			error);
    213 		return;
    214 	}
    215 
    216 	/* Load the buffer */
    217 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    218 	    sc->sc_rb.rb_membase, size, NULL,
    219 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    220 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
    221 			error);
    222 		bus_dmamem_free(dmatag, &seg, rseg);
    223 		return;
    224 	}
    225 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    226 
    227 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    228 	    ether_sprintf(sc->sc_enaddr));
    229 
    230 	/* Initialize ifnet structure. */
    231 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    232 	ifp->if_softc = sc;
    233 	ifp->if_start = hme_start;
    234 	ifp->if_stop = hme_stop;
    235 	ifp->if_ioctl = hme_ioctl;
    236 	ifp->if_init = hme_init;
    237 	ifp->if_watchdog = hme_watchdog;
    238 	ifp->if_flags =
    239 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    240 	sc->sc_if_flags = ifp->if_flags;
    241 	ifp->if_capabilities |=
    242 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    243 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    244 	IFQ_SET_READY(&ifp->if_snd);
    245 
    246 	/* Initialize ifmedia structures and MII info */
    247 	mii->mii_ifp = ifp;
    248 	mii->mii_readreg = hme_mii_readreg;
    249 	mii->mii_writereg = hme_mii_writereg;
    250 	mii->mii_statchg = hme_mii_statchg;
    251 
    252 	sc->sc_ethercom.ec_mii = mii;
    253 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    254 
    255 	hme_mifinit(sc);
    256 
    257 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    258 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    259 
    260 	child = LIST_FIRST(&mii->mii_phys);
    261 	if (child == NULL) {
    262 		/* No PHY attached */
    263 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    264 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    265 	} else {
    266 		/*
    267 		 * Walk along the list of attached MII devices and
    268 		 * establish an `MII instance' to `phy number'
    269 		 * mapping. We'll use this mapping in media change
    270 		 * requests to determine which phy to use to program
    271 		 * the MIF configuration register.
    272 		 */
    273 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    274 			/*
    275 			 * Note: we support just two PHYs: the built-in
    276 			 * internal device and an external on the MII
    277 			 * connector.
    278 			 */
    279 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    280 				aprint_error_dev(sc->sc_dev,
    281 				    "cannot accommodate MII device %s"
    282 				       " at phy %d, instance %d\n",
    283 				       device_xname(child->mii_dev),
    284 				       child->mii_phy, child->mii_inst);
    285 				continue;
    286 			}
    287 
    288 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    289 		}
    290 
    291 		/*
    292 		 * Set the default media to auto negotiation if the phy has
    293 		 * the auto negotiation capability.
    294 		 * XXX; What to do otherwise?
    295 		 */
    296 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
    297 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    298 /*
    299 		else
    300 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
    301 */
    302 	}
    303 
    304 	/* claim 802.1q capability */
    305 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    306 
    307 	/* Attach the interface. */
    308 	if_attach(ifp);
    309 	ether_ifattach(ifp, sc->sc_enaddr);
    310 
    311 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
    312 		pmf_class_network_register(sc->sc_dev, ifp);
    313 	else
    314 		aprint_error_dev(sc->sc_dev,
    315 		    "couldn't establish power handler\n");
    316 
    317 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    318 			  RND_TYPE_NET, 0);
    319 
    320 	callout_init(&sc->sc_tick_ch, 0);
    321 }
    322 
    323 void
    324 hme_tick(void *arg)
    325 {
    326 	struct hme_softc *sc = arg;
    327 	int s;
    328 
    329 	s = splnet();
    330 	mii_tick(&sc->sc_mii);
    331 	splx(s);
    332 
    333 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    334 }
    335 
    336 void
    337 hme_reset(struct hme_softc *sc)
    338 {
    339 	int s;
    340 
    341 	s = splnet();
    342 	(void)hme_init(&sc->sc_ethercom.ec_if);
    343 	splx(s);
    344 }
    345 
    346 void
    347 hme_chipreset(struct hme_softc *sc)
    348 {
    349 	bus_space_tag_t t = sc->sc_bustag;
    350 	bus_space_handle_t seb = sc->sc_seb;
    351 	int n;
    352 
    353 	/* Mask all interrupts */
    354 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    355 
    356 	/* Reset transmitter and receiver */
    357 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    358 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    359 
    360 	for (n = 0; n < 20; n++) {
    361 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    362 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    363 			return;
    364 		DELAY(20);
    365 	}
    366 
    367 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
    368 }
    369 
    370 void
    371 hme_stop(struct ifnet *ifp, int disable)
    372 {
    373 	struct hme_softc *sc;
    374 
    375 	sc = ifp->if_softc;
    376 
    377 	ifp->if_timer = 0;
    378 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    379 
    380 	callout_stop(&sc->sc_tick_ch);
    381 	mii_down(&sc->sc_mii);
    382 
    383 	hme_chipreset(sc);
    384 }
    385 
    386 void
    387 hme_meminit(struct hme_softc *sc)
    388 {
    389 	bus_addr_t txbufdma, rxbufdma;
    390 	bus_addr_t dma;
    391 	char *p;
    392 	unsigned int ntbuf, nrbuf, i;
    393 	struct hme_ring *hr = &sc->sc_rb;
    394 
    395 	p = hr->rb_membase;
    396 	dma = hr->rb_dmabase;
    397 
    398 	ntbuf = hr->rb_ntbuf;
    399 	nrbuf = hr->rb_nrbuf;
    400 
    401 	/*
    402 	 * Allocate transmit descriptors
    403 	 */
    404 	hr->rb_txd = p;
