i82557.c revision 1.104.2.1 1 /* $NetBSD: i82557.c,v 1.104.2.1 2008/02/18 21:05:41 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.104.2.1 2008/02/18 21:05:41 mjf Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/syslog.h>
92
93 #include <machine/endian.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #if NRND > 0
98 #include <sys/rnd.h>
99 #endif
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <sys/bus.h>
111 #include <sys/intr.h>
112
113 #include <dev/mii/miivar.h>
114
115 #include <dev/ic/i82557reg.h>
116 #include <dev/ic/i82557var.h>
117
118 #include <dev/microcode/i8255x/rcvbundl.h>
119
120 /*
121 * NOTE! On the Alpha, we have an alignment constraint. The
122 * card DMAs the packet immediately following the RFA. However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned. To compensate,
125 * we actually offset the RFA 2 bytes into the cluster. This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary. HOWEVER! This means that the RFA is misaligned!
128 */
129 #define RFA_ALIGNMENT_FUDGE 2
130
131 /*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero. Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139 const u_int8_t fxp_cb_config_template[] = {
140 0x0, 0x0, /* cb_status */
141 0x0, 0x0, /* cb_command */
142 0x0, 0x0, 0x0, 0x0, /* link_addr */
143 0x0, /* 0 */
144 0x0, /* 1 */
145 0x0, /* 2 */
146 0x0, /* 3 */
147 0x0, /* 4 */
148 0x0, /* 5 */
149 0x32, /* 6 */
150 0x0, /* 7 */
151 0x0, /* 8 */
152 0x0, /* 9 */
153 0x6, /* 10 */
154 0x0, /* 11 */
155 0x0, /* 12 */
156 0x0, /* 13 */
157 0xf2, /* 14 */
158 0x48, /* 15 */
159 0x0, /* 16 */
160 0x40, /* 17 */
161 0xf0, /* 18 */
162 0x0, /* 19 */
163 0x3f, /* 20 */
164 0x5, /* 21 */
165 0x0, /* 22 */
166 0x0, /* 23 */
167 0x0, /* 24 */
168 0x0, /* 25 */
169 0x0, /* 26 */
170 0x0, /* 27 */
171 0x0, /* 28 */
172 0x0, /* 29 */
173 0x0, /* 30 */
174 0x0, /* 31 */
175 };
176
177 void fxp_mii_initmedia(struct fxp_softc *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, void *);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 void fxp_rxintr(struct fxp_softc *);
192
193 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
194
195 void fxp_rxdrain(struct fxp_softc *);
196 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197 int fxp_mdi_read(struct device *, int, int);
198 void fxp_statchg(struct device *);
199 void fxp_mdi_write(struct device *, int, int, int);
200 void fxp_autosize_eeprom(struct fxp_softc*);
201 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_eeprom_update_cksum(struct fxp_softc *);
204 void fxp_get_info(struct fxp_softc *, u_int8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207 void fxp_load_ucode(struct fxp_softc *);
208
209 void fxp_shutdown(void *);
210 void fxp_power(int, void *);
211
212 int fxp_copy_small = 0;
213
214 /*
215 * Variables for interrupt mitigating microcode.
216 */
217 int fxp_int_delay = 1000; /* usec */
218 int fxp_bundle_max = 6; /* packets */
219
220 struct fxp_phytype {
221 int fp_phy; /* type of PHY, -1 for MII at the end. */
222 void (*fp_init)(struct fxp_softc *);
223 } fxp_phytype_table[] = {
224 { FXP_PHY_80C24, fxp_80c24_initmedia },
225 { -1, fxp_mii_initmedia },
226 };
227
228 /*
229 * Set initial transmit threshold at 64 (512 bytes). This is
230 * increased by 64 (512 bytes) at a time, to maximum of 192
231 * (1536 bytes), if an underrun occurs.
232 */
233 static int tx_threshold = 64;
234
235 /*
236 * Wait for the previous command to be accepted (but not necessarily
237 * completed).
238 */
239 static inline void
240 fxp_scb_wait(struct fxp_softc *sc)
241 {
242 int i = 10000;
243
244 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
245 delay(2);
246 if (i == 0)
247 log(LOG_WARNING,
248 "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
249 }
250
251 /*
252 * Submit a command to the i82557.
253 */
254 static inline void
255 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
256 {
257
258 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
259 }
260
261 /*
262 * Finish attaching an i82557 interface. Called by bus-specific front-end.
263 */
264 void
265 fxp_attach(struct fxp_softc *sc)
266 {
267 u_int8_t enaddr[ETHER_ADDR_LEN];
268 struct ifnet *ifp;
269 bus_dma_segment_t seg;
270 int rseg, i, error;
271 struct fxp_phytype *fp;
272
273 callout_init(&sc->sc_callout, 0);
274
275 /*
276 * Enable some good stuff on i82558 and later.
277 */
278 if (sc->sc_rev >= FXP_REV_82558_A4) {
279 /* Enable the extended TxCB. */
280 sc->sc_flags |= FXPF_EXT_TXCB;
281 }
282
283 /*
284 * Enable use of extended RFDs and TCBs for 82550
285 * and later chips. Note: we need extended TXCB support
286 * too, but that's already enabled by the code above.
287 * Be careful to do this only on the right devices.
288 */
289 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
290 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
291 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
292 } else {
293 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
294 }
295
296 sc->sc_rfa_size =
297 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
298
299 /*
300 * Allocate the control data structures, and create and load the
301 * DMA map for it.
302 */
303 if ((error = bus_dmamem_alloc(sc->sc_dmat,
304 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
305 0)) != 0) {
306 aprint_error(
307 "%s: unable to allocate control data, error = %d\n",
308 sc->sc_dev.dv_xname, error);
309 goto fail_0;
310 }
311
312 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
313 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
314 BUS_DMA_COHERENT)) != 0) {
315 aprint_error("%s: unable to map control data, error = %d\n",
316 sc->sc_dev.dv_xname, error);
317 goto fail_1;
318 }
319 sc->sc_cdseg = seg;
320 sc->sc_cdnseg = rseg;
321
322 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
323
324 if ((error = bus_dmamap_create(sc->sc_dmat,
325 sizeof(struct fxp_control_data), 1,
326 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
327 aprint_error("%s: unable to create control data DMA map, "
328 "error = %d\n", sc->sc_dev.dv_xname, error);
329 goto fail_2;
330 }
331
332 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
333 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
334 0)) != 0) {
335 aprint_error(
336 "%s: can't load control data DMA map, error = %d\n",
337 sc->sc_dev.dv_xname, error);
338 goto fail_3;
339 }
340
341 /*
342 * Create the transmit buffer DMA maps.
343 */
344 for (i = 0; i < FXP_NTXCB; i++) {
345 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
346 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
347 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
348 aprint_error("%s: unable to create tx DMA map %d, "
349 "error = %d\n", sc->sc_dev.dv_xname, i, error);
350 goto fail_4;
351 }
352 }
353
354 /*
355 * Create the receive buffer DMA maps.
356 */
357 for (i = 0; i < FXP_NRFABUFS; i++) {
358 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
359 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
360 aprint_error("%s: unable to create rx DMA map %d, "
361 "error = %d\n", sc->sc_dev.dv_xname, i, error);
362 goto fail_5;
363 }
364 }
365
366 /* Initialize MAC address and media structures. */
367 fxp_get_info(sc, enaddr);
368
369 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
370 ether_sprintf(enaddr));
371
372 ifp = &sc->sc_ethercom.ec_if;
373
374 /*
375 * Get info about our media interface, and initialize it. Note
376 * the table terminates itself with a phy of -1, indicating
377 * that we're using MII.
378 */
379 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
380 if (fp->fp_phy == sc->phy_primary_device)
381 break;
382 (*fp->fp_init)(sc);
383
384 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
385 ifp->if_softc = sc;
386 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
387 ifp->if_ioctl = fxp_ioctl;
388 ifp->if_start = fxp_start;
389 ifp->if_watchdog = fxp_watchdog;
390 ifp->if_init = fxp_init;
391 ifp->if_stop = fxp_stop;
392 IFQ_SET_READY(&ifp->if_snd);
393
394 if (sc->sc_flags & FXPF_IPCB) {
395 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
396 /*
397 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
398 * at least, on i82550 rev.12.
