Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.105.2.1
      1 /*	$NetBSD: i82557.c,v 1.105.2.1 2007/12/11 15:27:40 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice unmodified, this list of conditions, and the following
     50  *    disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
     68  */
     69 
     70 /*
     71  * Device driver for the Intel i82557 fast Ethernet controller,
     72  * and its successors, the i82558 and i82559.
     73  */
     74 
     75 #include <sys/cdefs.h>
     76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.105.2.1 2007/12/11 15:27:40 yamt Exp $");
     77 
     78 #include "bpfilter.h"
     79 #include "rnd.h"
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/callout.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/malloc.h>
     86 #include <sys/kernel.h>
     87 #include <sys/socket.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/errno.h>
     90 #include <sys/device.h>
     91 #include <sys/syslog.h>
     92 
     93 #include <machine/endian.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 #if NRND > 0
     98 #include <sys/rnd.h>
     99 #endif
    100 
    101 #include <net/if.h>
    102 #include <net/if_dl.h>
    103 #include <net/if_media.h>
    104 #include <net/if_ether.h>
    105 
    106 #if NBPFILTER > 0
    107 #include <net/bpf.h>
    108 #endif
    109 
    110 #include <sys/bus.h>
    111 #include <sys/intr.h>
    112 
    113 #include <dev/mii/miivar.h>
    114 
    115 #include <dev/ic/i82557reg.h>
    116 #include <dev/ic/i82557var.h>
    117 
    118 #include <dev/microcode/i8255x/rcvbundl.h>
    119 
    120 /*
    121  * NOTE!  On the Alpha, we have an alignment constraint.  The
    122  * card DMAs the packet immediately following the RFA.  However,
    123  * the first thing in the packet is a 14-byte Ethernet header.
    124  * This means that the packet is misaligned.  To compensate,
    125  * we actually offset the RFA 2 bytes into the cluster.  This
    126  * alignes the packet after the Ethernet header at a 32-bit
    127  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    128  */
    129 #define	RFA_ALIGNMENT_FUDGE	2
    130 
    131 /*
    132  * The configuration byte map has several undefined fields which
    133  * must be one or must be zero.  Set up a template for these bits
    134  * only (assuming an i82557 chip), leaving the actual configuration
    135  * for fxp_init().
    136  *
    137  * See the definition of struct fxp_cb_config for the bit definitions.
    138  */
    139 const u_int8_t fxp_cb_config_template[] = {
    140 	0x0, 0x0,		/* cb_status */
    141 	0x0, 0x0,		/* cb_command */
    142 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
    143 	0x0,	/*  0 */
    144 	0x0,	/*  1 */
    145 	0x0,	/*  2 */
    146 	0x0,	/*  3 */
    147 	0x0,	/*  4 */
    148 	0x0,	/*  5 */
    149 	0x32,	/*  6 */
    150 	0x0,	/*  7 */
    151 	0x0,	/*  8 */
    152 	0x0,	/*  9 */
    153 	0x6,	/* 10 */
    154 	0x0,	/* 11 */
    155 	0x0,	/* 12 */
    156 	0x0,	/* 13 */
    157 	0xf2,	/* 14 */
    158 	0x48,	/* 15 */
    159 	0x0,	/* 16 */
    160 	0x40,	/* 17 */
    161 	0xf0,	/* 18 */
    162 	0x0,	/* 19 */
    163 	0x3f,	/* 20 */
    164 	0x5,	/* 21 */
    165 	0x0,	/* 22 */
    166 	0x0,	/* 23 */
    167 	0x0,	/* 24 */
    168 	0x0,	/* 25 */
    169 	0x0,	/* 26 */
    170 	0x0,	/* 27 */
    171 	0x0,	/* 28 */
    172 	0x0,	/* 29 */
    173 	0x0,	/* 30 */
    174 	0x0,	/* 31 */
    175 };
    176 
    177 void	fxp_mii_initmedia(struct fxp_softc *);
    178 int	fxp_mii_mediachange(struct ifnet *);
    179 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
    180 
    181 void	fxp_80c24_initmedia(struct fxp_softc *);
    182 int	fxp_80c24_mediachange(struct ifnet *);
    183 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
    184 
    185 void	fxp_start(struct ifnet *);
    186 int	fxp_ioctl(struct ifnet *, u_long, void *);
    187 void	fxp_watchdog(struct ifnet *);
    188 int	fxp_init(struct ifnet *);
    189 void	fxp_stop(struct ifnet *, int);
    190 
    191 void	fxp_txintr(struct fxp_softc *);
    192 int	fxp_rxintr(struct fxp_softc *);
    193 
    194 int	fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
    195 
    196 void	fxp_rxdrain(struct fxp_softc *);
    197 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
    198 int	fxp_mdi_read(struct device *, int, int);
    199 void	fxp_statchg(struct device *);
    200 void	fxp_mdi_write(struct device *, int, int, int);
    201 void	fxp_autosize_eeprom(struct fxp_softc*);
    202 void	fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
    203 void	fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
    204 void	fxp_eeprom_update_cksum(struct fxp_softc *);
    205 void	fxp_get_info(struct fxp_softc *, u_int8_t *);
    206 void	fxp_tick(void *);
    207 void	fxp_mc_setup(struct fxp_softc *);
    208 void	fxp_load_ucode(struct fxp_softc *);
    209 
    210 void	fxp_shutdown(void *);
    211 
    212 int	fxp_copy_small = 0;
    213 
    214 /*
    215  * Variables for interrupt mitigating microcode.
    216  */
    217 int	fxp_int_delay = 1000;		/* usec */
    218 int	fxp_bundle_max = 6;		/* packets */
    219 
    220 struct fxp_phytype {
    221 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    222 	void	(*fp_init)(struct fxp_softc *);
    223 } fxp_phytype_table[] = {
    224 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    225 	{ -1,				fxp_mii_initmedia },
    226 };
    227 
    228 /*
    229  * Set initial transmit threshold at 64 (512 bytes). This is
    230  * increased by 64 (512 bytes) at a time, to maximum of 192
    231  * (1536 bytes), if an underrun occurs.
    232  */
    233 static int tx_threshold = 64;
    234 
    235 /*
    236  * Wait for the previous command to be accepted (but not necessarily
    237  * completed).
    238  */
    239 static inline void
    240 fxp_scb_wait(struct fxp_softc *sc)
    241 {
    242 	int i = 10000;
    243 
    244 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    245 		delay(2);
    246 	if (i == 0)
    247 		log(LOG_WARNING,
    248 		    "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    249 }
    250 
    251 /*
    252  * Submit a command to the i82557.
    253  */
    254 static inline void
    255 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
    256 {
    257 
    258 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
    259 }
    260 
    261 /*
    262  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    263  */
    264 void
    265 fxp_attach(struct fxp_softc *sc)
    266 {
    267 	u_int8_t enaddr[ETHER_ADDR_LEN];
    268 	struct ifnet *ifp;
    269 	bus_dma_segment_t seg;
    270 	int rseg, i, error;
    271 	struct fxp_phytype *fp;
    272 
    273 	callout_init(&sc->sc_callout, 0);
    274 
    275 	/*
    276 	 * Enable some good stuff on i82558 and later.
    277 	 */
    278 	if (sc->sc_rev >= FXP_REV_82558_A4) {
    279 		/* Enable the extended TxCB. */
    280 		sc->sc_flags |= FXPF_EXT_TXCB;
    281 	}
    282 
    283         /*
    284 	 * Enable use of extended RFDs and TCBs for 82550
    285 	 * and later chips. Note: we need extended TXCB support
    286 	 * too, but that's already enabled by the code above.
    287 	 * Be careful to do this only on the right devices.
    288 	 */
    289 	if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
    290 		sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
    291 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
    292 	} else {
    293 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
    294 	}
    295 
    296 	sc->sc_rfa_size =
    297 	    (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
    298 
    299 	/*
    300 	 * Allocate the control data structures, and create and load the
    301 	 * DMA map for it.
    302 	 */
    303 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    304 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    305 	    0)) != 0) {
    306 		aprint_error(
    307 		    "%s: unable to allocate control data, error = %d\n",
    308 		    sc->sc_dev.dv_xname, error);
    309 		goto fail_0;
    310 	}
    311 
    312 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    313 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
    314 	    BUS_DMA_COHERENT)) != 0) {
    315 		aprint_error("%s: unable to map control data, error = %d\n",
    316 		    sc->sc_dev.dv_xname, error);
    317 		goto fail_1;
    318 	}
    319 	sc->sc_cdseg = seg;
    320 	sc->sc_cdnseg = rseg;
    321 
    322 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
    323 
    324 	if ((error = bus_dmamap_create(sc->sc_dmat,
    325 	    sizeof(struct fxp_control_data), 1,
    326 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    327 		aprint_error("%s: unable to create control data DMA map, "
    328 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    329 		goto fail_2;
    330 	}
    331 
    332 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    333 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    334 	    0)) != 0) {
    335 		aprint_error(
    336 		    "%s: can't load control data DMA map, error = %d\n",
    337 		    sc->sc_dev.dv_xname, error);
    338 		goto fail_3;
    339 	}
    340 
    341 	/*
    342 	 * Create the transmit buffer DMA maps.
