Home | History | Annotate | Line # | Download | only in ic
hme.c revision 1.98
      1 /*	$NetBSD: hme.c,v 1.98 2018/06/22 04:17:42 msaitoh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * HME Ethernet module driver.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.98 2018/06/22 04:17:42 msaitoh Exp $");
     38 
     39 /* #define HMEDEBUG */
     40 
     41 #include "opt_inet.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/syslog.h>
     48 #include <sys/socket.h>
     49 #include <sys/device.h>
     50 #include <sys/malloc.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/errno.h>
     53 #include <sys/rndsource.h>
     54 
     55 #include <net/if.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_ether.h>
     58 #include <net/if_media.h>
     59 #include <net/bpf.h>
     60 
     61 #ifdef INET
     62 #include <net/if_vlanvar.h>
     63 #include <netinet/in.h>
     64 #include <netinet/if_inarp.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #include <dev/mii/mii.h>
     73 #include <dev/mii/miivar.h>
     74 
     75 #include <sys/bus.h>
     76 
     77 #include <dev/ic/hmereg.h>
     78 #include <dev/ic/hmevar.h>
     79 
     80 static void	hme_start(struct ifnet *);
     81 static void	hme_stop(struct ifnet *, int);
     82 static int	hme_ioctl(struct ifnet *, u_long, void *);
     83 static void	hme_tick(void *);
     84 static void	hme_watchdog(struct ifnet *);
     85 static bool	hme_shutdown(device_t, int);
     86 static int	hme_init(struct ifnet *);
     87 static void	hme_meminit(struct hme_softc *);
     88 static void	hme_mifinit(struct hme_softc *);
     89 static void	hme_reset(struct hme_softc *);
     90 static void	hme_chipreset(struct hme_softc *);
     91 static void	hme_setladrf(struct hme_softc *);
     92 
     93 /* MII methods & callbacks */
     94 static int	hme_mii_readreg(device_t, int, int);
     95 static void	hme_mii_writereg(device_t, int, int, int);
     96 static void	hme_mii_statchg(struct ifnet *);
     97 
     98 static int	hme_mediachange(struct ifnet *);
     99 
    100 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
    101 static int	hme_put(struct hme_softc *, int, struct mbuf *);
    102 static void	hme_read(struct hme_softc *, int, uint32_t);
    103 static int	hme_eint(struct hme_softc *, u_int);
    104 static int	hme_rint(struct hme_softc *);
    105 static int	hme_tint(struct hme_softc *);
    106 
    107 #if 0
    108 /* Default buffer copy routines */
    109 static void	hme_copytobuf_contig(struct hme_softc *, void *, int, int);
    110 static void	hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
    111 #endif
    112 
    113 void
    114 hme_config(struct hme_softc *sc)
    115 {
    116 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    117 	struct mii_data *mii = &sc->sc_mii;
    118 	struct mii_softc *child;
    119 	bus_dma_tag_t dmatag = sc->sc_dmatag;
    120 	bus_dma_segment_t seg;
    121 	bus_size_t size;
    122 	int rseg, error;
    123 
    124 	/*
    125 	 * HME common initialization.
    126 	 *
    127 	 * hme_softc fields that must be initialized by the front-end:
    128 	 *
    129 	 * the bus tag:
    130 	 *	sc_bustag
    131 	 *
    132 	 * the DMA bus tag:
    133 	 *	sc_dmatag
    134 	 *
    135 	 * the bus handles:
    136 	 *	sc_seb		(Shared Ethernet Block registers)
    137 	 *	sc_erx		(Receiver Unit registers)
    138 	 *	sc_etx		(Transmitter Unit registers)
    139 	 *	sc_mac		(MAC registers)
    140 	 *	sc_mif		(Management Interface registers)
    141 	 *
    142 	 * the maximum bus burst size:
    143 	 *	sc_burst
    144 	 *
    145 	 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
    146 	 *	rb_membase, rb_dmabase)
    147 	 *
    148 	 * the local Ethernet address:
    149 	 *	sc_enaddr
    150 	 *
    151 	 */
    152 
    153 	/* Make sure the chip is stopped. */
    154 	hme_chipreset(sc);
    155 
    156 	/*
    157 	 * Allocate descriptors and buffers
    158 	 * XXX - do all this differently.. and more configurably,
    159 	 * eg. use things as `dma_load_mbuf()' on transmit,
    160 	 *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
    161 	 *     all the time) on the receiver side.
    162 	 *
    163 	 * Note: receive buffers must be 64-byte aligned.
    164 	 * Also, apparently, the buffers must extend to a DMA burst
    165 	 * boundary beyond the maximum packet size.
    166 	 */
    167 #define _HME_NDESC	128
    168 #define _HME_BUFSZ	1600
    169 
    170 	/* Note: the # of descriptors must be a multiple of 16 */
    171 	sc->sc_rb.rb_ntbuf = _HME_NDESC;
    172 	sc->sc_rb.rb_nrbuf = _HME_NDESC;
    173 
    174 	/*
    175 	 * Allocate DMA capable memory
    176 	 * Buffer descriptors must be aligned on a 2048 byte boundary;
    177 	 * take this into account when calculating the size. Note that
    178 	 * the maximum number of descriptors (256) occupies 2048 bytes,
    179 	 * so we allocate that much regardless of _HME_NDESC.