399 * specifically, it doesn't calculate ipv4 checksum correctly
400 * when sending 20 byte ipv4 header + 1 or 2 byte data.
401 * FreeBSD driver has related comments.
402 */
403 ifp->if_capabilities =
404 IFCAP_CSUM_IPv4_Rx |
405 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
406 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
407 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
408 }
409
410 /*
411 * We can support 802.1Q VLAN-sized frames.
412 */
413 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
414
415 /*
416 * Attach the interface.
417 */
418 if_attach(ifp);
419 ether_ifattach(ifp, enaddr);
420 #if NRND > 0
421 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
422 RND_TYPE_NET, 0);
423 #endif
424
425 #ifdef FXP_EVENT_COUNTERS
426 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
427 NULL, sc->sc_dev.dv_xname, "txstall");
428 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
429 NULL, sc->sc_dev.dv_xname, "txintr");
430 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
431 NULL, sc->sc_dev.dv_xname, "rxintr");
432 if (sc->sc_rev >= FXP_REV_82558_A4) {
433 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
434 NULL, sc->sc_dev.dv_xname, "txpause");
435 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
436 NULL, sc->sc_dev.dv_xname, "rxpause");
437 }
438 #endif /* FXP_EVENT_COUNTERS */
439
440 /*
441 * Add shutdown hook so that DMA is disabled prior to reboot. Not
442 * doing do could allow DMA to corrupt kernel memory during the
443 * reboot before the driver initializes.
444 */
445 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
446 if (sc->sc_sdhook == NULL)
447 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
448 sc->sc_dev.dv_xname);
449 /*
450 * Add suspend hook, for similar reasons..
451 */
452 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
453 fxp_power, sc);
454 if (sc->sc_powerhook == NULL)
455 aprint_error("%s: WARNING: unable to establish power hook\n",
456 sc->sc_dev.dv_xname);
457
458 /* The attach is successful. */
459 sc->sc_flags |= FXPF_ATTACHED;
460
461 return;
462
463 /*
464 * Free any resources we've allocated during the failed attach
465 * attempt. Do this in reverse order and fall though.
466 */
467 fail_5:
468 for (i = 0; i < FXP_NRFABUFS; i++) {
469 if (sc->sc_rxmaps[i] != NULL)
470 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
471 }
472 fail_4:
473 for (i = 0; i < FXP_NTXCB; i++) {
474 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
475 bus_dmamap_destroy(sc->sc_dmat,
476 FXP_DSTX(sc, i)->txs_dmamap);
477 }
478 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
479 fail_3:
480 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
481 fail_2:
482 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
483 sizeof(struct fxp_control_data));
484 fail_1:
485 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
486 fail_0:
487 return;
488 }
489
490 void
491 fxp_mii_initmedia(struct fxp_softc *sc)
492 {
493 int flags;
494
495 sc->sc_flags |= FXPF_MII;
496
497 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
498 sc->sc_mii.mii_readreg = fxp_mdi_read;
499 sc->sc_mii.mii_writereg = fxp_mdi_write;
500 sc->sc_mii.mii_statchg = fxp_statchg;
501
502 sc->sc_ethercom.ec_mii = &sc->sc_mii;
503 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
504 fxp_mii_mediastatus);
505
506 flags = MIIF_NOISOLATE;
507 if (sc->sc_rev >= FXP_REV_82558_A4)
508 flags |= MIIF_DOPAUSE;
509 /*
510 * The i82557 wedges if all of its PHYs are isolated!
511 */
512 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
513 MII_OFFSET_ANY, flags);
514 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
515 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
516 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
517 } else
518 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
519 }
520
521 void
522 fxp_80c24_initmedia(struct fxp_softc *sc)
523 {
524
525 /*
526 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
527 * doesn't have a programming interface of any sort. The
528 * media is sensed automatically based on how the link partner
529 * is configured. This is, in essence, manual configuration.
530 */
531 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
532 sc->sc_dev.dv_xname);
533 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
534 fxp_80c24_mediastatus);
535 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
536 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
537 }
538
539 /*
540 * Device shutdown routine. Called at system shutdown after sync. The
541 * main purpose of this routine is to shut off receiver DMA so that
542 * kernel memory doesn't get clobbered during warmboot.
543 */
544 void
545 fxp_shutdown(void *arg)
546 {
547 struct fxp_softc *sc = arg;
548
549 /*
550 * Since the system's going to halt shortly, don't bother
551 * freeing mbufs.
552 */
553 fxp_stop(&sc->sc_ethercom.ec_if, 0);
554 }
555 /*
556 * Power handler routine. Called when the system is transitioning
557 * into/out of power save modes. As with fxp_shutdown, the main
558 * purpose of this routine is to shut off receiver DMA so it doesn't
559 * clobber kernel memory at the wrong time.
560 */
561 void
562 fxp_power(int why, void *arg)
563 {
564 struct fxp_softc *sc = arg;
565 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
566 int s;
567
568 s = splnet();
569 switch (why) {
570 case PWR_SUSPEND:
571 case PWR_STANDBY:
572 fxp_stop(ifp, 0);
573 break;
574 case PWR_RESUME:
575 if (ifp->if_flags & IFF_UP)
576 fxp_init(ifp);
577 break;
578 case PWR_SOFTSUSPEND:
579 case PWR_SOFTSTANDBY:
580 case PWR_SOFTRESUME:
581 break;
582 }
583 splx(s);
584 }
585
586 /*
587 * Initialize the interface media.
588 */
589 void
590 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
591 {
592 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
593
594 /*
595 * Reset to a stable state.
596 */
597 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
598 DELAY(100);
599
600 sc->sc_eeprom_size = 0;
601 fxp_autosize_eeprom(sc);
602 if (sc->sc_eeprom_size == 0) {
603 aprint_error("%s: failed to detect EEPROM size\n",
604 sc->sc_dev.dv_xname);
605 sc->sc_eeprom_size = 6; /* XXX panic here? */
606 }
607 #ifdef DEBUG
608 aprint_debug("%s: detected %d word EEPROM\n",
609 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
610 #endif
611
612 /*
613 * Get info about the primary PHY
614 */
615 fxp_read_eeprom(sc, &data, 6, 1);
616 sc->phy_primary_device =
617 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
618
619 /*
620 * Read MAC address.
621 */
622 fxp_read_eeprom(sc, myea, 0, 3);
623 enaddr[0] = myea[0] & 0xff;
624 enaddr[1] = myea[0] >> 8;
625 enaddr[2] = myea[1] & 0xff;
626 enaddr[3] = myea[1] >> 8;
627 enaddr[4] = myea[2] & 0xff;
628 enaddr[5] = myea[2] >> 8;
629
630 /*
631 * Systems based on the ICH2/ICH2-M chip from Intel, as well
632 * as some i82559 designs, have a defect where the chip can
633 * cause a PCI protocol violation if it receives a CU_RESUME
634 * command when it is entering the IDLE state.
635 *
636 * The work-around is to disable Dynamic Standby Mode, so that
637 * the chip never deasserts #CLKRUN, and always remains in the
638 * active state.
639 *
640 * Unfortunately, the only way to disable Dynamic Standby is
641 * to frob an EEPROM setting and reboot (the EEPROM setting
642 * is only consulted when the PCI bus comes out of reset).
643 *
644 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
645 */
646 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
647 fxp_read_eeprom(sc, &data, 10, 1);
648 if (data & 0x02) { /* STB enable */
649 aprint_error("%s: WARNING: "
650 "Disabling dynamic standby mode in EEPROM "
651 "to work around a\n",
652 sc->sc_dev.dv_xname);
653 aprint_normal(
654 "%s: WARNING: hardware bug. You must reset "
655 "the system before using this\n",
656 sc->sc_dev.dv_xname);
657 aprint_normal("%s: WARNING: interface.\n",
658 sc->sc_dev.dv_xname);
659 data &= ~0x02;
660 fxp_write_eeprom(sc, &data, 10, 1);
661 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
662 sc->sc_dev.dv_xname, data);
663 fxp_eeprom_update_cksum(sc);
664 }
665 }
666
667 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
668 /* Due to false positives we make it conditional on setting link1 */
669 fxp_read_eeprom(sc, &data, 3, 1);
670 if ((data & 0x03) != 0x03) {
671 aprint_verbose("%s: May need receiver lock-up workaround\n",
672 sc->sc_dev.dv_xname);
673 }
674 }
675
676 static void
677 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
678 {
679 uint16_t reg;
680 int x;
681
682 for (x = 1 << (len - 1); x != 0; x >>= 1) {
683 DELAY(40);
684 if (data & x)
685 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
686 else
687 reg = FXP_EEPROM_EECS;
688 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
689 DELAY(40);
690 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
691 reg | FXP_EEPROM_EESK);
692 DELAY(40);
693 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
694 }
695 DELAY(40);
696 }
697
698 /*
699 * Figure out EEPROM size.