    343 	 */
    344 	for (i = 0; i < FXP_NTXCB; i++) {
    345 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    346 		    (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
    347 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    348 			aprint_error("%s: unable to create tx DMA map %d, "
    349 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    350 			goto fail_4;
    351 		}
    352 	}
    353 
    354 	/*
    355 	 * Create the receive buffer DMA maps.
    356 	 */
    357 	for (i = 0; i < FXP_NRFABUFS; i++) {
    358 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    359 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    360 			aprint_error("%s: unable to create rx DMA map %d, "
    361 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    362 			goto fail_5;
    363 		}
    364 	}
    365 
    366 	/* Initialize MAC address and media structures. */
    367 	fxp_get_info(sc, enaddr);
    368 
    369 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    370 	    ether_sprintf(enaddr));
    371 
    372 	ifp = &sc->sc_ethercom.ec_if;
    373 
    374 	/*
    375 	 * Get info about our media interface, and initialize it.  Note
    376 	 * the table terminates itself with a phy of -1, indicating
    377 	 * that we're using MII.
    378 	 */
    379 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    380 		if (fp->fp_phy == sc->phy_primary_device)
    381 			break;
    382 	(*fp->fp_init)(sc);
    383 
    384 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    385 	ifp->if_softc = sc;
    386 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    387 	ifp->if_ioctl = fxp_ioctl;
    388 	ifp->if_start = fxp_start;
    389 	ifp->if_watchdog = fxp_watchdog;
    390 	ifp->if_init = fxp_init;
    391 	ifp->if_stop = fxp_stop;
    392 	IFQ_SET_READY(&ifp->if_snd);
    393 
    394 	if (sc->sc_flags & FXPF_IPCB) {
    395 		KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
    396 		/*
    397 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
    398 		 * at least, on i82550 rev.12.
    399 		 * specifically, it doesn't calculate ipv4 checksum correctly
    400 		 * when sending 20 byte ipv4 header + 1 or 2 byte data.
    401 		 * FreeBSD driver has related comments.
    402 		 */
    403 		ifp->if_capabilities =
    404 		    IFCAP_CSUM_IPv4_Rx |
    405 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    406 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    407 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    408 	}
    409 
    410 	/*
    411 	 * We can support 802.1Q VLAN-sized frames.
    412 	 */
    413 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    414 
    415 	/*
    416 	 * Attach the interface.
    417 	 */
    418 	if_attach(ifp);
    419 	ether_ifattach(ifp, enaddr);
    420 #if NRND > 0
    421 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    422 	    RND_TYPE_NET, 0);
    423 #endif
    424 
    425 #ifdef FXP_EVENT_COUNTERS
    426 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    427 	    NULL, sc->sc_dev.dv_xname, "txstall");
    428 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    429 	    NULL, sc->sc_dev.dv_xname, "txintr");
    430 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    431 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    432 	if (sc->sc_rev >= FXP_REV_82558_A4) {
    433 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
    434 		    NULL, sc->sc_dev.dv_xname, "txpause");
    435 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
    436 		    NULL, sc->sc_dev.dv_xname, "rxpause");
    437 	}
    438 #endif /* FXP_EVENT_COUNTERS */
    439 
    440 	/*
    441 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    442 	 * doing do could allow DMA to corrupt kernel memory during the
    443 	 * reboot before the driver initializes.
    444 	 */
    445 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    446 	if (sc->sc_sdhook == NULL)
    447 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    448 		    sc->sc_dev.dv_xname);
    449 
    450 	/* The attach is successful. */
    451 	sc->sc_flags |= FXPF_ATTACHED;
    452 
    453 	return;
    454 
    455 	/*
    456 	 * Free any resources we've allocated during the failed attach
    457 	 * attempt.  Do this in reverse order and fall though.
    458 	 */
    459  fail_5:
    460 	for (i = 0; i < FXP_NRFABUFS; i++) {
    461 		if (sc->sc_rxmaps[i] != NULL)
    462 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    463 	}
    464  fail_4:
    465 	for (i = 0; i < FXP_NTXCB; i++) {
    466 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    467 			bus_dmamap_destroy(sc->sc_dmat,
    468 			    FXP_DSTX(sc, i)->txs_dmamap);
    469 	}
    470 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    471  fail_3:
    472 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    473  fail_2:
    474 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    475 	    sizeof(struct fxp_control_data));
    476  fail_1:
    477 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    478  fail_0:
    479 	return;
    480 }
    481 
    482 void
    483 fxp_mii_initmedia(struct fxp_softc *sc)
    484 {
    485 	int flags;
    486 
    487 	sc->sc_flags |= FXPF_MII;
    488 
    489 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    490 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    491 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    492 	sc->sc_mii.mii_statchg = fxp_statchg;
    493 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
    494 	    fxp_mii_mediastatus);
    495 
    496 	flags = MIIF_NOISOLATE;
    497 	if (sc->sc_rev >= FXP_REV_82558_A4)
    498 		flags |= MIIF_DOPAUSE;
    499 	/*
    500 	 * The i82557 wedges if all of its PHYs are isolated!
    501 	 */
    502 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    503 	    MII_OFFSET_ANY, flags);
    504 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    505 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    506 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    507 	} else
    508 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    509 }
    510 
    511 void
    512 fxp_80c24_initmedia(struct fxp_softc *sc)
    513 {
    514 
    515 	/*
    516 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    517 	 * doesn't have a programming interface of any sort.  The
    518 	 * media is sensed automatically based on how the link partner
    519 	 * is configured.  This is, in essence, manual configuration.
    520 	 */
    521 	aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    522 	    sc->sc_dev.dv_xname);
    523 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    524 	    fxp_80c24_mediastatus);
    525 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    526 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    527 }
    528 
    529 /*
    530  * Device shutdown routine. Called at system shutdown after sync. The
    531  * main purpose of this routine is to shut off receiver DMA so that
    532  * kernel memory doesn't get clobbered during warmboot.
    533  */
    534 void
    535 fxp_shutdown(void *arg)
    536 {
    537 	struct fxp_softc *sc = arg;
    538 
    539 	/*
    540 	 * Since the system's going to halt shortly, don't bother
    541 	 * freeing mbufs.
    542 	 */
    543 	fxp_stop(&sc->sc_ethercom.ec_if, 0);
    544 }
    545 
    546 /*
    547  * Initialize the interface media.
    548  */
    549 void
    550 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
    551 {
    552 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
    553 
    554 	/*
    555 	 * Reset to a stable state.
    556 	 */
    557 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    558 	DELAY(100);
    559 
    560 	sc->sc_eeprom_size = 0;
    561 	fxp_autosize_eeprom(sc);
    562 	if (sc->sc_eeprom_size == 0) {
    563 		aprint_error("%s: failed to detect EEPROM size\n",
    564 		    sc->sc_dev.dv_xname);
    565 		sc->sc_eeprom_size = 6; /* XXX panic here? */
    566 	}
    567 #ifdef DEBUG
    568 	aprint_debug("%s: detected %d word EEPROM\n",
    569 	    sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
    570 #endif
    571 
    572 	/*
    573 	 * Get info about the primary PHY
    574 	 */
    575 	fxp_read_eeprom(sc, &data, 6, 1);
    576 	sc->phy_primary_device =
    577 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
    578 
    579 	/*
    580 	 * Read MAC address.
    581 	 */
    582 	fxp_read_eeprom(sc, myea, 0, 3);
    583 	enaddr[0] = myea[0] & 0xff;
    584 	enaddr[1] = myea[0] >> 8;
    585 	enaddr[2] = myea[1] & 0xff;
    586 	enaddr[3] = myea[1] >> 8;
    587 	enaddr[4] = myea[2] & 0xff;
    588 	enaddr[5] = myea[2] >> 8;
    589 
    590 	/*
    591 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
    592 	 * as some i82559 designs, have a defect where the chip can
    593 	 * cause a PCI protocol violation if it receives a CU_RESUME
    594 	 * command when it is entering the IDLE state.
    595 	 *
    596 	 * The work-around is to disable Dynamic Standby Mode, so that
    597 	 * the chip never deasserts #CLKRUN, and always remains in the
    598 	 * active state.
    599 	 *
    600 	 * Unfortunately, the only way to disable Dynamic Standby is
    601 	 * to frob an EEPROM setting and reboot (the EEPROM setting
    602 	 * is only consulted when the PCI bus comes out of reset).
    603 	 *
    604 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
    605 	 */
    606 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
    607 		fxp_read_eeprom(sc, &data, 10, 1);
    608 		if (data & 0x02) {		/* STB enable */
    609 			aprint_error("%s: WARNING: "
    610 			    "Disabling dynamic standby mode in EEPROM "
    611 			    "to work around a\n",
    612 			    sc->sc_dev.dv_xname);
    613 			aprint_normal(
    614 			    "%s: WARNING: hardware bug.  You must reset "
    615 			    "the system before using this\n",
    616 			    sc->sc_dev.dv_xname);
    617 			aprint_normal("%s: WARNING: interface.\n",
    618 			    sc->sc_dev.dv_xname);
    619 			data &= ~0x02;
    620 			fxp_write_eeprom(sc, &data, 10, 1);
    621 			aprint_normal("%s: new EEPROM ID: 0x%04x\n",
    622 			    sc->sc_dev.dv_xname, data);
    623 			fxp_eeprom_update_cksum(sc);
    624 		}
    625 	}
    626 
    627 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
    628 	/* Due to false positives we make it conditional on setting link1 */
    629 	fxp_read_eeprom(sc, &data, 3, 1);
    630 	if ((data & 0x03) != 0x03) {
    631 		aprint_verbose("%s: May need receiver lock-up workaround\n",
    632 		    sc->sc_dev.dv_xname);
    633 	}
    634 }
    635 
    636 static void
    637 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
    638 {
    639 	uint16_t reg;
    640 	int x;
    641 
    642 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
    643 		DELAY(40);
    644 		if (data & x)
    645 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    646 		else
    647 			reg = FXP_EEPROM_EECS;
    648 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    649 		DELAY(40);
    650 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    651 		    reg | FXP_EEPROM_EESK);
    652 		DELAY(40);
    653 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    654 	}
    655 	DELAY(40);
    656 }
    657 
    658 /*
    659  * Figure out EEPROM size.