    405 	hr->rb_txddma = dma;
    406 	p += ntbuf * HME_XD_SIZE;
    407 	dma += ntbuf * HME_XD_SIZE;
    408 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    409 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    410 	p = (void *)roundup((u_long)p, 2048);
    411 
    412 	/*
    413 	 * Allocate receive descriptors
    414 	 */
    415 	hr->rb_rxd = p;
    416 	hr->rb_rxddma = dma;
    417 	p += nrbuf * HME_XD_SIZE;
    418 	dma += nrbuf * HME_XD_SIZE;
    419 	/* Again move forward to the next 2048 byte boundary.*/
    420 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    421 	p = (void *)roundup((u_long)p, 2048);
    422 
    423 
    424 	/*
    425 	 * Allocate transmit buffers
    426 	 */
    427 	hr->rb_txbuf = p;
    428 	txbufdma = dma;
    429 	p += ntbuf * _HME_BUFSZ;
    430 	dma += ntbuf * _HME_BUFSZ;
    431 
    432 	/*
    433 	 * Allocate receive buffers
    434 	 */
    435 	hr->rb_rxbuf = p;
    436 	rxbufdma = dma;
    437 	p += nrbuf * _HME_BUFSZ;
    438 	dma += nrbuf * _HME_BUFSZ;
    439 
    440 	/*
    441 	 * Initialize transmit buffer descriptors
    442 	 */
    443 	for (i = 0; i < ntbuf; i++) {
    444 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    445 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    446 	}
    447 
    448 	/*
    449 	 * Initialize receive buffer descriptors
    450 	 */
    451 	for (i = 0; i < nrbuf; i++) {
    452 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    453 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    454 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    455 	}
    456 
    457 	hr->rb_tdhead = hr->rb_tdtail = 0;
    458 	hr->rb_td_nbusy = 0;
    459 	hr->rb_rdtail = 0;
    460 }
    461 
    462 /*
    463  * Initialization of interface; set up initialization block
    464  * and transmit/receive descriptor rings.
    465  */
    466 int
    467 hme_init(struct ifnet *ifp)
    468 {
    469 	struct hme_softc *sc = ifp->if_softc;
    470 	bus_space_tag_t t = sc->sc_bustag;
    471 	bus_space_handle_t seb = sc->sc_seb;
    472 	bus_space_handle_t etx = sc->sc_etx;
    473 	bus_space_handle_t erx = sc->sc_erx;
    474 	bus_space_handle_t mac = sc->sc_mac;
    475 	uint8_t *ea;
    476 	uint32_t v;
    477 	int rc;
    478 
    479 	/*
    480 	 * Initialization sequence. The numbered steps below correspond
    481 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    482 	 * Channel Engine manual (part of the PCIO manual).
    483 	 * See also the STP2002-STQ document from Sun Microsystems.
    484 	 */
    485 
    486 	/* step 1 & 2. Reset the Ethernet Channel */
    487 	hme_stop(ifp, 0);
    488 
    489 	/* Re-initialize the MIF */
    490 	hme_mifinit(sc);
    491 
    492 	/* Call MI reset function if any */
    493 	if (sc->sc_hwreset)
    494 		(*sc->sc_hwreset)(sc);
    495 
    496 #if 0
    497 	/* Mask all MIF interrupts, just in case */
    498 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    499 #endif
    500 
    501 	/* step 3. Setup data structures in host memory */
    502 	hme_meminit(sc);
    503 
    504 	/* step 4. TX MAC registers & counters */
    505 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    506 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    507 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    508 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    509 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    510 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    511 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    512 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    513 
    514 	/* Load station MAC address */
    515 	ea = sc->sc_enaddr;
    516 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    517 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    518 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    519 
    520 	/*
    521 	 * Init seed for backoff
    522 	 * (source suggested by manual: low 10 bits of MAC address)
    523 	 */
    524 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    525 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    526 
    527 
    528 	/* Note: Accepting power-on default for other MAC registers here.. */
    529 
    530 
    531 	/* step 5. RX MAC registers & counters */
    532 	hme_setladrf(sc);
    533 
    534 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    535 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    536 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    537 
    538 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    539 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    540 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    541 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    542 
    543 	/* step 8. Global Configuration & Interrupt Mask */
    544 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    545 			~(
    546 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    547 			  HME_SEB_STAT_HOSTTOTX |
    548 			  HME_SEB_STAT_RXTOHOST |
    549 			  HME_SEB_STAT_TXALL |
    550 			  HME_SEB_STAT_TXPERR |
    551 			  HME_SEB_STAT_RCNTEXP |
    552 			  HME_SEB_STAT_MIFIRQ |
    553 			  HME_SEB_STAT_ALL_ERRORS ));
    554 
    555 	switch (sc->sc_burst) {
    556 	default:
    557 		v = 0;
    558 		break;
    559 	case 16:
    560 		v = HME_SEB_CFG_BURST16;
    561 		break;
    562 	case 32:
    563 		v = HME_SEB_CFG_BURST32;
    564 		break;
    565 	case 64:
    566 		v = HME_SEB_CFG_BURST64;
    567 		break;
    568 	}
    569 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    570 
    571 	/* step 9. ETX Configuration: use mostly default values */
    572 
    573 	/* Enable DMA */
    574 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    575 	v |= HME_ETX_CFG_DMAENABLE;
    576 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    577 
    578 	/* Transmit Descriptor ring size: in increments of 16 */
    579 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    580 
    581 
    582 	/* step 10. ERX Configuration */