700 *
701 * 559's can have either 64-word or 256-word EEPROMs, the 558
702 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
703 * talks about the existence of 16 to 256 word EEPROMs.
704 *
705 * The only known sizes are 64 and 256, where the 256 version is used
706 * by CardBus cards to store CIS information.
707 *
708 * The address is shifted in msb-to-lsb, and after the last
709 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
710 * after which follows the actual data. We try to detect this zero, by
711 * probing the data-out bit in the EEPROM control register just after
712 * having shifted in a bit. If the bit is zero, we assume we've
713 * shifted enough address bits. The data-out should be tri-state,
714 * before this, which should translate to a logical one.
715 *
716 * Other ways to do this would be to try to read a register with known
717 * contents with a varying number of address bits, but no such
718 * register seem to be available. The high bits of register 10 are 01
719 * on the 558 and 559, but apparently not on the 557.
720 *
721 * The Linux driver computes a checksum on the EEPROM data, but the
722 * value of this checksum is not very well documented.
723 */
724
725 void
726 fxp_autosize_eeprom(struct fxp_softc *sc)
727 {
728 int x;
729
730 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
731 DELAY(40);
732
733 /* Shift in read opcode. */
734 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
735
736 /*
737 * Shift in address, wait for the dummy zero following a correct
738 * address shift.
739 */
740 for (x = 1; x <= 8; x++) {
741 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
742 DELAY(40);
743 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
744 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
745 DELAY(40);
746 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
747 FXP_EEPROM_EEDO) == 0)
748 break;
749 DELAY(40);
750 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
751 DELAY(40);
752 }
753 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
754 DELAY(40);
755 if (x != 6 && x != 8) {
756 #ifdef DEBUG
757 printf("%s: strange EEPROM size (%d)\n",
758 sc->sc_dev.dv_xname, 1 << x);
759 #endif
760 } else
761 sc->sc_eeprom_size = x;
762 }
763
764 /*
765 * Read from the serial EEPROM. Basically, you manually shift in
766 * the read opcode (one bit at a time) and then shift in the address,
767 * and then you shift out the data (all of this one bit at a time).
768 * The word size is 16 bits, so you have to provide the address for
769 * every 16 bits of data.
770 */
771 void
772 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
773 {
774 u_int16_t reg;
775 int i, x;
776
777 for (i = 0; i < words; i++) {
778 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
779
780 /* Shift in read opcode. */
781 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
782
783 /* Shift in address. */
784 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
785
786 reg = FXP_EEPROM_EECS;
787 data[i] = 0;
788
789 /* Shift out data. */
790 for (x = 16; x > 0; x--) {
791 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
792 reg | FXP_EEPROM_EESK);
793 DELAY(40);
794 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
795 FXP_EEPROM_EEDO)
796 data[i] |= (1 << (x - 1));
797 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
798 DELAY(40);
799 }
800 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
801 DELAY(40);
802 }
803 }
804
805 /*
806 * Write data to the serial EEPROM.
807 */
808 void
809 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
810 {
811 int i, j;
812
813 for (i = 0; i < words; i++) {
814 /* Erase/write enable. */
815 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
816 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
817 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
818 sc->sc_eeprom_size);
819 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
820 DELAY(4);
821
822 /* Shift in write opcode, address, data. */
823 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
824 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
825 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
826 fxp_eeprom_shiftin(sc, data[i], 16);
827 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
828 DELAY(4);
829
830 /* Wait for the EEPROM to finish up. */
831 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
832 DELAY(4);
833 for (j = 0; j < 1000; j++) {
834 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
835 FXP_EEPROM_EEDO)
836 break;
837 DELAY(50);
838 }
839 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
840 DELAY(4);
841
842 /* Erase/write disable. */
843 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
844 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
845 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
846 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
847 DELAY(4);
848 }
849 }
850
851 /*
852 * Update the checksum of the EEPROM.
853 */
854 void
855 fxp_eeprom_update_cksum(struct fxp_softc *sc)
856 {
857 int i;
858 uint16_t data, cksum;
859
860 cksum = 0;
861 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
862 fxp_read_eeprom(sc, &data, i, 1);
863 cksum += data;
864 }
865 i = (1 << sc->sc_eeprom_size) - 1;
866 cksum = 0xbaba - cksum;
867 fxp_read_eeprom(sc, &data, i, 1);
868 fxp_write_eeprom(sc, &cksum, i, 1);
869 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
870 sc->sc_dev.dv_xname, i, data, cksum);
871 }
872
873 /*
874 * Start packet transmission on the interface.
875 */
876 void
877 fxp_start(struct ifnet *ifp)
878 {
879 struct fxp_softc *sc = ifp->if_softc;
880 struct mbuf *m0, *m;
881 struct fxp_txdesc *txd;
882 struct fxp_txsoft *txs;
883 bus_dmamap_t dmamap;
884 int error, lasttx, nexttx, opending, seg;
885
886 /*
887 * If we want a re-init, bail out now.
888 */
889 if (sc->sc_flags & FXPF_WANTINIT) {
890 ifp->if_flags |= IFF_OACTIVE;
891 return;
892 }
893
894 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
895 return;
896
897 /*
898 * Remember the previous txpending and the current lasttx.
899 */
900 opending = sc->sc_txpending;
901 lasttx = sc->sc_txlast;
902
903 /*
904 * Loop through the send queue, setting up transmit descriptors
905 * until we drain the queue, or use up all available transmit
906 * descriptors.
907 */
908 for (;;) {
909 struct fxp_tbd *tbdp;
910 int csum_flags;
911
912 /*
913 * Grab a packet off the queue.
914 */
915 IFQ_POLL(&ifp->if_snd, m0);
916 if (m0 == NULL)
917 break;
918 m = NULL;
919
920 if (sc->sc_txpending == FXP_NTXCB) {
921 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
922 break;
923 }
924
925 /*
926 * Get the next available transmit descriptor.
927 */
928 nexttx = FXP_NEXTTX(sc->sc_txlast);
929 txd = FXP_CDTX(sc, nexttx);
930 txs = FXP_DSTX(sc, nexttx);
931 dmamap = txs->txs_dmamap;
932
933 /*
934 * Load the DMA map. If this fails, the packet either
935 * didn't fit in the allotted number of frags, or we were
936 * short on resources. In this case, we'll copy and try
937 * again.
938 */
939 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
940 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
941 MGETHDR(m, M_DONTWAIT, MT_DATA);
942 if (m == NULL) {
943 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
944 sc->sc_dev.dv_xname);
945 break;
946 }
947 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
948 if (m0->m_pkthdr.len > MHLEN) {
949 MCLGET(m, M_DONTWAIT);
950 if ((m->m_flags & M_EXT) == 0) {
951 log(LOG_ERR,
952 "%s: unable to allocate Tx "
953 "cluster\n", sc->sc_dev.dv_xname);
954 m_freem(m);
955 break;
956 }
957 }
958 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
959 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
960 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
961 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
962 if (error) {
963 log(LOG_ERR, "%s: unable to load Tx buffer, "
964 "error = %d\n", sc->sc_dev.dv_xname, error);
965 break;
966 }
967 }
968
969 IFQ_DEQUEUE(&ifp->if_snd, m0);
970 csum_flags = m0->m_pkthdr.csum_flags;
971 if (m != NULL) {
972 m_freem(m0);
973 m0 = m;
974 }
975
976 /* Initialize the fraglist. */
977 tbdp = txd->txd_tbd;
978 if (sc->sc_flags & FXPF_IPCB)
979 tbdp++;
980 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
981 tbdp[seg].tb_addr =
982 htole32(dmamap->dm_segs[seg].ds_addr);
983 tbdp[seg].tb_size =
984 htole32(dmamap->dm_segs[seg].ds_len);
985 }
986
987 /* Sync the DMA map. */
988 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
989 BUS_DMASYNC_PREWRITE);
990
991 /*
992 * Store a pointer to the packet so we can free it later.
