i82557.c revision 1.100 1 /* $NetBSD: i82557.c,v 1.100 2006/11/16 01:32:51 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.100 2006/11/16 01:32:51 christos Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/syslog.h>
92
93 #include <machine/endian.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #if NRND > 0
98 #include <sys/rnd.h>
99 #endif
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <machine/bus.h>
111 #include <machine/intr.h>
112
113 #include <dev/mii/miivar.h>
114
115 #include <dev/ic/i82557reg.h>
116 #include <dev/ic/i82557var.h>
117
118 #include <dev/microcode/i8255x/rcvbundl.h>
119
120 /*
121 * NOTE! On the Alpha, we have an alignment constraint. The
122 * card DMAs the packet immediately following the RFA. However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned. To compensate,
125 * we actually offset the RFA 2 bytes into the cluster. This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary. HOWEVER! This means that the RFA is misaligned!
128 */
129 #define RFA_ALIGNMENT_FUDGE 2
130
131 /*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero. Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139 const u_int8_t fxp_cb_config_template[] = {
140 0x0, 0x0, /* cb_status */
141 0x0, 0x0, /* cb_command */
142 0x0, 0x0, 0x0, 0x0, /* link_addr */
143 0x0, /* 0 */
144 0x0, /* 1 */
145 0x0, /* 2 */
146 0x0, /* 3 */
147 0x0, /* 4 */
148 0x0, /* 5 */
149 0x32, /* 6 */
150 0x0, /* 7 */
151 0x0, /* 8 */
152 0x0, /* 9 */
153 0x6, /* 10 */
154 0x0, /* 11 */
155 0x0, /* 12 */
156 0x0, /* 13 */
157 0xf2, /* 14 */
158 0x48, /* 15 */
159 0x0, /* 16 */
160 0x40, /* 17 */
161 0xf0, /* 18 */
162 0x0, /* 19 */
163 0x3f, /* 20 */
164 0x5, /* 21 */
165 0x0, /* 22 */
166 0x0, /* 23 */
167 0x0, /* 24 */
168 0x0, /* 25 */
169 0x0, /* 26 */
170 0x0, /* 27 */
171 0x0, /* 28 */
172 0x0, /* 29 */
173 0x0, /* 30 */
174 0x0, /* 31 */
175 };
176
177 void fxp_mii_initmedia(struct fxp_softc *);
178 int fxp_mii_mediachange(struct ifnet *);
179 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
180
181 void fxp_80c24_initmedia(struct fxp_softc *);
182 int fxp_80c24_mediachange(struct ifnet *);
183 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
184
185 void fxp_start(struct ifnet *);
186 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
187 void fxp_watchdog(struct ifnet *);
188 int fxp_init(struct ifnet *);
189 void fxp_stop(struct ifnet *, int);
190
191 void fxp_txintr(struct fxp_softc *);
192 void fxp_rxintr(struct fxp_softc *);
193
194 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
195
196 void fxp_rxdrain(struct fxp_softc *);
197 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
198 int fxp_mdi_read(struct device *, int, int);
199 void fxp_statchg(struct device *);
200 void fxp_mdi_write(struct device *, int, int, int);
201 void fxp_autosize_eeprom(struct fxp_softc*);
202 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204 void fxp_eeprom_update_cksum(struct fxp_softc *);
205 void fxp_get_info(struct fxp_softc *, u_int8_t *);
206 void fxp_tick(void *);
207 void fxp_mc_setup(struct fxp_softc *);
208 void fxp_load_ucode(struct fxp_softc *);
209
210 void fxp_shutdown(void *);
211 void fxp_power(int, void *);
212
213 int fxp_copy_small = 0;
214
215 /*
216 * Variables for interrupt mitigating microcode.
217 */
218 int fxp_int_delay = 1000; /* usec */
219 int fxp_bundle_max = 6; /* packets */
220
221 struct fxp_phytype {
222 int fp_phy; /* type of PHY, -1 for MII at the end. */
223 void (*fp_init)(struct fxp_softc *);
224 } fxp_phytype_table[] = {
225 { FXP_PHY_80C24, fxp_80c24_initmedia },
226 { -1, fxp_mii_initmedia },
227 };
228
229 /*
230 * Set initial transmit threshold at 64 (512 bytes). This is
231 * increased by 64 (512 bytes) at a time, to maximum of 192
232 * (1536 bytes), if an underrun occurs.
233 */
234 static int tx_threshold = 64;
235
236 /*
237 * Wait for the previous command to be accepted (but not necessarily
238 * completed).
239 */
240 static inline void
241 fxp_scb_wait(struct fxp_softc *sc)
242 {
243 int i = 10000;
244
245 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
246 delay(2);
247 if (i == 0)
248 log(LOG_WARNING,
249 "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
250 }
251
252 /*
253 * Submit a command to the i82557.
254 */
255 static inline void
256 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
257 {
258
259 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
260 }
261
262 /*
263 * Finish attaching an i82557 interface. Called by bus-specific front-end.
264 */
265 void
266 fxp_attach(struct fxp_softc *sc)
267 {
268 u_int8_t enaddr[ETHER_ADDR_LEN];
269 struct ifnet *ifp;
270 bus_dma_segment_t seg;
271 int rseg, i, error;
272 struct fxp_phytype *fp;
273
274 callout_init(&sc->sc_callout);
275
276 /*
277 * Enable some good stuff on i82558 and later.
278 */
279 if (sc->sc_rev >= FXP_REV_82558_A4) {
280 /* Enable the extended TxCB. */
281 sc->sc_flags |= FXPF_EXT_TXCB;
282 }
283
284 /*
285 * Enable use of extended RFDs and TCBs for 82550
286 * and later chips. Note: we need extended TXCB support
287 * too, but that's already enabled by the code above.
288 * Be careful to do this only on the right devices.
289 */
290 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
291 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
292 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
293 } else {
294 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
295 }
296
297 sc->sc_rfa_size =
298 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
299
300 /*
301 * Allocate the control data structures, and create and load the
302 * DMA map for it.
303 */
304 if ((error = bus_dmamem_alloc(sc->sc_dmat,
305 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
306 0)) != 0) {
307 aprint_error(
308 "%s: unable to allocate control data, error = %d\n",
309 sc->sc_dev.dv_xname, error);
310 goto fail_0;
311 }
312
313 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
314 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
315 BUS_DMA_COHERENT)) != 0) {
316 aprint_error("%s: unable to map control data, error = %d\n",
317 sc->sc_dev.dv_xname, error);
318 goto fail_1;
319 }
320 sc->sc_cdseg = seg;
321 sc->sc_cdnseg = rseg;
322
323 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
324
325 if ((error = bus_dmamap_create(sc->sc_dmat,
326 sizeof(struct fxp_control_data), 1,
327 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
328 aprint_error("%s: unable to create control data DMA map, "
329 "error = %d\n", sc->sc_dev.dv_xname, error);
330 goto fail_2;
331 }
332
333 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
334 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
335 0)) != 0) {
336 aprint_error(
337 "%s: can't load control data DMA map, error = %d\n",
338 sc->sc_dev.dv_xname, error);
339 goto fail_3;
340 }
341
342 /*
343 * Create the transmit buffer DMA maps.
344 */
345 for (i = 0; i < FXP_NTXCB; i++) {
346 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
348 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
349 aprint_error("%s: unable to create tx DMA map %d, "
350 "error = %d\n", sc->sc_dev.dv_xname, i, error);
351 goto fail_4;
352 }
353 }
354
355 /*
356 * Create the receive buffer DMA maps.
357 */
358 for (i = 0; i < FXP_NRFABUFS; i++) {
359 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
360 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
361 aprint_error("%s: unable to create rx DMA map %d, "
362 "error = %d\n", sc->sc_dev.dv_xname, i, error);
363 goto fail_5;
364 }
365 }
366
367 /* Initialize MAC address and media structures. */
368 fxp_get_info(sc, enaddr);
369
370 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
371 ether_sprintf(enaddr));
372
373 ifp = &sc->sc_ethercom.ec_if;
374
375 /*
376 * Get info about our media interface, and initialize it. Note
377 * the table terminates itself with a phy of -1, indicating
378 * that we're using MII.