    660  *
    661  * 559's can have either 64-word or 256-word EEPROMs, the 558
    662  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    663  * talks about the existence of 16 to 256 word EEPROMs.
    664  *
    665  * The only known sizes are 64 and 256, where the 256 version is used
    666  * by CardBus cards to store CIS information.
    667  *
    668  * The address is shifted in msb-to-lsb, and after the last
    669  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    670  * after which follows the actual data. We try to detect this zero, by
    671  * probing the data-out bit in the EEPROM control register just after
    672  * having shifted in a bit. If the bit is zero, we assume we've
    673  * shifted enough address bits. The data-out should be tri-state,
    674  * before this, which should translate to a logical one.
    675  *
    676  * Other ways to do this would be to try to read a register with known
    677  * contents with a varying number of address bits, but no such
    678  * register seem to be available. The high bits of register 10 are 01
    679  * on the 558 and 559, but apparently not on the 557.
    680  *
    681  * The Linux driver computes a checksum on the EEPROM data, but the
    682  * value of this checksum is not very well documented.
    683  */
    684 
    685 void
    686 fxp_autosize_eeprom(struct fxp_softc *sc)
    687 {
    688 	int x;
    689 
    690 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    691 	DELAY(40);
    692 
    693 	/* Shift in read opcode. */
    694 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    695 
    696 	/*
    697 	 * Shift in address, wait for the dummy zero following a correct
    698 	 * address shift.
    699 	 */
    700 	for (x = 1; x <= 8; x++) {
    701 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    702 		DELAY(40);
    703 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    704 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    705 		DELAY(40);
    706 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    707 		    FXP_EEPROM_EEDO) == 0)
    708 			break;
    709 		DELAY(40);
    710 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    711 		DELAY(40);
    712 	}
    713 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    714 	DELAY(40);
    715 	if (x != 6 && x != 8) {
    716 #ifdef DEBUG
    717 		printf("%s: strange EEPROM size (%d)\n",
    718 		    sc->sc_dev.dv_xname, 1 << x);
    719 #endif
    720 	} else
    721 		sc->sc_eeprom_size = x;
    722 }
    723 
    724 /*
    725  * Read from the serial EEPROM. Basically, you manually shift in
    726  * the read opcode (one bit at a time) and then shift in the address,
    727  * and then you shift out the data (all of this one bit at a time).
    728  * The word size is 16 bits, so you have to provide the address for
    729  * every 16 bits of data.
    730  */
    731 void
    732 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
    733 {
    734 	u_int16_t reg;
    735 	int i, x;
    736 
    737 	for (i = 0; i < words; i++) {
    738 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    739 
    740 		/* Shift in read opcode. */
    741 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    742 
    743 		/* Shift in address. */
    744 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    745 
    746 		reg = FXP_EEPROM_EECS;
    747 		data[i] = 0;
    748 
    749 		/* Shift out data. */
    750 		for (x = 16; x > 0; x--) {
    751 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    752 			    reg | FXP_EEPROM_EESK);
    753 			DELAY(40);
    754 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    755 			    FXP_EEPROM_EEDO)
    756 				data[i] |= (1 << (x - 1));
    757 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    758 			DELAY(40);
    759 		}
    760 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    761 		DELAY(40);
    762 	}
    763 }
    764 
    765 /*
    766  * Write data to the serial EEPROM.
    767  */
    768 void
    769 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
    770 {
    771 	int i, j;
    772 
    773 	for (i = 0; i < words; i++) {
    774 		/* Erase/write enable. */
    775 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    776 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    777 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
    778 		    sc->sc_eeprom_size);
    779 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    780 		DELAY(4);
    781 
    782 		/* Shift in write opcode, address, data. */
    783 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    784 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
    785 		fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
    786 		fxp_eeprom_shiftin(sc, data[i], 16);
    787 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    788 		DELAY(4);
    789 
    790 		/* Wait for the EEPROM to finish up. */
    791 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    792 		DELAY(4);
    793 		for (j = 0; j < 1000; j++) {
    794 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    795 			    FXP_EEPROM_EEDO)
    796 				break;
    797 			DELAY(50);
    798 		}
    799 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    800 		DELAY(4);
    801 
    802 		/* Erase/write disable. */
    803 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    804 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    805 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
    806 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    807 		DELAY(4);
    808 	}
    809 }
    810 
    811 /*
    812  * Update the checksum of the EEPROM.
    813  */
    814 void
    815 fxp_eeprom_update_cksum(struct fxp_softc *sc)
    816 {
    817 	int i;
    818 	uint16_t data, cksum;
    819 
    820 	cksum = 0;
    821 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
    822 		fxp_read_eeprom(sc, &data, i, 1);
    823 		cksum += data;
    824 	}
    825 	i = (1 << sc->sc_eeprom_size) - 1;
    826 	cksum = 0xbaba - cksum;
    827 	fxp_read_eeprom(sc, &data, i, 1);
    828 	fxp_write_eeprom(sc, &cksum, i, 1);
    829 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
    830 	    sc->sc_dev.dv_xname, i, data, cksum);
    831 }
    832 
    833 /*
    834  * Start packet transmission on the interface.
    835  */
    836 void
    837 fxp_start(struct ifnet *ifp)
    838 {
    839 	struct fxp_softc *sc = ifp->if_softc;
    840 	struct mbuf *m0, *m;
    841 	struct fxp_txdesc *txd;
    842 	struct fxp_txsoft *txs;
    843 	bus_dmamap_t dmamap;
    844 	int error, lasttx, nexttx, opending, seg;
    845 
    846 	/*
    847 	 * If we want a re-init, bail out now.
    848 	 */
    849 	if (sc->sc_flags & FXPF_WANTINIT) {
    850 		ifp->if_flags |= IFF_OACTIVE;
    851 		return;
    852 	}
    853 
    854 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    855 		return;
    856 
    857 	/*
    858 	 * Remember the previous txpending and the current lasttx.
    859 	 */
    860 	opending = sc->sc_txpending;
    861 	lasttx = sc->sc_txlast;
    862 
    863 	/*
    864 	 * Loop through the send queue, setting up transmit descriptors
    865 	 * until we drain the queue, or use up all available transmit
    866 	 * descriptors.
    867 	 */
    868 	for (;;) {
    869 		struct fxp_tbd *tbdp;
    870 		int csum_flags;
    871 
    872 		/*
    873 		 * Grab a packet off the queue.
    874 		 */
    875 		IFQ_POLL(&ifp->if_snd, m0);
    876 		if (m0 == NULL)
    877 			break;
    878 		m = NULL;
    879 
    880 		if (sc->sc_txpending == FXP_NTXCB - 1) {
    881 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
    882 			break;
    883 		}
    884 
    885 		/*
    886 		 * Get the next available transmit descriptor.
    887 		 */
    888 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    889 		txd = FXP_CDTX(sc, nexttx);
    890 		txs = FXP_DSTX(sc, nexttx);
    891 		dmamap = txs->txs_dmamap;
    892 
    893 		/*
    894 		 * Load the DMA map.  If this fails, the packet either
    895 		 * didn't fit in the allotted number of frags, or we were
    896 		 * short on resources.  In this case, we'll copy and try
    897 		 * again.
    898 		 */
    899 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    900 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    901 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    902 			if (m == NULL) {
    903 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
    904 				    sc->sc_dev.dv_xname);
    905 				break;
    906 			}
    907 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    908 			if (m0->m_pkthdr.len > MHLEN) {
    909 				MCLGET(m, M_DONTWAIT);
    910 				if ((m->m_flags & M_EXT) == 0) {
    911 					log(LOG_ERR,
    912 					    "%s: unable to allocate Tx "
    913 					    "cluster\n", sc->sc_dev.dv_xname);
    914 					m_freem(m);
    915 					break;
    916 				}
    917 			}
    918 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    919 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    920 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    921 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    922 			if (error) {
    923 				log(LOG_ERR, "%s: unable to load Tx buffer, "
    924 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    925 				break;
    926 			}
    927 		}
    928 
    929 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    930 		csum_flags = m0->m_pkthdr.csum_flags;
    931 		if (m != NULL) {
    932 			m_freem(m0);
    933 			m0 = m;
    934 		}
    935 
    936 		/* Initialize the fraglist. */
    937 		tbdp = txd->txd_tbd;
    938 		if (sc->sc_flags & FXPF_IPCB)
    939 			tbdp++;
    940 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    941 			tbdp[seg].tb_addr =
    942 			    htole32(dmamap->dm_segs[seg].ds_addr);
    943 			tbdp[seg].tb_size =
    944 			    htole32(dmamap->dm_segs[seg].ds_len);
    945 		}
    946 
    947 		/* Sync the DMA map. */
    948 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    949 		    BUS_DMASYNC_PREWRITE);
    950 
    951 		/*
    952 		 * Store a pointer to the packet so we can free it later.