    583 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    584 
    585 	/* Encode Receive Descriptor ring size: four possible values */
    586 	switch (_HME_NDESC /*XXX*/) {
    587 	case 32:
    588 		v |= HME_ERX_CFG_RINGSIZE32;
    589 		break;
    590 	case 64:
    591 		v |= HME_ERX_CFG_RINGSIZE64;
    592 		break;
    593 	case 128:
    594 		v |= HME_ERX_CFG_RINGSIZE128;
    595 		break;
    596 	case 256:
    597 		v |= HME_ERX_CFG_RINGSIZE256;
    598 		break;
    599 	default:
    600 		printf("hme: invalid Receive Descriptor ring size\n");
    601 		break;
    602 	}
    603 
    604 	/* Enable DMA */
    605 	v |= HME_ERX_CFG_DMAENABLE;
    606 
    607 	/* set h/w rx checksum start offset (# of half-words) */
    608 #ifdef INET
    609 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    610 		<< HME_ERX_CFG_CSUMSHIFT) &
    611 		HME_ERX_CFG_CSUMSTART;
    612 #endif
    613 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    614 
    615 	/* step 11. XIF Configuration */
    616 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    617 	v |= HME_MAC_XIF_OE;
    618 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    619 
    620 	/* step 12. RX_MAC Configuration Register */
    621 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    622 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    623 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    624 
    625 	/* step 13. TX_MAC Configuration Register */
    626 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    627 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    628 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    629 
    630 	/* step 14. Issue Transmit Pending command */
    631 
    632 	/* Call MI initialization function if any */
    633 	if (sc->sc_hwinit)
    634 		(*sc->sc_hwinit)(sc);
    635 
    636 	/* Set the current media. */
    637 	if ((rc = hme_mediachange(ifp)) != 0)
    638 		return rc;
    639 
    640 	/* Start the one second timer. */
    641 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    642 
    643 	ifp->if_flags |= IFF_RUNNING;
    644 	ifp->if_flags &= ~IFF_OACTIVE;
    645 	sc->sc_if_flags = ifp->if_flags;
    646 	ifp->if_timer = 0;
    647 	hme_start(ifp);
    648 	return 0;
    649 }
    650 
    651 /*
    652  * Routine to copy from mbuf chain to transmit buffer in
    653  * network buffer memory.
    654  * Returns the amount of data copied.
    655  */
    656 int
    657 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    658 	/* ri:			 Ring index */
    659 {
    660 	struct mbuf *n;
    661 	int len, tlen = 0;
    662 	char *bp;
    663 
    664 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    665 	for (; m; m = n) {
    666 		len = m->m_len;
    667 		if (len == 0) {
    668 			MFREE(m, n);
    669 			continue;
    670 		}
    671 		memcpy(bp, mtod(m, void *), len);
    672 		bp += len;
    673 		tlen += len;
    674 		MFREE(m, n);
    675 	}
    676 	return (tlen);
    677 }
    678 
    679 /*
    680  * Pull data off an interface.
    681  * Len is length of data, with local net header stripped.
    682  * We copy the data into mbufs.  When full cluster sized units are present
    683  * we copy into clusters.
    684  */
    685 struct mbuf *
    686 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    687 {
    688 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    689 	struct mbuf *m, *m0, *newm;
    690 	char *bp;
    691 	int len, totlen;
    692 #ifdef INET
    693 	int csum_flags;
    694 #endif
    695 
    696 	totlen = HME_XD_DECODE_RSIZE(flags);
    697 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    698 	if (m0 == 0)
    699 		return (0);
    700 	m0->m_pkthdr.rcvif = ifp;
    701 	m0->m_pkthdr.len = totlen;
    702 	len = MHLEN;
    703 	m = m0;
    704 
    705 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    706 
    707 	while (totlen > 0) {
    708 		if (totlen >= MINCLSIZE) {
    709 			MCLGET(m, M_DONTWAIT);
    710 			if ((m->m_flags & M_EXT) == 0)
    711 				goto bad;
    712 			len = MCLBYTES;
    713 		}
    714 
    715 		if (m == m0) {
    716 			char *newdata = (char *)
    717 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    718 			    sizeof(struct ether_header);
    719 			len -= newdata - m->m_data;
    720 			m->m_data = newdata;
    721 		}
    722 
    723 		m->m_len = len = min(totlen, len);
    724 		memcpy(mtod(m, void *), bp, len);
    725 		bp += len;
    726 
    727 		totlen -= len;
    728 		if (totlen > 0) {
    729 			MGET(newm, M_DONTWAIT, MT_DATA);
    730 			if (newm == 0)
    731 				goto bad;
    732 			len = MLEN;
    733 			m = m->m_next = newm;
    734 		}
    735 	}
    736 
    737 #ifdef INET
    738 	/* hardware checksum */
    739 	csum_flags = 0;
    740 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    741 		struct ether_header *eh;
    742 		struct ether_vlan_header *evh;
    743 		struct ip *ip;
    744 		struct udphdr *uh;
    745 		uint16_t *opts;
    746 		int32_t hlen, pktlen;
    747 		uint32_t csum_data;
    748 
    749 		eh = mtod(m0, struct ether_header *);
    750 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    751 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    752 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    753 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    754 			evh = (struct ether_vlan_header *)eh;
    755 			if (ntohs(evh->evl_proto != ETHERTYPE_IP))
    756 				goto swcsum;
    757 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    758 			    ETHER_VLAN_ENCAP_LEN);
    759 			pktlen = m0->m_pkthdr.len -
    760 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    761 		} else
    762 			goto swcsum;
    763 
    764 		/* IPv4 only */
    765 		if (ip->ip_v != IPVERSION)
    766 			goto swcsum;
    767 
    768 		hlen = ip->ip_hl << 2;
    769 		if (hlen < sizeof(struct ip))
    770 			goto swcsum;
    771 
    772 		/*
    773 		 * bail if too short, has random trailing garbage, truncated,
    774 		 * fragment, or has ethernet pad.