993 */
994 txs->txs_mbuf = m0;
995
996 /*
997 * Initialize the transmit descriptor.
998 */
999 /* BIG_ENDIAN: no need to swap to store 0 */
1000 txd->txd_txcb.cb_status = 0;
1001 txd->txd_txcb.cb_command =
1002 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
1003 txd->txd_txcb.tx_threshold = tx_threshold;
1004 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
1005
1006 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
1007 if (sc->sc_flags & FXPF_IPCB) {
1008 struct m_tag *vtag;
1009 struct fxp_ipcb *ipcb;
1010 /*
1011 * Deal with TCP/IP checksum offload. Note that
1012 * in order for TCP checksum offload to work,
1013 * the pseudo header checksum must have already
1014 * been computed and stored in the checksum field
1015 * in the TCP header. The stack should have
1016 * already done this for us.
1017 */
1018 ipcb = &txd->txd_u.txdu_ipcb;
1019 memset(ipcb, 0, sizeof(*ipcb));
1020 /*
1021 * always do hardware parsing.
1022 */
1023 ipcb->ipcb_ip_activation_high =
1024 FXP_IPCB_HARDWAREPARSING_ENABLE;
1025 /*
1026 * ip checksum offloading.
1027 */
1028 if (csum_flags & M_CSUM_IPv4) {
1029 ipcb->ipcb_ip_schedule |=
1030 FXP_IPCB_IP_CHECKSUM_ENABLE;
1031 }
1032 /*
1033 * TCP/UDP checksum offloading.
1034 */
1035 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1036 ipcb->ipcb_ip_schedule |=
1037 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1038 }
1039
1040 /*
1041 * request VLAN tag insertion if needed.
1042 */
1043 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
1044 if (vtag) {
1045 ipcb->ipcb_vlan_id =
1046 htobe16(*(u_int *)(vtag + 1));
1047 ipcb->ipcb_ip_activation_high |=
1048 FXP_IPCB_INSERTVLAN_ENABLE;
1049 }
1050 } else {
1051 KASSERT((csum_flags &
1052 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1053 }
1054
1055 FXP_CDTXSYNC(sc, nexttx,
1056 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1057
1058 /* Advance the tx pointer. */
1059 sc->sc_txpending++;
1060 sc->sc_txlast = nexttx;
1061
1062 #if NBPFILTER > 0
1063 /*
1064 * Pass packet to bpf if there is a listener.
1065 */
1066 if (ifp->if_bpf)
1067 bpf_mtap(ifp->if_bpf, m0);
1068 #endif
1069 }
1070
1071 if (sc->sc_txpending == FXP_NTXCB) {
1072 /* No more slots; notify upper layer. */
1073 ifp->if_flags |= IFF_OACTIVE;
1074 }
1075
1076 if (sc->sc_txpending != opending) {
1077 /*
1078 * We enqueued packets. If the transmitter was idle,
1079 * reset the txdirty pointer.
1080 */
1081 if (opending == 0)
1082 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1083
1084 /*
1085 * Cause the chip to interrupt and suspend command
1086 * processing once the last packet we've enqueued
1087 * has been transmitted.
1088 */
1089 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
1090 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1091 FXP_CDTXSYNC(sc, sc->sc_txlast,
1092 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1093
1094 /*
1095 * The entire packet chain is set up. Clear the suspend bit
1096 * on the command prior to the first packet we set up.
1097 */
1098 FXP_CDTXSYNC(sc, lasttx,
1099 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1100 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1101 htole16(~FXP_CB_COMMAND_S);
1102 FXP_CDTXSYNC(sc, lasttx,
1103 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1104
1105 /*
1106 * Issue a Resume command in case the chip was suspended.
1107 */
1108 fxp_scb_wait(sc);
1109 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1110
1111 /* Set a watchdog timer in case the chip flakes out. */
1112 ifp->if_timer = 5;
1113 }
1114 }
1115
1116 /*
1117 * Process interface interrupts.
1118 */
1119 int
1120 fxp_intr(void *arg)
1121 {
1122 struct fxp_softc *sc = arg;
1123 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1124 bus_dmamap_t rxmap;
1125 int claimed = 0;
1126 u_int8_t statack;
1127
1128 if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1129 return (0);
1130 /*
1131 * If the interface isn't running, don't try to
1132 * service the interrupt.. just ack it and bail.
1133 */
1134 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1135 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1136 if (statack) {
1137 claimed = 1;
1138 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1139 }
1140 return (claimed);
1141 }
1142
1143 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1144 claimed = 1;
1145
1146 /*
1147 * First ACK all the interrupts in this pass.
1148 */
1149 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1150
1151 /*
1152 * Process receiver interrupts. If a no-resource (RNR)
1153 * condition exists, get whatever packets we can and
1154 * re-start the receiver.
1155 */
1156 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1157 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1158 fxp_rxintr(sc);
1159 }
1160
1161 if (statack & FXP_SCB_STATACK_RNR) {
1162 fxp_scb_wait(sc);
1163 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1164 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1165 fxp_scb_wait(sc);
1166 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1167 rxmap->dm_segs[0].ds_addr +
1168 RFA_ALIGNMENT_FUDGE);
1169 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1170 }
1171
1172 /*
1173 * Free any finished transmit mbuf chains.
1174 */
1175 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1176 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1177 fxp_txintr(sc);
1178
1179 /*
1180 * Try to get more packets going.
1181 */
1182 fxp_start(ifp);
1183
1184 if (sc->sc_txpending == 0) {
1185 /*
1186 * If we want a re-init, do that now.
1187 */
1188 if (sc->sc_flags & FXPF_WANTINIT)
1189 (void) fxp_init(ifp);
1190 }
1191 }
1192 }
1193
1194 #if NRND > 0
1195 if (claimed)
1196 rnd_add_uint32(&sc->rnd_source, statack);
1197 #endif
1198 return (claimed);
1199 }
1200
1201 /*
1202 * Handle transmit completion interrupts.
1203 */
1204 void
1205 fxp_txintr(struct fxp_softc *sc)
1206 {
1207 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1208 struct fxp_txdesc *txd;
1209 struct fxp_txsoft *txs;
1210 int i;
1211 u_int16_t txstat;
1212
1213 ifp->if_flags &= ~IFF_OACTIVE;
1214 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1215 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1216 txd = FXP_CDTX(sc, i);
1217 txs = FXP_DSTX(sc, i);
1218
1219 FXP_CDTXSYNC(sc, i,
1220 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1221
1222 txstat = le16toh(txd->txd_txcb.cb_status);
1223
1224 if ((txstat & FXP_CB_STATUS_C) == 0)
1225 break;
1226
1227 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1228 0, txs->txs_dmamap->dm_mapsize,
1229 BUS_DMASYNC_POSTWRITE);
1230 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1231 m_freem(txs->txs_mbuf);
1232 txs->txs_mbuf = NULL;
1233 }
1234
1235 /* Update the dirty transmit buffer pointer. */
1236 sc->sc_txdirty = i;
1237
1238 /*
1239 * Cancel the watchdog timer if there are no pending
1240 * transmissions.
1241 */
1242 if (sc->sc_txpending == 0)
1243 ifp->if_timer = 0;
1244 }
1245
1246 /*
1247 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1248 */
1249
1250 int
1251 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1252 {
1253 u_int16_t rxparsestat;
1254 u_int16_t csum_stat;
1255 u_int32_t csum_data;
1256 int csum_flags;
1257
1258 /*
1259 * check VLAN tag stripping.
1260 */
1261
1262 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1263 struct m_tag *vtag;
1264
1265 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1266 if (vtag == NULL)
1267 return ENOMEM;
1268 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1269 m_tag_prepend(m, vtag);
1270 }
1271
1272 /*
1273 * check H/W Checksumming.
1274 */
1275
1276 csum_stat = le16toh(rfa->cksum_stat);
1277 rxparsestat = le16toh(rfa->rx_parse_stat);
1278 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1279 return 0;
1280
1281 csum_flags = 0;
1282 csum_data = 0;
1283
1284 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1285 csum_flags = M_CSUM_IPv4;
1286 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1287 csum_flags |= M_CSUM_IPv4_BAD;
1288 }
1289
1290 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1291 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1292 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1293 csum_flags |= M_CSUM_TCP_UDP_BAD;
1294 }
1295
1296 m->m_pkthdr.csum_flags = csum_flags;
1297 m->m_pkthdr.csum_data = csum_data;
1298
1299 return 0;
1300 }
1301
1302 /*
1303 * Handle receive interrupts.