    953 		 */
    954 		txs->txs_mbuf = m0;
    955 
    956 		/*
    957 		 * Initialize the transmit descriptor.
    958 		 */
    959 		/* BIG_ENDIAN: no need to swap to store 0 */
    960 		txd->txd_txcb.cb_status = 0;
    961 		txd->txd_txcb.cb_command =
    962 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
    963 		txd->txd_txcb.tx_threshold = tx_threshold;
    964 		txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
    965 
    966 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
    967 		if (sc->sc_flags & FXPF_IPCB) {
    968 			struct m_tag *vtag;
    969 			struct fxp_ipcb *ipcb;
    970 			/*
    971 			 * Deal with TCP/IP checksum offload. Note that
    972 			 * in order for TCP checksum offload to work,
    973 			 * the pseudo header checksum must have already
    974 			 * been computed and stored in the checksum field
    975 			 * in the TCP header. The stack should have
    976 			 * already done this for us.
    977 			 */
    978 			ipcb = &txd->txd_u.txdu_ipcb;
    979 			memset(ipcb, 0, sizeof(*ipcb));
    980 			/*
    981 			 * always do hardware parsing.
    982 			 */
    983 			ipcb->ipcb_ip_activation_high =
    984 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
    985 			/*
    986 			 * ip checksum offloading.
    987 			 */
    988 			if (csum_flags & M_CSUM_IPv4) {
    989 				ipcb->ipcb_ip_schedule |=
    990 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
    991 			}
    992 			/*
    993 			 * TCP/UDP checksum offloading.
    994 			 */
    995 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    996 				ipcb->ipcb_ip_schedule |=
    997 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
    998 			}
    999 
   1000 			/*
   1001 			 * request VLAN tag insertion if needed.
   1002 			 */
   1003 			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
   1004 			if (vtag) {
   1005 				ipcb->ipcb_vlan_id =
   1006 				    htobe16(*(u_int *)(vtag + 1));
   1007 				ipcb->ipcb_ip_activation_high |=
   1008 				    FXP_IPCB_INSERTVLAN_ENABLE;
   1009 			}
   1010 		} else {
   1011 			KASSERT((csum_flags &
   1012 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
   1013 		}
   1014 
   1015 		FXP_CDTXSYNC(sc, nexttx,
   1016 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1017 
   1018 		/* Advance the tx pointer. */
   1019 		sc->sc_txpending++;
   1020 		sc->sc_txlast = nexttx;
   1021 
   1022 #if NBPFILTER > 0
   1023 		/*
   1024 		 * Pass packet to bpf if there is a listener.
   1025 		 */
   1026 		if (ifp->if_bpf)
   1027 			bpf_mtap(ifp->if_bpf, m0);
   1028 #endif
   1029 	}
   1030 
   1031 	if (sc->sc_txpending == FXP_NTXCB - 1) {
   1032 		/* No more slots; notify upper layer. */
   1033 		ifp->if_flags |= IFF_OACTIVE;
   1034 	}
   1035 
   1036 	if (sc->sc_txpending != opending) {
   1037 		/*
   1038 		 * We enqueued packets.  If the transmitter was idle,
   1039 		 * reset the txdirty pointer.
   1040 		 */
   1041 		if (opending == 0)
   1042 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
   1043 
   1044 		/*
   1045 		 * Cause the chip to interrupt and suspend command
   1046 		 * processing once the last packet we've enqueued
   1047 		 * has been transmitted.
   1048 		 *
   1049 		 * To avoid a race between updating status bits
   1050 		 * by the fxp chip and clearing command bits
   1051 		 * by this function on machines which don't have
   1052 		 * atomic methods to clear/set bits in memory
   1053 		 * smaller than 32bits (both cb_status and cb_command
   1054 		 * members are uint16_t and in the same 32bit word),
   1055 		 * we have to prepare a dummy TX descriptor which has
   1056 		 * NOP command and just causes a TX completion interrupt.
   1057 		 */
   1058 		sc->sc_txpending++;
   1059 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
   1060 		txd = FXP_CDTX(sc, sc->sc_txlast);
   1061 		/* BIG_ENDIAN: no need to swap to store 0 */
   1062 		txd->txd_txcb.cb_status = 0;
   1063 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
   1064 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
   1065 		FXP_CDTXSYNC(sc, sc->sc_txlast,
   1066 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1067 
   1068 		/*
   1069 		 * The entire packet chain is set up.  Clear the suspend bit
   1070 		 * on the command prior to the first packet we set up.
   1071 		 */
   1072 		FXP_CDTXSYNC(sc, lasttx,
   1073 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1074 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
   1075 		    htole16(~FXP_CB_COMMAND_S);
   1076 		FXP_CDTXSYNC(sc, lasttx,
   1077 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1078 
   1079 		/*
   1080 		 * Issue a Resume command in case the chip was suspended.
   1081 		 */
   1082 		fxp_scb_wait(sc);
   1083 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
   1084 
   1085 		/* Set a watchdog timer in case the chip flakes out. */
   1086 		ifp->if_timer = 5;
   1087 	}
   1088 }
   1089 
   1090 /*
   1091  * Process interface interrupts.
   1092  */
   1093 int
   1094 fxp_intr(void *arg)
   1095 {
   1096 	struct fxp_softc *sc = arg;
   1097 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1098 	bus_dmamap_t rxmap;
   1099 	int claimed = 0, rnr;
   1100 	u_int8_t statack;
   1101 
   1102 	if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
   1103 		return (0);
   1104 	/*
   1105 	 * If the interface isn't running, don't try to
   1106 	 * service the interrupt.. just ack it and bail.
   1107 	 */
   1108 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1109 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
   1110 		if (statack) {
   1111 			claimed = 1;
   1112 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1113 		}
   1114 		return (claimed);
   1115 	}
   1116 
   1117 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
   1118 		claimed = 1;
   1119 
   1120 		/*
   1121 		 * First ACK all the interrupts in this pass.
   1122 		 */
   1123 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1124 
   1125 		/*
   1126 		 * Process receiver interrupts. If a no-resource (RNR)
   1127 		 * condition exists, get whatever packets we can and
   1128 		 * re-start the receiver.
   1129 		 */
   1130 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
   1131 		    1 : 0;
   1132 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
   1133 		    FXP_SCB_STATACK_SWI)) {
   1134 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1135 			rnr |= fxp_rxintr(sc);
   1136 		}
   1137 
   1138 		/*
   1139 		 * Free any finished transmit mbuf chains.
   1140 		 */
   1141 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1142 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
   1143 			fxp_txintr(sc);
   1144 
   1145 			/*
   1146 			 * Try to get more packets going.
   1147 			 */
   1148 			fxp_start(ifp);
   1149 
   1150 			if (sc->sc_txpending == 0) {
   1151 				/*
   1152 				 * If we want a re-init, do that now.
   1153 				 */
   1154 				if (sc->sc_flags & FXPF_WANTINIT)
   1155 					(void) fxp_init(ifp);
   1156 			}
   1157 		}
   1158 
   1159 		if (rnr) {
   1160 			fxp_scb_wait(sc);
   1161 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
   1162 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1163 			fxp_scb_wait(sc);
   1164 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1165 			    rxmap->dm_segs[0].ds_addr +
   1166 			    RFA_ALIGNMENT_FUDGE);
   1167 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1168 		}
   1169 	}
   1170 
   1171 #if NRND > 0
   1172 	if (claimed)
   1173 		rnd_add_uint32(&sc->rnd_source, statack);
   1174 #endif
   1175 	return (claimed);
   1176 }
   1177 
   1178 /*
   1179  * Handle transmit completion interrupts.
   1180  */
   1181 void
   1182 fxp_txintr(struct fxp_softc *sc)
   1183 {
   1184 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1185 	struct fxp_txdesc *txd;
   1186 	struct fxp_txsoft *txs;
   1187 	int i;
   1188 	u_int16_t txstat;
   1189 
   1190 	ifp->if_flags &= ~IFF_OACTIVE;
   1191 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1192 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1193 		txd = FXP_CDTX(sc, i);
   1194 		txs = FXP_DSTX(sc, i);
   1195 
   1196 		FXP_CDTXSYNC(sc, i,
   1197 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1198 
   1199 		/* skip dummy NOP TX descriptor */
   1200 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
   1201 		    == FXP_CB_COMMAND_NOP)
   1202 			continue;
   1203 
   1204 		txstat = le16toh(txd->txd_txcb.cb_status);
   1205 
   1206 		if ((txstat & FXP_CB_STATUS_C) == 0)
   1207 			break;
   1208 
   1209 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1210 		    0, txs->txs_dmamap->dm_mapsize,
   1211 		    BUS_DMASYNC_POSTWRITE);
   1212 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1213 		m_freem(txs->txs_mbuf);
   1214 		txs->txs_mbuf = NULL;
   1215 	}
   1216 
   1217 	/* Update the dirty transmit buffer pointer. */
   1218 	sc->sc_txdirty = i;
   1219 
   1220 	/*
   1221 	 * Cancel the watchdog timer if there are no pending
   1222 	 * transmissions.