    180 	 */
    181 	size =	2048 +					/* TX descriptors */
    182 		2048 +					/* RX descriptors */
    183 		sc->sc_rb.rb_ntbuf * _HME_BUFSZ +	/* TX buffers */
    184 		sc->sc_rb.rb_nrbuf * _HME_BUFSZ;	/* RX buffers */
    185 
    186 	/* Allocate DMA buffer */
    187 	if ((error = bus_dmamem_alloc(dmatag, size,
    188 				      2048, 0,
    189 				      &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
    190 		aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
    191 			error);
    192 		return;
    193 	}
    194 
    195 	/* Map DMA memory in CPU addressable space */
    196 	if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
    197 				    &sc->sc_rb.rb_membase,
    198 				    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    199 		aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
    200 			error);
    201 		bus_dmamap_unload(dmatag, sc->sc_dmamap);
    202 		bus_dmamem_free(dmatag, &seg, rseg);
    203 		return;
    204 	}
    205 
    206 	if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
    207 				    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
    208 		aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
    209 			error);
    210 		return;
    211 	}
    212 
    213 	/* Load the buffer */
    214 	if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
    215 	    sc->sc_rb.rb_membase, size, NULL,
    216 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    217 		aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
    218 			error);
    219 		bus_dmamem_free(dmatag, &seg, rseg);
    220 		return;
    221 	}
    222 	sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
    223 
    224 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    225 	    ether_sprintf(sc->sc_enaddr));
    226 
    227 	/* Initialize ifnet structure. */
    228 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    229 	ifp->if_softc = sc;
    230 	ifp->if_start = hme_start;
    231 	ifp->if_stop = hme_stop;
    232 	ifp->if_ioctl = hme_ioctl;
    233 	ifp->if_init = hme_init;
    234 	ifp->if_watchdog = hme_watchdog;
    235 	ifp->if_flags =
    236 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    237 	sc->sc_if_flags = ifp->if_flags;
    238 	ifp->if_capabilities |=
    239 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    240 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    241 	IFQ_SET_READY(&ifp->if_snd);
    242 
    243 	/* Initialize ifmedia structures and MII info */
    244 	mii->mii_ifp = ifp;
    245 	mii->mii_readreg = hme_mii_readreg;
    246 	mii->mii_writereg = hme_mii_writereg;
    247 	mii->mii_statchg = hme_mii_statchg;
    248 
    249 	sc->sc_ethercom.ec_mii = mii;
    250 	ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
    251 
    252 	hme_mifinit(sc);
    253 
    254 	mii_attach(sc->sc_dev, mii, 0xffffffff,
    255 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    256 
    257 	child = LIST_FIRST(&mii->mii_phys);
    258 	if (child == NULL) {
    259 		/* No PHY attached */
    260 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    261 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    262 	} else {
    263 		/*
    264 		 * Walk along the list of attached MII devices and
    265 		 * establish an `MII instance' to `phy number'
    266 		 * mapping. We'll use this mapping in media change
    267 		 * requests to determine which phy to use to program
    268 		 * the MIF configuration register.
    269 		 */
    270 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    271 			/*
    272 			 * Note: we support just two PHYs: the built-in
    273 			 * internal device and an external on the MII
    274 			 * connector.
    275 			 */
    276 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    277 				aprint_error_dev(sc->sc_dev,
    278 				    "cannot accommodate MII device %s"
    279 				       " at phy %d, instance %d\n",
    280 				       device_xname(child->mii_dev),
    281 				       child->mii_phy, child->mii_inst);
    282 				continue;
    283 			}
    284 
    285 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    286 		}
    287 
    288 		/*
    289 		 * Set the default media to auto negotiation if the phy has
    290 		 * the auto negotiation capability.
    291 		 * XXX; What to do otherwise?
    292 		 */
    293 		if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
    294 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    295 /*
    296 		else
    297 			ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
    298 */
    299 	}
    300 
    301 	/* claim 802.1q capability */
    302 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    303 
    304 	/* Attach the interface. */
    305 	if_attach(ifp);
    306 	if_deferred_start_init(ifp, NULL);
    307 	ether_ifattach(ifp, sc->sc_enaddr);
    308 
    309 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
    310 		pmf_class_network_register(sc->sc_dev, ifp);
    311 	else
    312 		aprint_error_dev(sc->sc_dev,
    313 		    "couldn't establish power handler\n");
    314 
    315 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    316 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
    317 
    318 	callout_init(&sc->sc_tick_ch, 0);
    319 }
    320 
    321 void
    322 hme_tick(void *arg)
    323 {
    324 	struct hme_softc *sc = arg;
    325 	int s;
    326 
    327 	s = splnet();
    328 	mii_tick(&sc->sc_mii);
    329 	splx(s);
    330 
    331 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    332 }
    333 
    334 void
    335 hme_reset(struct hme_softc *sc)
    336 {
    337 	int s;
    338 
    339 	s = splnet();
    340 	(void)hme_init(&sc->sc_ethercom.ec_if);
    341 	splx(s);
    342 }
    343 
    344 void
    345 hme_chipreset(struct hme_softc *sc)
    346 {
    347 	bus_space_tag_t t = sc->sc_bustag;
    348 	bus_space_handle_t seb = sc->sc_seb;
    349 	int n;
    350 
    351 	/* Mask all interrupts */
    352 	bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
    353 
    354 	/* Reset transmitter and receiver */
    355 	bus_space_write_4(t, seb, HME_SEBI_RESET,
    356 			  (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
    357 
    358 	for (n = 0; n < 20; n++) {
    359 		uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
    360 		if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
    361 			return;
    362 		DELAY(20);
    363 	}
    364 
    365 	printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
    366 }
    367 
    368 void
    369 hme_stop(struct ifnet *ifp, int disable)
    370 {
    371 	struct hme_softc *sc;
    372 
    373 	sc = ifp->if_softc;
    374 
    375 	ifp->if_timer = 0;
    376 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    377 
    378 	callout_stop(&sc->sc_tick_ch);
    379 	mii_down(&sc->sc_mii);
    380 
    381 	hme_chipreset(sc);
    382 }
    383 
    384 void
    385 hme_meminit(struct hme_softc *sc)
    386 {
    387 	bus_addr_t txbufdma, rxbufdma;
    388 	bus_addr_t dma;
    389 	char *p;
    390 	unsigned int ntbuf, nrbuf, i;
    391 	struct hme_ring *hr = &sc->sc_rb;
    392 
    393 	p = hr->rb_membase;
    394 	dma = hr->rb_dmabase;
    395 
    396 	ntbuf = hr->rb_ntbuf;
    397 	nrbuf = hr->rb_nrbuf;
    398 
    399 	/*
    400 	 * Allocate transmit descriptors
    401 	 */
    402 	hr->rb_txd = p;
    403 	hr->rb_txddma = dma;
    404 	p += ntbuf * HME_XD_SIZE;
    405 	dma += ntbuf * HME_XD_SIZE;
    406 	/* We have reserved descriptor space until the next 2048 byte boundary.*/
    407 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    408 	p = (void *)roundup((u_long)p, 2048);
    409 
    410 	/*
    411 	 * Allocate receive descriptors
    412 	 */
    413 	hr->rb_rxd = p;
    414 	hr->rb_rxddma = dma;
    415 	p += nrbuf * HME_XD_SIZE;
    416 	dma += nrbuf * HME_XD_SIZE;
    417 	/* Again move forward to the next 2048 byte boundary.*/
    418 	dma = (bus_addr_t)roundup((u_long)dma, 2048);
    419 	p = (void *)roundup((u_long)p, 2048);
    420 
    421 
    422 	/*
    423 	 * Allocate transmit buffers
    424 	 */
    425 	hr->rb_txbuf = p;
    426 	txbufdma = dma;
    427 	p += ntbuf * _HME_BUFSZ;
    428 	dma += ntbuf * _HME_BUFSZ;
    429 
    430 	/*
    431 	 * Allocate receive buffers
    432 	 */
    433 	hr->rb_rxbuf = p;
    434 	rxbufdma = dma;
    435 	p += nrbuf * _HME_BUFSZ;
    436 	dma += nrbuf * _HME_BUFSZ;
    437 
    438 	/*
    439 	 * Initialize transmit buffer descriptors
    440 	 */
    441 	for (i = 0; i < ntbuf; i++) {
    442 		HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
    443 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
    444 	}
    445 
    446 	/*
    447 	 * Initialize receive buffer descriptors
    448 	 */
    449 	for (i = 0; i < nrbuf; i++) {
    450 		HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
    451 		HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
    452 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
    453 	}
    454 
    455 	hr->rb_tdhead = hr->rb_tdtail = 0;
    456 	hr->rb_td_nbusy = 0;
    457 	hr->rb_rdtail = 0;
    458 }
    459 
    460 /*
    461  * Initialization of interface; set up initialization block
    462  * and transmit/receive descriptor rings.