    775 		 */
    776 		if (ntohs(ip->ip_len) < hlen ||
    777 		    ntohs(ip->ip_len) != pktlen ||
    778 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    779 			goto swcsum;
    780 
    781 		switch (ip->ip_p) {
    782 		case IPPROTO_TCP:
    783 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    784 				goto swcsum;
    785 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    786 				goto swcsum;
    787 			csum_flags =
    788 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    789 			break;
    790 		case IPPROTO_UDP:
    791 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    792 				goto swcsum;
    793 			if (pktlen < (hlen + sizeof(struct udphdr)))
    794 				goto swcsum;
    795 			uh = (struct udphdr *)((char *)ip + hlen);
    796 			/* no checksum */
    797 			if (uh->uh_sum == 0)
    798 				goto swcsum;
    799 			csum_flags =
    800 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    801 			break;
    802 		default:
    803 			goto swcsum;
    804 		}
    805 
    806 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    807 		csum_data = ~flags & HME_XD_RXCKSUM;
    808 
    809 		/*
    810 		 * If data offset is different from RX cksum start offset,
    811 		 * we have to deduct them.
    812 		 */
    813 		hlen = ((char *)ip + hlen) -
    814 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    815 		if (hlen > 1) {
    816 			uint32_t optsum;
    817 
    818 			optsum = 0;
    819 			opts = (uint16_t *)((char *)eh +
    820 			    ETHER_HDR_LEN + sizeof(struct ip));
    821 
    822 			while (hlen > 1) {
    823 				optsum += ntohs(*opts++);
    824 				hlen -= 2;
    825 			}
    826 			while (optsum >> 16)
    827 				optsum = (optsum >> 16) + (optsum & 0xffff);
    828 
    829 			/* Deduct the ip opts sum from the hwsum. */
    830 			csum_data += (uint16_t)~optsum;
    831 
    832 			while (csum_data >> 16)
    833 				csum_data =
    834 				    (csum_data >> 16) + (csum_data & 0xffff);
    835 		}
    836 		m0->m_pkthdr.csum_data = csum_data;
    837 	}
    838 swcsum:
    839 	m0->m_pkthdr.csum_flags = csum_flags;
    840 #endif
    841 
    842 	return (m0);
    843 
    844 bad:
    845 	m_freem(m0);
    846 	return (0);
    847 }
    848 
    849 /*
    850  * Pass a packet to the higher levels.
    851  */
    852 void
    853 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    854 {
    855 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    856 	struct mbuf *m;
    857 	int len;
    858 
    859 	len = HME_XD_DECODE_RSIZE(flags);
    860 	if (len <= sizeof(struct ether_header) ||
    861 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    862 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    863 	    ETHERMTU + sizeof(struct ether_header))) {
    864 #ifdef HMEDEBUG
    865 		printf("%s: invalid packet size %d; dropping\n",
    866 		    device_xname(sc->sc_dev), len);
    867 #endif
    868 		ifp->if_ierrors++;
    869 		return;
    870 	}
    871 
    872 	/* Pull packet off interface. */
    873 	m = hme_get(sc, ix, flags);
    874 	if (m == 0) {
    875 		ifp->if_ierrors++;
    876 		return;
    877 	}
    878 
    879 	ifp->if_ipackets++;
    880 
    881 	/*
    882 	 * Check if there's a BPF listener on this interface.
    883 	 * If so, hand off the raw packet to BPF.
    884 	 */
    885 	bpf_mtap(ifp, m);
    886 
    887 	/* Pass the packet up. */
    888 	(*ifp->if_input)(ifp, m);
    889 }
    890 
    891 void
    892 hme_start(struct ifnet *ifp)
    893 {
    894 	struct hme_softc *sc = ifp->if_softc;
    895 	void *txd = sc->sc_rb.rb_txd;
    896 	struct mbuf *m;
    897 	unsigned int txflags;
    898 	unsigned int ri, len, obusy;
    899 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    900 
    901 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    902 		return;
    903 
    904 	ri = sc->sc_rb.rb_tdhead;
    905 	obusy = sc->sc_rb.rb_td_nbusy;
    906 
    907 	for (;;) {
    908 		IFQ_DEQUEUE(&ifp->if_snd, m);
    909 		if (m == 0)
    910 			break;
    911 
    912 		/*
    913 		 * If BPF is listening on this interface, let it see the
    914 		 * packet before we commit it to the wire.
    915 		 */
    916 		bpf_mtap(ifp, m);
    917 
    918 #ifdef INET
    919 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    920 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    921 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    922 			struct ether_header *eh;
    923 			uint16_t offset, start;
    924 
    925 			eh = mtod(m, struct ether_header *);
    926 			switch (ntohs(eh->ether_type)) {
    927 			case ETHERTYPE_IP:
    928 				start = ETHER_HDR_LEN;
    929 				break;
    930 			case ETHERTYPE_VLAN:
    931 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    932 				break;
    933 			default:
    934 				/* unsupported, drop it */
    935 				m_free(m);
    936 				continue;
    937 			}
    938 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    939 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    940 			    + start;
    941 			txflags = HME_XD_TXCKSUM |
    942 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    943 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    944 		} else
    945 #endif
    946 			txflags = 0;
    947 
    948 		/*
    949 		 * Copy the mbuf chain into the transmit buffer.