379 */
380 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
381 if (fp->fp_phy == sc->phy_primary_device)
382 break;
383 (*fp->fp_init)(sc);
384
385 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
386 ifp->if_softc = sc;
387 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
388 ifp->if_ioctl = fxp_ioctl;
389 ifp->if_start = fxp_start;
390 ifp->if_watchdog = fxp_watchdog;
391 ifp->if_init = fxp_init;
392 ifp->if_stop = fxp_stop;
393 IFQ_SET_READY(&ifp->if_snd);
394
395 if (sc->sc_flags & FXPF_IPCB) {
396 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
397 /*
398 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
399 * at least, on i82550 rev.12.
400 * specifically, it doesn't calculate ipv4 checksum correctly
401 * when sending 20 byte ipv4 header + 1 or 2 byte data.
402 * FreeBSD driver has related comments.
403 */
404 ifp->if_capabilities =
405 IFCAP_CSUM_IPv4_Rx |
406 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
407 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
408 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
409 }
410
411 /*
412 * We can support 802.1Q VLAN-sized frames.
413 */
414 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
415
416 /*
417 * Attach the interface.
418 */
419 if_attach(ifp);
420 ether_ifattach(ifp, enaddr);
421 #if NRND > 0
422 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
423 RND_TYPE_NET, 0);
424 #endif
425
426 #ifdef FXP_EVENT_COUNTERS
427 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
428 NULL, sc->sc_dev.dv_xname, "txstall");
429 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
430 NULL, sc->sc_dev.dv_xname, "txintr");
431 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
432 NULL, sc->sc_dev.dv_xname, "rxintr");
433 if (sc->sc_rev >= FXP_REV_82558_A4) {
434 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
435 NULL, sc->sc_dev.dv_xname, "txpause");
436 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
437 NULL, sc->sc_dev.dv_xname, "rxpause");
438 }
439 #endif /* FXP_EVENT_COUNTERS */
440
441 /*
442 * Add shutdown hook so that DMA is disabled prior to reboot. Not
443 * doing do could allow DMA to corrupt kernel memory during the
444 * reboot before the driver initializes.
445 */
446 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
447 if (sc->sc_sdhook == NULL)
448 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
449 sc->sc_dev.dv_xname);
450 /*
451 * Add suspend hook, for similar reasons..
452 */
453 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
454 fxp_power, sc);
455 if (sc->sc_powerhook == NULL)
456 aprint_error("%s: WARNING: unable to establish power hook\n",
457 sc->sc_dev.dv_xname);
458
459 /* The attach is successful. */
460 sc->sc_flags |= FXPF_ATTACHED;
461
462 return;
463
464 /*
465 * Free any resources we've allocated during the failed attach
466 * attempt. Do this in reverse order and fall though.
467 */
468 fail_5:
469 for (i = 0; i < FXP_NRFABUFS; i++) {
470 if (sc->sc_rxmaps[i] != NULL)
471 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
472 }
473 fail_4:
474 for (i = 0; i < FXP_NTXCB; i++) {
475 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
476 bus_dmamap_destroy(sc->sc_dmat,
477 FXP_DSTX(sc, i)->txs_dmamap);
478 }
479 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
480 fail_3:
481 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
482 fail_2:
483 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
484 sizeof(struct fxp_control_data));
485 fail_1:
486 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
487 fail_0:
488 return;
489 }
490
491 void
492 fxp_mii_initmedia(struct fxp_softc *sc)
493 {
494 int flags;
495
496 sc->sc_flags |= FXPF_MII;
497
498 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
499 sc->sc_mii.mii_readreg = fxp_mdi_read;
500 sc->sc_mii.mii_writereg = fxp_mdi_write;
501 sc->sc_mii.mii_statchg = fxp_statchg;
502 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
503 fxp_mii_mediastatus);
504
505 flags = MIIF_NOISOLATE;
506 if (sc->sc_rev >= FXP_REV_82558_A4)
507 flags |= MIIF_DOPAUSE;
508 /*
509 * The i82557 wedges if all of its PHYs are isolated!
510 */
511 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
512 MII_OFFSET_ANY, flags);
513 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
514 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
515 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
516 } else
517 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
518 }
519
520 void
521 fxp_80c24_initmedia(struct fxp_softc *sc)
522 {
523
524 /*
525 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
526 * doesn't have a programming interface of any sort. The
527 * media is sensed automatically based on how the link partner
528 * is configured. This is, in essence, manual configuration.
529 */
530 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
531 sc->sc_dev.dv_xname);
532 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
533 fxp_80c24_mediastatus);
534 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
535 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
536 }
537
538 /*
539 * Device shutdown routine. Called at system shutdown after sync. The
540 * main purpose of this routine is to shut off receiver DMA so that
541 * kernel memory doesn't get clobbered during warmboot.
542 */
543 void
544 fxp_shutdown(void *arg)
545 {
546 struct fxp_softc *sc = arg;
547
548 /*
549 * Since the system's going to halt shortly, don't bother
550 * freeing mbufs.
551 */
552 fxp_stop(&sc->sc_ethercom.ec_if, 0);
553 }
554 /*
555 * Power handler routine. Called when the system is transitioning
556 * into/out of power save modes. As with fxp_shutdown, the main
557 * purpose of this routine is to shut off receiver DMA so it doesn't
558 * clobber kernel memory at the wrong time.
559 */
560 void
561 fxp_power(int why, void *arg)
562 {
563 struct fxp_softc *sc = arg;
564 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
565 int s;
566
567 s = splnet();
568 switch (why) {
569 case PWR_SUSPEND:
570 case PWR_STANDBY:
571 fxp_stop(ifp, 0);
572 break;
573 case PWR_RESUME:
574 if (ifp->if_flags & IFF_UP)
575 fxp_init(ifp);
576 break;
577 case PWR_SOFTSUSPEND:
578 case PWR_SOFTSTANDBY:
579 case PWR_SOFTRESUME:
580 break;
581 }
582 splx(s);
583 }
584
585 /*
586 * Initialize the interface media.
587 */
588 void
589 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
590 {
591 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
592
593 /*
594 * Reset to a stable state.
595 */
596 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
597 DELAY(100);
598
599 sc->sc_eeprom_size = 0;
600 fxp_autosize_eeprom(sc);
601 if (sc->sc_eeprom_size == 0) {
602 aprint_error("%s: failed to detect EEPROM size\n",
603 sc->sc_dev.dv_xname);
604 sc->sc_eeprom_size = 6; /* XXX panic here? */
605 }
606 #ifdef DEBUG
607 aprint_debug("%s: detected %d word EEPROM\n",
608 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
609 #endif
610
611 /*
612 * Get info about the primary PHY
613 */
614 fxp_read_eeprom(sc, &data, 6, 1);
615 sc->phy_primary_device =
616 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
617
618 /*
619 * Read MAC address.
620 */
621 fxp_read_eeprom(sc, myea, 0, 3);
622 enaddr[0] = myea[0] & 0xff;
623 enaddr[1] = myea[0] >> 8;
624 enaddr[2] = myea[1] & 0xff;
625 enaddr[3] = myea[1] >> 8;
626 enaddr[4] = myea[2] & 0xff;
627 enaddr[5] = myea[2] >> 8;
628
629 /*
630 * Systems based on the ICH2/ICH2-M chip from Intel, as well
631 * as some i82559 designs, have a defect where the chip can
632 * cause a PCI protocol violation if it receives a CU_RESUME
633 * command when it is entering the IDLE state.
634 *
635 * The work-around is to disable Dynamic Standby Mode, so that
636 * the chip never deasserts #CLKRUN, and always remains in the
637 * active state.
638 *
639 * Unfortunately, the only way to disable Dynamic Standby is
640 * to frob an EEPROM setting and reboot (the EEPROM setting
641 * is only consulted when the PCI bus comes out of reset).
642 *
643 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
644 */
645 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
646 fxp_read_eeprom(sc, &data, 10, 1);
647 if (data & 0x02) { /* STB enable */
648 aprint_error("%s: WARNING: "
649 "Disabling dynamic standby mode in EEPROM "
650 "to work around a\n",
651 sc->sc_dev.dv_xname);
652 aprint_normal(
653 "%s: WARNING: hardware bug. You must reset "
654 "the system before using this\n",
655 sc->sc_dev.dv_xname);
656 aprint_normal("%s: WARNING: interface.\n",
657 sc->sc_dev.dv_xname);
658 data &= ~0x02;
659 fxp_write_eeprom(sc, &data, 10, 1);
660 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
661 sc->sc_dev.dv_xname, data);
662 fxp_eeprom_update_cksum(sc);
663 }
664 }
665
666 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
667 /* Due to false positives we make it conditional on setting link1 */
668 fxp_read_eeprom(sc, &data, 3, 1);
669 if ((data & 0x03) != 0x03) {
670 aprint_verbose("%s: May need receiver lock-up workaround\n",
671 sc->sc_dev.dv_xname);
672 }
673 }
674
675 static void
676 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
677 {
678 uint16_t reg;
679 int x;
680
681 for (x = 1 << (len - 1); x != 0; x >>= 1) {
682 DELAY(40);
683 if (data & x)
684 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
685 else
686 reg = FXP_EEPROM_EECS;
687 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
688 DELAY(40);
689 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
690 reg | FXP_EEPROM_EESK);
691 DELAY(40);
692 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
693 }
694 DELAY(40);
695 }
696
697 /*
698 * Figure out EEPROM size.
