hme.c revision 1.90.4.6 1 /* $NetBSD: hme.c,v 1.90.4.6 2017/08/28 17:52:03 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * HME Ethernet module driver.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.90.4.6 2017/08/28 17:52:03 skrll Exp $");
38
39 /* #define HMEDEBUG */
40
41 #include "opt_inet.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/syslog.h>
48 #include <sys/socket.h>
49 #include <sys/device.h>
50 #include <sys/malloc.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/rndsource.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59
60 #ifdef INET
61 #include <net/if_vlanvar.h>
62 #include <netinet/in.h>
63 #include <netinet/if_inarp.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 #endif
70
71
72 #include <net/bpf.h>
73 #include <net/bpfdesc.h>
74
75 #include <dev/mii/mii.h>
76 #include <dev/mii/miivar.h>
77
78 #include <sys/bus.h>
79
80 #include <dev/ic/hmereg.h>
81 #include <dev/ic/hmevar.h>
82
83 static void hme_start(struct ifnet *);
84 static void hme_stop(struct ifnet *, int);
85 static int hme_ioctl(struct ifnet *, u_long, void *);
86 static void hme_tick(void *);
87 static void hme_watchdog(struct ifnet *);
88 static bool hme_shutdown(device_t, int);
89 static int hme_init(struct ifnet *);
90 static void hme_meminit(struct hme_softc *);
91 static void hme_mifinit(struct hme_softc *);
92 static void hme_reset(struct hme_softc *);
93 static void hme_chipreset(struct hme_softc *);
94 static void hme_setladrf(struct hme_softc *);
95
96 /* MII methods & callbacks */
97 static int hme_mii_readreg(device_t, int, int);
98 static void hme_mii_writereg(device_t, int, int, int);
99 static void hme_mii_statchg(struct ifnet *);
100
101 static int hme_mediachange(struct ifnet *);
102
103 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
104 static int hme_put(struct hme_softc *, int, struct mbuf *);
105 static void hme_read(struct hme_softc *, int, uint32_t);
106 static int hme_eint(struct hme_softc *, u_int);
107 static int hme_rint(struct hme_softc *);
108 static int hme_tint(struct hme_softc *);
109
110 #if 0
111 /* Default buffer copy routines */
112 static void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
113 static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
114 #endif
115
116 void
117 hme_config(struct hme_softc *sc)
118 {
119 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
120 struct mii_data *mii = &sc->sc_mii;
121 struct mii_softc *child;
122 bus_dma_tag_t dmatag = sc->sc_dmatag;
123 bus_dma_segment_t seg;
124 bus_size_t size;
125 int rseg, error;
126
127 /*
128 * HME common initialization.
129 *
130 * hme_softc fields that must be initialized by the front-end:
131 *
132 * the bus tag:
133 * sc_bustag
134 *
135 * the DMA bus tag:
136 * sc_dmatag
137 *
138 * the bus handles:
139 * sc_seb (Shared Ethernet Block registers)
140 * sc_erx (Receiver Unit registers)
141 * sc_etx (Transmitter Unit registers)
142 * sc_mac (MAC registers)
143 * sc_mif (Management Interface registers)
144 *
145 * the maximum bus burst size:
146 * sc_burst
147 *
148 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
149 * rb_membase, rb_dmabase)
150 *
151 * the local Ethernet address:
152 * sc_enaddr
153 *
154 */
155
156 /* Make sure the chip is stopped. */
157 hme_chipreset(sc);
158
159 /*
160 * Allocate descriptors and buffers
161 * XXX - do all this differently.. and more configurably,
162 * eg. use things as `dma_load_mbuf()' on transmit,
163 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
164 * all the time) on the receiver side.
165 *
166 * Note: receive buffers must be 64-byte aligned.
167 * Also, apparently, the buffers must extend to a DMA burst
168 * boundary beyond the maximum packet size.
169 */
170 #define _HME_NDESC 128
171 #define _HME_BUFSZ 1600
172
173 /* Note: the # of descriptors must be a multiple of 16 */
174 sc->sc_rb.rb_ntbuf = _HME_NDESC;
175 sc->sc_rb.rb_nrbuf = _HME_NDESC;
176
177 /*
178 * Allocate DMA capable memory
179 * Buffer descriptors must be aligned on a 2048 byte boundary;
180 * take this into account when calculating the size. Note that
181 * the maximum number of descriptors (256) occupies 2048 bytes,
182 * so we allocate that much regardless of _HME_NDESC.