    950 		 */
    951 		len = hme_put(sc, ri, m);
    952 
    953 		/*
    954 		 * Initialize transmit registers and start transmission
    955 		 */
    956 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    957 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    958 			HME_XD_ENCODE_TSIZE(len) | txflags);
    959 
    960 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    961 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    962 				  HME_ETX_TP_DMAWAKEUP);
    963 
    964 		if (++ri == ntbuf)
    965 			ri = 0;
    966 
    967 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    968 			ifp->if_flags |= IFF_OACTIVE;
    969 			break;
    970 		}
    971 	}
    972 
    973 	if (obusy != sc->sc_rb.rb_td_nbusy) {
    974 		sc->sc_rb.rb_tdhead = ri;
    975 		ifp->if_timer = 5;
    976 	}
    977 }
    978 
    979 /*
    980  * Transmit interrupt.
    981  */
    982 int
    983 hme_tint(struct hme_softc *sc)
    984 {
    985 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    986 	bus_space_tag_t t = sc->sc_bustag;
    987 	bus_space_handle_t mac = sc->sc_mac;
    988 	unsigned int ri, txflags;
    989 
    990 	/*
    991 	 * Unload collision counters
    992 	 */
    993 	ifp->if_collisions +=
    994 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    995 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
    996 	ifp->if_oerrors +=
    997 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    998 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    999 
   1000 	/*
   1001 	 * then clear the hardware counters.
   1002 	 */
   1003 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
   1004 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
   1005 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
   1006 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
   1007 
   1008 	/* Fetch current position in the transmit ring */
   1009 	ri = sc->sc_rb.rb_tdtail;
   1010 
   1011 	for (;;) {
   1012 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1013 			break;
   1014 
   1015 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1016 
   1017 		if (txflags & HME_XD_OWN)
   1018 			break;
   1019 
   1020 		ifp->if_flags &= ~IFF_OACTIVE;
   1021 		ifp->if_opackets++;
   1022 
   1023 		if (++ri == sc->sc_rb.rb_ntbuf)
   1024 			ri = 0;
   1025 
   1026 		--sc->sc_rb.rb_td_nbusy;
   1027 	}
   1028 
   1029 	/* Update ring */
   1030 	sc->sc_rb.rb_tdtail = ri;
   1031 
   1032 	hme_start(ifp);
   1033 
   1034 	if (sc->sc_rb.rb_td_nbusy == 0)
   1035 		ifp->if_timer = 0;
   1036 
   1037 	return (1);
   1038 }
   1039 
   1040 /*
   1041  * Receive interrupt.
   1042  */
   1043 int
   1044 hme_rint(struct hme_softc *sc)
   1045 {
   1046 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1047 	bus_space_tag_t t = sc->sc_bustag;
   1048 	bus_space_handle_t mac = sc->sc_mac;
   1049 	void *xdr = sc->sc_rb.rb_rxd;
   1050 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1051 	unsigned int ri;
   1052 	uint32_t flags;
   1053 
   1054 	ri = sc->sc_rb.rb_rdtail;
   1055 
   1056 	/*
   1057 	 * Process all buffers with valid data.
   1058 	 */
   1059 	for (;;) {
   1060 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1061 		if (flags & HME_XD_OWN)
   1062 			break;
   1063 
   1064 		if (flags & HME_XD_OFL) {
   1065 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1066 					device_xname(sc->sc_dev), ri, flags);
   1067 		} else
   1068 			hme_read(sc, ri, flags);
   1069 
   1070 		/* This buffer can be used by the hardware again */
   1071 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1072 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1073 
   1074 		if (++ri == nrbuf)
   1075 			ri = 0;
   1076 	}
   1077 
   1078 	sc->sc_rb.rb_rdtail = ri;
   1079 
   1080 	/* Read error counters ... */
   1081 	ifp->if_ierrors +=
   1082 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
   1083 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
   1084 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
   1085 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
   1086 
   1087 	/* ... then clear the hardware counters. */
   1088 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
   1089 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
   1090 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
   1091 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
   1092 	return (1);
   1093 }
   1094 
   1095 int
   1096 hme_eint(struct hme_softc *sc, u_int status)
   1097 {
   1098 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1099 	char bits[128];
   1100 
   1101 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1102 		bus_space_tag_t t = sc->sc_bustag;
   1103 		bus_space_handle_t mif = sc->sc_mif;
   1104 		uint32_t cf, st, sm;
   1105 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1106 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1107 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1108 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1109 			device_xname(sc->sc_dev), cf, st, sm);
   1110 		return (1);
   1111 	}
   1112 
   1113 	/* Receive error counters rolled over */
   1114 	if (status & HME_SEB_STAT_ACNTEXP)
   1115 		ifp->if_ierrors += 0xff;
   1116 	if (status & HME_SEB_STAT_CCNTEXP)
   1117 		ifp->if_ierrors += 0xff;
   1118 	if (status & HME_SEB_STAT_LCNTEXP)
   1119 		ifp->if_ierrors += 0xff;
   1120 	if (status & HME_SEB_STAT_CVCNTEXP)
   1121 		ifp->if_ierrors += 0xff;
   1122 
   1123 	/* RXTERR locks up the interface, so do a reset */
   1124 	if (status & HME_SEB_STAT_RXTERR)