699 *
700 * 559's can have either 64-word or 256-word EEPROMs, the 558
701 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
702 * talks about the existence of 16 to 256 word EEPROMs.
703 *
704 * The only known sizes are 64 and 256, where the 256 version is used
705 * by CardBus cards to store CIS information.
706 *
707 * The address is shifted in msb-to-lsb, and after the last
708 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
709 * after which follows the actual data. We try to detect this zero, by
710 * probing the data-out bit in the EEPROM control register just after
711 * having shifted in a bit. If the bit is zero, we assume we've
712 * shifted enough address bits. The data-out should be tri-state,
713 * before this, which should translate to a logical one.
714 *
715 * Other ways to do this would be to try to read a register with known
716 * contents with a varying number of address bits, but no such
717 * register seem to be available. The high bits of register 10 are 01
718 * on the 558 and 559, but apparently not on the 557.
719 *
720 * The Linux driver computes a checksum on the EEPROM data, but the
721 * value of this checksum is not very well documented.
722 */
723
724 void
725 fxp_autosize_eeprom(struct fxp_softc *sc)
726 {
727 int x;
728
729 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
730 DELAY(40);
731
732 /* Shift in read opcode. */
733 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
734
735 /*
736 * Shift in address, wait for the dummy zero following a correct
737 * address shift.
738 */
739 for (x = 1; x <= 8; x++) {
740 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
741 DELAY(40);
742 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
743 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
744 DELAY(40);
745 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
746 FXP_EEPROM_EEDO) == 0)
747 break;
748 DELAY(40);
749 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
750 DELAY(40);
751 }
752 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
753 DELAY(40);
754 if (x != 6 && x != 8) {
755 #ifdef DEBUG
756 printf("%s: strange EEPROM size (%d)\n",
757 sc->sc_dev.dv_xname, 1 << x);
758 #endif
759 } else
760 sc->sc_eeprom_size = x;
761 }
762
763 /*
764 * Read from the serial EEPROM. Basically, you manually shift in
765 * the read opcode (one bit at a time) and then shift in the address,
766 * and then you shift out the data (all of this one bit at a time).
767 * The word size is 16 bits, so you have to provide the address for
768 * every 16 bits of data.
769 */
770 void
771 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
772 {
773 u_int16_t reg;
774 int i, x;
775
776 for (i = 0; i < words; i++) {
777 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
778
779 /* Shift in read opcode. */
780 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
781
782 /* Shift in address. */
783 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
784
785 reg = FXP_EEPROM_EECS;
786 data[i] = 0;
787
788 /* Shift out data. */
789 for (x = 16; x > 0; x--) {
790 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
791 reg | FXP_EEPROM_EESK);
792 DELAY(40);
793 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
794 FXP_EEPROM_EEDO)
795 data[i] |= (1 << (x - 1));
796 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
797 DELAY(40);
798 }
799 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
800 DELAY(40);
801 }
802 }
803
804 /*
805 * Write data to the serial EEPROM.
806 */
807 void
808 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
809 {
810 int i, j;
811
812 for (i = 0; i < words; i++) {
813 /* Erase/write enable. */
814 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
815 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
816 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
817 sc->sc_eeprom_size);
818 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
819 DELAY(4);
820
821 /* Shift in write opcode, address, data. */
822 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
823 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
824 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
825 fxp_eeprom_shiftin(sc, data[i], 16);
826 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
827 DELAY(4);
828
829 /* Wait for the EEPROM to finish up. */
830 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
831 DELAY(4);
832 for (j = 0; j < 1000; j++) {
833 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
834 FXP_EEPROM_EEDO)
835 break;
836 DELAY(50);
837 }
838 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
839 DELAY(4);
840
841 /* Erase/write disable. */
842 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
843 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
844 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
845 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
846 DELAY(4);
847 }
848 }
849
850 /*
851 * Update the checksum of the EEPROM.
852 */
853 void
854 fxp_eeprom_update_cksum(struct fxp_softc *sc)
855 {
856 int i;
857 uint16_t data, cksum;
858
859 cksum = 0;
860 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
861 fxp_read_eeprom(sc, &data, i, 1);
862 cksum += data;
863 }
864 i = (1 << sc->sc_eeprom_size) - 1;
865 cksum = 0xbaba - cksum;
866 fxp_read_eeprom(sc, &data, i, 1);
867 fxp_write_eeprom(sc, &cksum, i, 1);
868 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
869 sc->sc_dev.dv_xname, i, data, cksum);
870 }
871
872 /*
873 * Start packet transmission on the interface.
874 */
875 void
876 fxp_start(struct ifnet *ifp)
877 {
878 struct fxp_softc *sc = ifp->if_softc;
879 struct mbuf *m0, *m;
880 struct fxp_txdesc *txd;
881 struct fxp_txsoft *txs;
882 bus_dmamap_t dmamap;
883 int error, lasttx, nexttx, opending, seg;
884
885 /*
886 * If we want a re-init, bail out now.
887 */
888 if (sc->sc_flags & FXPF_WANTINIT) {
889 ifp->if_flags |= IFF_OACTIVE;
890 return;
891 }
892
893 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
894 return;
895
896 /*
897 * Remember the previous txpending and the current lasttx.
898 */
899 opending = sc->sc_txpending;
900 lasttx = sc->sc_txlast;
901
902 /*
903 * Loop through the send queue, setting up transmit descriptors
904 * until we drain the queue, or use up all available transmit
905 * descriptors.
906 */
907 for (;;) {
908 struct fxp_tbd *tbdp;
909 int csum_flags;
910
911 /*
912 * Grab a packet off the queue.
913 */
914 IFQ_POLL(&ifp->if_snd, m0);
915 if (m0 == NULL)
916 break;
917 m = NULL;
918
919 if (sc->sc_txpending == FXP_NTXCB) {
920 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
921 break;
922 }
923
924 /*
925 * Get the next available transmit descriptor.
926 */
927 nexttx = FXP_NEXTTX(sc->sc_txlast);
928 txd = FXP_CDTX(sc, nexttx);
929 txs = FXP_DSTX(sc, nexttx);
930 dmamap = txs->txs_dmamap;
931
932 /*
933 * Load the DMA map. If this fails, the packet either
934 * didn't fit in the allotted number of frags, or we were
935 * short on resources. In this case, we'll copy and try
936 * again.
937 */
938 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
939 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
940 MGETHDR(m, M_DONTWAIT, MT_DATA);
941 if (m == NULL) {
942 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
943 sc->sc_dev.dv_xname);
944 break;
945 }
946 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
947 if (m0->m_pkthdr.len > MHLEN) {
948 MCLGET(m, M_DONTWAIT);
949 if ((m->m_flags & M_EXT) == 0) {
950 log(LOG_ERR,
951 "%s: unable to allocate Tx "
952 "cluster\n", sc->sc_dev.dv_xname);
953 m_freem(m);
954 break;
955 }
956 }
957 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
958 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
959 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
960 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
961 if (error) {
962 log(LOG_ERR, "%s: unable to load Tx buffer, "
963 "error = %d\n", sc->sc_dev.dv_xname, error);
964 break;
965 }
966 }
967
968 IFQ_DEQUEUE(&ifp->if_snd, m0);
969 csum_flags = m0->m_pkthdr.csum_flags;
970 if (m != NULL) {
971 m_freem(m0);
972 m0 = m;
973 }
974
975 /* Initialize the fraglist. */
976 tbdp = txd->txd_tbd;
977 if (sc->sc_flags & FXPF_IPCB)
978 tbdp++;
979 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
980 tbdp[seg].tb_addr =
981 htole32(dmamap->dm_segs[seg].ds_addr);
982 tbdp[seg].tb_size =
983 htole32(dmamap->dm_segs[seg].ds_len);
984 }
985
986 /* Sync the DMA map. */
987 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
988 BUS_DMASYNC_PREWRITE);
989
990 /*
991 * Store a pointer to the packet so we can free it later.