1304 */
1305 void
1306 fxp_rxintr(struct fxp_softc *sc)
1307 {
1308 struct ethercom *ec = &sc->sc_ethercom;
1309 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1310 struct mbuf *m, *m0;
1311 bus_dmamap_t rxmap;
1312 struct fxp_rfa *rfa;
1313 u_int16_t len, rxstat;
1314
1315 for (;;) {
1316 m = sc->sc_rxq.ifq_head;
1317 rfa = FXP_MTORFA(m);
1318 rxmap = M_GETCTX(m, bus_dmamap_t);
1319
1320 FXP_RFASYNC(sc, m,
1321 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1322
1323 rxstat = le16toh(rfa->rfa_status);
1324
1325 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1326 /*
1327 * We have processed all of the
1328 * receive buffers.
1329 */
1330 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1331 return;
1332 }
1333
1334 IF_DEQUEUE(&sc->sc_rxq, m);
1335
1336 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1337
1338 len = le16toh(rfa->actual_size) &
1339 (m->m_ext.ext_size - 1);
1340
1341 if (len < sizeof(struct ether_header)) {
1342 /*
1343 * Runt packet; drop it now.
1344 */
1345 FXP_INIT_RFABUF(sc, m);
1346 continue;
1347 }
1348
1349 /*
1350 * If support for 802.1Q VLAN sized frames is
1351 * enabled, we need to do some additional error
1352 * checking (as we are saving bad frames, in
1353 * order to receive the larger ones).
1354 */
1355 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1356 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1357 FXP_RFA_STATUS_RNR|
1358 FXP_RFA_STATUS_ALIGN|
1359 FXP_RFA_STATUS_CRC)) != 0) {
1360 FXP_INIT_RFABUF(sc, m);
1361 continue;
1362 }
1363
1364 /* Do checksum checking. */
1365 m->m_pkthdr.csum_flags = 0;
1366 if (sc->sc_flags & FXPF_EXT_RFA)
1367 if (fxp_rx_hwcksum(m, rfa))
1368 goto dropit;
1369
1370 /*
1371 * If the packet is small enough to fit in a
1372 * single header mbuf, allocate one and copy
1373 * the data into it. This greatly reduces
1374 * memory consumption when we receive lots
1375 * of small packets.
1376 *
1377 * Otherwise, we add a new buffer to the receive
1378 * chain. If this fails, we drop the packet and
1379 * recycle the old buffer.
1380 */
1381 if (fxp_copy_small != 0 && len <= MHLEN) {
1382 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1383 if (m0 == NULL)
1384 goto dropit;
1385 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1386 memcpy(mtod(m0, void *),
1387 mtod(m, void *), len);
1388 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1389 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1390 FXP_INIT_RFABUF(sc, m);
1391 m = m0;
1392 } else {
1393 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1394 dropit:
1395 ifp->if_ierrors++;
1396 FXP_INIT_RFABUF(sc, m);
1397 continue;
1398 }
1399 }
1400
1401 m->m_pkthdr.rcvif = ifp;
1402 m->m_pkthdr.len = m->m_len = len;
1403
1404 #if NBPFILTER > 0
1405 /*
1406 * Pass this up to any BPF listeners, but only
1407 * pass it up the stack if it's for us.
1408 */
1409 if (ifp->if_bpf)
1410 bpf_mtap(ifp->if_bpf, m);
1411 #endif
1412
1413 /* Pass it on. */
1414 (*ifp->if_input)(ifp, m);
1415 }
1416 }
1417
1418 /*
1419 * Update packet in/out/collision statistics. The i82557 doesn't
1420 * allow you to access these counters without doing a fairly
1421 * expensive DMA to get _all_ of the statistics it maintains, so
1422 * we do this operation here only once per second. The statistics
1423 * counters in the kernel are updated from the previous dump-stats
1424 * DMA and then a new dump-stats DMA is started. The on-chip
1425 * counters are zeroed when the DMA completes. If we can't start
1426 * the DMA immediately, we don't wait - we just prepare to read
1427 * them again next time.
1428 */
1429 void
1430 fxp_tick(void *arg)
1431 {
1432 struct fxp_softc *sc = arg;
1433 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1434 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1435 int s;
1436
1437 if (!device_is_active(&sc->sc_dev))
1438 return;
1439
1440 s = splnet();
1441
1442 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1443
1444 ifp->if_opackets += le32toh(sp->tx_good);
1445 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1446 if (sp->rx_good) {
1447 ifp->if_ipackets += le32toh(sp->rx_good);
1448 sc->sc_rxidle = 0;
1449 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1450 sc->sc_rxidle++;
1451 }
1452 ifp->if_ierrors +=
1453 le32toh(sp->rx_crc_errors) +
1454 le32toh(sp->rx_alignment_errors) +
1455 le32toh(sp->rx_rnr_errors) +
1456 le32toh(sp->rx_overrun_errors);
1457 /*
1458 * If any transmit underruns occurred, bump up the transmit
1459 * threshold by another 512 bytes (64 * 8).
1460 */
1461 if (sp->tx_underruns) {
1462 ifp->if_oerrors += le32toh(sp->tx_underruns);
1463 if (tx_threshold < 192)
1464 tx_threshold += 64;
1465 }
1466 #ifdef FXP_EVENT_COUNTERS
1467 if (sc->sc_rev >= FXP_REV_82558_A4) {
1468 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1469 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1470 }
1471 #endif
1472
1473 /*
1474 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1475 * then assume the receiver has locked up and attempt to clear
1476 * the condition by reprogramming the multicast filter (actually,
1477 * resetting the interface). This is a work-around for a bug in
1478 * the 82557 where the receiver locks up if it gets certain types
1479 * of garbage in the synchronization bits prior to the packet header.
1480 * This bug is supposed to only occur in 10Mbps mode, but has been
1481 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1482 * speed transition).
1483 */
1484 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1485 (void) fxp_init(ifp);
1486 splx(s);
1487 return;
1488 }
1489 /*
1490 * If there is no pending command, start another stats
1491 * dump. Otherwise punt for now.
1492 */
1493 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1494 /*
1495 * Start another stats dump.
1496 */
1497 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1498 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1499 } else {
1500 /*
1501 * A previous command is still waiting to be accepted.
1502 * Just zero our copy of the stats and wait for the
1503 * next timer event to update them.
1504 */
1505 /* BIG_ENDIAN: no swap required to store 0 */
1506 sp->tx_good = 0;
1507 sp->tx_underruns = 0;
1508 sp->tx_total_collisions = 0;
1509
1510 sp->rx_good = 0;
1511 sp->rx_crc_errors = 0;
1512 sp->rx_alignment_errors = 0;
1513 sp->rx_rnr_errors = 0;
1514 sp->rx_overrun_errors = 0;
1515 if (sc->sc_rev >= FXP_REV_82558_A4) {
1516 sp->tx_pauseframes = 0;
1517 sp->rx_pauseframes = 0;
1518 }
1519 }
1520
1521 if (sc->sc_flags & FXPF_MII) {
1522 /* Tick the MII clock. */
1523 mii_tick(&sc->sc_mii);
1524 }
1525
1526 splx(s);
1527
1528 /*
1529 * Schedule another timeout one second from now.
1530 */
1531 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1532 }
1533
1534 /*
1535 * Drain the receive queue.
1536 */
1537 void
1538 fxp_rxdrain(struct fxp_softc *sc)
1539 {
1540 bus_dmamap_t rxmap;
1541 struct mbuf *m;
1542
1543 for (;;) {
1544 IF_DEQUEUE(&sc->sc_rxq, m);
1545 if (m == NULL)
1546 break;
1547 rxmap = M_GETCTX(m, bus_dmamap_t);
1548 bus_dmamap_unload(sc->sc_dmat, rxmap);
1549 FXP_RXMAP_PUT(sc, rxmap);
1550 m_freem(m);
1551 }
1552 }
1553
1554 /*
1555 * Stop the interface. Cancels the statistics updater and resets
1556 * the interface.