   1125 		hme_reset(sc);
   1126 
   1127 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1128 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   1129 
   1130 	return (1);
   1131 }
   1132 
   1133 int
   1134 hme_intr(void *v)
   1135 {
   1136 	struct hme_softc *sc = v;
   1137 	bus_space_tag_t t = sc->sc_bustag;
   1138 	bus_space_handle_t seb = sc->sc_seb;
   1139 	uint32_t status;
   1140 	int r = 0;
   1141 
   1142 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1143 
   1144 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1145 		r |= hme_eint(sc, status);
   1146 
   1147 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1148 		r |= hme_tint(sc);
   1149 
   1150 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1151 		r |= hme_rint(sc);
   1152 
   1153 	rnd_add_uint32(&sc->rnd_source, status);
   1154 
   1155 	return (r);
   1156 }
   1157 
   1158 
   1159 void
   1160 hme_watchdog(struct ifnet *ifp)
   1161 {
   1162 	struct hme_softc *sc = ifp->if_softc;
   1163 
   1164 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1165 	++ifp->if_oerrors;
   1166 
   1167 	hme_reset(sc);
   1168 }
   1169 
   1170 /*
   1171  * Initialize the MII Management Interface
   1172  */
   1173 void
   1174 hme_mifinit(struct hme_softc *sc)
   1175 {
   1176 	bus_space_tag_t t = sc->sc_bustag;
   1177 	bus_space_handle_t mif = sc->sc_mif;
   1178 	bus_space_handle_t mac = sc->sc_mac;
   1179 	int instance, phy;
   1180 	uint32_t v;
   1181 
   1182 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1183 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1184 		phy = sc->sc_phys[instance];
   1185 	} else
   1186 		/* No media set yet, pick phy arbitrarily.. */
   1187 		phy = HME_PHYAD_EXTERNAL;
   1188 
   1189 	/* Configure the MIF in frame mode, no poll, current phy select */
   1190 	v = 0;
   1191 	if (phy == HME_PHYAD_EXTERNAL)
   1192 		v |= HME_MIF_CFG_PHY;
   1193 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1194 
   1195 	/* If an external transceiver is selected, enable its MII drivers */
   1196 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1197 	v &= ~HME_MAC_XIF_MIIENABLE;
   1198 	if (phy == HME_PHYAD_EXTERNAL)
   1199 		v |= HME_MAC_XIF_MIIENABLE;
   1200 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1201 }
   1202 
   1203 /*
   1204  * MII interface
   1205  */
   1206 static int
   1207 hme_mii_readreg(device_t self, int phy, int reg)
   1208 {
   1209 	struct hme_softc *sc = device_private(self);
   1210 	bus_space_tag_t t = sc->sc_bustag;
   1211 	bus_space_handle_t mif = sc->sc_mif;
   1212 	bus_space_handle_t mac = sc->sc_mac;
   1213 	uint32_t v, xif_cfg, mifi_cfg;
   1214 	int n;
   1215 
   1216 	/* We can at most have two PHYs */
   1217 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1218 		return (0);
   1219 
   1220 	/* Select the desired PHY in the MIF configuration register */
   1221 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1222 	v &= ~HME_MIF_CFG_PHY;
   1223 	if (phy == HME_PHYAD_EXTERNAL)
   1224 		v |= HME_MIF_CFG_PHY;
   1225 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1226 
   1227 	/* Enable MII drivers on external transceiver */
   1228 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1229 	if (phy == HME_PHYAD_EXTERNAL)
   1230 		v |= HME_MAC_XIF_MIIENABLE;
   1231 	else
   1232 		v &= ~HME_MAC_XIF_MIIENABLE;
   1233 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1234 
   1235 #if 0
   1236 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1237 	/*
   1238 	 * Check whether a transceiver is connected by testing
   1239 	 * the MIF configuration register's MDI_X bits. Note that
   1240 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1241 	 */
   1242 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1243 	delay(100);
   1244 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1245 	if ((v & mif_mdi_bit) == 0)
   1246 		return (0);
   1247 #endif
   1248 
   1249 	/* Construct the frame command */
   1250 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1251 	    HME_MIF_FO_TAMSB |
   1252 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1253 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1254 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1255 
   1256 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1257 	for (n = 0; n < 100; n++) {
   1258 		DELAY(1);
   1259 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1260 		if (v & HME_MIF_FO_TALSB) {
   1261 			v &= HME_MIF_FO_DATA;
   1262 			goto out;
   1263 		}
   1264 	}
   1265 
   1266 	v = 0;
   1267 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   1268 
   1269 out:
   1270 	/* Restore MIFI_CFG register */
   1271 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1272 	/* Restore XIF register */
   1273 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1274 	return (v);
   1275 }
   1276 
   1277 static void
   1278 hme_mii_writereg(device_t self, int phy, int reg, int val)
   1279 {
   1280 	struct hme_softc *sc = device_private(self);
   1281 	bus_space_tag_t t = sc->sc_bustag;
   1282 	bus_space_handle_t mif = sc->sc_mif;
   1283 	bus_space_handle_t mac = sc->sc_mac;
   1284 	uint32_t v, xif_cfg, mifi_cfg;
   1285 	int n;
   1286 
   1287 	/* We can at most have two PHYs */
   1288 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1289 		return;
   1290 
   1291 	/* Select the desired PHY in the MIF configuration register */
   1292 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1293 	v &= ~HME_MIF_CFG_PHY;
   1294 	if (phy == HME_PHYAD_EXTERNAL)
   1295 		v |= HME_MIF_CFG_PHY;