    463  */
    464 int
    465 hme_init(struct ifnet *ifp)
    466 {
    467 	struct hme_softc *sc = ifp->if_softc;
    468 	bus_space_tag_t t = sc->sc_bustag;
    469 	bus_space_handle_t seb = sc->sc_seb;
    470 	bus_space_handle_t etx = sc->sc_etx;
    471 	bus_space_handle_t erx = sc->sc_erx;
    472 	bus_space_handle_t mac = sc->sc_mac;
    473 	uint8_t *ea;
    474 	uint32_t v;
    475 	int rc;
    476 
    477 	/*
    478 	 * Initialization sequence. The numbered steps below correspond
    479 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    480 	 * Channel Engine manual (part of the PCIO manual).
    481 	 * See also the STP2002-STQ document from Sun Microsystems.
    482 	 */
    483 
    484 	/* step 1 & 2. Reset the Ethernet Channel */
    485 	hme_stop(ifp, 0);
    486 
    487 	/* Re-initialize the MIF */
    488 	hme_mifinit(sc);
    489 
    490 	/* Call MI reset function if any */
    491 	if (sc->sc_hwreset)
    492 		(*sc->sc_hwreset)(sc);
    493 
    494 #if 0
    495 	/* Mask all MIF interrupts, just in case */
    496 	bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
    497 #endif
    498 
    499 	/* step 3. Setup data structures in host memory */
    500 	hme_meminit(sc);
    501 
    502 	/* step 4. TX MAC registers & counters */
    503 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    504 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    505 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    506 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    507 	bus_space_write_4(t, mac, HME_MACI_TXSIZE,
    508 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    509 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    510 	sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
    511 
    512 	/* Load station MAC address */
    513 	ea = sc->sc_enaddr;
    514 	bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
    515 	bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
    516 	bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
    517 
    518 	/*
    519 	 * Init seed for backoff
    520 	 * (source suggested by manual: low 10 bits of MAC address)
    521 	 */
    522 	v = ((ea[4] << 8) | ea[5]) & 0x3fff;
    523 	bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
    524 
    525 
    526 	/* Note: Accepting power-on default for other MAC registers here.. */
    527 
    528 
    529 	/* step 5. RX MAC registers & counters */
    530 	hme_setladrf(sc);
    531 
    532 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    533 	bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
    534 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
    535 
    536 	bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
    537 	bus_space_write_4(t, mac, HME_MACI_RXSIZE,
    538 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    539 	    ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
    540 
    541 	/* step 8. Global Configuration & Interrupt Mask */
    542 	bus_space_write_4(t, seb, HME_SEBI_IMASK,
    543 			~(
    544 			  /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
    545 			  HME_SEB_STAT_HOSTTOTX |
    546 			  HME_SEB_STAT_RXTOHOST |
    547 			  HME_SEB_STAT_TXALL |
    548 			  HME_SEB_STAT_TXPERR |
    549 			  HME_SEB_STAT_RCNTEXP |
    550 			  HME_SEB_STAT_MIFIRQ |
    551 			  HME_SEB_STAT_ALL_ERRORS ));
    552 
    553 	switch (sc->sc_burst) {
    554 	default:
    555 		v = 0;
    556 		break;
    557 	case 16:
    558 		v = HME_SEB_CFG_BURST16;
    559 		break;
    560 	case 32:
    561 		v = HME_SEB_CFG_BURST32;
    562 		break;
    563 	case 64:
    564 		v = HME_SEB_CFG_BURST64;
    565 		break;
    566 	}
    567 	bus_space_write_4(t, seb, HME_SEBI_CFG, v);
    568 
    569 	/* step 9. ETX Configuration: use mostly default values */
    570 
    571 	/* Enable DMA */
    572 	v = bus_space_read_4(t, etx, HME_ETXI_CFG);
    573 	v |= HME_ETX_CFG_DMAENABLE;
    574 	bus_space_write_4(t, etx, HME_ETXI_CFG, v);
    575 
    576 	/* Transmit Descriptor ring size: in increments of 16 */
    577 	bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
    578 
    579 
    580 	/* step 10. ERX Configuration */
    581 	v = bus_space_read_4(t, erx, HME_ERXI_CFG);
    582 
    583 	/* Encode Receive Descriptor ring size: four possible values */
    584 	switch (_HME_NDESC /*XXX*/) {
    585 	case 32:
    586 		v |= HME_ERX_CFG_RINGSIZE32;
    587 		break;
    588 	case 64:
    589 		v |= HME_ERX_CFG_RINGSIZE64;
    590 		break;
    591 	case 128:
    592 		v |= HME_ERX_CFG_RINGSIZE128;
    593 		break;
    594 	case 256:
    595 		v |= HME_ERX_CFG_RINGSIZE256;
    596 		break;
    597 	default:
    598 		printf("hme: invalid Receive Descriptor ring size\n");
    599 		break;
    600 	}
    601 
    602 	/* Enable DMA */
    603 	v |= HME_ERX_CFG_DMAENABLE;
    604 
    605 	/* set h/w rx checksum start offset (# of half-words) */
    606 #ifdef INET
    607 	v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
    608 		<< HME_ERX_CFG_CSUMSHIFT) &
    609 		HME_ERX_CFG_CSUMSTART;
    610 #endif
    611 	bus_space_write_4(t, erx, HME_ERXI_CFG, v);
    612 
    613 	/* step 11. XIF Configuration */
    614 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
    615 	v |= HME_MAC_XIF_OE;
    616 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
    617 
    618 	/* step 12. RX_MAC Configuration Register */
    619 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
    620 	v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
    621 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
    622 
    623 	/* step 13. TX_MAC Configuration Register */
    624 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
    625 	v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
    626 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
    627 
    628 	/* step 14. Issue Transmit Pending command */
    629 
    630 	/* Call MI initialization function if any */
    631 	if (sc->sc_hwinit)
    632 		(*sc->sc_hwinit)(sc);
    633 
    634 	/* Set the current media. */
    635 	if ((rc = hme_mediachange(ifp)) != 0)
    636 		return rc;
    637 
    638 	/* Start the one second timer. */
    639 	callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
    640 
    641 	ifp->if_flags |= IFF_RUNNING;
    642 	ifp->if_flags &= ~IFF_OACTIVE;
    643 	sc->sc_if_flags = ifp->if_flags;
    644 	ifp->if_timer = 0;
    645 	hme_start(ifp);
    646 	return 0;
    647 }
    648 
    649 /*
    650  * Routine to copy from mbuf chain to transmit buffer in
    651  * network buffer memory.