183 */
184 size = 2048 + /* TX descriptors */
185 2048 + /* RX descriptors */
186 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
187 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
188
189 /* Allocate DMA buffer */
190 if ((error = bus_dmamem_alloc(dmatag, size,
191 2048, 0,
192 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
193 aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
194 error);
195 return;
196 }
197
198 /* Map DMA memory in CPU addressable space */
199 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
200 &sc->sc_rb.rb_membase,
201 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
202 aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
203 error);
204 bus_dmamap_unload(dmatag, sc->sc_dmamap);
205 bus_dmamem_free(dmatag, &seg, rseg);
206 return;
207 }
208
209 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
210 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
211 aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
212 error);
213 return;
214 }
215
216 /* Load the buffer */
217 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
218 sc->sc_rb.rb_membase, size, NULL,
219 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
220 aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
221 error);
222 bus_dmamem_free(dmatag, &seg, rseg);
223 return;
224 }
225 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
226
227 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
228 ether_sprintf(sc->sc_enaddr));
229
230 /* Initialize ifnet structure. */
231 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
232 ifp->if_softc = sc;
233 ifp->if_start = hme_start;
234 ifp->if_stop = hme_stop;
235 ifp->if_ioctl = hme_ioctl;
236 ifp->if_init = hme_init;
237 ifp->if_watchdog = hme_watchdog;
238 ifp->if_flags =
239 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
240 sc->sc_if_flags = ifp->if_flags;
241 ifp->if_capabilities |=
242 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
243 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
244 IFQ_SET_READY(&ifp->if_snd);
245
246 /* Initialize ifmedia structures and MII info */
247 mii->mii_ifp = ifp;
248 mii->mii_readreg = hme_mii_readreg;
249 mii->mii_writereg = hme_mii_writereg;
250 mii->mii_statchg = hme_mii_statchg;
251
252 sc->sc_ethercom.ec_mii = mii;
253 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
254
255 hme_mifinit(sc);
256
257 mii_attach(sc->sc_dev, mii, 0xffffffff,
258 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
259
260 child = LIST_FIRST(&mii->mii_phys);
261 if (child == NULL) {
262 /* No PHY attached */
263 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
264 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
265 } else {
266 /*
267 * Walk along the list of attached MII devices and
268 * establish an `MII instance' to `phy number'
269 * mapping. We'll use this mapping in media change
270 * requests to determine which phy to use to program
271 * the MIF configuration register.
272 */
273 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
274 /*
275 * Note: we support just two PHYs: the built-in
276 * internal device and an external on the MII
277 * connector.
278 */
279 if (child->mii_phy > 1 || child->mii_inst > 1) {
280 aprint_error_dev(sc->sc_dev,
281 "cannot accommodate MII device %s"
282 " at phy %d, instance %d\n",
283 device_xname(child->mii_dev),
284 child->mii_phy, child->mii_inst);
285 continue;
286 }
287
288 sc->sc_phys[child->mii_inst] = child->mii_phy;
289 }
290
291 /*
292 * Set the default media to auto negotiation if the phy has
293 * the auto negotiation capability.
294 * XXX; What to do otherwise?
295 */
296 if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
297 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
298 /*
299 else
300 ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
301 */
302 }
303
304 /* claim 802.1q capability */
305 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
306
307 /* Attach the interface. */
308 if_attach(ifp);
309 if_deferred_start_init(ifp, NULL);
310 ether_ifattach(ifp, sc->sc_enaddr);
311
312 if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
313 pmf_class_network_register(sc->sc_dev, ifp);
314 else
315 aprint_error_dev(sc->sc_dev,
316 "couldn't establish power handler\n");
317
318 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
319 RND_TYPE_NET, RND_FLAG_DEFAULT);
320
321 callout_init(&sc->sc_tick_ch, 0);
322 }
323
324 void
325 hme_tick(void *arg)
326 {
327 struct hme_softc *sc = arg;
328 int s;
329
330 s = splnet();
331 mii_tick(&sc->sc_mii);
332 splx(s);
333
334 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
335 }
336
337 void
338 hme_reset(struct hme_softc *sc)
339 {
340 int s;
341
342 s = splnet();
343 (void)hme_init(&sc->sc_ethercom.ec_if);
344 splx(s);
345 }
346
347 void
348 hme_chipreset(struct hme_softc *sc)
349 {
350 bus_space_tag_t t = sc->sc_bustag;
351 bus_space_handle_t seb = sc->sc_seb;
352 int n;
353
354 /* Mask all interrupts */
355 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
356
357 /* Reset transmitter and receiver */
358 bus_space_write_4(t, seb, HME_SEBI_RESET,
359 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
360
361 for (n = 0; n < 20; n++) {
362 uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
363 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
364 return;
365 DELAY(20);
366 }
367
368 printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
369 }
370
371 void
372 hme_stop(struct ifnet *ifp, int disable)
373 {
374 struct hme_softc *sc;
375
376 sc = ifp->if_softc;
377
378 ifp->if_timer = 0;
379 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
380
381 callout_stop(&sc->sc_tick_ch);
382 mii_down(&sc->sc_mii);
383
384 hme_chipreset(sc);
385 }
386
387 void
388 hme_meminit(struct hme_softc *sc)
389 {
390 bus_addr_t txbufdma, rxbufdma;
391 bus_addr_t dma;
392 char *p;
393 unsigned int ntbuf, nrbuf, i;
394 struct hme_ring *hr = &sc->sc_rb;
395
396 p = hr->rb_membase;
397 dma = hr->rb_dmabase;
398
399 ntbuf = hr->rb_ntbuf;
400 nrbuf = hr->rb_nrbuf;
401
402 /*
403 * Allocate transmit descriptors
404 */
405 hr->rb_txd = p;
406 hr->rb_txddma = dma;
407 p += ntbuf * HME_XD_SIZE;
408 dma += ntbuf * HME_XD_SIZE;
409 /* We have reserved descriptor space until the next 2048 byte boundary.*/
410 dma = (bus_addr_t)roundup((u_long)dma, 2048);
411 p = (void *)roundup((u_long)p, 2048);
412
413 /*
414 * Allocate receive descriptors
415 */
416 hr->rb_rxd = p;
417 hr->rb_rxddma = dma;
418 p += nrbuf * HME_XD_SIZE;
419 dma += nrbuf * HME_XD_SIZE;
420 /* Again move forward to the next 2048 byte boundary.*/
421 dma = (bus_addr_t)roundup((u_long)dma, 2048);
422 p = (void *)roundup((u_long)p, 2048);
423
424
425 /*
426 * Allocate transmit buffers
427 */
428 hr->rb_txbuf = p;
429 txbufdma = dma;
430 p += ntbuf * _HME_BUFSZ;
431 dma += ntbuf * _HME_BUFSZ;
432
433 /*
434 * Allocate receive buffers
435 */
436 hr->rb_rxbuf = p;
437 rxbufdma = dma;
438 p += nrbuf * _HME_BUFSZ;
439 dma += nrbuf * _HME_BUFSZ;
440
441 /*
442 * Initialize transmit buffer descriptors
443 */
444 for (i = 0; i < ntbuf; i++) {
445 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
446 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
447 }
448
449 /*
450 * Initialize receive buffer descriptors
451 */
452 for (i = 0; i < nrbuf; i++) {
453 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
454 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
455 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
456 }
457
458 hr->rb_tdhead = hr->rb_tdtail = 0;
459 hr->rb_td_nbusy = 0;
460 hr->rb_rdtail = 0;
461 }
462
463 /*
464 * Initialization of interface; set up initialization block
465 * and transmit/receive descriptor rings.