   1296 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1297 
   1298 	/* Enable MII drivers on external transceiver */
   1299 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1300 	if (phy == HME_PHYAD_EXTERNAL)
   1301 		v |= HME_MAC_XIF_MIIENABLE;
   1302 	else
   1303 		v &= ~HME_MAC_XIF_MIIENABLE;
   1304 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1305 
   1306 #if 0
   1307 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1308 	/*
   1309 	 * Check whether a transceiver is connected by testing
   1310 	 * the MIF configuration register's MDI_X bits. Note that
   1311 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1312 	 */
   1313 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1314 	delay(100);
   1315 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1316 	if ((v & mif_mdi_bit) == 0)
   1317 		return;
   1318 #endif
   1319 
   1320 	/* Construct the frame command */
   1321 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1322 	    HME_MIF_FO_TAMSB				|
   1323 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1324 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1325 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1326 	    (val & HME_MIF_FO_DATA);
   1327 
   1328 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1329 	for (n = 0; n < 100; n++) {
   1330 		DELAY(1);
   1331 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1332 		if (v & HME_MIF_FO_TALSB)
   1333 			goto out;
   1334 	}
   1335 
   1336 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   1337 out:
   1338 	/* Restore MIFI_CFG register */
   1339 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1340 	/* Restore XIF register */
   1341 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1342 }
   1343 
   1344 static void
   1345 hme_mii_statchg(struct ifnet *ifp)
   1346 {
   1347 	struct hme_softc *sc = ifp->if_softc;
   1348 	bus_space_tag_t t = sc->sc_bustag;
   1349 	bus_space_handle_t mac = sc->sc_mac;
   1350 	uint32_t v;
   1351 
   1352 #ifdef HMEDEBUG
   1353 	if (sc->sc_debug)
   1354 		printf("hme_mii_statchg: status change\n");
   1355 #endif
   1356 
   1357 	/* Set the MAC Full Duplex bit appropriately */
   1358 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1359 	   but not otherwise. */
   1360 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1361 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1362 		v |= HME_MAC_TXCFG_FULLDPLX;
   1363 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1364 	} else {
   1365 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1366 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1367 	}
   1368 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1369 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1370 }
   1371 
   1372 int
   1373 hme_mediachange(struct ifnet *ifp)
   1374 {
   1375 	struct hme_softc *sc = ifp->if_softc;
   1376 	bus_space_tag_t t = sc->sc_bustag;
   1377 	bus_space_handle_t mif = sc->sc_mif;
   1378 	bus_space_handle_t mac = sc->sc_mac;
   1379 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1380 	int phy = sc->sc_phys[instance];
   1381 	int rc;
   1382 	uint32_t v;
   1383 
   1384 #ifdef HMEDEBUG
   1385 	if (sc->sc_debug)
   1386 		printf("hme_mediachange: phy = %d\n", phy);
   1387 #endif
   1388 
   1389 	/* Select the current PHY in the MIF configuration register */
   1390 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1391 	v &= ~HME_MIF_CFG_PHY;
   1392 	if (phy == HME_PHYAD_EXTERNAL)
   1393 		v |= HME_MIF_CFG_PHY;
   1394 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1395 
   1396 	/* If an external transceiver is selected, enable its MII drivers */
   1397 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1398 	v &= ~HME_MAC_XIF_MIIENABLE;
   1399 	if (phy == HME_PHYAD_EXTERNAL)
   1400 		v |= HME_MAC_XIF_MIIENABLE;
   1401 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1402 
   1403 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1404 		return 0;
   1405 	return rc;
   1406 }
   1407 
   1408 /*
   1409  * Process an ioctl request.
   1410  */
   1411 int
   1412 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1413 {
   1414 	struct hme_softc *sc = ifp->if_softc;
   1415 	struct ifaddr *ifa = (struct ifaddr *)data;
   1416 	int s, error = 0;
   1417 
   1418 	s = splnet();
   1419 
   1420 	switch (cmd) {
   1421 
   1422 	case SIOCINITIFADDR:
   1423 		switch (ifa->ifa_addr->sa_family) {
   1424 #ifdef INET
   1425 		case AF_INET:
   1426 			if (ifp->if_flags & IFF_UP)
   1427 				hme_setladrf(sc);
   1428 			else {
   1429 				ifp->if_flags |= IFF_UP;
   1430 				error = hme_init(ifp);
   1431 			}
   1432 			arp_ifinit(ifp, ifa);
   1433 			break;
   1434 #endif
   1435 		default:
   1436 			ifp->if_flags |= IFF_UP;
   1437 			error = hme_init(ifp);
   1438 			break;
   1439 		}
   1440 		break;
   1441 
   1442 	case SIOCSIFFLAGS:
   1443 #ifdef HMEDEBUG
   1444 		{
   1445 			struct ifreq *ifr = data;
   1446 			sc->sc_debug =
   1447 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1448 		}
   1449 #endif
   1450 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1451 			break;
   1452 
   1453 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1454 		case IFF_RUNNING:
   1455 			/*
   1456 			 * If interface is marked down and it is running, then
   1457 			 * stop it.
   1458 			 */
   1459 			hme_stop(ifp, 0);
   1460 			ifp->if_flags &= ~IFF_RUNNING;
   1461 			break;
   1462 		case IFF_UP:
   1463 			/*
   1464 			 * If interface is marked up and it is stopped, then
   1465 			 * start it.