    652  * Returns the amount of data copied.
    653  */
    654 int
    655 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
    656 	/* ri:			 Ring index */
    657 {
    658 	struct mbuf *n;
    659 	int len, tlen = 0;
    660 	char *bp;
    661 
    662 	bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
    663 	for (; m; m = n) {
    664 		len = m->m_len;
    665 		if (len == 0) {
    666 			n = m_free(m);
    667 			continue;
    668 		}
    669 		memcpy(bp, mtod(m, void *), len);
    670 		bp += len;
    671 		tlen += len;
    672 		n = m_free(m);
    673 	}
    674 	return (tlen);
    675 }
    676 
    677 /*
    678  * Pull data off an interface.
    679  * Len is length of data, with local net header stripped.
    680  * We copy the data into mbufs.  When full cluster sized units are present
    681  * we copy into clusters.
    682  */
    683 struct mbuf *
    684 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
    685 {
    686 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    687 	struct mbuf *m, *m0, *newm;
    688 	char *bp;
    689 	int len, totlen;
    690 #ifdef INET
    691 	int csum_flags;
    692 #endif
    693 
    694 	totlen = HME_XD_DECODE_RSIZE(flags);
    695 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    696 	if (m0 == 0)
    697 		return (0);
    698 	m_set_rcvif(m0, ifp);
    699 	m0->m_pkthdr.len = totlen;
    700 	len = MHLEN;
    701 	m = m0;
    702 
    703 	bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
    704 
    705 	while (totlen > 0) {
    706 		if (totlen >= MINCLSIZE) {
    707 			MCLGET(m, M_DONTWAIT);
    708 			if ((m->m_flags & M_EXT) == 0)
    709 				goto bad;
    710 			len = MCLBYTES;
    711 		}
    712 
    713 		if (m == m0) {
    714 			char *newdata = (char *)
    715 			    ALIGN(m->m_data + sizeof(struct ether_header)) -
    716 			    sizeof(struct ether_header);
    717 			len -= newdata - m->m_data;
    718 			m->m_data = newdata;
    719 		}
    720 
    721 		m->m_len = len = min(totlen, len);
    722 		memcpy(mtod(m, void *), bp, len);
    723 		bp += len;
    724 
    725 		totlen -= len;
    726 		if (totlen > 0) {
    727 			MGET(newm, M_DONTWAIT, MT_DATA);
    728 			if (newm == 0)
    729 				goto bad;
    730 			len = MLEN;
    731 			m = m->m_next = newm;
    732 		}
    733 	}
    734 
    735 #ifdef INET
    736 	/* hardware checksum */
    737 	csum_flags = 0;
    738 	if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    739 		struct ether_header *eh;
    740 		struct ether_vlan_header *evh;
    741 		struct ip *ip;
    742 		struct udphdr *uh;
    743 		uint16_t *opts;
    744 		int32_t hlen, pktlen;
    745 		uint32_t csum_data;
    746 
    747 		eh = mtod(m0, struct ether_header *);
    748 		if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
    749 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
    750 			pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
    751 		} else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
    752 			evh = (struct ether_vlan_header *)eh;
    753 			if (ntohs(evh->evl_proto) != ETHERTYPE_IP)
    754 				goto swcsum;
    755 			ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
    756 			    ETHER_VLAN_ENCAP_LEN);
    757 			pktlen = m0->m_pkthdr.len -
    758 			    ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
    759 		} else
    760 			goto swcsum;
    761 
    762 		/* IPv4 only */
    763 		if (ip->ip_v != IPVERSION)
    764 			goto swcsum;
    765 
    766 		hlen = ip->ip_hl << 2;
    767 		if (hlen < sizeof(struct ip))
    768 			goto swcsum;
    769 
    770 		/*
    771 		 * bail if too short, has random trailing garbage, truncated,
    772 		 * fragment, or has ethernet pad.
    773 		 */
    774 		if (ntohs(ip->ip_len) < hlen ||
    775 		    ntohs(ip->ip_len) != pktlen ||
    776 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
    777 			goto swcsum;
    778 
    779 		switch (ip->ip_p) {
    780 		case IPPROTO_TCP:
    781 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
    782 				goto swcsum;
    783 			if (pktlen < (hlen + sizeof(struct tcphdr)))
    784 				goto swcsum;
    785 			csum_flags =
    786 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    787 			break;
    788 		case IPPROTO_UDP:
    789 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
    790 				goto swcsum;
    791 			if (pktlen < (hlen + sizeof(struct udphdr)))
    792 				goto swcsum;
    793 			uh = (struct udphdr *)((char *)ip + hlen);
    794 			/* no checksum */
    795 			if (uh->uh_sum == 0)
    796 				goto swcsum;
    797 			csum_flags =
    798 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
    799 			break;
    800 		default:
    801 			goto swcsum;
    802 		}
    803 
    804 		/* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
    805 		csum_data = ~flags & HME_XD_RXCKSUM;
    806 
    807 		/*
    808 		 * If data offset is different from RX cksum start offset,
    809 		 * we have to deduct them.
    810 		 */
    811 		hlen = ((char *)ip + hlen) -
    812 		    ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
    813 		if (hlen > 1) {
    814 			uint32_t optsum;
    815 
    816 			optsum = 0;
    817 			opts = (uint16_t *)((char *)eh +
    818 			    ETHER_HDR_LEN + sizeof(struct ip));
    819 
    820 			while (hlen > 1) {
    821 				optsum += ntohs(*opts++);
    822 				hlen -= 2;
    823 			}
    824 			while (optsum >> 16)
    825 				optsum = (optsum >> 16) + (optsum & 0xffff);
    826 
    827 			/* Deduct the ip opts sum from the hwsum. */
    828 			csum_data += (uint16_t)~optsum;
    829 
    830 			while (csum_data >> 16)
    831 				csum_data =
    832 				    (csum_data >> 16) + (csum_data & 0xffff);
    833 		}
    834 		m0->m_pkthdr.csum_data = csum_data;
    835 	}
    836 swcsum:
    837 	m0->m_pkthdr.csum_flags = csum_flags;
    838 #endif
    839 
    840 	return (m0);
    841 
    842 bad:
    843 	m_freem(m0);
    844 	return (0);
    845 }
    846 
    847 /*
    848  * Pass a packet to the higher levels.