466 */
467 int
468 hme_init(struct ifnet *ifp)
469 {
470 struct hme_softc *sc = ifp->if_softc;
471 bus_space_tag_t t = sc->sc_bustag;
472 bus_space_handle_t seb = sc->sc_seb;
473 bus_space_handle_t etx = sc->sc_etx;
474 bus_space_handle_t erx = sc->sc_erx;
475 bus_space_handle_t mac = sc->sc_mac;
476 uint8_t *ea;
477 uint32_t v;
478 int rc;
479
480 /*
481 * Initialization sequence. The numbered steps below correspond
482 * to the sequence outlined in section 6.3.5.1 in the Ethernet
483 * Channel Engine manual (part of the PCIO manual).
484 * See also the STP2002-STQ document from Sun Microsystems.
485 */
486
487 /* step 1 & 2. Reset the Ethernet Channel */
488 hme_stop(ifp, 0);
489
490 /* Re-initialize the MIF */
491 hme_mifinit(sc);
492
493 /* Call MI reset function if any */
494 if (sc->sc_hwreset)
495 (*sc->sc_hwreset)(sc);
496
497 #if 0
498 /* Mask all MIF interrupts, just in case */
499 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
500 #endif
501
502 /* step 3. Setup data structures in host memory */
503 hme_meminit(sc);
504
505 /* step 4. TX MAC registers & counters */
506 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
507 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
508 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
509 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
510 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
511 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
512 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
513 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
514
515 /* Load station MAC address */
516 ea = sc->sc_enaddr;
517 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
518 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
519 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
520
521 /*
522 * Init seed for backoff
523 * (source suggested by manual: low 10 bits of MAC address)
524 */
525 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
526 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
527
528
529 /* Note: Accepting power-on default for other MAC registers here.. */
530
531
532 /* step 5. RX MAC registers & counters */
533 hme_setladrf(sc);
534
535 /* step 6 & 7. Program Descriptor Ring Base Addresses */
536 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
537 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
538
539 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
540 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
541 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
542 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
543
544 /* step 8. Global Configuration & Interrupt Mask */
545 bus_space_write_4(t, seb, HME_SEBI_IMASK,
546 ~(
547 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
548 HME_SEB_STAT_HOSTTOTX |
549 HME_SEB_STAT_RXTOHOST |
550 HME_SEB_STAT_TXALL |
551 HME_SEB_STAT_TXPERR |
552 HME_SEB_STAT_RCNTEXP |
553 HME_SEB_STAT_MIFIRQ |
554 HME_SEB_STAT_ALL_ERRORS ));
555
556 switch (sc->sc_burst) {
557 default:
558 v = 0;
559 break;
560 case 16:
561 v = HME_SEB_CFG_BURST16;
562 break;
563 case 32:
564 v = HME_SEB_CFG_BURST32;
565 break;
566 case 64:
567 v = HME_SEB_CFG_BURST64;
568 break;
569 }
570 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
571
572 /* step 9. ETX Configuration: use mostly default values */
573
574 /* Enable DMA */
575 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
576 v |= HME_ETX_CFG_DMAENABLE;
577 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
578
579 /* Transmit Descriptor ring size: in increments of 16 */
580 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
581
582
583 /* step 10. ERX Configuration */
584 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
585
586 /* Encode Receive Descriptor ring size: four possible values */
587 switch (_HME_NDESC /*XXX*/) {
588 case 32:
589 v |= HME_ERX_CFG_RINGSIZE32;
590 break;
591 case 64:
592 v |= HME_ERX_CFG_RINGSIZE64;
593 break;
594 case 128:
595 v |= HME_ERX_CFG_RINGSIZE128;
596 break;
597 case 256:
598 v |= HME_ERX_CFG_RINGSIZE256;
599 break;
600 default:
601 printf("hme: invalid Receive Descriptor ring size\n");
602 break;
603 }
604
605 /* Enable DMA */
606 v |= HME_ERX_CFG_DMAENABLE;
607
608 /* set h/w rx checksum start offset (# of half-words) */
609 #ifdef INET
610 v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
611 << HME_ERX_CFG_CSUMSHIFT) &
612 HME_ERX_CFG_CSUMSTART;
613 #endif
614 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
615
616 /* step 11. XIF Configuration */
617 v = bus_space_read_4(t, mac, HME_MACI_XIF);
618 v |= HME_MAC_XIF_OE;
619 bus_space_write_4(t, mac, HME_MACI_XIF, v);
620
621 /* step 12. RX_MAC Configuration Register */
622 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
623 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
624 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
625
626 /* step 13. TX_MAC Configuration Register */
627 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
628 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
629 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
630
631 /* step 14. Issue Transmit Pending command */
632
633 /* Call MI initialization function if any */
634 if (sc->sc_hwinit)
635 (*sc->sc_hwinit)(sc);
636
637 /* Set the current media. */
638 if ((rc = hme_mediachange(ifp)) != 0)
639 return rc;
640
641 /* Start the one second timer. */
642 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
643
644 ifp->if_flags |= IFF_RUNNING;
645 ifp->if_flags &= ~IFF_OACTIVE;
646 sc->sc_if_flags = ifp->if_flags;
647 ifp->if_timer = 0;
648 hme_start(ifp);
649 return 0;
650 }
651
652 /*
653 * Routine to copy from mbuf chain to transmit buffer in
654 * network buffer memory.