992 */
993 txs->txs_mbuf = m0;
994
995 /*
996 * Initialize the transmit descriptor.
997 */
998 /* BIG_ENDIAN: no need to swap to store 0 */
999 txd->txd_txcb.cb_status = 0;
1000 txd->txd_txcb.cb_command =
1001 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
1002 txd->txd_txcb.tx_threshold = tx_threshold;
1003 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
1004
1005 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
1006 if (sc->sc_flags & FXPF_IPCB) {
1007 struct m_tag *vtag;
1008 struct fxp_ipcb *ipcb;
1009 /*
1010 * Deal with TCP/IP checksum offload. Note that
1011 * in order for TCP checksum offload to work,
1012 * the pseudo header checksum must have already
1013 * been computed and stored in the checksum field
1014 * in the TCP header. The stack should have
1015 * already done this for us.
1016 */
1017 ipcb = &txd->txd_u.txdu_ipcb;
1018 memset(ipcb, 0, sizeof(*ipcb));
1019 /*
1020 * always do hardware parsing.
1021 */
1022 ipcb->ipcb_ip_activation_high =
1023 FXP_IPCB_HARDWAREPARSING_ENABLE;
1024 /*
1025 * ip checksum offloading.
1026 */
1027 if (csum_flags & M_CSUM_IPv4) {
1028 ipcb->ipcb_ip_schedule |=
1029 FXP_IPCB_IP_CHECKSUM_ENABLE;
1030 }
1031 /*
1032 * TCP/UDP checksum offloading.
1033 */
1034 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1035 ipcb->ipcb_ip_schedule |=
1036 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1037 }
1038
1039 /*
1040 * request VLAN tag insertion if needed.
1041 */
1042 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
1043 if (vtag) {
1044 ipcb->ipcb_vlan_id =
1045 htobe16(*(u_int *)(vtag + 1));
1046 ipcb->ipcb_ip_activation_high |=
1047 FXP_IPCB_INSERTVLAN_ENABLE;
1048 }
1049 } else {
1050 KASSERT((csum_flags &
1051 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1052 }
1053
1054 FXP_CDTXSYNC(sc, nexttx,
1055 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1056
1057 /* Advance the tx pointer. */
1058 sc->sc_txpending++;
1059 sc->sc_txlast = nexttx;
1060
1061 #if NBPFILTER > 0
1062 /*
1063 * Pass packet to bpf if there is a listener.
1064 */
1065 if (ifp->if_bpf)
1066 bpf_mtap(ifp->if_bpf, m0);
1067 #endif
1068 }
1069
1070 if (sc->sc_txpending == FXP_NTXCB) {
1071 /* No more slots; notify upper layer. */
1072 ifp->if_flags |= IFF_OACTIVE;
1073 }
1074
1075 if (sc->sc_txpending != opending) {
1076 /*
1077 * We enqueued packets. If the transmitter was idle,
1078 * reset the txdirty pointer.
1079 */
1080 if (opending == 0)
1081 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1082
1083 /*
1084 * Cause the chip to interrupt and suspend command
1085 * processing once the last packet we've enqueued
1086 * has been transmitted.
1087 */
1088 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1089 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1090 FXP_CDTXSYNC(sc, sc->sc_txlast,
1091 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1092
1093 /*
1094 * The entire packet chain is set up. Clear the suspend bit
1095 * on the command prior to the first packet we set up.
1096 */
1097 FXP_CDTXSYNC(sc, lasttx,
1098 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1099 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1100 htole16(~FXP_CB_COMMAND_S);
1101 FXP_CDTXSYNC(sc, lasttx,
1102 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1103
1104 /*
1105 * Issue a Resume command in case the chip was suspended.
1106 */
1107 fxp_scb_wait(sc);
1108 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1109
1110 /* Set a watchdog timer in case the chip flakes out. */
1111 ifp->if_timer = 5;
1112 }
1113 }
1114
1115 /*
1116 * Process interface interrupts.
1117 */
1118 int
1119 fxp_intr(void *arg)
1120 {
1121 struct fxp_softc *sc = arg;
1122 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1123 bus_dmamap_t rxmap;
1124 int claimed = 0;
1125 u_int8_t statack;
1126
1127 if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1128 return (0);
1129 /*
1130 * If the interface isn't running, don't try to
1131 * service the interrupt.. just ack it and bail.
1132 */
1133 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1134 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1135 if (statack) {
1136 claimed = 1;
1137 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1138 }
1139 return (claimed);
1140 }
1141
1142 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1143 claimed = 1;
1144
1145 /*
1146 * First ACK all the interrupts in this pass.
1147 */
1148 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1149
1150 /*
1151 * Process receiver interrupts. If a no-resource (RNR)
1152 * condition exists, get whatever packets we can and
1153 * re-start the receiver.
1154 */
1155 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1156 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1157 fxp_rxintr(sc);
1158 }
1159
1160 if (statack & FXP_SCB_STATACK_RNR) {
1161 fxp_scb_wait(sc);
1162 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1163 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1164 fxp_scb_wait(sc);
1165 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1166 rxmap->dm_segs[0].ds_addr +
1167 RFA_ALIGNMENT_FUDGE);
1168 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1169 }
1170
1171 /*
1172 * Free any finished transmit mbuf chains.
1173 */
1174 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1175 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1176 fxp_txintr(sc);
1177
1178 /*
1179 * Try to get more packets going.
1180 */
1181 fxp_start(ifp);
1182
1183 if (sc->sc_txpending == 0) {
1184 /*
1185 * If we want a re-init, do that now.
1186 */
1187 if (sc->sc_flags & FXPF_WANTINIT)
1188 (void) fxp_init(ifp);
1189 }
1190 }
1191 }
1192
1193 #if NRND > 0
1194 if (claimed)
1195 rnd_add_uint32(&sc->rnd_source, statack);
1196 #endif
1197 return (claimed);
1198 }
1199
1200 /*
1201 * Handle transmit completion interrupts.
1202 */
1203 void
1204 fxp_txintr(struct fxp_softc *sc)
1205 {
1206 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207 struct fxp_txdesc *txd;
1208 struct fxp_txsoft *txs;
1209 int i;
1210 u_int16_t txstat;
1211
1212 ifp->if_flags &= ~IFF_OACTIVE;
1213 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1214 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1215 txd = FXP_CDTX(sc, i);
1216 txs = FXP_DSTX(sc, i);
1217
1218 FXP_CDTXSYNC(sc, i,
1219 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1220
1221 txstat = le16toh(txd->txd_txcb.cb_status);
1222
1223 if ((txstat & FXP_CB_STATUS_C) == 0)
1224 break;
1225
1226 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1227 0, txs->txs_dmamap->dm_mapsize,
1228 BUS_DMASYNC_POSTWRITE);
1229 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1230 m_freem(txs->txs_mbuf);
1231 txs->txs_mbuf = NULL;
1232 }
1233
1234 /* Update the dirty transmit buffer pointer. */
1235 sc->sc_txdirty = i;
1236
1237 /*
1238 * Cancel the watchdog timer if there are no pending
1239 * transmissions.
1240 */
1241 if (sc->sc_txpending == 0)
1242 ifp->if_timer = 0;
1243 }
1244
1245 /*
1246 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1247 */
1248
1249 int
1250 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1251 {
1252 u_int16_t rxparsestat;
1253 u_int16_t csum_stat;
1254 u_int32_t csum_data;
1255 int csum_flags;
1256
1257 /*
1258 * check VLAN tag stripping.
1259 */
1260
1261 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1262 struct m_tag *vtag;
1263
1264 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1265 if (vtag == NULL)
1266 return ENOMEM;
1267 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1268 m_tag_prepend(m, vtag);
1269 }
1270
1271 /*
1272 * check H/W Checksumming.
1273 */
1274
1275 csum_stat = le16toh(rfa->cksum_stat);
1276 rxparsestat = le16toh(rfa->rx_parse_stat);
1277 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1278 return 0;
1279
1280 csum_flags = 0;
1281 csum_data = 0;
1282
1283 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1284 csum_flags = M_CSUM_IPv4;
1285 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1286 csum_flags |= M_CSUM_IPv4_BAD;
1287 }
1288
1289 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1290 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1291 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1292 csum_flags |= M_CSUM_TCP_UDP_BAD;
1293 }
1294
1295 m->m_pkthdr.csum_flags = csum_flags;
1296 m->m_pkthdr.csum_data = csum_data;
1297
1298 return 0;
1299 }
1300
1301 /*
1302 * Handle receive interrupts.