    849  */
    850 void
    851 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
    852 {
    853 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    854 	struct mbuf *m;
    855 	int len;
    856 
    857 	len = HME_XD_DECODE_RSIZE(flags);
    858 	if (len <= sizeof(struct ether_header) ||
    859 	    len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    860 	    ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
    861 	    ETHERMTU + sizeof(struct ether_header))) {
    862 #ifdef HMEDEBUG
    863 		printf("%s: invalid packet size %d; dropping\n",
    864 		    device_xname(sc->sc_dev), len);
    865 #endif
    866 		ifp->if_ierrors++;
    867 		return;
    868 	}
    869 
    870 	/* Pull packet off interface. */
    871 	m = hme_get(sc, ix, flags);
    872 	if (m == 0) {
    873 		ifp->if_ierrors++;
    874 		return;
    875 	}
    876 
    877 	/* Pass the packet up. */
    878 	if_percpuq_enqueue(ifp->if_percpuq, m);
    879 }
    880 
    881 void
    882 hme_start(struct ifnet *ifp)
    883 {
    884 	struct hme_softc *sc = ifp->if_softc;
    885 	void *txd = sc->sc_rb.rb_txd;
    886 	struct mbuf *m;
    887 	unsigned int txflags;
    888 	unsigned int ri, len, obusy;
    889 	unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
    890 
    891 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    892 		return;
    893 
    894 	ri = sc->sc_rb.rb_tdhead;
    895 	obusy = sc->sc_rb.rb_td_nbusy;
    896 
    897 	for (;;) {
    898 		IFQ_DEQUEUE(&ifp->if_snd, m);
    899 		if (m == 0)
    900 			break;
    901 
    902 		/*
    903 		 * If BPF is listening on this interface, let it see the
    904 		 * packet before we commit it to the wire.
    905 		 */
    906 		bpf_mtap(ifp, m);
    907 
    908 #ifdef INET
    909 		/* collect bits for h/w csum, before hme_put frees the mbuf */
    910 		if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
    911 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    912 			struct ether_header *eh;
    913 			uint16_t offset, start;
    914 
    915 			eh = mtod(m, struct ether_header *);
    916 			switch (ntohs(eh->ether_type)) {
    917 			case ETHERTYPE_IP:
    918 				start = ETHER_HDR_LEN;
    919 				break;
    920 			case ETHERTYPE_VLAN:
    921 				start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    922 				break;
    923 			default:
    924 				/* unsupported, drop it */
    925 				m_free(m);
    926 				continue;
    927 			}
    928 			start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
    929 			offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
    930 			    + start;
    931 			txflags = HME_XD_TXCKSUM |
    932 				  (offset << HME_XD_TXCSSTUFFSHIFT) |
    933 		  		  (start << HME_XD_TXCSSTARTSHIFT);
    934 		} else
    935 #endif
    936 			txflags = 0;
    937 
    938 		/*
    939 		 * Copy the mbuf chain into the transmit buffer.
    940 		 */
    941 		len = hme_put(sc, ri, m);
    942 
    943 		/*
    944 		 * Initialize transmit registers and start transmission
    945 		 */
    946 		HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
    947 			HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
    948 			HME_XD_ENCODE_TSIZE(len) | txflags);
    949 
    950 		/*if (sc->sc_rb.rb_td_nbusy <= 0)*/
    951 		bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
    952 				  HME_ETX_TP_DMAWAKEUP);
    953 
    954 		if (++ri == ntbuf)
    955 			ri = 0;
    956 
    957 		if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
    958 			ifp->if_flags |= IFF_OACTIVE;
    959 			break;
    960 		}
    961 	}
    962 
    963 	if (obusy != sc->sc_rb.rb_td_nbusy) {
    964 		sc->sc_rb.rb_tdhead = ri;
    965 		ifp->if_timer = 5;
    966 	}
    967 }
    968 
    969 /*
    970  * Transmit interrupt.
    971  */
    972 int
    973 hme_tint(struct hme_softc *sc)
    974 {
    975 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    976 	bus_space_tag_t t = sc->sc_bustag;
    977 	bus_space_handle_t mac = sc->sc_mac;
    978 	unsigned int ri, txflags;
    979 
    980 	/*
    981 	 * Unload collision counters
    982 	 */
    983 	ifp->if_collisions +=
    984 		bus_space_read_4(t, mac, HME_MACI_NCCNT) +
    985 		bus_space_read_4(t, mac, HME_MACI_FCCNT);
    986 	ifp->if_oerrors +=
    987 		bus_space_read_4(t, mac, HME_MACI_EXCNT) +
    988 		bus_space_read_4(t, mac, HME_MACI_LTCNT);
    989 
    990 	/*
    991 	 * then clear the hardware counters.
    992 	 */
    993 	bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
    994 	bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
    995 	bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
    996 	bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
    997 
    998 	/* Fetch current position in the transmit ring */
    999 	ri = sc->sc_rb.rb_tdtail;
   1000 
   1001 	for (;;) {
   1002 		if (sc->sc_rb.rb_td_nbusy <= 0)
   1003 			break;
   1004 
   1005 		txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
   1006 
   1007 		if (txflags & HME_XD_OWN)
   1008 			break;
   1009 
   1010 		ifp->if_flags &= ~IFF_OACTIVE;
   1011 		ifp->if_opackets++;
   1012 
   1013 		if (++ri == sc->sc_rb.rb_ntbuf)
   1014 			ri = 0;
   1015 
   1016 		--sc->sc_rb.rb_td_nbusy;
   1017 	}
   1018 
   1019 	/* Update ring */
   1020 	sc->sc_rb.rb_tdtail = ri;
   1021 
   1022 	if_schedule_deferred_start(ifp);
   1023 
   1024 	if (sc->sc_rb.rb_td_nbusy == 0)
   1025 		ifp->if_timer = 0;
   1026 
   1027 	return (1);
   1028 }
   1029 
   1030 /*
   1031  * Receive interrupt.
   1032  */
   1033 int
   1034 hme_rint(struct hme_softc *sc)
   1035 {
   1036 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1037 	bus_space_tag_t t = sc->sc_bustag;
   1038 	bus_space_handle_t mac = sc->sc_mac;
   1039 	void *xdr = sc->sc_rb.rb_rxd;
   1040 	unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
   1041 	unsigned int ri;
   1042 	uint32_t flags;
   1043 
   1044 	ri = sc->sc_rb.rb_rdtail;
   1045 
   1046 	/*
   1047 	 * Process all buffers with valid data.