655 * Returns the amount of data copied.
656 */
657 int
658 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
659 /* ri: Ring index */
660 {
661 struct mbuf *n;
662 int len, tlen = 0;
663 char *bp;
664
665 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
666 for (; m; m = n) {
667 len = m->m_len;
668 if (len == 0) {
669 n = m_free(m);
670 continue;
671 }
672 memcpy(bp, mtod(m, void *), len);
673 bp += len;
674 tlen += len;
675 n = m_free(m);
676 }
677 return (tlen);
678 }
679
680 /*
681 * Pull data off an interface.
682 * Len is length of data, with local net header stripped.
683 * We copy the data into mbufs. When full cluster sized units are present
684 * we copy into clusters.
685 */
686 struct mbuf *
687 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
688 {
689 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
690 struct mbuf *m, *m0, *newm;
691 char *bp;
692 int len, totlen;
693 #ifdef INET
694 int csum_flags;
695 #endif
696
697 totlen = HME_XD_DECODE_RSIZE(flags);
698 MGETHDR(m0, M_DONTWAIT, MT_DATA);
699 if (m0 == 0)
700 return (0);
701 m_set_rcvif(m0, ifp);
702 m0->m_pkthdr.len = totlen;
703 len = MHLEN;
704 m = m0;
705
706 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
707
708 while (totlen > 0) {
709 if (totlen >= MINCLSIZE) {
710 MCLGET(m, M_DONTWAIT);
711 if ((m->m_flags & M_EXT) == 0)
712 goto bad;
713 len = MCLBYTES;
714 }
715
716 if (m == m0) {
717 char *newdata = (char *)
718 ALIGN(m->m_data + sizeof(struct ether_header)) -
719 sizeof(struct ether_header);
720 len -= newdata - m->m_data;
721 m->m_data = newdata;
722 }
723
724 m->m_len = len = min(totlen, len);
725 memcpy(mtod(m, void *), bp, len);
726 bp += len;
727
728 totlen -= len;
729 if (totlen > 0) {
730 MGET(newm, M_DONTWAIT, MT_DATA);
731 if (newm == 0)
732 goto bad;
733 len = MLEN;
734 m = m->m_next = newm;
735 }
736 }
737
738 #ifdef INET
739 /* hardware checksum */
740 csum_flags = 0;
741 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
742 struct ether_header *eh;
743 struct ether_vlan_header *evh;
744 struct ip *ip;
745 struct udphdr *uh;
746 uint16_t *opts;
747 int32_t hlen, pktlen;
748 uint32_t csum_data;
749
750 eh = mtod(m0, struct ether_header *);
751 if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
752 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
753 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
754 } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
755 evh = (struct ether_vlan_header *)eh;
756 if (ntohs(evh->evl_proto != ETHERTYPE_IP))
757 goto swcsum;
758 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
759 ETHER_VLAN_ENCAP_LEN);
760 pktlen = m0->m_pkthdr.len -
761 ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
762 } else
763 goto swcsum;
764
765 /* IPv4 only */
766 if (ip->ip_v != IPVERSION)
767 goto swcsum;
768
769 hlen = ip->ip_hl << 2;
770 if (hlen < sizeof(struct ip))
771 goto swcsum;
772
773 /*
774 * bail if too short, has random trailing garbage, truncated,
775 * fragment, or has ethernet pad.
776 */
777 if (ntohs(ip->ip_len) < hlen ||
778 ntohs(ip->ip_len) != pktlen ||
779 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
780 goto swcsum;
781
782 switch (ip->ip_p) {
783 case IPPROTO_TCP:
784 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
785 goto swcsum;
786 if (pktlen < (hlen + sizeof(struct tcphdr)))
787 goto swcsum;
788 csum_flags =
789 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
790 break;
791 case IPPROTO_UDP:
792 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
793 goto swcsum;
794 if (pktlen < (hlen + sizeof(struct udphdr)))
795 goto swcsum;
796 uh = (struct udphdr *)((char *)ip + hlen);
797 /* no checksum */
798 if (uh->uh_sum == 0)
799 goto swcsum;
800 csum_flags =
801 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
802 break;
803 default:
804 goto swcsum;
805 }
806
807 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
808 csum_data = ~flags & HME_XD_RXCKSUM;
809
810 /*
811 * If data offset is different from RX cksum start offset,
812 * we have to deduct them.
813 */
814 hlen = ((char *)ip + hlen) -
815 ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
816 if (hlen > 1) {
817 uint32_t optsum;
818
819 optsum = 0;
820 opts = (uint16_t *)((char *)eh +
821 ETHER_HDR_LEN + sizeof(struct ip));
822
823 while (hlen > 1) {
824 optsum += ntohs(*opts++);
825 hlen -= 2;
826 }
827 while (optsum >> 16)
828 optsum = (optsum >> 16) + (optsum & 0xffff);
829
830 /* Deduct the ip opts sum from the hwsum. */
831 csum_data += (uint16_t)~optsum;
832
833 while (csum_data >> 16)
834 csum_data =
835 (csum_data >> 16) + (csum_data & 0xffff);
836 }
837 m0->m_pkthdr.csum_data = csum_data;
838 }
839 swcsum:
840 m0->m_pkthdr.csum_flags = csum_flags;
841 #endif
842
843 return (m0);
844
845 bad:
846 m_freem(m0);
847 return (0);
848 }
849
850 /*
851 * Pass a packet to the higher levels.