1303 */
1304 void
1305 fxp_rxintr(struct fxp_softc *sc)
1306 {
1307 struct ethercom *ec = &sc->sc_ethercom;
1308 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1309 struct mbuf *m, *m0;
1310 bus_dmamap_t rxmap;
1311 struct fxp_rfa *rfa;
1312 u_int16_t len, rxstat;
1313
1314 for (;;) {
1315 m = sc->sc_rxq.ifq_head;
1316 rfa = FXP_MTORFA(m);
1317 rxmap = M_GETCTX(m, bus_dmamap_t);
1318
1319 FXP_RFASYNC(sc, m,
1320 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1321
1322 rxstat = le16toh(rfa->rfa_status);
1323
1324 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1325 /*
1326 * We have processed all of the
1327 * receive buffers.
1328 */
1329 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1330 return;
1331 }
1332
1333 IF_DEQUEUE(&sc->sc_rxq, m);
1334
1335 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1336
1337 len = le16toh(rfa->actual_size) &
1338 (m->m_ext.ext_size - 1);
1339
1340 if (len < sizeof(struct ether_header)) {
1341 /*
1342 * Runt packet; drop it now.
1343 */
1344 FXP_INIT_RFABUF(sc, m);
1345 continue;
1346 }
1347
1348 /*
1349 * If support for 802.1Q VLAN sized frames is
1350 * enabled, we need to do some additional error
1351 * checking (as we are saving bad frames, in
1352 * order to receive the larger ones).
1353 */
1354 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1355 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1356 FXP_RFA_STATUS_RNR|
1357 FXP_RFA_STATUS_ALIGN|
1358 FXP_RFA_STATUS_CRC)) != 0) {
1359 FXP_INIT_RFABUF(sc, m);
1360 continue;
1361 }
1362
1363 /* Do checksum checking. */
1364 m->m_pkthdr.csum_flags = 0;
1365 if (sc->sc_flags & FXPF_EXT_RFA)
1366 if (fxp_rx_hwcksum(m, rfa))
1367 goto dropit;
1368
1369 /*
1370 * If the packet is small enough to fit in a
1371 * single header mbuf, allocate one and copy
1372 * the data into it. This greatly reduces
1373 * memory consumption when we receive lots
1374 * of small packets.
1375 *
1376 * Otherwise, we add a new buffer to the receive
1377 * chain. If this fails, we drop the packet and
1378 * recycle the old buffer.
1379 */
1380 if (fxp_copy_small != 0 && len <= MHLEN) {
1381 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1382 if (m0 == NULL)
1383 goto dropit;
1384 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1385 memcpy(mtod(m0, caddr_t),
1386 mtod(m, caddr_t), len);
1387 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1388 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1389 FXP_INIT_RFABUF(sc, m);
1390 m = m0;
1391 } else {
1392 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1393 dropit:
1394 ifp->if_ierrors++;
1395 FXP_INIT_RFABUF(sc, m);
1396 continue;
1397 }
1398 }
1399
1400 m->m_pkthdr.rcvif = ifp;
1401 m->m_pkthdr.len = m->m_len = len;
1402
1403 #if NBPFILTER > 0
1404 /*
1405 * Pass this up to any BPF listeners, but only
1406 * pass it up the stack it its for us.
1407 */
1408 if (ifp->if_bpf)
1409 bpf_mtap(ifp->if_bpf, m);
1410 #endif
1411
1412 /* Pass it on. */
1413 (*ifp->if_input)(ifp, m);
1414 }
1415 }
1416
1417 /*
1418 * Update packet in/out/collision statistics. The i82557 doesn't
1419 * allow you to access these counters without doing a fairly
1420 * expensive DMA to get _all_ of the statistics it maintains, so
1421 * we do this operation here only once per second. The statistics
1422 * counters in the kernel are updated from the previous dump-stats
1423 * DMA and then a new dump-stats DMA is started. The on-chip
1424 * counters are zeroed when the DMA completes. If we can't start
1425 * the DMA immediately, we don't wait - we just prepare to read
1426 * them again next time.
1427 */
1428 void
1429 fxp_tick(void *arg)
1430 {
1431 struct fxp_softc *sc = arg;
1432 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1433 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1434 int s;
1435
1436 if (!device_is_active(&sc->sc_dev))
1437 return;
1438
1439 s = splnet();
1440
1441 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1442
1443 ifp->if_opackets += le32toh(sp->tx_good);
1444 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1445 if (sp->rx_good) {
1446 ifp->if_ipackets += le32toh(sp->rx_good);
1447 sc->sc_rxidle = 0;
1448 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1449 sc->sc_rxidle++;
1450 }
1451 ifp->if_ierrors +=
1452 le32toh(sp->rx_crc_errors) +
1453 le32toh(sp->rx_alignment_errors) +
1454 le32toh(sp->rx_rnr_errors) +
1455 le32toh(sp->rx_overrun_errors);
1456 /*
1457 * If any transmit underruns occurred, bump up the transmit
1458 * threshold by another 512 bytes (64 * 8).
1459 */
1460 if (sp->tx_underruns) {
1461 ifp->if_oerrors += le32toh(sp->tx_underruns);
1462 if (tx_threshold < 192)
1463 tx_threshold += 64;
1464 }
1465 #ifdef FXP_EVENT_COUNTERS
1466 if (sc->sc_rev >= FXP_REV_82558_A4) {
1467 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1468 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1469 }
1470 #endif
1471
1472 /*
1473 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1474 * then assume the receiver has locked up and attempt to clear
1475 * the condition by reprogramming the multicast filter (actually,
1476 * resetting the interface). This is a work-around for a bug in
1477 * the 82557 where the receiver locks up if it gets certain types
1478 * of garbage in the synchronization bits prior to the packet header.
1479 * This bug is supposed to only occur in 10Mbps mode, but has been
1480 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1481 * speed transition).
1482 */
1483 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1484 (void) fxp_init(ifp);
1485 splx(s);
1486 return;
1487 }
1488 /*
1489 * If there is no pending command, start another stats
1490 * dump. Otherwise punt for now.
1491 */
1492 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1493 /*
1494 * Start another stats dump.
1495 */
1496 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1497 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1498 } else {
1499 /*
1500 * A previous command is still waiting to be accepted.
1501 * Just zero our copy of the stats and wait for the
1502 * next timer event to update them.
1503 */
1504 /* BIG_ENDIAN: no swap required to store 0 */
1505 sp->tx_good = 0;
1506 sp->tx_underruns = 0;
1507 sp->tx_total_collisions = 0;
1508
1509 sp->rx_good = 0;
1510 sp->rx_crc_errors = 0;
1511 sp->rx_alignment_errors = 0;
1512 sp->rx_rnr_errors = 0;
1513 sp->rx_overrun_errors = 0;
1514 if (sc->sc_rev >= FXP_REV_82558_A4) {
1515 sp->tx_pauseframes = 0;
1516 sp->rx_pauseframes = 0;
1517 }
1518 }
1519
1520 if (sc->sc_flags & FXPF_MII) {
1521 /* Tick the MII clock. */
1522 mii_tick(&sc->sc_mii);
1523 }
1524
1525 splx(s);
1526
1527 /*
1528 * Schedule another timeout one second from now.
1529 */
1530 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1531 }
1532
1533 /*
1534 * Drain the receive queue.
1535 */
1536 void
1537 fxp_rxdrain(struct fxp_softc *sc)
1538 {
1539 bus_dmamap_t rxmap;
1540 struct mbuf *m;
1541
1542 for (;;) {
1543 IF_DEQUEUE(&sc->sc_rxq, m);
1544 if (m == NULL)
1545 break;
1546 rxmap = M_GETCTX(m, bus_dmamap_t);
1547 bus_dmamap_unload(sc->sc_dmat, rxmap);
1548 FXP_RXMAP_PUT(sc, rxmap);
1549 m_freem(m);
1550 }
1551 }
1552
1553 /*
1554 * Stop the interface. Cancels the statistics updater and resets
1555 * the interface.