   1223 	 */
   1224 	if (sc->sc_txpending == 0)
   1225 		ifp->if_timer = 0;
   1226 }
   1227 
   1228 /*
   1229  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
   1230  */
   1231 
   1232 int
   1233 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
   1234 {
   1235 	u_int16_t rxparsestat;
   1236 	u_int16_t csum_stat;
   1237 	u_int32_t csum_data;
   1238 	int csum_flags;
   1239 
   1240 	/*
   1241 	 * check VLAN tag stripping.
   1242 	 */
   1243 
   1244 	if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
   1245 		struct m_tag *vtag;
   1246 
   1247 		vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
   1248 		if (vtag == NULL)
   1249 			return ENOMEM;
   1250 		*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
   1251 		m_tag_prepend(m, vtag);
   1252 	}
   1253 
   1254 	/*
   1255 	 * check H/W Checksumming.
   1256 	 */
   1257 
   1258 	csum_stat = le16toh(rfa->cksum_stat);
   1259 	rxparsestat = le16toh(rfa->rx_parse_stat);
   1260 	if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
   1261 		return 0;
   1262 
   1263 	csum_flags = 0;
   1264 	csum_data = 0;
   1265 
   1266 	if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
   1267 		csum_flags = M_CSUM_IPv4;
   1268 		if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
   1269 			csum_flags |= M_CSUM_IPv4_BAD;
   1270 	}
   1271 
   1272 	if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
   1273 		csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
   1274 		if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
   1275 			csum_flags |= M_CSUM_TCP_UDP_BAD;
   1276 	}
   1277 
   1278 	m->m_pkthdr.csum_flags = csum_flags;
   1279 	m->m_pkthdr.csum_data = csum_data;
   1280 
   1281 	return 0;
   1282 }
   1283 
   1284 /*
   1285  * Handle receive interrupts.
   1286  */
   1287 int
   1288 fxp_rxintr(struct fxp_softc *sc)
   1289 {
   1290 	struct ethercom *ec = &sc->sc_ethercom;
   1291 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1292 	struct mbuf *m, *m0;
   1293 	bus_dmamap_t rxmap;
   1294 	struct fxp_rfa *rfa;
   1295 	int rnr;
   1296 	u_int16_t len, rxstat;
   1297 
   1298 	rnr = 0;
   1299 
   1300 	for (;;) {
   1301 		m = sc->sc_rxq.ifq_head;
   1302 		rfa = FXP_MTORFA(m);
   1303 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1304 
   1305 		FXP_RFASYNC(sc, m,
   1306 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1307 
   1308 		rxstat = le16toh(rfa->rfa_status);
   1309 
   1310 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
   1311 			rnr = 1;
   1312 
   1313 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
   1314 			/*
   1315 			 * We have processed all of the
   1316 			 * receive buffers.
   1317 			 */
   1318 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
   1319 			return rnr;
   1320 		}
   1321 
   1322 		IF_DEQUEUE(&sc->sc_rxq, m);
   1323 
   1324 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
   1325 
   1326 		len = le16toh(rfa->actual_size) &
   1327 		    (m->m_ext.ext_size - 1);
   1328 
   1329 		if (len < sizeof(struct ether_header)) {
   1330 			/*
   1331 			 * Runt packet; drop it now.
   1332 			 */
   1333 			FXP_INIT_RFABUF(sc, m);
   1334 			continue;
   1335 		}
   1336 
   1337 		/*
   1338 		 * If support for 802.1Q VLAN sized frames is
   1339 		 * enabled, we need to do some additional error
   1340 		 * checking (as we are saving bad frames, in
   1341 		 * order to receive the larger ones).
   1342 		 */
   1343 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
   1344 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
   1345 			       FXP_RFA_STATUS_RNR|
   1346 			       FXP_RFA_STATUS_ALIGN|
   1347 			       FXP_RFA_STATUS_CRC)) != 0) {
   1348 			FXP_INIT_RFABUF(sc, m);
   1349 			continue;
   1350 		}
   1351 
   1352 		/* Do checksum checking. */
   1353 		m->m_pkthdr.csum_flags = 0;
   1354 		if (sc->sc_flags & FXPF_EXT_RFA)
   1355 			if (fxp_rx_hwcksum(m, rfa))
   1356 				goto dropit;
   1357 
   1358 		/*
   1359 		 * If the packet is small enough to fit in a
   1360 		 * single header mbuf, allocate one and copy
   1361 		 * the data into it.  This greatly reduces
   1362 		 * memory consumption when we receive lots
   1363 		 * of small packets.
   1364 		 *
   1365 		 * Otherwise, we add a new buffer to the receive
   1366 		 * chain.  If this fails, we drop the packet and
   1367 		 * recycle the old buffer.
   1368 		 */
   1369 		if (fxp_copy_small != 0 && len <= MHLEN) {
   1370 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
   1371 			if (m0 == NULL)
   1372 				goto dropit;
   1373 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
   1374 			memcpy(mtod(m0, void *),
   1375 			    mtod(m, void *), len);
   1376 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
   1377 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
   1378 			FXP_INIT_RFABUF(sc, m);
   1379 			m = m0;
   1380 		} else {
   1381 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
   1382  dropit:
   1383 				ifp->if_ierrors++;
   1384 				FXP_INIT_RFABUF(sc, m);
   1385 				continue;
   1386 			}
   1387 		}
   1388 
   1389 		m->m_pkthdr.rcvif = ifp;
   1390 		m->m_pkthdr.len = m->m_len = len;
   1391 
   1392 #if NBPFILTER > 0
   1393 		/*
   1394 		 * Pass this up to any BPF listeners, but only
   1395 		 * pass it up the stack it its for us.
   1396 		 */
   1397 		if (ifp->if_bpf)
   1398 			bpf_mtap(ifp->if_bpf, m);
   1399 #endif
   1400 
   1401 		/* Pass it on. */
   1402 		(*ifp->if_input)(ifp, m);
   1403 	}
   1404 }
   1405 
   1406 /*
   1407  * Update packet in/out/collision statistics. The i82557 doesn't
   1408  * allow you to access these counters without doing a fairly
   1409  * expensive DMA to get _all_ of the statistics it maintains, so
   1410  * we do this operation here only once per second. The statistics
   1411  * counters in the kernel are updated from the previous dump-stats
   1412  * DMA and then a new dump-stats DMA is started. The on-chip
   1413  * counters are zeroed when the DMA completes. If we can't start
   1414  * the DMA immediately, we don't wait - we just prepare to read
   1415  * them again next time.
   1416  */
   1417 void
   1418 fxp_tick(void *arg)
   1419 {
   1420 	struct fxp_softc *sc = arg;
   1421 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1422 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1423 	int s;
   1424 
   1425 	if (!device_is_active(&sc->sc_dev))
   1426 		return;
   1427 
   1428 	s = splnet();
   1429 
   1430 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1431 
   1432 	ifp->if_opackets += le32toh(sp->tx_good);
   1433 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1434 	if (sp->rx_good) {
   1435 		ifp->if_ipackets += le32toh(sp->rx_good);
   1436 		sc->sc_rxidle = 0;
   1437 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
   1438 		sc->sc_rxidle++;
   1439 	}
   1440 	ifp->if_ierrors +=
   1441 	    le32toh(sp->rx_crc_errors) +
   1442 	    le32toh(sp->rx_alignment_errors) +
   1443 	    le32toh(sp->rx_rnr_errors) +
   1444 	    le32toh(sp->rx_overrun_errors);
   1445 	/*
   1446 	 * If any transmit underruns occurred, bump up the transmit
   1447 	 * threshold by another 512 bytes (64 * 8).
   1448 	 */
   1449 	if (sp->tx_underruns) {
   1450 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1451 		if (tx_threshold < 192)
   1452 			tx_threshold += 64;
   1453 	}
   1454 #ifdef FXP_EVENT_COUNTERS
   1455 	if (sc->sc_rev >= FXP_REV_82558_A4) {
   1456 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
   1457 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
   1458 	}
   1459 #endif
   1460 
   1461 	/*
   1462 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
   1463 	 * then assume the receiver has locked up and attempt to clear
   1464 	 * the condition by reprogramming the multicast filter (actually,
   1465 	 * resetting the interface). This is a work-around for a bug in
   1466 	 * the 82557 where the receiver locks up if it gets certain types
   1467 	 * of garbage in the synchronization bits prior to the packet header.
   1468 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1469 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1470 	 * speed transition).
   1471 	 */
   1472 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1473 		(void) fxp_init(ifp);
   1474 		splx(s);
   1475 		return;
   1476 	}
   1477 	/*
   1478 	 * If there is no pending command, start another stats
   1479 	 * dump. Otherwise punt for now.
   1480 	 */
   1481 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1482 		/*
   1483 		 * Start another stats dump.
   1484 		 */
   1485 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1486 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
   1487 	} else {
   1488 		/*
   1489 		 * A previous command is still waiting to be accepted.
   1490 		 * Just zero our copy of the stats and wait for the
   1491 		 * next timer event to update them.