   1466 			 */
   1467 			error = hme_init(ifp);
   1468 			break;
   1469 		case IFF_UP|IFF_RUNNING:
   1470 			/*
   1471 			 * If setting debug or promiscuous mode, do not reset
   1472 			 * the chip; for everything else, call hme_init()
   1473 			 * which will trigger a reset.
   1474 			 */
   1475 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1476 			if (ifp->if_flags != sc->sc_if_flags) {
   1477 				if ((ifp->if_flags & (~RESETIGN))
   1478 				    == (sc->sc_if_flags & (~RESETIGN)))
   1479 					hme_setladrf(sc);
   1480 				else
   1481 					error = hme_init(ifp);
   1482 			}
   1483 #undef RESETIGN
   1484 			break;
   1485 		case 0:
   1486 			break;
   1487 		}
   1488 
   1489 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1490 			error = hme_init(ifp);
   1491 
   1492 		break;
   1493 
   1494 	default:
   1495 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1496 			break;
   1497 
   1498 		error = 0;
   1499 
   1500 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1501 			;
   1502 		else if (ifp->if_flags & IFF_RUNNING) {
   1503 			/*
   1504 			 * Multicast list has changed; set the hardware filter
   1505 			 * accordingly.
   1506 			 */
   1507 			hme_setladrf(sc);
   1508 		}
   1509 		break;
   1510 	}
   1511 
   1512 	sc->sc_if_flags = ifp->if_flags;
   1513 	splx(s);
   1514 	return (error);
   1515 }
   1516 
   1517 bool
   1518 hme_shutdown(device_t self, int howto)
   1519 {
   1520 	struct hme_softc *sc;
   1521 	struct ifnet *ifp;
   1522 
   1523 	sc = device_private(self);
   1524 	ifp = &sc->sc_ethercom.ec_if;
   1525 	hme_stop(ifp, 1);
   1526 
   1527 	return true;
   1528 }
   1529 
   1530 /*
   1531  * Set up the logical address filter.
   1532  */
   1533 void
   1534 hme_setladrf(struct hme_softc *sc)
   1535 {
   1536 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1537 	struct ether_multi *enm;
   1538 	struct ether_multistep step;
   1539 	struct ethercom *ec = &sc->sc_ethercom;
   1540 	bus_space_tag_t t = sc->sc_bustag;
   1541 	bus_space_handle_t mac = sc->sc_mac;
   1542 	uint32_t v;
   1543 	uint32_t crc;
   1544 	uint32_t hash[4];
   1545 
   1546 	/* Clear hash table */
   1547 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1548 
   1549 	/* Get current RX configuration */
   1550 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1551 
   1552 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1553 		/* Turn on promiscuous mode; turn off the hash filter */
   1554 		v |= HME_MAC_RXCFG_PMISC;
   1555 		v &= ~HME_MAC_RXCFG_HENABLE;
   1556 		ifp->if_flags |= IFF_ALLMULTI;
   1557 		goto chipit;
   1558 	}
   1559 
   1560 	/* Turn off promiscuous mode; turn on the hash filter */
   1561 	v &= ~HME_MAC_RXCFG_PMISC;
   1562 	v |= HME_MAC_RXCFG_HENABLE;
   1563 
   1564 	/*
   1565 	 * Set up multicast address filter by passing all multicast addresses
   1566 	 * through a crc generator, and then using the high order 6 bits as an
   1567 	 * index into the 64 bit logical address filter.  The high order bit
   1568 	 * selects the word, while the rest of the bits select the bit within
   1569 	 * the word.
   1570 	 */
   1571 
   1572 	ETHER_FIRST_MULTI(step, ec, enm);
   1573 	while (enm != NULL) {
   1574 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1575 			/*
   1576 			 * We must listen to a range of multicast addresses.
   1577 			 * For now, just accept all multicasts, rather than
   1578 			 * trying to set only those filter bits needed to match
   1579 			 * the range.  (At this time, the only use of address
   1580 			 * ranges is for IP multicast routing, for which the
   1581 			 * range is big enough to require all bits set.)
   1582 			 */
   1583 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1584 			ifp->if_flags |= IFF_ALLMULTI;
   1585 			goto chipit;
   1586 		}
   1587 
   1588 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1589 
   1590 		/* Just want the 6 most significant bits. */
   1591 		crc >>= 26;
   1592 
   1593 		/* Set the corresponding bit in the filter. */
   1594 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1595 
   1596 		ETHER_NEXT_MULTI(step, enm);
   1597 	}
   1598 
   1599 	ifp->if_flags &= ~IFF_ALLMULTI;
   1600 
   1601 chipit:
   1602 	/* Now load the hash table into the chip */
   1603 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1604 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1605 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1606 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1607 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1608 }
   1609 
   1610 /*
   1611  * Routines for accessing the transmit and receive buffers.
   1612  * The various CPU and adapter configurations supported by this
   1613  * driver require three different access methods for buffers
   1614  * and descriptors:
   1615  *	(1) contig (contiguous data; no padding),
   1616  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1617  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1618  */
   1619 
   1620 #if 0
   1621 /*
   1622  * contig: contiguous data with no padding.
   1623  *
   1624  * Buffers may have any alignment.
   1625  */
   1626 
   1627 void
   1628 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1629 {
   1630 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1631 
   1632 	/*
   1633 	 * Just call memcpy() to do the work.
   1634 	 */
   1635 	memcpy(buf, from, len);
   1636 }
   1637 
   1638 void
   1639 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1640 {
   1641 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1642 
   1643 	/*
   1644 	 * Just call memcpy() to do the work.
   1645 	 */
   1646 	memcpy(to, buf, len);
   1647 }
   1648 #endif
   1649