1556 */
1557 void
1558 fxp_stop(struct ifnet *ifp, int disable)
1559 {
1560 struct fxp_softc *sc = ifp->if_softc;
1561 struct fxp_txsoft *txs;
1562 int i;
1563
1564 /*
1565 * Turn down interface (done early to avoid bad interactions
1566 * between panics, shutdown hooks, and the watchdog timer)
1567 */
1568 ifp->if_timer = 0;
1569 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1570
1571 /*
1572 * Cancel stats updater.
1573 */
1574 callout_stop(&sc->sc_callout);
1575 if (sc->sc_flags & FXPF_MII) {
1576 /* Down the MII. */
1577 mii_down(&sc->sc_mii);
1578 }
1579
1580 /*
1581 * Issue software reset. This unloads any microcode that
1582 * might already be loaded.
1583 */
1584 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1585 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1586 DELAY(50);
1587
1588 /*
1589 * Release any xmit buffers.
1590 */
1591 for (i = 0; i < FXP_NTXCB; i++) {
1592 txs = FXP_DSTX(sc, i);
1593 if (txs->txs_mbuf != NULL) {
1594 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1595 m_freem(txs->txs_mbuf);
1596 txs->txs_mbuf = NULL;
1597 }
1598 }
1599 sc->sc_txpending = 0;
1600
1601 if (disable) {
1602 fxp_rxdrain(sc);
1603 fxp_disable(sc);
1604 }
1605
1606 }
1607
1608 /*
1609 * Watchdog/transmission transmit timeout handler. Called when a
1610 * transmission is started on the interface, but no interrupt is
1611 * received before the timeout. This usually indicates that the
1612 * card has wedged for some reason.
1613 */
1614 void
1615 fxp_watchdog(struct ifnet *ifp)
1616 {
1617 struct fxp_softc *sc = ifp->if_softc;
1618
1619 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1620 ifp->if_oerrors++;
1621
1622 (void) fxp_init(ifp);
1623 }
1624
1625 /*
1626 * Initialize the interface. Must be called at splnet().
1627 */
1628 int
1629 fxp_init(struct ifnet *ifp)
1630 {
1631 struct fxp_softc *sc = ifp->if_softc;
1632 struct fxp_cb_config *cbp;
1633 struct fxp_cb_ias *cb_ias;
1634 struct fxp_txdesc *txd;
1635 bus_dmamap_t rxmap;
1636 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1637
1638 if ((error = fxp_enable(sc)) != 0)
1639 goto out;
1640
1641 /*
1642 * Cancel any pending I/O
1643 */
1644 fxp_stop(ifp, 0);
1645
1646 /*
1647 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1648 * flag, and this prevents the MII from detaching resulting in
1649 * a panic. The flags field should perhaps be split in runtime
1650 * flags and more static information. For now, just clear the
1651 * only other flag set.
1652 */
1653
1654 sc->sc_flags &= ~FXPF_WANTINIT;
1655
1656 /*
1657 * Initialize base of CBL and RFA memory. Loading with zero
1658 * sets it up for regular linear addressing.
1659 */
1660 fxp_scb_wait(sc);
1661 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1662 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1663
1664 fxp_scb_wait(sc);
1665 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1666
1667 /*
1668 * Initialize the multicast filter. Do this now, since we might
1669 * have to setup the config block differently.
1670 */
1671 fxp_mc_setup(sc);
1672
1673 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1674 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1675
1676 /*
1677 * In order to support receiving 802.1Q VLAN frames, we have to
1678 * enable "save bad frames", since they are 4 bytes larger than
1679 * the normal Ethernet maximum frame length. On i82558 and later,
1680 * we have a better mechanism for this.
1681 */
1682 save_bf = 0;
1683 lrxen = 0;
1684 vlan_drop = 0;
1685 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1686 if (sc->sc_rev < FXP_REV_82558_A4)
1687 save_bf = 1;
1688 else
1689 lrxen = 1;
1690 if (sc->sc_rev >= FXP_REV_82550)
1691 vlan_drop = 1;
1692 }
1693
1694 /*
1695 * Initialize base of dump-stats buffer.
1696 */
1697 fxp_scb_wait(sc);
1698 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1699 sc->sc_cddma + FXP_CDSTATSOFF);
1700 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1701 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1702
1703 cbp = &sc->sc_control_data->fcd_configcb;
1704 memset(cbp, 0, sizeof(struct fxp_cb_config));
1705
1706 /*
1707 * Load microcode for this controller.
1708 */
1709 fxp_load_ucode(sc);
1710
1711 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1712 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1713 else
1714 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1715
1716 /*
1717 * This copy is kind of disgusting, but there are a bunch of must be
1718 * zero and must be one bits in this structure and this is the easiest
1719 * way to initialize them all to proper values.
1720 */
1721 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1722
1723 /* BIG_ENDIAN: no need to swap to store 0 */
1724 cbp->cb_status = 0;
1725 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1726 FXP_CB_COMMAND_EL);
1727 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1728 cbp->link_addr = 0xffffffff; /* (no) next command */
1729 /* bytes in config block */
1730 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1731 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1732 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1733 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1734 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1735 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1736 cbp->type_enable = 0; /* actually reserved */
1737 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1738 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1739 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1740 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1741 cbp->dma_mbce = 0; /* (disable) dma max counters */
1742 cbp->late_scb = 0; /* (don't) defer SCB update */
1743 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1744 cbp->ci_int = 1; /* interrupt on CU idle */
1745 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1746 cbp->ext_stats_dis = 1; /* disable extended counters */
1747 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1748 cbp->save_bf = save_bf;/* save bad frames */
1749 cbp->disc_short_rx = !prm; /* discard short packets */
1750 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1751 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1752 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1753 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1754 /* interface mode */
1755 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1756 cbp->csma_dis = 0; /* (don't) disable link */
1757 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1758 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1759 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1760 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1761 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1762 cbp->nsai = 1; /* (don't) disable source addr insert */
1763 cbp->preamble_length = 2; /* (7 byte) preamble */
1764 cbp->loopback = 0; /* (don't) loopback */
1765 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1766 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1767 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1768 cbp->promiscuous = prm; /* promiscuous mode */
1769 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1770 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1771 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1772 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1773 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1774 cbp->stripping = !prm; /* truncate rx packet to byte count */
1775 cbp->padding = 1; /* (do) pad short tx packets */
1776 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1777 cbp->long_rx_en = lrxen; /* long packet receive enable */
1778 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1779 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1780 /* must set wake_en in PMCSR also */
1781 cbp->force_fdx = 0; /* (don't) force full duplex */
1782 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1783 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1784 cbp->mc_all = allm; /* accept all multicasts */
1785 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1786 cbp->vlan_drop_en = vlan_drop;
1787
1788 if (sc->sc_rev < FXP_REV_82558_A4) {
1789 /*
1790 * The i82557 has no hardware flow control, the values
1791 * here are the defaults for the chip.
1792 */
1793 cbp->fc_delay_lsb = 0;
1794 cbp->fc_delay_msb = 0x40;
1795 cbp->pri_fc_thresh = 3;
1796 cbp->tx_fc_dis = 0;
1797 cbp->rx_fc_restop = 0;
1798 cbp->rx_fc_restart = 0;
1799 cbp->fc_filter = 0;
1800 cbp->pri_fc_loc = 1;
1801 } else {
1802 cbp->fc_delay_lsb = 0x1f;
1803 cbp->fc_delay_msb = 0x01;
1804 cbp->pri_fc_thresh = 3;
1805 cbp->tx_fc_dis = 0; /* enable transmit FC */
1806 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1807 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1808 cbp->fc_filter = !prm; /* drop FC frames to host */
1809 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1810 cbp->ext_stats_dis = 0; /* enable extended stats */
1811 }
1812
1813 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1814
1815 /*
1816 * Start the config command/DMA.
1817 */
1818 fxp_scb_wait(sc);
1819 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1820 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1821 /* ...and wait for it to complete. */
1822 i = 1000;
1823 do {
1824 FXP_CDCONFIGSYNC(sc,
1825 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1826 DELAY(1);
1827 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1828 if (i == 0) {
1829 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1830 sc->sc_dev.dv_xname, __LINE__);
1831 return (ETIMEDOUT);
1832 }
1833
1834 /*
1835 * Initialize the station address.
1836 */
1837 cb_ias = &sc->sc_control_data->fcd_iascb;
1838 /* BIG_ENDIAN: no need to swap to store 0 */
1839 cb_ias->cb_status = 0;
1840 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1841 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1842 cb_ias->link_addr = 0xffffffff;
1843 memcpy(cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1844
1845 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1846
1847 /*
1848 * Start the IAS (Individual Address Setup) command/DMA.