1557 */
1558 void
1559 fxp_stop(struct ifnet *ifp, int disable)
1560 {
1561 struct fxp_softc *sc = ifp->if_softc;
1562 struct fxp_txsoft *txs;
1563 int i;
1564
1565 /*
1566 * Turn down interface (done early to avoid bad interactions
1567 * between panics, shutdown hooks, and the watchdog timer)
1568 */
1569 ifp->if_timer = 0;
1570 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1571
1572 /*
1573 * Cancel stats updater.
1574 */
1575 callout_stop(&sc->sc_callout);
1576 if (sc->sc_flags & FXPF_MII) {
1577 /* Down the MII. */
1578 mii_down(&sc->sc_mii);
1579 }
1580
1581 /*
1582 * Issue software reset. This unloads any microcode that
1583 * might already be loaded.
1584 */
1585 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1586 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1587 DELAY(50);
1588
1589 /*
1590 * Release any xmit buffers.
1591 */
1592 for (i = 0; i < FXP_NTXCB; i++) {
1593 txs = FXP_DSTX(sc, i);
1594 if (txs->txs_mbuf != NULL) {
1595 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1596 m_freem(txs->txs_mbuf);
1597 txs->txs_mbuf = NULL;
1598 }
1599 }
1600 sc->sc_txpending = 0;
1601
1602 if (disable) {
1603 fxp_rxdrain(sc);
1604 fxp_disable(sc);
1605 }
1606
1607 }
1608
1609 /*
1610 * Watchdog/transmission transmit timeout handler. Called when a
1611 * transmission is started on the interface, but no interrupt is
1612 * received before the timeout. This usually indicates that the
1613 * card has wedged for some reason.
1614 */
1615 void
1616 fxp_watchdog(struct ifnet *ifp)
1617 {
1618 struct fxp_softc *sc = ifp->if_softc;
1619
1620 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1621 ifp->if_oerrors++;
1622
1623 (void) fxp_init(ifp);
1624 }
1625
1626 /*
1627 * Initialize the interface. Must be called at splnet().
1628 */
1629 int
1630 fxp_init(struct ifnet *ifp)
1631 {
1632 struct fxp_softc *sc = ifp->if_softc;
1633 struct fxp_cb_config *cbp;
1634 struct fxp_cb_ias *cb_ias;
1635 struct fxp_txdesc *txd;
1636 bus_dmamap_t rxmap;
1637 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1638
1639 if ((error = fxp_enable(sc)) != 0)
1640 goto out;
1641
1642 /*
1643 * Cancel any pending I/O
1644 */
1645 fxp_stop(ifp, 0);
1646
1647 /*
1648 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1649 * flag, and this prevents the MII from detaching resulting in
1650 * a panic. The flags field should perhaps be split in runtime
1651 * flags and more static information. For now, just clear the
1652 * only other flag set.
1653 */
1654
1655 sc->sc_flags &= ~FXPF_WANTINIT;
1656
1657 /*
1658 * Initialize base of CBL and RFA memory. Loading with zero
1659 * sets it up for regular linear addressing.
1660 */
1661 fxp_scb_wait(sc);
1662 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1663 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1664
1665 fxp_scb_wait(sc);
1666 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1667
1668 /*
1669 * Initialize the multicast filter. Do this now, since we might
1670 * have to setup the config block differently.
1671 */
1672 fxp_mc_setup(sc);
1673
1674 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1675 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1676
1677 /*
1678 * In order to support receiving 802.1Q VLAN frames, we have to
1679 * enable "save bad frames", since they are 4 bytes larger than
1680 * the normal Ethernet maximum frame length. On i82558 and later,
1681 * we have a better mechanism for this.
1682 */
1683 save_bf = 0;
1684 lrxen = 0;
1685 vlan_drop = 0;
1686 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1687 if (sc->sc_rev < FXP_REV_82558_A4)
1688 save_bf = 1;
1689 else
1690 lrxen = 1;
1691 if (sc->sc_rev >= FXP_REV_82550)
1692 vlan_drop = 1;
1693 }
1694
1695 /*
1696 * Initialize base of dump-stats buffer.
1697 */
1698 fxp_scb_wait(sc);
1699 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1700 sc->sc_cddma + FXP_CDSTATSOFF);
1701 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1702 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1703
1704 cbp = &sc->sc_control_data->fcd_configcb;
1705 memset(cbp, 0, sizeof(struct fxp_cb_config));
1706
1707 /*
1708 * Load microcode for this controller.
1709 */
1710 fxp_load_ucode(sc);
1711
1712 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1713 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1714 else
1715 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1716
1717 /*
1718 * This copy is kind of disgusting, but there are a bunch of must be
1719 * zero and must be one bits in this structure and this is the easiest
1720 * way to initialize them all to proper values.
1721 */
1722 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1723
1724 /* BIG_ENDIAN: no need to swap to store 0 */
1725 cbp->cb_status = 0;
1726 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1727 FXP_CB_COMMAND_EL);
1728 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1729 cbp->link_addr = 0xffffffff; /* (no) next command */
1730 /* bytes in config block */
1731 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1732 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1733 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1734 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1735 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1736 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1737 cbp->type_enable = 0; /* actually reserved */
1738 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1739 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1740 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1741 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1742 cbp->dma_mbce = 0; /* (disable) dma max counters */
1743 cbp->late_scb = 0; /* (don't) defer SCB update */
1744 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1745 cbp->ci_int = 1; /* interrupt on CU idle */
1746 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1747 cbp->ext_stats_dis = 1; /* disable extended counters */
1748 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1749 cbp->save_bf = save_bf;/* save bad frames */
1750 cbp->disc_short_rx = !prm; /* discard short packets */
1751 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1752 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1753 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1754 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1755 /* interface mode */
1756 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1757 cbp->csma_dis = 0; /* (don't) disable link */
1758 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1759 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1760 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1761 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1762 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1763 cbp->nsai = 1; /* (don't) disable source addr insert */
1764 cbp->preamble_length = 2; /* (7 byte) preamble */
1765 cbp->loopback = 0; /* (don't) loopback */
1766 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1767 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1768 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1769 cbp->promiscuous = prm; /* promiscuous mode */
1770 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1771 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1772 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1773 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1774 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1775 cbp->stripping = !prm; /* truncate rx packet to byte count */
1776 cbp->padding = 1; /* (do) pad short tx packets */
1777 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1778 cbp->long_rx_en = lrxen; /* long packet receive enable */
1779 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1780 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1781 /* must set wake_en in PMCSR also */
1782 cbp->force_fdx = 0; /* (don't) force full duplex */
1783 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1784 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1785 cbp->mc_all = allm; /* accept all multicasts */
1786 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1787 cbp->vlan_drop_en = vlan_drop;
1788
1789 if (sc->sc_rev < FXP_REV_82558_A4) {
1790 /*
1791 * The i82557 has no hardware flow control, the values
1792 * here are the defaults for the chip.
1793 */
1794 cbp->fc_delay_lsb = 0;
1795 cbp->fc_delay_msb = 0x40;
1796 cbp->pri_fc_thresh = 3;
1797 cbp->tx_fc_dis = 0;
1798 cbp->rx_fc_restop = 0;
1799 cbp->rx_fc_restart = 0;
1800 cbp->fc_filter = 0;
1801 cbp->pri_fc_loc = 1;
1802 } else {
1803 cbp->fc_delay_lsb = 0x1f;
1804 cbp->fc_delay_msb = 0x01;
1805 cbp->pri_fc_thresh = 3;
1806 cbp->tx_fc_dis = 0; /* enable transmit FC */
1807 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1808 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1809 cbp->fc_filter = !prm; /* drop FC frames to host */
1810 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1811 cbp->ext_stats_dis = 0; /* enable extended stats */
1812 }
1813
1814 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1815
1816 /*
1817 * Start the config command/DMA.
1818 */
1819 fxp_scb_wait(sc);
1820 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1821 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1822 /* ...and wait for it to complete. */
1823 i = 1000;
1824 do {
1825 FXP_CDCONFIGSYNC(sc,
1826 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1827 DELAY(1);
1828 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1829 if (i == 0) {
1830 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1831 sc->sc_dev.dv_xname, __LINE__);
1832 return (ETIMEDOUT);
1833 }
1834
1835 /*
1836 * Initialize the station address.