   1048 	 */
   1049 	for (;;) {
   1050 		flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
   1051 		if (flags & HME_XD_OWN)
   1052 			break;
   1053 
   1054 		if (flags & HME_XD_OFL) {
   1055 			printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
   1056 					device_xname(sc->sc_dev), ri, flags);
   1057 		} else
   1058 			hme_read(sc, ri, flags);
   1059 
   1060 		/* This buffer can be used by the hardware again */
   1061 		HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
   1062 				HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
   1063 
   1064 		if (++ri == nrbuf)
   1065 			ri = 0;
   1066 	}
   1067 
   1068 	sc->sc_rb.rb_rdtail = ri;
   1069 
   1070 	/* Read error counters ... */
   1071 	ifp->if_ierrors +=
   1072 	    bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
   1073 	    bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
   1074 	    bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
   1075 	    bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
   1076 
   1077 	/* ... then clear the hardware counters. */
   1078 	bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
   1079 	bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
   1080 	bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
   1081 	bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
   1082 	return (1);
   1083 }
   1084 
   1085 int
   1086 hme_eint(struct hme_softc *sc, u_int status)
   1087 {
   1088 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1089 	char bits[128];
   1090 
   1091 	if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
   1092 		bus_space_tag_t t = sc->sc_bustag;
   1093 		bus_space_handle_t mif = sc->sc_mif;
   1094 		uint32_t cf, st, sm;
   1095 		cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1096 		st = bus_space_read_4(t, mif, HME_MIFI_STAT);
   1097 		sm = bus_space_read_4(t, mif, HME_MIFI_SM);
   1098 		printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
   1099 			device_xname(sc->sc_dev), cf, st, sm);
   1100 		return (1);
   1101 	}
   1102 
   1103 	/* Receive error counters rolled over */
   1104 	if (status & HME_SEB_STAT_ACNTEXP)
   1105 		ifp->if_ierrors += 0xff;
   1106 	if (status & HME_SEB_STAT_CCNTEXP)
   1107 		ifp->if_ierrors += 0xff;
   1108 	if (status & HME_SEB_STAT_LCNTEXP)
   1109 		ifp->if_ierrors += 0xff;
   1110 	if (status & HME_SEB_STAT_CVCNTEXP)
   1111 		ifp->if_ierrors += 0xff;
   1112 
   1113 	/* RXTERR locks up the interface, so do a reset */
   1114 	if (status & HME_SEB_STAT_RXTERR)
   1115 		hme_reset(sc);
   1116 
   1117 	snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
   1118 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   1119 
   1120 	return (1);
   1121 }
   1122 
   1123 int
   1124 hme_intr(void *v)
   1125 {
   1126 	struct hme_softc *sc = v;
   1127 	bus_space_tag_t t = sc->sc_bustag;
   1128 	bus_space_handle_t seb = sc->sc_seb;
   1129 	uint32_t status;
   1130 	int r = 0;
   1131 
   1132 	status = bus_space_read_4(t, seb, HME_SEBI_STAT);
   1133 
   1134 	if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
   1135 		r |= hme_eint(sc, status);
   1136 
   1137 	if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
   1138 		r |= hme_tint(sc);
   1139 
   1140 	if ((status & HME_SEB_STAT_RXTOHOST) != 0)
   1141 		r |= hme_rint(sc);
   1142 
   1143 	rnd_add_uint32(&sc->rnd_source, status);
   1144 
   1145 	return (r);
   1146 }
   1147 
   1148 
   1149 void
   1150 hme_watchdog(struct ifnet *ifp)
   1151 {
   1152 	struct hme_softc *sc = ifp->if_softc;
   1153 
   1154 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1155 	++ifp->if_oerrors;
   1156 
   1157 	hme_reset(sc);
   1158 }
   1159 
   1160 /*
   1161  * Initialize the MII Management Interface
   1162  */
   1163 void
   1164 hme_mifinit(struct hme_softc *sc)
   1165 {
   1166 	bus_space_tag_t t = sc->sc_bustag;
   1167 	bus_space_handle_t mif = sc->sc_mif;
   1168 	bus_space_handle_t mac = sc->sc_mac;
   1169 	int instance, phy;
   1170 	uint32_t v;
   1171 
   1172 	if (sc->sc_mii.mii_media.ifm_cur != NULL) {
   1173 		instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1174 		phy = sc->sc_phys[instance];
   1175 	} else
   1176 		/* No media set yet, pick phy arbitrarily.. */
   1177 		phy = HME_PHYAD_EXTERNAL;
   1178 
   1179 	/* Configure the MIF in frame mode, no poll, current phy select */
   1180 	v = 0;
   1181 	if (phy == HME_PHYAD_EXTERNAL)
   1182 		v |= HME_MIF_CFG_PHY;
   1183 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1184 
   1185 	/* If an external transceiver is selected, enable its MII drivers */
   1186 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1187 	v &= ~HME_MAC_XIF_MIIENABLE;
   1188 	if (phy == HME_PHYAD_EXTERNAL)
   1189 		v |= HME_MAC_XIF_MIIENABLE;
   1190 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1191 }
   1192 
   1193 /*
   1194  * MII interface
   1195  */
   1196 static int
   1197 hme_mii_readreg(device_t self, int phy, int reg)
   1198 {
   1199 	struct hme_softc *sc = device_private(self);
   1200 	bus_space_tag_t t = sc->sc_bustag;
   1201 	bus_space_handle_t mif = sc->sc_mif;
   1202 	bus_space_handle_t mac = sc->sc_mac;
   1203 	uint32_t v, xif_cfg, mifi_cfg;
   1204 	int n;
   1205 
   1206 	/* We can at most have two PHYs */
   1207 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1208 		return (0);
   1209 
   1210 	/* Select the desired PHY in the MIF configuration register */
   1211 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1212 	v &= ~HME_MIF_CFG_PHY;
   1213 	if (phy == HME_PHYAD_EXTERNAL)
   1214 		v |= HME_MIF_CFG_PHY;
   1215 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1216 
   1217 	/* Enable MII drivers on external transceiver */
   1218 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1219 	if (phy == HME_PHYAD_EXTERNAL)
   1220 		v |= HME_MAC_XIF_MIIENABLE;
   1221 	else
   1222 		v &= ~HME_MAC_XIF_MIIENABLE;
   1223 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1224 
   1225 #if 0
   1226 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1227 	/*
   1228 	 * Check whether a transceiver is connected by testing
   1229 	 * the MIF configuration register's MDI_X bits. Note that
   1230 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1231 	 */
   1232 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1233 	delay(100);
   1234 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1235 	if ((v & mif_mdi_bit) == 0)
   1236 		return (0);
   1237 #endif
   1238 
   1239 	/* Construct the frame command */
   1240 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
   1241 	    HME_MIF_FO_TAMSB |
   1242 	    (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
   1243 	    (phy << HME_MIF_FO_PHYAD_SHIFT) |