852 */
853 void
854 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
855 {
856 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
857 struct mbuf *m;
858 int len;
859
860 len = HME_XD_DECODE_RSIZE(flags);
861 if (len <= sizeof(struct ether_header) ||
862 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
863 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
864 ETHERMTU + sizeof(struct ether_header))) {
865 #ifdef HMEDEBUG
866 printf("%s: invalid packet size %d; dropping\n",
867 device_xname(sc->sc_dev), len);
868 #endif
869 ifp->if_ierrors++;
870 return;
871 }
872
873 /* Pull packet off interface. */
874 m = hme_get(sc, ix, flags);
875 if (m == 0) {
876 ifp->if_ierrors++;
877 return;
878 }
879
880 /* Pass the packet up. */
881 if_percpuq_enqueue(ifp->if_percpuq, m);
882 }
883
884 void
885 hme_start(struct ifnet *ifp)
886 {
887 struct hme_softc *sc = ifp->if_softc;
888 void *txd = sc->sc_rb.rb_txd;
889 struct mbuf *m;
890 unsigned int txflags;
891 unsigned int ri, len, obusy;
892 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
893
894 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
895 return;
896
897 ri = sc->sc_rb.rb_tdhead;
898 obusy = sc->sc_rb.rb_td_nbusy;
899
900 for (;;) {
901 IFQ_DEQUEUE(&ifp->if_snd, m);
902 if (m == 0)
903 break;
904
905 /*
906 * If BPF is listening on this interface, let it see the
907 * packet before we commit it to the wire.
908 */
909 bpf_mtap(ifp, m);
910
911 #ifdef INET
912 /* collect bits for h/w csum, before hme_put frees the mbuf */
913 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
914 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
915 struct ether_header *eh;
916 uint16_t offset, start;
917
918 eh = mtod(m, struct ether_header *);
919 switch (ntohs(eh->ether_type)) {
920 case ETHERTYPE_IP:
921 start = ETHER_HDR_LEN;
922 break;
923 case ETHERTYPE_VLAN:
924 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
925 break;
926 default:
927 /* unsupported, drop it */
928 m_free(m);
929 continue;
930 }
931 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
932 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
933 + start;
934 txflags = HME_XD_TXCKSUM |
935 (offset << HME_XD_TXCSSTUFFSHIFT) |
936 (start << HME_XD_TXCSSTARTSHIFT);
937 } else
938 #endif
939 txflags = 0;
940
941 /*
942 * Copy the mbuf chain into the transmit buffer.
943 */
944 len = hme_put(sc, ri, m);
945
946 /*
947 * Initialize transmit registers and start transmission
948 */
949 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
950 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
951 HME_XD_ENCODE_TSIZE(len) | txflags);
952
953 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
954 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
955 HME_ETX_TP_DMAWAKEUP);
956
957 if (++ri == ntbuf)
958 ri = 0;
959
960 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
961 ifp->if_flags |= IFF_OACTIVE;
962 break;
963 }
964 }
965
966 if (obusy != sc->sc_rb.rb_td_nbusy) {
967 sc->sc_rb.rb_tdhead = ri;
968 ifp->if_timer = 5;
969 }
970 }
971
972 /*
973 * Transmit interrupt.
974 */
975 int
976 hme_tint(struct hme_softc *sc)
977 {
978 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
979 bus_space_tag_t t = sc->sc_bustag;
980 bus_space_handle_t mac = sc->sc_mac;
981 unsigned int ri, txflags;
982
983 /*
984 * Unload collision counters
985 */
986 ifp->if_collisions +=
987 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
988 bus_space_read_4(t, mac, HME_MACI_FCCNT);
989 ifp->if_oerrors +=
990 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
991 bus_space_read_4(t, mac, HME_MACI_LTCNT);
992
993 /*
994 * then clear the hardware counters.
995 */
996 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
997 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
998 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
999 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1000
1001 /* Fetch current position in the transmit ring */
1002 ri = sc->sc_rb.rb_tdtail;
1003
1004 for (;;) {
1005 if (sc->sc_rb.rb_td_nbusy <= 0)
1006 break;
1007
1008 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1009
1010 if (txflags & HME_XD_OWN)
1011 break;
1012
1013 ifp->if_flags &= ~IFF_OACTIVE;
1014 ifp->if_opackets++;
1015
1016 if (++ri == sc->sc_rb.rb_ntbuf)
1017 ri = 0;
1018
1019 --sc->sc_rb.rb_td_nbusy;
1020 }
1021
1022 /* Update ring */
1023 sc->sc_rb.rb_tdtail = ri;
1024
1025 if_schedule_deferred_start(ifp);
1026
1027 if (sc->sc_rb.rb_td_nbusy == 0)
1028 ifp->if_timer = 0;
1029
1030 return (1);
1031 }
1032
1033 /*
1034 * Receive interrupt.
1035 */
1036 int
1037 hme_rint(struct hme_softc *sc)
1038 {
1039 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1040 bus_space_tag_t t = sc->sc_bustag;
1041 bus_space_handle_t mac = sc->sc_mac;
1042 void *xdr = sc->sc_rb.rb_rxd;
1043 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1044 unsigned int ri;
1045 uint32_t flags;
1046
1047 ri = sc->sc_rb.rb_rdtail;
1048
1049 /*
1050 * Process all buffers with valid data.