   1492 		 */
   1493 		/* BIG_ENDIAN: no swap required to store 0 */
   1494 		sp->tx_good = 0;
   1495 		sp->tx_underruns = 0;
   1496 		sp->tx_total_collisions = 0;
   1497 
   1498 		sp->rx_good = 0;
   1499 		sp->rx_crc_errors = 0;
   1500 		sp->rx_alignment_errors = 0;
   1501 		sp->rx_rnr_errors = 0;
   1502 		sp->rx_overrun_errors = 0;
   1503 		if (sc->sc_rev >= FXP_REV_82558_A4) {
   1504 			sp->tx_pauseframes = 0;
   1505 			sp->rx_pauseframes = 0;
   1506 		}
   1507 	}
   1508 
   1509 	if (sc->sc_flags & FXPF_MII) {
   1510 		/* Tick the MII clock. */
   1511 		mii_tick(&sc->sc_mii);
   1512 	}
   1513 
   1514 	splx(s);
   1515 
   1516 	/*
   1517 	 * Schedule another timeout one second from now.
   1518 	 */
   1519 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1520 }
   1521 
   1522 /*
   1523  * Drain the receive queue.
   1524  */
   1525 void
   1526 fxp_rxdrain(struct fxp_softc *sc)
   1527 {
   1528 	bus_dmamap_t rxmap;
   1529 	struct mbuf *m;
   1530 
   1531 	for (;;) {
   1532 		IF_DEQUEUE(&sc->sc_rxq, m);
   1533 		if (m == NULL)
   1534 			break;
   1535 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1536 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1537 		FXP_RXMAP_PUT(sc, rxmap);
   1538 		m_freem(m);
   1539 	}
   1540 }
   1541 
   1542 /*
   1543  * Stop the interface. Cancels the statistics updater and resets
   1544  * the interface.
   1545  */
   1546 void
   1547 fxp_stop(struct ifnet *ifp, int disable)
   1548 {
   1549 	struct fxp_softc *sc = ifp->if_softc;
   1550 	struct fxp_txsoft *txs;
   1551 	int i;
   1552 
   1553 	/*
   1554 	 * Turn down interface (done early to avoid bad interactions
   1555 	 * between panics, shutdown hooks, and the watchdog timer)
   1556 	 */
   1557 	ifp->if_timer = 0;
   1558 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1559 
   1560 	/*
   1561 	 * Cancel stats updater.
   1562 	 */
   1563 	callout_stop(&sc->sc_callout);
   1564 	if (sc->sc_flags & FXPF_MII) {
   1565 		/* Down the MII. */
   1566 		mii_down(&sc->sc_mii);
   1567 	}
   1568 
   1569 	/*
   1570 	 * Issue software reset.  This unloads any microcode that
   1571 	 * might already be loaded.
   1572 	 */
   1573 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
   1574 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
   1575 	DELAY(50);
   1576 
   1577 	/*
   1578 	 * Release any xmit buffers.
   1579 	 */
   1580 	for (i = 0; i < FXP_NTXCB; i++) {
   1581 		txs = FXP_DSTX(sc, i);
   1582 		if (txs->txs_mbuf != NULL) {
   1583 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1584 			m_freem(txs->txs_mbuf);
   1585 			txs->txs_mbuf = NULL;
   1586 		}
   1587 	}
   1588 	sc->sc_txpending = 0;
   1589 
   1590 	if (disable) {
   1591 		fxp_rxdrain(sc);
   1592 		fxp_disable(sc);
   1593 	}
   1594 
   1595 }
   1596 
   1597 /*
   1598  * Watchdog/transmission transmit timeout handler. Called when a
   1599  * transmission is started on the interface, but no interrupt is
   1600  * received before the timeout. This usually indicates that the
   1601  * card has wedged for some reason.
   1602  */
   1603 void
   1604 fxp_watchdog(struct ifnet *ifp)
   1605 {
   1606 	struct fxp_softc *sc = ifp->if_softc;
   1607 
   1608 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1609 	ifp->if_oerrors++;
   1610 
   1611 	(void) fxp_init(ifp);
   1612 }
   1613 
   1614 /*
   1615  * Initialize the interface.  Must be called at splnet().
   1616  */
   1617 int
   1618 fxp_init(struct ifnet *ifp)
   1619 {
   1620 	struct fxp_softc *sc = ifp->if_softc;
   1621 	struct fxp_cb_config *cbp;
   1622 	struct fxp_cb_ias *cb_ias;
   1623 	struct fxp_txdesc *txd;
   1624 	bus_dmamap_t rxmap;
   1625 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
   1626 
   1627 	if ((error = fxp_enable(sc)) != 0)
   1628 		goto out;
   1629 
   1630 	/*
   1631 	 * Cancel any pending I/O
   1632 	 */
   1633 	fxp_stop(ifp, 0);
   1634 
   1635 	/*
   1636 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1637 	 * flag, and this prevents the MII from detaching resulting in
   1638 	 * a panic. The flags field should perhaps be split in runtime
   1639 	 * flags and more static information. For now, just clear the
   1640 	 * only other flag set.
   1641 	 */
   1642 
   1643 	sc->sc_flags &= ~FXPF_WANTINIT;
   1644 
   1645 	/*
   1646 	 * Initialize base of CBL and RFA memory. Loading with zero
   1647 	 * sets it up for regular linear addressing.
   1648 	 */
   1649 	fxp_scb_wait(sc);
   1650 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1651 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
   1652 
   1653 	fxp_scb_wait(sc);
   1654 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
   1655 
   1656 	/*
   1657 	 * Initialize the multicast filter.  Do this now, since we might
   1658 	 * have to setup the config block differently.
   1659 	 */
   1660 	fxp_mc_setup(sc);
   1661 
   1662 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1663 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1664 
   1665 	/*
   1666 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1667 	 * enable "save bad frames", since they are 4 bytes larger than
   1668 	 * the normal Ethernet maximum frame length.  On i82558 and later,
   1669 	 * we have a better mechanism for this.
   1670 	 */
   1671 	save_bf = 0;
   1672 	lrxen = 0;
   1673 	vlan_drop = 0;
   1674 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1675 		if (sc->sc_rev < FXP_REV_82558_A4)
   1676 			save_bf = 1;
   1677 		else
   1678 			lrxen = 1;
   1679 		if (sc->sc_rev >= FXP_REV_82550)
   1680 			vlan_drop = 1;
   1681 	}
   1682 
   1683 	/*
   1684 	 * Initialize base of dump-stats buffer.
   1685 	 */
   1686 	fxp_scb_wait(sc);
   1687 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1688 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1689 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1690 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1691 
   1692 	cbp = &sc->sc_control_data->fcd_configcb;
   1693 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1694 
   1695 	/*
   1696 	 * Load microcode for this controller.
   1697 	 */
   1698 	fxp_load_ucode(sc);
   1699 
   1700 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
   1701 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
   1702 	else
   1703 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
   1704 
   1705 	/*
   1706 	 * This copy is kind of disgusting, but there are a bunch of must be
   1707 	 * zero and must be one bits in this structure and this is the easiest
   1708 	 * way to initialize them all to proper values.
   1709 	 */
   1710 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1711 
   1712 	/* BIG_ENDIAN: no need to swap to store 0 */
   1713 	cbp->cb_status =	0;
   1714 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1715 				    FXP_CB_COMMAND_EL);
   1716 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1717 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1718 					/* bytes in config block */
   1719 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
   1720 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
   1721 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1722 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1723 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1724 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
   1725 	cbp->type_enable =	0;	/* actually reserved */
   1726 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
   1727 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
   1728 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1729 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1730 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
   1731 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1732 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
   1733 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1734 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
   1735 	cbp->ext_stats_dis =	1;	/* disable extended counters */
   1736 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
   1737 	cbp->save_bf =		save_bf;/* save bad frames */
   1738 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1739 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1740 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1741 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
   1742 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
   1743 					/* interface mode */
   1744 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
   1745 	cbp->csma_dis =		0;	/* (don't) disable link */
   1746 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
   1747 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
   1748 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
   1749 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
   1750 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
   1751 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1752 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1753 	cbp->loopback =		0;	/* (don't) loopback */
   1754 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1755 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1756 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1757 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1758 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1759 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
   1760 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
   1761 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
   1762 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
   1763 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1764 	cbp->padding =		1;	/* (do) pad short tx packets */
   1765 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1766 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
   1767 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
   1768 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
   1769 					/* must set wake_en in PMCSR also */
   1770 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1771 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1772 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1773 	cbp->mc_all =		allm;	/* accept all multicasts */
   1774 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1775 	cbp->vlan_drop_en =	vlan_drop;
   1776 
   1777 	if (sc->sc_rev < FXP_REV_82558_A4) {
   1778 		/*
   1779 		 * The i82557 has no hardware flow control, the values
   1780 		 * here are the defaults for the chip.
   1781 		 */
   1782 		cbp->fc_delay_lsb =	0;
   1783 		cbp->fc_delay_msb =	0x40;
   1784 		cbp->pri_fc_thresh =	3;
   1785 		cbp->tx_fc_dis =	0;
   1786 		cbp->rx_fc_restop =	0;
   1787 		cbp->rx_fc_restart =	0;
   1788 		cbp->fc_filter =	0;
   1789 		cbp->pri_fc_loc =	1;
   1790 	} else {
   1791 		cbp->fc_delay_lsb =	0x1f;
   1792 		cbp->fc_delay_msb =	0x01;
   1793 		cbp->pri_fc_thresh =	3;
   1794 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
   1795 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
   1796 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
   1797 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
   1798 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
   1799 		cbp->ext_stats_dis =	0;	/* enable extended stats */
   1800 	}
   1801 
   1802 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1803 
   1804 	/*
   1805 	 * Start the config command/DMA.