   1244 	    (reg << HME_MIF_FO_REGAD_SHIFT);
   1245 
   1246 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1247 	for (n = 0; n < 100; n++) {
   1248 		DELAY(1);
   1249 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1250 		if (v & HME_MIF_FO_TALSB) {
   1251 			v &= HME_MIF_FO_DATA;
   1252 			goto out;
   1253 		}
   1254 	}
   1255 
   1256 	v = 0;
   1257 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   1258 
   1259 out:
   1260 	/* Restore MIFI_CFG register */
   1261 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1262 	/* Restore XIF register */
   1263 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1264 	return (v);
   1265 }
   1266 
   1267 static void
   1268 hme_mii_writereg(device_t self, int phy, int reg, int val)
   1269 {
   1270 	struct hme_softc *sc = device_private(self);
   1271 	bus_space_tag_t t = sc->sc_bustag;
   1272 	bus_space_handle_t mif = sc->sc_mif;
   1273 	bus_space_handle_t mac = sc->sc_mac;
   1274 	uint32_t v, xif_cfg, mifi_cfg;
   1275 	int n;
   1276 
   1277 	/* We can at most have two PHYs */
   1278 	if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
   1279 		return;
   1280 
   1281 	/* Select the desired PHY in the MIF configuration register */
   1282 	v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1283 	v &= ~HME_MIF_CFG_PHY;
   1284 	if (phy == HME_PHYAD_EXTERNAL)
   1285 		v |= HME_MIF_CFG_PHY;
   1286 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1287 
   1288 	/* Enable MII drivers on external transceiver */
   1289 	v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
   1290 	if (phy == HME_PHYAD_EXTERNAL)
   1291 		v |= HME_MAC_XIF_MIIENABLE;
   1292 	else
   1293 		v &= ~HME_MAC_XIF_MIIENABLE;
   1294 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1295 
   1296 #if 0
   1297 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
   1298 	/*
   1299 	 * Check whether a transceiver is connected by testing
   1300 	 * the MIF configuration register's MDI_X bits. Note that
   1301 	 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
   1302 	 */
   1303 	mif_mdi_bit = 1 << (8 + (1 - phy));
   1304 	delay(100);
   1305 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1306 	if ((v & mif_mdi_bit) == 0)
   1307 		return;
   1308 #endif
   1309 
   1310 	/* Construct the frame command */
   1311 	v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)	|
   1312 	    HME_MIF_FO_TAMSB				|
   1313 	    (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT)	|
   1314 	    (phy << HME_MIF_FO_PHYAD_SHIFT)		|
   1315 	    (reg << HME_MIF_FO_REGAD_SHIFT)		|
   1316 	    (val & HME_MIF_FO_DATA);
   1317 
   1318 	bus_space_write_4(t, mif, HME_MIFI_FO, v);
   1319 	for (n = 0; n < 100; n++) {
   1320 		DELAY(1);
   1321 		v = bus_space_read_4(t, mif, HME_MIFI_FO);
   1322 		if (v & HME_MIF_FO_TALSB)
   1323 			goto out;
   1324 	}
   1325 
   1326 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   1327 out:
   1328 	/* Restore MIFI_CFG register */
   1329 	bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
   1330 	/* Restore XIF register */
   1331 	bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
   1332 }
   1333 
   1334 static void
   1335 hme_mii_statchg(struct ifnet *ifp)
   1336 {
   1337 	struct hme_softc *sc = ifp->if_softc;
   1338 	bus_space_tag_t t = sc->sc_bustag;
   1339 	bus_space_handle_t mac = sc->sc_mac;
   1340 	uint32_t v;
   1341 
   1342 #ifdef HMEDEBUG
   1343 	if (sc->sc_debug)
   1344 		printf("hme_mii_statchg: status change\n");
   1345 #endif
   1346 
   1347 	/* Set the MAC Full Duplex bit appropriately */
   1348 	/* Apparently the hme chip is SIMPLEX if working in full duplex mode,
   1349 	   but not otherwise. */
   1350 	v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
   1351 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1352 		v |= HME_MAC_TXCFG_FULLDPLX;
   1353 		sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
   1354 	} else {
   1355 		v &= ~HME_MAC_TXCFG_FULLDPLX;
   1356 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
   1357 	}
   1358 	sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
   1359 	bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
   1360 }
   1361 
   1362 int
   1363 hme_mediachange(struct ifnet *ifp)
   1364 {
   1365 	struct hme_softc *sc = ifp->if_softc;
   1366 	bus_space_tag_t t = sc->sc_bustag;
   1367 	bus_space_handle_t mif = sc->sc_mif;
   1368 	bus_space_handle_t mac = sc->sc_mac;
   1369 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1370 	int phy = sc->sc_phys[instance];
   1371 	int rc;
   1372 	uint32_t v;
   1373 
   1374 #ifdef HMEDEBUG
   1375 	if (sc->sc_debug)
   1376 		printf("hme_mediachange: phy = %d\n", phy);
   1377 #endif
   1378 
   1379 	/* Select the current PHY in the MIF configuration register */
   1380 	v = bus_space_read_4(t, mif, HME_MIFI_CFG);
   1381 	v &= ~HME_MIF_CFG_PHY;
   1382 	if (phy == HME_PHYAD_EXTERNAL)
   1383 		v |= HME_MIF_CFG_PHY;
   1384 	bus_space_write_4(t, mif, HME_MIFI_CFG, v);
   1385 
   1386 	/* If an external transceiver is selected, enable its MII drivers */
   1387 	v = bus_space_read_4(t, mac, HME_MACI_XIF);
   1388 	v &= ~HME_MAC_XIF_MIIENABLE;
   1389 	if (phy == HME_PHYAD_EXTERNAL)
   1390 		v |= HME_MAC_XIF_MIIENABLE;
   1391 	bus_space_write_4(t, mac, HME_MACI_XIF, v);
   1392 
   1393 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
   1394 		return 0;
   1395 	return rc;
   1396 }
   1397 
   1398 /*
   1399  * Process an ioctl request.
   1400  */
   1401 int
   1402 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   1403 {
   1404 	struct hme_softc *sc = ifp->if_softc;
   1405 	struct ifaddr *ifa = (struct ifaddr *)data;
   1406 	int s, error = 0;
   1407 
   1408 	s = splnet();
   1409 
   1410 	switch (cmd) {
   1411 
   1412 	case SIOCINITIFADDR:
   1413 		switch (ifa->ifa_addr->sa_family) {
   1414 #ifdef INET
   1415 		case AF_INET:
   1416 			if (ifp->if_flags & IFF_UP)
   1417 				hme_setladrf(sc);
   1418 			else {
   1419 				ifp->if_flags |= IFF_UP;
   1420 				error = hme_init(ifp);
   1421 			}
   1422 			arp_ifinit(ifp, ifa);
   1423 			break;
   1424 #endif
   1425 		default:
   1426 			ifp->if_flags |= IFF_UP;
   1427 			error = hme_init(ifp);
   1428 			break;
   1429 		}
   1430 		break;
   1431 
   1432 	case SIOCSIFFLAGS:
   1433 #ifdef HMEDEBUG
   1434 		{
   1435 			struct ifreq *ifr = data;
   1436 			sc->sc_debug =
   1437 			    (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
   1438 		}
   1439 #endif
   1440 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1441 			break;
   1442 
   1443 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   1444 		case IFF_RUNNING:
   1445 			/*
   1446 			 * If interface is marked down and it is running, then
   1447 			 * stop it.