1051 */
1052 for (;;) {
1053 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1054 if (flags & HME_XD_OWN)
1055 break;
1056
1057 if (flags & HME_XD_OFL) {
1058 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1059 device_xname(sc->sc_dev), ri, flags);
1060 } else
1061 hme_read(sc, ri, flags);
1062
1063 /* This buffer can be used by the hardware again */
1064 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1065 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1066
1067 if (++ri == nrbuf)
1068 ri = 0;
1069 }
1070
1071 sc->sc_rb.rb_rdtail = ri;
1072
1073 /* Read error counters ... */
1074 ifp->if_ierrors +=
1075 bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1076 bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1077 bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1078 bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1079
1080 /* ... then clear the hardware counters. */
1081 bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1082 bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1083 bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1084 bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1085 return (1);
1086 }
1087
1088 int
1089 hme_eint(struct hme_softc *sc, u_int status)
1090 {
1091 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1092 char bits[128];
1093
1094 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1095 bus_space_tag_t t = sc->sc_bustag;
1096 bus_space_handle_t mif = sc->sc_mif;
1097 uint32_t cf, st, sm;
1098 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1099 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1100 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1101 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1102 device_xname(sc->sc_dev), cf, st, sm);
1103 return (1);
1104 }
1105
1106 /* Receive error counters rolled over */
1107 if (status & HME_SEB_STAT_ACNTEXP)
1108 ifp->if_ierrors += 0xff;
1109 if (status & HME_SEB_STAT_CCNTEXP)
1110 ifp->if_ierrors += 0xff;
1111 if (status & HME_SEB_STAT_LCNTEXP)
1112 ifp->if_ierrors += 0xff;
1113 if (status & HME_SEB_STAT_CVCNTEXP)
1114 ifp->if_ierrors += 0xff;
1115
1116 /* RXTERR locks up the interface, so do a reset */
1117 if (status & HME_SEB_STAT_RXTERR)
1118 hme_reset(sc);
1119
1120 snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1121 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1122
1123 return (1);
1124 }
1125
1126 int
1127 hme_intr(void *v)
1128 {
1129 struct hme_softc *sc = v;
1130 bus_space_tag_t t = sc->sc_bustag;
1131 bus_space_handle_t seb = sc->sc_seb;
1132 uint32_t status;
1133 int r = 0;
1134
1135 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1136
1137 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1138 r |= hme_eint(sc, status);
1139
1140 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1141 r |= hme_tint(sc);
1142
1143 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1144 r |= hme_rint(sc);
1145
1146 rnd_add_uint32(&sc->rnd_source, status);
1147
1148 return (r);
1149 }
1150
1151
1152 void
1153 hme_watchdog(struct ifnet *ifp)
1154 {
1155 struct hme_softc *sc = ifp->if_softc;
1156
1157 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1158 ++ifp->if_oerrors;
1159
1160 hme_reset(sc);
1161 }
1162
1163 /*
1164 * Initialize the MII Management Interface
1165 */
1166 void
1167 hme_mifinit(struct hme_softc *sc)
1168 {
1169 bus_space_tag_t t = sc->sc_bustag;
1170 bus_space_handle_t mif = sc->sc_mif;
1171 bus_space_handle_t mac = sc->sc_mac;
1172 int instance, phy;
1173 uint32_t v;
1174
1175 if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1176 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1177 phy = sc->sc_phys[instance];
1178 } else
1179 /* No media set yet, pick phy arbitrarily.. */
1180 phy = HME_PHYAD_EXTERNAL;
1181
1182 /* Configure the MIF in frame mode, no poll, current phy select */
1183 v = 0;
1184 if (phy == HME_PHYAD_EXTERNAL)
1185 v |= HME_MIF_CFG_PHY;
1186 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1187
1188 /* If an external transceiver is selected, enable its MII drivers */
1189 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1190 v &= ~HME_MAC_XIF_MIIENABLE;
1191 if (phy == HME_PHYAD_EXTERNAL)
1192 v |= HME_MAC_XIF_MIIENABLE;
1193 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1194 }
1195
1196 /*
1197 * MII interface
1198 */
1199 static int
1200 hme_mii_readreg(device_t self, int phy, int reg)
1201 {
1202 struct hme_softc *sc = device_private(self);
1203 bus_space_tag_t t = sc->sc_bustag;
1204 bus_space_handle_t mif = sc->sc_mif;
1205 bus_space_handle_t mac = sc->sc_mac;
1206 uint32_t v, xif_cfg, mifi_cfg;
1207 int n;
1208
1209 /* We can at most have two PHYs */
1210 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1211 return (0);
1212
1213 /* Select the desired PHY in the MIF configuration register */
1214 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1215 v &= ~HME_MIF_CFG_PHY;
1216 if (phy == HME_PHYAD_EXTERNAL)
1217 v |= HME_MIF_CFG_PHY;
1218 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1219
1220 /* Enable MII drivers on external transceiver */
1221 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1222 if (phy == HME_PHYAD_EXTERNAL)
1223 v |= HME_MAC_XIF_MIIENABLE;
1224 else
1225 v &= ~HME_MAC_XIF_MIIENABLE;
1226 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1227
1228 #if 0
1229 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1230 /*
1231 * Check whether a transceiver is connected by testing
1232 * the MIF configuration register's MDI_X bits. Note that
1233 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1234 */
1235 mif_mdi_bit = 1 << (8 + (1 - phy));
1236 delay(100);
1237 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1238 if ((v & mif_mdi_bit) == 0)
1239 return (0);
1240 #endif
1241
1242 /* Construct the frame command */
1243 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1244 HME_MIF_FO_TAMSB |
1245 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1246 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1247 (reg << HME_MIF_FO_REGAD_SHIFT);