1849 */
1850 fxp_scb_wait(sc);
1851 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1852 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1853 /* ...and wait for it to complete. */
1854 i = 1000;
1855 do {
1856 FXP_CDIASSYNC(sc,
1857 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1858 DELAY(1);
1859 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1860 if (i == 0) {
1861 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1862 sc->sc_dev.dv_xname, __LINE__);
1863 return (ETIMEDOUT);
1864 }
1865
1866 /*
1867 * Initialize the transmit descriptor ring. txlast is initialized
1868 * to the end of the list so that it will wrap around to the first
1869 * descriptor when the first packet is transmitted.
1870 */
1871 for (i = 0; i < FXP_NTXCB; i++) {
1872 txd = FXP_CDTX(sc, i);
1873 memset(txd, 0, sizeof(*txd));
1874 txd->txd_txcb.cb_command =
1875 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1876 txd->txd_txcb.link_addr =
1877 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1878 if (sc->sc_flags & FXPF_EXT_TXCB)
1879 txd->txd_txcb.tbd_array_addr =
1880 htole32(FXP_CDTBDADDR(sc, i) +
1881 (2 * sizeof(struct fxp_tbd)));
1882 else
1883 txd->txd_txcb.tbd_array_addr =
1884 htole32(FXP_CDTBDADDR(sc, i));
1885 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1886 }
1887 sc->sc_txpending = 0;
1888 sc->sc_txdirty = 0;
1889 sc->sc_txlast = FXP_NTXCB - 1;
1890
1891 /*
1892 * Initialize the receive buffer list.
1893 */
1894 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1895 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1896 rxmap = FXP_RXMAP_GET(sc);
1897 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1898 log(LOG_ERR, "%s: unable to allocate or map rx "
1899 "buffer %d, error = %d\n",
1900 sc->sc_dev.dv_xname,
1901 sc->sc_rxq.ifq_len, error);
1902 /*
1903 * XXX Should attempt to run with fewer receive
1904 * XXX buffers instead of just failing.
1905 */
1906 FXP_RXMAP_PUT(sc, rxmap);
1907 fxp_rxdrain(sc);
1908 goto out;
1909 }
1910 }
1911 sc->sc_rxidle = 0;
1912
1913 /*
1914 * Give the transmit ring to the chip. We do this by pointing
1915 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1916 * issuing a start command. It will execute the NOP and then
1917 * suspend, pointing at the first descriptor.
1918 */
1919 fxp_scb_wait(sc);
1920 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1921 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1922
1923 /*
1924 * Initialize receiver buffer area - RFA.
1925 */
1926 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1927 fxp_scb_wait(sc);
1928 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1929 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1930 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1931
1932 if (sc->sc_flags & FXPF_MII) {
1933 /*
1934 * Set current media.
1935 */
1936 mii_mediachg(&sc->sc_mii);
1937 }
1938
1939 /*
1940 * ...all done!
1941 */
1942 ifp->if_flags |= IFF_RUNNING;
1943 ifp->if_flags &= ~IFF_OACTIVE;
1944
1945 /*
1946 * Start the one second timer.
1947 */
1948 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1949
1950 /*
1951 * Attempt to start output on the interface.
1952 */
1953 fxp_start(ifp);
1954
1955 out:
1956 if (error) {
1957 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1958 ifp->if_timer = 0;
1959 log(LOG_ERR, "%s: interface not running\n",
1960 sc->sc_dev.dv_xname);
1961 }
1962 return (error);
1963 }
1964
1965 /*
1966 * Change media according to request.
1967 */
1968 int
1969 fxp_mii_mediachange(struct ifnet *ifp)
1970 {
1971 struct fxp_softc *sc = ifp->if_softc;
1972
1973 if (ifp->if_flags & IFF_UP)
1974 mii_mediachg(&sc->sc_mii);
1975 return (0);
1976 }
1977
1978 /*
1979 * Notify the world which media we're using.
1980 */
1981 void
1982 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1983 {
1984 struct fxp_softc *sc = ifp->if_softc;
1985
1986 if (sc->sc_enabled == 0) {
1987 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1988 ifmr->ifm_status = 0;
1989 return;
1990 }
1991
1992 mii_pollstat(&sc->sc_mii);
1993 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1994 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1995
1996 /*
1997 * XXX Flow control is always turned on if the chip supports
1998 * XXX it; we can't easily control it dynamically, since it
1999 * XXX requires sending a setup packet.
2000 */
2001 if (sc->sc_rev >= FXP_REV_82558_A4)
2002 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
2003 }
2004
2005 int
2006 fxp_80c24_mediachange(struct ifnet *ifp)
2007 {
2008
2009 /* Nothing to do here. */
2010 return (0);
2011 }
2012
2013 void
2014 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2015 {
2016 struct fxp_softc *sc = ifp->if_softc;
2017
2018 /*
2019 * Media is currently-selected media. We cannot determine
2020 * the link status.
2021 */
2022 ifmr->ifm_status = 0;
2023 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2024 }
2025
2026 /*
2027 * Add a buffer to the end of the RFA buffer list.
2028 * Return 0 if successful, error code on failure.
2029 *
2030 * The RFA struct is stuck at the beginning of mbuf cluster and the
2031 * data pointer is fixed up to point just past it.
2032 */
2033 int
2034 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2035 {
2036 struct mbuf *m;
2037 int error;
2038
2039 MGETHDR(m, M_DONTWAIT, MT_DATA);
2040 if (m == NULL)
2041 return (ENOBUFS);
2042
2043 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2044 MCLGET(m, M_DONTWAIT);
2045 if ((m->m_flags & M_EXT) == 0) {
2046 m_freem(m);
2047 return (ENOBUFS);
2048 }
2049
2050 if (unload)
2051 bus_dmamap_unload(sc->sc_dmat, rxmap);
2052
2053 M_SETCTX(m, rxmap);
2054
2055 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2056 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2057 BUS_DMA_READ|BUS_DMA_NOWAIT);
2058 if (error) {
2059 /* XXX XXX XXX */
2060 printf("%s: can't load rx DMA map %d, error = %d\n",
2061 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2062 panic("fxp_add_rfabuf");
2063 }
2064
2065 FXP_INIT_RFABUF(sc, m);
2066
2067 return (0);
2068 }
2069
2070 int
2071 fxp_mdi_read(struct device *self, int phy, int reg)
2072 {
2073 struct fxp_softc *sc = (struct fxp_softc *)self;
2074 int count = 10000;
2075 int value;
2076
2077 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2078 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2079
2080 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2081 0x10000000) == 0 && count--)
2082 DELAY(10);
2083
2084 if (count <= 0)
2085 log(LOG_WARNING,
2086 "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2087
2088 return (value & 0xffff);
2089 }
2090
2091 void
2092 fxp_statchg(struct device *self)
2093 {
2094
2095 /* Nothing to do. */
2096 }
2097
2098 void
2099 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2100 {
2101 struct fxp_softc *sc = (struct fxp_softc *)self;
2102 int count = 10000;
2103
2104 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2105 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2106 (value & 0xffff));
2107
2108 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2109 count--)
2110 DELAY(10);
2111
2112 if (count <= 0)
2113 log(LOG_WARNING,
2114 "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2115 }
2116
2117 int
2118 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2119 {
2120 struct fxp_softc *sc = ifp->if_softc;
2121 struct ifreq *ifr = (struct ifreq *)data;
2122 int s, error;
2123
2124 s = splnet();
2125
2126 switch (cmd) {
2127 case SIOCSIFMEDIA:
2128 case SIOCGIFMEDIA:
2129 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2130 break;
2131
2132 default:
2133 error = ether_ioctl(ifp, cmd, data);
2134 if (error == ENETRESET) {
2135 if (ifp->if_flags & IFF_RUNNING) {
2136 /*
2137 * Multicast list has changed; set the
2138 * hardware filter accordingly.
2139 */
2140 if (sc->sc_txpending) {
2141 sc->sc_flags |= FXPF_WANTINIT;
2142 error = 0;
2143 } else
2144 error = fxp_init(ifp);
2145 } else
2146 error = 0;
2147 }
2148 break;
2149 }
2150
2151 /* Try to get more packets going. */
2152 if (sc->sc_enabled)
2153 fxp_start(ifp);
2154
2155 splx(s);
2156 return (error);
2157 }
2158
2159 /*
2160 * Program the multicast filter.