   1448 			 */
   1449 			hme_stop(ifp, 0);
   1450 			ifp->if_flags &= ~IFF_RUNNING;
   1451 			break;
   1452 		case IFF_UP:
   1453 			/*
   1454 			 * If interface is marked up and it is stopped, then
   1455 			 * start it.
   1456 			 */
   1457 			error = hme_init(ifp);
   1458 			break;
   1459 		case IFF_UP|IFF_RUNNING:
   1460 			/*
   1461 			 * If setting debug or promiscuous mode, do not reset
   1462 			 * the chip; for everything else, call hme_init()
   1463 			 * which will trigger a reset.
   1464 			 */
   1465 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
   1466 			if (ifp->if_flags != sc->sc_if_flags) {
   1467 				if ((ifp->if_flags & (~RESETIGN))
   1468 				    == (sc->sc_if_flags & (~RESETIGN)))
   1469 					hme_setladrf(sc);
   1470 				else
   1471 					error = hme_init(ifp);
   1472 			}
   1473 #undef RESETIGN
   1474 			break;
   1475 		case 0:
   1476 			break;
   1477 		}
   1478 
   1479 		if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
   1480 			error = hme_init(ifp);
   1481 
   1482 		break;
   1483 
   1484 	default:
   1485 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1486 			break;
   1487 
   1488 		error = 0;
   1489 
   1490 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1491 			;
   1492 		else if (ifp->if_flags & IFF_RUNNING) {
   1493 			/*
   1494 			 * Multicast list has changed; set the hardware filter
   1495 			 * accordingly.
   1496 			 */
   1497 			hme_setladrf(sc);
   1498 		}
   1499 		break;
   1500 	}
   1501 
   1502 	sc->sc_if_flags = ifp->if_flags;
   1503 	splx(s);
   1504 	return (error);
   1505 }
   1506 
   1507 bool
   1508 hme_shutdown(device_t self, int howto)
   1509 {
   1510 	struct hme_softc *sc;
   1511 	struct ifnet *ifp;
   1512 
   1513 	sc = device_private(self);
   1514 	ifp = &sc->sc_ethercom.ec_if;
   1515 	hme_stop(ifp, 1);
   1516 
   1517 	return true;
   1518 }
   1519 
   1520 /*
   1521  * Set up the logical address filter.
   1522  */
   1523 void
   1524 hme_setladrf(struct hme_softc *sc)
   1525 {
   1526 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1527 	struct ether_multi *enm;
   1528 	struct ether_multistep step;
   1529 	struct ethercom *ec = &sc->sc_ethercom;
   1530 	bus_space_tag_t t = sc->sc_bustag;
   1531 	bus_space_handle_t mac = sc->sc_mac;
   1532 	uint32_t v;
   1533 	uint32_t crc;
   1534 	uint32_t hash[4];
   1535 
   1536 	/* Clear hash table */
   1537 	hash[3] = hash[2] = hash[1] = hash[0] = 0;
   1538 
   1539 	/* Get current RX configuration */
   1540 	v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
   1541 
   1542 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1543 		/* Turn on promiscuous mode; turn off the hash filter */
   1544 		v |= HME_MAC_RXCFG_PMISC;
   1545 		v &= ~HME_MAC_RXCFG_HENABLE;
   1546 		ifp->if_flags |= IFF_ALLMULTI;
   1547 		goto chipit;
   1548 	}
   1549 
   1550 	/* Turn off promiscuous mode; turn on the hash filter */
   1551 	v &= ~HME_MAC_RXCFG_PMISC;
   1552 	v |= HME_MAC_RXCFG_HENABLE;
   1553 
   1554 	/*
   1555 	 * Set up multicast address filter by passing all multicast addresses
   1556 	 * through a crc generator, and then using the high order 6 bits as an
   1557 	 * index into the 64 bit logical address filter.  The high order bit
   1558 	 * selects the word, while the rest of the bits select the bit within
   1559 	 * the word.
   1560 	 */
   1561 
   1562 	ETHER_FIRST_MULTI(step, ec, enm);
   1563 	while (enm != NULL) {
   1564 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1565 			/*
   1566 			 * We must listen to a range of multicast addresses.
   1567 			 * For now, just accept all multicasts, rather than
   1568 			 * trying to set only those filter bits needed to match
   1569 			 * the range.  (At this time, the only use of address
   1570 			 * ranges is for IP multicast routing, for which the
   1571 			 * range is big enough to require all bits set.)
   1572 			 */
   1573 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
   1574 			ifp->if_flags |= IFF_ALLMULTI;
   1575 			goto chipit;
   1576 		}
   1577 
   1578 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1579 
   1580 		/* Just want the 6 most significant bits. */
   1581 		crc >>= 26;
   1582 
   1583 		/* Set the corresponding bit in the filter. */
   1584 		hash[crc >> 4] |= 1 << (crc & 0xf);
   1585 
   1586 		ETHER_NEXT_MULTI(step, enm);
   1587 	}
   1588 
   1589 	ifp->if_flags &= ~IFF_ALLMULTI;
   1590 
   1591 chipit:
   1592 	/* Now load the hash table into the chip */
   1593 	bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
   1594 	bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
   1595 	bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
   1596 	bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
   1597 	bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
   1598 }
   1599 
   1600 /*
   1601  * Routines for accessing the transmit and receive buffers.
   1602  * The various CPU and adapter configurations supported by this
   1603  * driver require three different access methods for buffers
   1604  * and descriptors:
   1605  *	(1) contig (contiguous data; no padding),
   1606  *	(2) gap2 (two bytes of data followed by two bytes of padding),
   1607  *	(3) gap16 (16 bytes of data followed by 16 bytes of padding).
   1608  */
   1609 
   1610 #if 0
   1611 /*
   1612  * contig: contiguous data with no padding.
   1613  *
   1614  * Buffers may have any alignment.
   1615  */
   1616 
   1617 void
   1618 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
   1619 {
   1620 	volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
   1621 
   1622 	/*
   1623 	 * Just call memcpy() to do the work.
   1624 	 */
   1625 	memcpy(buf, from, len);
   1626 }
   1627 
   1628 void
   1629 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
   1630 {
   1631 	volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
   1632 
   1633 	/*
   1634 	 * Just call memcpy() to do the work.
   1635 	 */
   1636 	memcpy(to, buf, len);
   1637 }
   1638 #endif
   1639