1248
1249 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1250 for (n = 0; n < 100; n++) {
1251 DELAY(1);
1252 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1253 if (v & HME_MIF_FO_TALSB) {
1254 v &= HME_MIF_FO_DATA;
1255 goto out;
1256 }
1257 }
1258
1259 v = 0;
1260 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1261
1262 out:
1263 /* Restore MIFI_CFG register */
1264 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1265 /* Restore XIF register */
1266 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1267 return (v);
1268 }
1269
1270 static void
1271 hme_mii_writereg(device_t self, int phy, int reg, int val)
1272 {
1273 struct hme_softc *sc = device_private(self);
1274 bus_space_tag_t t = sc->sc_bustag;
1275 bus_space_handle_t mif = sc->sc_mif;
1276 bus_space_handle_t mac = sc->sc_mac;
1277 uint32_t v, xif_cfg, mifi_cfg;
1278 int n;
1279
1280 /* We can at most have two PHYs */
1281 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1282 return;
1283
1284 /* Select the desired PHY in the MIF configuration register */
1285 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1286 v &= ~HME_MIF_CFG_PHY;
1287 if (phy == HME_PHYAD_EXTERNAL)
1288 v |= HME_MIF_CFG_PHY;
1289 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1290
1291 /* Enable MII drivers on external transceiver */
1292 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1293 if (phy == HME_PHYAD_EXTERNAL)
1294 v |= HME_MAC_XIF_MIIENABLE;
1295 else
1296 v &= ~HME_MAC_XIF_MIIENABLE;
1297 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1298
1299 #if 0
1300 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1301 /*
1302 * Check whether a transceiver is connected by testing
1303 * the MIF configuration register's MDI_X bits. Note that
1304 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1305 */
1306 mif_mdi_bit = 1 << (8 + (1 - phy));
1307 delay(100);
1308 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1309 if ((v & mif_mdi_bit) == 0)
1310 return;
1311 #endif
1312
1313 /* Construct the frame command */
1314 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1315 HME_MIF_FO_TAMSB |
1316 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1317 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1318 (reg << HME_MIF_FO_REGAD_SHIFT) |
1319 (val & HME_MIF_FO_DATA);
1320
1321 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1322 for (n = 0; n < 100; n++) {
1323 DELAY(1);
1324 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1325 if (v & HME_MIF_FO_TALSB)
1326 goto out;
1327 }
1328
1329 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1330 out:
1331 /* Restore MIFI_CFG register */
1332 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1333 /* Restore XIF register */
1334 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1335 }
1336
1337 static void
1338 hme_mii_statchg(struct ifnet *ifp)
1339 {
1340 struct hme_softc *sc = ifp->if_softc;
1341 bus_space_tag_t t = sc->sc_bustag;
1342 bus_space_handle_t mac = sc->sc_mac;
1343 uint32_t v;
1344
1345 #ifdef HMEDEBUG
1346 if (sc->sc_debug)
1347 printf("hme_mii_statchg: status change\n");
1348 #endif
1349
1350 /* Set the MAC Full Duplex bit appropriately */
1351 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1352 but not otherwise. */
1353 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1354 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1355 v |= HME_MAC_TXCFG_FULLDPLX;
1356 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1357 } else {
1358 v &= ~HME_MAC_TXCFG_FULLDPLX;
1359 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1360 }
1361 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1362 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1363 }
1364
1365 int
1366 hme_mediachange(struct ifnet *ifp)
1367 {
1368 struct hme_softc *sc = ifp->if_softc;
1369 bus_space_tag_t t = sc->sc_bustag;
1370 bus_space_handle_t mif = sc->sc_mif;
1371 bus_space_handle_t mac = sc->sc_mac;
1372 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1373 int phy = sc->sc_phys[instance];
1374 int rc;
1375 uint32_t v;
1376
1377 #ifdef HMEDEBUG
1378 if (sc->sc_debug)
1379 printf("hme_mediachange: phy = %d\n", phy);
1380 #endif
1381
1382 /* Select the current PHY in the MIF configuration register */
1383 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1384 v &= ~HME_MIF_CFG_PHY;
1385 if (phy == HME_PHYAD_EXTERNAL)
1386 v |= HME_MIF_CFG_PHY;
1387 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1388
1389 /* If an external transceiver is selected, enable its MII drivers */
1390 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1391 v &= ~HME_MAC_XIF_MIIENABLE;
1392 if (phy == HME_PHYAD_EXTERNAL)
1393 v |= HME_MAC_XIF_MIIENABLE;
1394 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1395
1396 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1397 return 0;
1398 return rc;
1399 }
1400
1401 /*
1402 * Process an ioctl request.
1403 */
1404 int
1405 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1406 {
1407 struct hme_softc *sc = ifp->if_softc;
1408 struct ifaddr *ifa = (struct ifaddr *)data;
1409 int s, error = 0;
1410
1411 s = splnet();
1412
1413 switch (cmd) {
1414
1415 case SIOCINITIFADDR:
1416 switch (ifa->ifa_addr->sa_family) {
1417 #ifdef INET
1418 case AF_INET:
1419 if (ifp->if_flags & IFF_UP)
1420 hme_setladrf(sc);
1421 else {
1422 ifp->if_flags |= IFF_UP;
1423 error = hme_init(ifp);
1424 }
1425 arp_ifinit(ifp, ifa);
1426 break;
1427 #endif
1428 default:
1429 ifp->if_flags |= IFF_UP;
1430 error = hme_init(ifp);
1431 break;
1432 }
1433 break;
1434
1435 case SIOCSIFFLAGS:
1436 #ifdef HMEDEBUG
1437 {
1438 struct ifreq *ifr = data;
1439 sc->sc_debug =
1440 (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1441 }
1442 #endif
1443 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1444 break;
1445
1446 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1447 case IFF_RUNNING:
1448 /*
1449 * If interface is marked down and it is running, then
1450 * stop it.