   1806 	 */
   1807 	fxp_scb_wait(sc);
   1808 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1809 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1810 	/* ...and wait for it to complete. */
   1811 	i = 1000;
   1812 	do {
   1813 		FXP_CDCONFIGSYNC(sc,
   1814 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1815 		DELAY(1);
   1816 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1817 	if (i == 0) {
   1818 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1819 		    sc->sc_dev.dv_xname, __LINE__);
   1820 		return (ETIMEDOUT);
   1821 	}
   1822 
   1823 	/*
   1824 	 * Initialize the station address.
   1825 	 */
   1826 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1827 	/* BIG_ENDIAN: no need to swap to store 0 */
   1828 	cb_ias->cb_status = 0;
   1829 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1830 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1831 	cb_ias->link_addr = 0xffffffff;
   1832 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1833 
   1834 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1835 
   1836 	/*
   1837 	 * Start the IAS (Individual Address Setup) command/DMA.
   1838 	 */
   1839 	fxp_scb_wait(sc);
   1840 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1841 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1842 	/* ...and wait for it to complete. */
   1843 	i = 1000;
   1844 	do {
   1845 		FXP_CDIASSYNC(sc,
   1846 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1847 		DELAY(1);
   1848 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1849 	if (i == 0) {
   1850 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1851 		    sc->sc_dev.dv_xname, __LINE__);
   1852 		return (ETIMEDOUT);
   1853 	}
   1854 
   1855 	/*
   1856 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1857 	 * to the end of the list so that it will wrap around to the first
   1858 	 * descriptor when the first packet is transmitted.
   1859 	 */
   1860 	for (i = 0; i < FXP_NTXCB; i++) {
   1861 		txd = FXP_CDTX(sc, i);
   1862 		memset(txd, 0, sizeof(*txd));
   1863 		txd->txd_txcb.cb_command =
   1864 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1865 		txd->txd_txcb.link_addr =
   1866 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1867 		if (sc->sc_flags & FXPF_EXT_TXCB)
   1868 			txd->txd_txcb.tbd_array_addr =
   1869 			    htole32(FXP_CDTBDADDR(sc, i) +
   1870 				    (2 * sizeof(struct fxp_tbd)));
   1871 		else
   1872 			txd->txd_txcb.tbd_array_addr =
   1873 			    htole32(FXP_CDTBDADDR(sc, i));
   1874 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1875 	}
   1876 	sc->sc_txpending = 0;
   1877 	sc->sc_txdirty = 0;
   1878 	sc->sc_txlast = FXP_NTXCB - 1;
   1879 
   1880 	/*
   1881 	 * Initialize the receive buffer list.
   1882 	 */
   1883 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1884 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1885 		rxmap = FXP_RXMAP_GET(sc);
   1886 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1887 			log(LOG_ERR, "%s: unable to allocate or map rx "
   1888 			    "buffer %d, error = %d\n",
   1889 			    sc->sc_dev.dv_xname,
   1890 			    sc->sc_rxq.ifq_len, error);
   1891 			/*
   1892 			 * XXX Should attempt to run with fewer receive
   1893 			 * XXX buffers instead of just failing.
   1894 			 */
   1895 			FXP_RXMAP_PUT(sc, rxmap);
   1896 			fxp_rxdrain(sc);
   1897 			goto out;
   1898 		}
   1899 	}
   1900 	sc->sc_rxidle = 0;
   1901 
   1902 	/*
   1903 	 * Give the transmit ring to the chip.  We do this by pointing
   1904 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1905 	 * issuing a start command.  It will execute the NOP and then
   1906 	 * suspend, pointing at the first descriptor.
   1907 	 */
   1908 	fxp_scb_wait(sc);
   1909 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1910 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1911 
   1912 	/*
   1913 	 * Initialize receiver buffer area - RFA.
   1914 	 */
   1915 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
   1916 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1917 	fxp_scb_wait(sc);
   1918 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1919 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1920 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1921 #endif
   1922 
   1923 	if (sc->sc_flags & FXPF_MII) {
   1924 		/*
   1925 		 * Set current media.
   1926 		 */
   1927 		mii_mediachg(&sc->sc_mii);
   1928 	}
   1929 
   1930 	/*
   1931 	 * ...all done!
   1932 	 */
   1933 	ifp->if_flags |= IFF_RUNNING;
   1934 	ifp->if_flags &= ~IFF_OACTIVE;
   1935 
   1936 	/*
   1937 	 * Request a software generated interrupt that will be used to
   1938 	 * (re)start the RU processing.  If we direct the chip to start
   1939 	 * receiving from the start of queue now, instead of letting the
   1940 	 * interrupt handler first process all received packets, we run
   1941 	 * the risk of having it overwrite mbuf clusters while they are
   1942 	 * being processed or after they have been returned to the pool.
   1943 	 */
   1944 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
   1945 
   1946 	/*
   1947 	 * Start the one second timer.
   1948 	 */
   1949 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1950 
   1951 	/*
   1952 	 * Attempt to start output on the interface.
   1953 	 */
   1954 	fxp_start(ifp);
   1955 
   1956  out:
   1957 	if (error) {
   1958 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1959 		ifp->if_timer = 0;
   1960 		log(LOG_ERR, "%s: interface not running\n",
   1961 		    sc->sc_dev.dv_xname);
   1962 	}
   1963 	return (error);
   1964 }
   1965 
   1966 /*
   1967  * Change media according to request.
   1968  */
   1969 int
   1970 fxp_mii_mediachange(struct ifnet *ifp)
   1971 {
   1972 	struct fxp_softc *sc = ifp->if_softc;
   1973 
   1974 	if (ifp->if_flags & IFF_UP)
   1975 		mii_mediachg(&sc->sc_mii);
   1976 	return (0);
   1977 }
   1978 
   1979 /*
   1980  * Notify the world which media we're using.
   1981  */
   1982 void
   1983 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1984 {
   1985 	struct fxp_softc *sc = ifp->if_softc;
   1986 
   1987 	if (sc->sc_enabled == 0) {
   1988 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1989 		ifmr->ifm_status = 0;
   1990 		return;
   1991 	}
   1992 
   1993 	mii_pollstat(&sc->sc_mii);
   1994 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1995 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1996 
   1997 	/*
   1998 	 * XXX Flow control is always turned on if the chip supports
   1999 	 * XXX it; we can't easily control it dynamically, since it
   2000 	 * XXX requires sending a setup packet.
   2001 	 */
   2002 	if (sc->sc_rev >= FXP_REV_82558_A4)
   2003 		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
   2004 }
   2005 
   2006 int
   2007 fxp_80c24_mediachange(struct ifnet *ifp)
   2008 {
   2009 
   2010 	/* Nothing to do here. */
   2011 	return (0);
   2012 }
   2013 
   2014 void
   2015 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2016 {
   2017 	struct fxp_softc *sc = ifp->if_softc;
   2018 
   2019 	/*
   2020 	 * Media is currently-selected media.  We cannot determine
   2021 	 * the link status.
   2022 	 */
   2023 	ifmr->ifm_status = 0;
   2024 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   2025 }
   2026 
   2027 /*
   2028  * Add a buffer to the end of the RFA buffer list.
   2029  * Return 0 if successful, error code on failure.
   2030  *
   2031  * The RFA struct is stuck at the beginning of mbuf cluster and the
   2032  * data pointer is fixed up to point just past it.
   2033  */
   2034 int
   2035 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
   2036 {
   2037 	struct mbuf *m;
   2038 	int error;
   2039 
   2040 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2041 	if (m == NULL)
   2042 		return (ENOBUFS);
   2043 
   2044 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2045 	MCLGET(m, M_DONTWAIT);
   2046 	if ((m->m_flags & M_EXT) == 0) {
   2047 		m_freem(m);
   2048 		return (ENOBUFS);
   2049 	}
   2050 
   2051 	if (unload)
   2052 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   2053 
   2054 	M_SETCTX(m, rxmap);
   2055 
   2056 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2057 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
   2058 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2059 	if (error) {
   2060 		/* XXX XXX XXX */
   2061 		printf("%s: can't load rx DMA map %d, error = %d\n",
   2062 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   2063 		panic("fxp_add_rfabuf");
   2064 	}
   2065 
   2066 	FXP_INIT_RFABUF(sc, m);
   2067 
   2068 	return (0);
   2069 }
   2070 
   2071 int
   2072 fxp_mdi_read(struct device *self, int phy, int reg)
   2073 {
   2074 	struct fxp_softc *sc = (struct fxp_softc *)self;
   2075 	int count = 10000;
   2076 	int value;
   2077 
   2078 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2079 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   2080 
   2081 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
   2082 	    0x10000000) == 0 && count--)
   2083 		DELAY(10);
   2084 
   2085 	if (count <= 0)
   2086 		log(LOG_WARNING,
   2087 		    "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   2088 
   2089 	return (value & 0xffff);
   2090 }
   2091 
   2092 void
   2093 fxp_statchg(struct device *self)
   2094 {
   2095 
   2096 	/* Nothing to do. */
   2097 }
   2098 
   2099 void
   2100 fxp_mdi_write(struct device *self, int phy, int reg, int value)
   2101 {
   2102 	struct fxp_softc *sc = (struct fxp_softc *)self;
   2103 	int count = 10000;
   2104 
   2105 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2106 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   2107 	    (value & 0xffff));
   2108 
   2109 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   2110 	    count--)
   2111 		DELAY(10);
   2112 
   2113 	if (count <= 0)
   2114 		log(LOG_WARNING,
   2115 		    "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   2116 }
   2117 
   2118 int
   2119 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2120 {
   2121 	struct fxp_softc *sc = ifp->if_softc;
   2122 	struct ifreq *ifr = (struct ifreq *)data;
   2123 	int s, error;
   2124 
   2125 	s = splnet();
   2126 
   2127 	switch (cmd) {
   2128 	case SIOCSIFMEDIA:
   2129 	case SIOCGIFMEDIA:
   2130 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2131 		break;
   2132 
   2133 	default:
   2134 		error = ether_ioctl(ifp, cmd, data);
   2135 		if (error == ENETRESET) {
   2136 			if (ifp->if_flags & IFF_RUNNING) {
   2137 				/*
   2138 				 * Multicast list has changed; set the
   2139 				 * hardware filter accordingly.