2161 *
2162 * This function must be called at splnet().
2163 */
2164 void
2165 fxp_mc_setup(struct fxp_softc *sc)
2166 {
2167 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2168 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2169 struct ethercom *ec = &sc->sc_ethercom;
2170 struct ether_multi *enm;
2171 struct ether_multistep step;
2172 int count, nmcasts;
2173
2174 #ifdef DIAGNOSTIC
2175 if (sc->sc_txpending)
2176 panic("fxp_mc_setup: pending transmissions");
2177 #endif
2178
2179 ifp->if_flags &= ~IFF_ALLMULTI;
2180
2181 /*
2182 * Initialize multicast setup descriptor.
2183 */
2184 nmcasts = 0;
2185 ETHER_FIRST_MULTI(step, ec, enm);
2186 while (enm != NULL) {
2187 /*
2188 * Check for too many multicast addresses or if we're
2189 * listening to a range. Either way, we simply have
2190 * to accept all multicasts.
2191 */
2192 if (nmcasts >= MAXMCADDR ||
2193 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2194 ETHER_ADDR_LEN) != 0) {
2195 /*
2196 * Callers of this function must do the
2197 * right thing with this. If we're called
2198 * from outside fxp_init(), the caller must
2199 * detect if the state if IFF_ALLMULTI changes.
2200 * If it does, the caller must then call
2201 * fxp_init(), since allmulti is handled by
2202 * the config block.
2203 */
2204 ifp->if_flags |= IFF_ALLMULTI;
2205 return;
2206 }
2207 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2208 ETHER_ADDR_LEN);
2209 nmcasts++;
2210 ETHER_NEXT_MULTI(step, enm);
2211 }
2212
2213 /* BIG_ENDIAN: no need to swap to store 0 */
2214 mcsp->cb_status = 0;
2215 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2216 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2217 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2218
2219 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2220
2221 /*
2222 * Wait until the command unit is not active. This should never
2223 * happen since nothing is queued, but make sure anyway.
2224 */
2225 count = 100;
2226 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2227 FXP_SCB_CUS_ACTIVE && --count)
2228 DELAY(1);
2229 if (count == 0) {
2230 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2231 sc->sc_dev.dv_xname, __LINE__);
2232 return;
2233 }
2234
2235 /*
2236 * Start the multicast setup command/DMA.
2237 */
2238 fxp_scb_wait(sc);
2239 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2240 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2241
2242 /* ...and wait for it to complete. */
2243 count = 1000;
2244 do {
2245 FXP_CDMCSSYNC(sc,
2246 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2247 DELAY(1);
2248 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2249 if (count == 0) {
2250 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2251 sc->sc_dev.dv_xname, __LINE__);
2252 return;
2253 }
2254 }
2255
2256 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2257 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2258 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2259 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2260 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2261 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2262
2263 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2264
2265 static const struct ucode {
2266 int32_t revision;
2267 const uint32_t *ucode;
2268 size_t length;
2269 uint16_t int_delay_offset;
2270 uint16_t bundle_max_offset;
2271 } ucode_table[] = {
2272 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2273 D101_CPUSAVER_DWORD, 0 },
2274
2275 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2276 D101_CPUSAVER_DWORD, 0 },
2277
2278 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2279 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2280
2281 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2282 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2283
2284 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2285 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2286
2287 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2288 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2289
2290 { 0, NULL, 0, 0, 0 }
2291 };
2292
2293 void
2294 fxp_load_ucode(struct fxp_softc *sc)
2295 {
2296 const struct ucode *uc;
2297 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2298 int count, i;
2299
2300 if (sc->sc_flags & FXPF_UCODE_LOADED)
2301 return;
2302
2303 /*
2304 * Only load the uCode if the user has requested that
2305 * we do so.
2306 */
2307 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2308 sc->sc_int_delay = 0;
2309 sc->sc_bundle_max = 0;
2310 return;
2311 }
2312
2313 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2314 if (sc->sc_rev == uc->revision)
2315 break;
2316 }
2317 if (uc->ucode == NULL)
2318 return;
2319
2320 /* BIG ENDIAN: no need to swap to store 0 */
2321 cbp->cb_status = 0;
2322 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2323 cbp->link_addr = 0xffffffff; /* (no) next command */
2324 for (i = 0; i < uc->length; i++)
2325 cbp->ucode[i] = htole32(uc->ucode[i]);
2326
2327 if (uc->int_delay_offset)
2328 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2329 htole16(fxp_int_delay + (fxp_int_delay / 2));
2330
2331 if (uc->bundle_max_offset)
2332 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2333 htole16(fxp_bundle_max);
2334
2335 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2336
2337 /*
2338 * Download the uCode to the chip.
2339 */
2340 fxp_scb_wait(sc);
2341 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2342 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2343
2344 /* ...and wait for it to complete. */
2345 count = 10000;
2346 do {
2347 FXP_CDUCODESYNC(sc,
2348 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2349 DELAY(2);
2350 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2351 if (count == 0) {
2352 sc->sc_int_delay = 0;
2353 sc->sc_bundle_max = 0;
2354 log(LOG_WARNING, "%s: timeout loading microcode\n",
2355 sc->sc_dev.dv_xname);
2356 return;
2357 }
2358
2359 if (sc->sc_int_delay != fxp_int_delay ||
2360 sc->sc_bundle_max != fxp_bundle_max) {
2361 sc->sc_int_delay = fxp_int_delay;
2362 sc->sc_bundle_max = fxp_bundle_max;
2363 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2364 "max bundle: %d\n", sc->sc_dev.dv_xname,
2365 sc->sc_int_delay,
2366 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2367 }
2368
2369 sc->sc_flags |= FXPF_UCODE_LOADED;
2370 }
2371
2372 int
2373 fxp_enable(struct fxp_softc *sc)
2374 {
2375
2376 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2377 if ((*sc->sc_enable)(sc) != 0) {
2378 log(LOG_ERR, "%s: device enable failed\n",
2379 sc->sc_dev.dv_xname);
2380 return (EIO);
2381 }
2382 }
2383
2384 sc->sc_enabled = 1;
2385 return (0);
2386 }
2387
2388 void
2389 fxp_disable(struct fxp_softc *sc)
2390 {
2391
2392 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2393 (*sc->sc_disable)(sc);
2394 sc->sc_enabled = 0;
2395 }
2396 }
2397
2398 /*
2399 * fxp_activate:
2400 *
2401 * Handle device activation/deactivation requests.
2402 */
2403 int
2404 fxp_activate(struct device *self, enum devact act)
2405 {
2406 struct fxp_softc *sc = (void *) self;
2407 int s, error = 0;
2408
2409 s = splnet();
2410 switch (act) {
2411 case DVACT_ACTIVATE:
2412 error = EOPNOTSUPP;
2413 break;
2414
2415 case DVACT_DEACTIVATE:
2416 if (sc->sc_flags & FXPF_MII)
2417 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2418 MII_OFFSET_ANY);
2419 if_deactivate(&sc->sc_ethercom.ec_if);
2420 break;
2421 }
2422 splx(s);
2423
2424 return (error);
2425 }
2426
2427 /*
2428 * fxp_detach:
2429 *
2430 * Detach an i82557 interface.
2431 */
2432 int
2433 fxp_detach(struct fxp_softc *sc)
2434 {
2435 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2436 int i;
2437
2438 /* Succeed now if there's no work to do. */
2439 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2440 return (0);
2441
2442 /* Unhook our tick handler. */
2443 callout_stop(&sc->sc_callout);
2444
2445 if (sc->sc_flags & FXPF_MII) {
2446 /* Detach all PHYs */
2447 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2448 }
2449
2450 /* Delete all remaining media. */
2451 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2452
2453 #if NRND > 0
2454 rnd_detach_source(&sc->rnd_source);
2455 #endif
2456 ether_ifdetach(ifp);
2457 if_detach(ifp);
2458
2459 for (i = 0; i < FXP_NRFABUFS; i++) {
2460 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2461 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2462 }
2463
2464 for (i = 0; i < FXP_NTXCB; i++) {
2465 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2466 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2467 }
2468
2469 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2470 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2471 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2472 sizeof(struct fxp_control_data));
2473 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2474
2475 shutdownhook_disestablish(sc->sc_sdhook);
2476 powerhook_disestablish(sc->sc_powerhook);
2477
2478 return (0);
2479 }
2480