1451 */
1452 hme_stop(ifp, 0);
1453 ifp->if_flags &= ~IFF_RUNNING;
1454 break;
1455 case IFF_UP:
1456 /*
1457 * If interface is marked up and it is stopped, then
1458 * start it.
1459 */
1460 error = hme_init(ifp);
1461 break;
1462 case IFF_UP|IFF_RUNNING:
1463 /*
1464 * If setting debug or promiscuous mode, do not reset
1465 * the chip; for everything else, call hme_init()
1466 * which will trigger a reset.
1467 */
1468 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1469 if (ifp->if_flags != sc->sc_if_flags) {
1470 if ((ifp->if_flags & (~RESETIGN))
1471 == (sc->sc_if_flags & (~RESETIGN)))
1472 hme_setladrf(sc);
1473 else
1474 error = hme_init(ifp);
1475 }
1476 #undef RESETIGN
1477 break;
1478 case 0:
1479 break;
1480 }
1481
1482 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1483 error = hme_init(ifp);
1484
1485 break;
1486
1487 default:
1488 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1489 break;
1490
1491 error = 0;
1492
1493 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1494 ;
1495 else if (ifp->if_flags & IFF_RUNNING) {
1496 /*
1497 * Multicast list has changed; set the hardware filter
1498 * accordingly.
1499 */
1500 hme_setladrf(sc);
1501 }
1502 break;
1503 }
1504
1505 sc->sc_if_flags = ifp->if_flags;
1506 splx(s);
1507 return (error);
1508 }
1509
1510 bool
1511 hme_shutdown(device_t self, int howto)
1512 {
1513 struct hme_softc *sc;
1514 struct ifnet *ifp;
1515
1516 sc = device_private(self);
1517 ifp = &sc->sc_ethercom.ec_if;
1518 hme_stop(ifp, 1);
1519
1520 return true;
1521 }
1522
1523 /*
1524 * Set up the logical address filter.
1525 */
1526 void
1527 hme_setladrf(struct hme_softc *sc)
1528 {
1529 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1530 struct ether_multi *enm;
1531 struct ether_multistep step;
1532 struct ethercom *ec = &sc->sc_ethercom;
1533 bus_space_tag_t t = sc->sc_bustag;
1534 bus_space_handle_t mac = sc->sc_mac;
1535 uint32_t v;
1536 uint32_t crc;
1537 uint32_t hash[4];
1538
1539 /* Clear hash table */
1540 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1541
1542 /* Get current RX configuration */
1543 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1544
1545 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1546 /* Turn on promiscuous mode; turn off the hash filter */
1547 v |= HME_MAC_RXCFG_PMISC;
1548 v &= ~HME_MAC_RXCFG_HENABLE;
1549 ifp->if_flags |= IFF_ALLMULTI;
1550 goto chipit;
1551 }
1552
1553 /* Turn off promiscuous mode; turn on the hash filter */
1554 v &= ~HME_MAC_RXCFG_PMISC;
1555 v |= HME_MAC_RXCFG_HENABLE;
1556
1557 /*
1558 * Set up multicast address filter by passing all multicast addresses
1559 * through a crc generator, and then using the high order 6 bits as an
1560 * index into the 64 bit logical address filter. The high order bit
1561 * selects the word, while the rest of the bits select the bit within
1562 * the word.
1563 */
1564
1565 ETHER_FIRST_MULTI(step, ec, enm);
1566 while (enm != NULL) {
1567 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1568 /*
1569 * We must listen to a range of multicast addresses.
1570 * For now, just accept all multicasts, rather than
1571 * trying to set only those filter bits needed to match
1572 * the range. (At this time, the only use of address
1573 * ranges is for IP multicast routing, for which the
1574 * range is big enough to require all bits set.)
1575 */
1576 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1577 ifp->if_flags |= IFF_ALLMULTI;
1578 goto chipit;
1579 }
1580
1581 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1582
1583 /* Just want the 6 most significant bits. */
1584 crc >>= 26;
1585
1586 /* Set the corresponding bit in the filter. */
1587 hash[crc >> 4] |= 1 << (crc & 0xf);
1588
1589 ETHER_NEXT_MULTI(step, enm);
1590 }
1591
1592 ifp->if_flags &= ~IFF_ALLMULTI;
1593
1594 chipit:
1595 /* Now load the hash table into the chip */
1596 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1597 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1598 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1599 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1600 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1601 }
1602
1603 /*
1604 * Routines for accessing the transmit and receive buffers.
1605 * The various CPU and adapter configurations supported by this
1606 * driver require three different access methods for buffers
1607 * and descriptors:
1608 * (1) contig (contiguous data; no padding),
1609 * (2) gap2 (two bytes of data followed by two bytes of padding),
1610 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1611 */
1612
1613 #if 0
1614 /*
1615 * contig: contiguous data with no padding.
1616 *
1617 * Buffers may have any alignment.
1618 */
1619
1620 void
1621 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1622 {
1623 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1624
1625 /*
1626 * Just call memcpy() to do the work.
1627 */
1628 memcpy(buf, from, len);
1629 }
1630
1631 void
1632 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1633 {
1634 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1635
1636 /*
1637 * Just call memcpy() to do the work.
1638 */
1639 memcpy(to, buf, len);
1640 }
1641 #endif
1642