1837 */
1838 cb_ias = &sc->sc_control_data->fcd_iascb;
1839 /* BIG_ENDIAN: no need to swap to store 0 */
1840 cb_ias->cb_status = 0;
1841 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1842 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1843 cb_ias->link_addr = 0xffffffff;
1844 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1845
1846 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1847
1848 /*
1849 * Start the IAS (Individual Address Setup) command/DMA.
1850 */
1851 fxp_scb_wait(sc);
1852 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1853 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1854 /* ...and wait for it to complete. */
1855 i = 1000;
1856 do {
1857 FXP_CDIASSYNC(sc,
1858 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1859 DELAY(1);
1860 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1861 if (i == 0) {
1862 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1863 sc->sc_dev.dv_xname, __LINE__);
1864 return (ETIMEDOUT);
1865 }
1866
1867 /*
1868 * Initialize the transmit descriptor ring. txlast is initialized
1869 * to the end of the list so that it will wrap around to the first
1870 * descriptor when the first packet is transmitted.
1871 */
1872 for (i = 0; i < FXP_NTXCB; i++) {
1873 txd = FXP_CDTX(sc, i);
1874 memset(txd, 0, sizeof(*txd));
1875 txd->txd_txcb.cb_command =
1876 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1877 txd->txd_txcb.link_addr =
1878 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1879 if (sc->sc_flags & FXPF_EXT_TXCB)
1880 txd->txd_txcb.tbd_array_addr =
1881 htole32(FXP_CDTBDADDR(sc, i) +
1882 (2 * sizeof(struct fxp_tbd)));
1883 else
1884 txd->txd_txcb.tbd_array_addr =
1885 htole32(FXP_CDTBDADDR(sc, i));
1886 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1887 }
1888 sc->sc_txpending = 0;
1889 sc->sc_txdirty = 0;
1890 sc->sc_txlast = FXP_NTXCB - 1;
1891
1892 /*
1893 * Initialize the receive buffer list.
1894 */
1895 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1896 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1897 rxmap = FXP_RXMAP_GET(sc);
1898 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1899 log(LOG_ERR, "%s: unable to allocate or map rx "
1900 "buffer %d, error = %d\n",
1901 sc->sc_dev.dv_xname,
1902 sc->sc_rxq.ifq_len, error);
1903 /*
1904 * XXX Should attempt to run with fewer receive
1905 * XXX buffers instead of just failing.
1906 */
1907 FXP_RXMAP_PUT(sc, rxmap);
1908 fxp_rxdrain(sc);
1909 goto out;
1910 }
1911 }
1912 sc->sc_rxidle = 0;
1913
1914 /*
1915 * Give the transmit ring to the chip. We do this by pointing
1916 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1917 * issuing a start command. It will execute the NOP and then
1918 * suspend, pointing at the first descriptor.
1919 */
1920 fxp_scb_wait(sc);
1921 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1922 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1923
1924 /*
1925 * Initialize receiver buffer area - RFA.
1926 */
1927 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1928 fxp_scb_wait(sc);
1929 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1930 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1931 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1932
1933 if (sc->sc_flags & FXPF_MII) {
1934 /*
1935 * Set current media.
1936 */
1937 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1938 goto out;
1939 }
1940
1941 /*
1942 * ...all done!
1943 */
1944 ifp->if_flags |= IFF_RUNNING;
1945 ifp->if_flags &= ~IFF_OACTIVE;
1946
1947 /*
1948 * Start the one second timer.
1949 */
1950 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1951
1952 /*
1953 * Attempt to start output on the interface.
1954 */
1955 fxp_start(ifp);
1956
1957 out:
1958 if (error) {
1959 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1960 ifp->if_timer = 0;
1961 log(LOG_ERR, "%s: interface not running\n",
1962 sc->sc_dev.dv_xname);
1963 }
1964 return (error);
1965 }
1966
1967 /*
1968 * Notify the world which media we're using.
1969 */
1970 void
1971 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1972 {
1973 struct fxp_softc *sc = ifp->if_softc;
1974
1975 if (sc->sc_enabled == 0) {
1976 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1977 ifmr->ifm_status = 0;
1978 return;
1979 }
1980
1981 ether_mediastatus(ifp, ifmr);
1982
1983 /*
1984 * XXX Flow control is always turned on if the chip supports
1985 * XXX it; we can't easily control it dynamically, since it
1986 * XXX requires sending a setup packet.
1987 */
1988 if (sc->sc_rev >= FXP_REV_82558_A4)
1989 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1990 }
1991
1992 int
1993 fxp_80c24_mediachange(struct ifnet *ifp)
1994 {
1995
1996 /* Nothing to do here. */
1997 return (0);
1998 }
1999
2000 void
2001 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2002 {
2003 struct fxp_softc *sc = ifp->if_softc;
2004
2005 /*
2006 * Media is currently-selected media. We cannot determine
2007 * the link status.
2008 */
2009 ifmr->ifm_status = 0;
2010 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2011 }
2012
2013 /*
2014 * Add a buffer to the end of the RFA buffer list.
2015 * Return 0 if successful, error code on failure.
2016 *
2017 * The RFA struct is stuck at the beginning of mbuf cluster and the
2018 * data pointer is fixed up to point just past it.
2019 */
2020 int
2021 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2022 {
2023 struct mbuf *m;
2024 int error;
2025
2026 MGETHDR(m, M_DONTWAIT, MT_DATA);
2027 if (m == NULL)
2028 return (ENOBUFS);
2029
2030 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2031 MCLGET(m, M_DONTWAIT);
2032 if ((m->m_flags & M_EXT) == 0) {
2033 m_freem(m);
2034 return (ENOBUFS);
2035 }
2036
2037 if (unload)
2038 bus_dmamap_unload(sc->sc_dmat, rxmap);
2039
2040 M_SETCTX(m, rxmap);
2041
2042 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2043 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2044 BUS_DMA_READ|BUS_DMA_NOWAIT);
2045 if (error) {
2046 /* XXX XXX XXX */
2047 printf("%s: can't load rx DMA map %d, error = %d\n",
2048 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2049 panic("fxp_add_rfabuf");
2050 }
2051
2052 FXP_INIT_RFABUF(sc, m);
2053
2054 return (0);
2055 }
2056
2057 int
2058 fxp_mdi_read(struct device *self, int phy, int reg)
2059 {
2060 struct fxp_softc *sc = (struct fxp_softc *)self;
2061 int count = 10000;
2062 int value;
2063
2064 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2065 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2066
2067 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2068 0x10000000) == 0 && count--)
2069 DELAY(10);
2070
2071 if (count <= 0)
2072 log(LOG_WARNING,
2073 "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2074
2075 return (value & 0xffff);
2076 }
2077
2078 void
2079 fxp_statchg(struct device *self)
2080 {
2081
2082 /* Nothing to do. */
2083 }
2084
2085 void
2086 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2087 {
2088 struct fxp_softc *sc = (struct fxp_softc *)self;
2089 int count = 10000;
2090
2091 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2092 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2093 (value & 0xffff));
2094
2095 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2096 count--)
2097 DELAY(10);
2098
2099 if (count <= 0)
2100 log(LOG_WARNING,
2101 "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2102 }
2103
2104 int
2105 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2106 {
2107 struct fxp_softc *sc = ifp->if_softc;
2108 struct ifreq *ifr = (struct ifreq *)data;
2109 int s, error;
2110
2111 s = splnet();
2112
2113 switch (cmd) {
2114 case SIOCSIFMEDIA:
2115 case SIOCGIFMEDIA:
2116 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2117 break;
2118
2119 default:
2120 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2121 break;
2122
2123 error = 0;
2124
2125 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2126 ;
2127 else if (ifp->if_flags & IFF_RUNNING) {
2128 /*
2129 * Multicast list has changed; set the
2130 * hardware filter accordingly.
2131 */
2132 if (sc->sc_txpending) {
2133 sc->sc_flags |= FXPF_WANTINIT;
2134 } else
2135 error = fxp_init(ifp);
2136 }
2137 break;
2138 }
2139
2140 /* Try to get more packets going. */
2141 if (sc->sc_enabled)
2142 fxp_start(ifp);
2143
2144 splx(s);
2145 return (error);
2146 }
2147
2148 /*
2149 * Program the multicast filter.
2150 *
2151 * This function must be called at splnet().
2152 */
2153 void
2154 fxp_mc_setup(struct fxp_softc *sc)
2155 {
2156 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2157 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2158 struct ethercom *ec = &sc->sc_ethercom;
2159 struct ether_multi *enm;
2160 struct ether_multistep step;
2161 int count, nmcasts;
2162
2163 #ifdef DIAGNOSTIC
2164 if (sc->sc_txpending)
2165 panic("fxp_mc_setup: pending transmissions");
2166 #endif
2167
2168 ifp->if_flags &= ~IFF_ALLMULTI;
2169
2170 /*
2171 * Initialize multicast setup descriptor.
2172 */
2173 nmcasts = 0;
2174 ETHER_FIRST_MULTI(step, ec, enm);
2175 while (enm != NULL) {
2176 /*
2177 * Check for too many multicast addresses or if we're
2178 * listening to a range. Either way, we simply have
2179 * to accept all multicasts.
2180 */
2181 if (nmcasts >= MAXMCADDR ||
2182 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2183 ETHER_ADDR_LEN) != 0) {
2184 /*
2185 * Callers of this function must do the
2186 * right thing with this. If we're called
2187 * from outside fxp_init(), the caller must
2188 * detect if the state if IFF_ALLMULTI changes.
2189 * If it does, the caller must then call
2190 * fxp_init(), since allmulti is handled by
2191 * the config block.
2192 */
2193 ifp->if_flags |= IFF_ALLMULTI;
2194 return;
2195 }
2196 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2197 ETHER_ADDR_LEN);
2198 nmcasts++;
2199 ETHER_NEXT_MULTI(step, enm);
2200 }
2201
2202 /* BIG_ENDIAN: no need to swap to store 0 */
2203 mcsp->cb_status = 0;
2204 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2205 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2206 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2207
2208 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2209
2210 /*
2211 * Wait until the command unit is not active. This should never
2212 * happen since nothing is queued, but make sure anyway.
2213 */
2214 count = 100;
2215 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2216 FXP_SCB_CUS_ACTIVE && --count)
2217 DELAY(1);
2218 if (count == 0) {
2219 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2220 sc->sc_dev.dv_xname, __LINE__);
2221 return;
2222 }
2223
2224 /*
2225 * Start the multicast setup command/DMA.
2226 */
2227 fxp_scb_wait(sc);
2228 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2229 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2230
2231 /* ...and wait for it to complete. */
2232 count = 1000;
2233 do {
2234 FXP_CDMCSSYNC(sc,
2235 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2236 DELAY(1);
2237 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2238 if (count == 0) {
2239 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2240 sc->sc_dev.dv_xname, __LINE__);
2241 return;
2242 }
2243 }
2244
2245 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2246 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2247 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2248 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2249 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2250 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2251
2252 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2253
2254 static const struct ucode {
2255 int32_t revision;
2256 const uint32_t *ucode;
2257 size_t length;
2258 uint16_t int_delay_offset;
2259 uint16_t bundle_max_offset;
2260 } ucode_table[] = {
2261 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2262 D101_CPUSAVER_DWORD, 0 },
2263
2264 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2265 D101_CPUSAVER_DWORD, 0 },
2266
2267 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2268 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2269
2270 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2271 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2272
2273 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2274 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2275
2276 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2277 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2278
2279 { 0, NULL, 0, 0, 0 }
2280 };
2281
2282 void
2283 fxp_load_ucode(struct fxp_softc *sc)
2284 {
2285 const struct ucode *uc;
2286 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2287 int count, i;
2288
2289 if (sc->sc_flags & FXPF_UCODE_LOADED)
2290 return;
2291
2292 /*
2293 * Only load the uCode if the user has requested that
2294 * we do so.
2295 */
2296 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2297 sc->sc_int_delay = 0;
2298 sc->sc_bundle_max = 0;
2299 return;
2300 }
2301
2302 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2303 if (sc->sc_rev == uc->revision)
2304 break;
2305 }
2306 if (uc->ucode == NULL)
2307 return;
2308
2309 /* BIG ENDIAN: no need to swap to store 0 */
2310 cbp->cb_status = 0;
2311 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2312 cbp->link_addr = 0xffffffff; /* (no) next command */
2313 for (i = 0; i < uc->length; i++)
2314 cbp->ucode[i] = htole32(uc->ucode[i]);
2315
2316 if (uc->int_delay_offset)
2317 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2318 htole16(fxp_int_delay + (fxp_int_delay / 2));
2319
2320 if (uc->bundle_max_offset)
2321 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2322 htole16(fxp_bundle_max);
2323
2324 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2325
2326 /*
2327 * Download the uCode to the chip.
2328 */
2329 fxp_scb_wait(sc);
2330 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2331 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2332
2333 /* ...and wait for it to complete. */
2334 count = 10000;
2335 do {
2336 FXP_CDUCODESYNC(sc,
2337 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2338 DELAY(2);
2339 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2340 if (count == 0) {
2341 sc->sc_int_delay = 0;
2342 sc->sc_bundle_max = 0;
2343 log(LOG_WARNING, "%s: timeout loading microcode\n",
2344 sc->sc_dev.dv_xname);
2345 return;
2346 }
2347
2348 if (sc->sc_int_delay != fxp_int_delay ||
2349 sc->sc_bundle_max != fxp_bundle_max) {
2350 sc->sc_int_delay = fxp_int_delay;
2351 sc->sc_bundle_max = fxp_bundle_max;
2352 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2353 "max bundle: %d\n", sc->sc_dev.dv_xname,
2354 sc->sc_int_delay,
2355 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2356 }
2357
2358 sc->sc_flags |= FXPF_UCODE_LOADED;
2359 }
2360
2361 int
2362 fxp_enable(struct fxp_softc *sc)
2363 {
2364
2365 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2366 if ((*sc->sc_enable)(sc) != 0) {
2367 log(LOG_ERR, "%s: device enable failed\n",
2368 sc->sc_dev.dv_xname);
2369 return (EIO);
2370 }
2371 }
2372
2373 sc->sc_enabled = 1;
2374 return (0);
2375 }
2376
2377 void
2378 fxp_disable(struct fxp_softc *sc)
2379 {
2380
2381 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2382 (*sc->sc_disable)(sc);
2383 sc->sc_enabled = 0;
2384 }
2385 }
2386
2387 /*
2388 * fxp_activate:
2389 *
2390 * Handle device activation/deactivation requests.
2391 */
2392 int
2393 fxp_activate(struct device *self, enum devact act)
2394 {
2395 struct fxp_softc *sc = (void *) self;
2396 int s, error = 0;
2397
2398 s = splnet();
2399 switch (act) {
2400 case DVACT_ACTIVATE:
2401 error = EOPNOTSUPP;
2402 break;
2403
2404 case DVACT_DEACTIVATE:
2405 if (sc->sc_flags & FXPF_MII)
2406 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2407 MII_OFFSET_ANY);
2408 if_deactivate(&sc->sc_ethercom.ec_if);
2409 break;
2410 }
2411 splx(s);
2412
2413 return (error);
2414 }
2415
2416 /*
2417 * fxp_detach:
2418 *
2419 * Detach an i82557 interface.
2420 */
2421 int
2422 fxp_detach(struct fxp_softc *sc)
2423 {
2424 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2425 int i;
2426
2427 /* Succeed now if there's no work to do. */
2428 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2429 return (0);
2430
2431 /* Unhook our tick handler. */
2432 callout_stop(&sc->sc_callout);
2433
2434 if (sc->sc_flags & FXPF_MII) {
2435 /* Detach all PHYs */
2436 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2437 }
2438
2439 /* Delete all remaining media. */
2440 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2441
2442 #if NRND > 0
2443 rnd_detach_source(&sc->rnd_source);
2444 #endif
2445 ether_ifdetach(ifp);
2446 if_detach(ifp);
2447
2448 for (i = 0; i < FXP_NRFABUFS; i++) {
2449 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2450 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2451 }
2452
2453 for (i = 0; i < FXP_NTXCB; i++) {
2454 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2455 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2456 }
2457
2458 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2459 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2460 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2461 sizeof(struct fxp_control_data));
2462 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2463
2464 shutdownhook_disestablish(sc->sc_sdhook);
2465 powerhook_disestablish(sc->sc_powerhook);
2466
2467 return (0);
2468 }
2469