   2140 				 */
   2141 				if (sc->sc_txpending) {
   2142 					sc->sc_flags |= FXPF_WANTINIT;
   2143 					error = 0;
   2144 				} else
   2145 					error = fxp_init(ifp);
   2146 			} else
   2147 				error = 0;
   2148 		}
   2149 		break;
   2150 	}
   2151 
   2152 	/* Try to get more packets going. */
   2153 	if (sc->sc_enabled)
   2154 		fxp_start(ifp);
   2155 
   2156 	splx(s);
   2157 	return (error);
   2158 }
   2159 
   2160 /*
   2161  * Program the multicast filter.
   2162  *
   2163  * This function must be called at splnet().
   2164  */
   2165 void
   2166 fxp_mc_setup(struct fxp_softc *sc)
   2167 {
   2168 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   2169 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2170 	struct ethercom *ec = &sc->sc_ethercom;
   2171 	struct ether_multi *enm;
   2172 	struct ether_multistep step;
   2173 	int count, nmcasts;
   2174 
   2175 #ifdef DIAGNOSTIC
   2176 	if (sc->sc_txpending)
   2177 		panic("fxp_mc_setup: pending transmissions");
   2178 #endif
   2179 
   2180 	ifp->if_flags &= ~IFF_ALLMULTI;
   2181 
   2182 	/*
   2183 	 * Initialize multicast setup descriptor.
   2184 	 */
   2185 	nmcasts = 0;
   2186 	ETHER_FIRST_MULTI(step, ec, enm);
   2187 	while (enm != NULL) {
   2188 		/*
   2189 		 * Check for too many multicast addresses or if we're
   2190 		 * listening to a range.  Either way, we simply have
   2191 		 * to accept all multicasts.
   2192 		 */
   2193 		if (nmcasts >= MAXMCADDR ||
   2194 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2195 		    ETHER_ADDR_LEN) != 0) {
   2196 			/*
   2197 			 * Callers of this function must do the
   2198 			 * right thing with this.  If we're called
   2199 			 * from outside fxp_init(), the caller must
   2200 			 * detect if the state if IFF_ALLMULTI changes.
   2201 			 * If it does, the caller must then call
   2202 			 * fxp_init(), since allmulti is handled by
   2203 			 * the config block.
   2204 			 */
   2205 			ifp->if_flags |= IFF_ALLMULTI;
   2206 			return;
   2207 		}
   2208 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   2209 		    ETHER_ADDR_LEN);
   2210 		nmcasts++;
   2211 		ETHER_NEXT_MULTI(step, enm);
   2212 	}
   2213 
   2214 	/* BIG_ENDIAN: no need to swap to store 0 */
   2215 	mcsp->cb_status = 0;
   2216 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   2217 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   2218 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   2219 
   2220 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2221 
   2222 	/*
   2223 	 * Wait until the command unit is not active.  This should never
   2224 	 * happen since nothing is queued, but make sure anyway.
   2225 	 */
   2226 	count = 100;
   2227 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   2228 	    FXP_SCB_CUS_ACTIVE && --count)
   2229 		DELAY(1);
   2230 	if (count == 0) {
   2231 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
   2232 		    sc->sc_dev.dv_xname, __LINE__);
   2233 		return;
   2234 	}
   2235 
   2236 	/*
   2237 	 * Start the multicast setup command/DMA.
   2238 	 */
   2239 	fxp_scb_wait(sc);
   2240 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   2241 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2242 
   2243 	/* ...and wait for it to complete. */
   2244 	count = 1000;
   2245 	do {
   2246 		FXP_CDMCSSYNC(sc,
   2247 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2248 		DELAY(1);
   2249 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   2250 	if (count == 0) {
   2251 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   2252 		    sc->sc_dev.dv_xname, __LINE__);
   2253 		return;
   2254 	}
   2255 }
   2256 
   2257 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
   2258 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
   2259 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
   2260 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
   2261 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
   2262 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
   2263 
   2264 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
   2265 
   2266 static const struct ucode {
   2267 	int32_t		revision;
   2268 	const uint32_t	*ucode;
   2269 	size_t		length;
   2270 	uint16_t	int_delay_offset;
   2271 	uint16_t	bundle_max_offset;
   2272 } ucode_table[] = {
   2273 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
   2274 	  D101_CPUSAVER_DWORD, 0 },
   2275 
   2276 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
   2277 	  D101_CPUSAVER_DWORD, 0 },
   2278 
   2279 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
   2280 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
   2281 
   2282 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
   2283 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
   2284 
   2285 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
   2286 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
   2287 
   2288 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
   2289 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
   2290 
   2291 	{ 0, NULL, 0, 0, 0 }
   2292 };
   2293 
   2294 void
   2295 fxp_load_ucode(struct fxp_softc *sc)
   2296 {
   2297 	const struct ucode *uc;
   2298 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
   2299 	int count, i;
   2300 
   2301 	if (sc->sc_flags & FXPF_UCODE_LOADED)
   2302 		return;
   2303 
   2304 	/*
   2305 	 * Only load the uCode if the user has requested that
   2306 	 * we do so.
   2307 	 */
   2308 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
   2309 		sc->sc_int_delay = 0;
   2310 		sc->sc_bundle_max = 0;
   2311 		return;
   2312 	}
   2313 
   2314 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
   2315 		if (sc->sc_rev == uc->revision)
   2316 			break;
   2317 	}
   2318 	if (uc->ucode == NULL)
   2319 		return;
   2320 
   2321 	/* BIG ENDIAN: no need to swap to store 0 */
   2322 	cbp->cb_status = 0;
   2323 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
   2324 	cbp->link_addr = 0xffffffff;		/* (no) next command */
   2325 	for (i = 0; i < uc->length; i++)
   2326 		cbp->ucode[i] = htole32(uc->ucode[i]);
   2327 
   2328 	if (uc->int_delay_offset)
   2329 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
   2330 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
   2331 
   2332 	if (uc->bundle_max_offset)
   2333 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
   2334 		    htole16(fxp_bundle_max);
   2335 
   2336 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2337 
   2338 	/*
   2339 	 * Download the uCode to the chip.
   2340 	 */
   2341 	fxp_scb_wait(sc);
   2342 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
   2343 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2344 
   2345 	/* ...and wait for it to complete. */
   2346 	count = 10000;
   2347 	do {
   2348 		FXP_CDUCODESYNC(sc,
   2349 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2350 		DELAY(2);
   2351 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   2352 	if (count == 0) {
   2353 		sc->sc_int_delay = 0;
   2354 		sc->sc_bundle_max = 0;
   2355 		log(LOG_WARNING, "%s: timeout loading microcode\n",
   2356 		    sc->sc_dev.dv_xname);
   2357 		return;
   2358 	}
   2359 
   2360 	if (sc->sc_int_delay != fxp_int_delay ||
   2361 	    sc->sc_bundle_max != fxp_bundle_max) {
   2362 		sc->sc_int_delay = fxp_int_delay;
   2363 		sc->sc_bundle_max = fxp_bundle_max;
   2364 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
   2365 		    "max bundle: %d\n", sc->sc_dev.dv_xname,
   2366 		    sc->sc_int_delay,
   2367 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
   2368 	}
   2369 
   2370 	sc->sc_flags |= FXPF_UCODE_LOADED;
   2371 }
   2372 
   2373 int
   2374 fxp_enable(struct fxp_softc *sc)
   2375 {
   2376 
   2377 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   2378 		if ((*sc->sc_enable)(sc) != 0) {
   2379 			log(LOG_ERR, "%s: device enable failed\n",
   2380 			    sc->sc_dev.dv_xname);
   2381 			return (EIO);
   2382 		}
   2383 	}
   2384 
   2385 	sc->sc_enabled = 1;
   2386 	return (0);
   2387 }
   2388 
   2389 void
   2390 fxp_disable(struct fxp_softc *sc)
   2391 {
   2392 
   2393 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   2394 		(*sc->sc_disable)(sc);
   2395 		sc->sc_enabled = 0;
   2396 	}
   2397 }
   2398 
   2399 /*
   2400  * fxp_activate:
   2401  *
   2402  *	Handle device activation/deactivation requests.
   2403  */
   2404 int
   2405 fxp_activate(struct device *self, enum devact act)
   2406 {
   2407 	struct fxp_softc *sc = (void *) self;
   2408 	int s, error = 0;
   2409 
   2410 	s = splnet();
   2411 	switch (act) {
   2412 	case DVACT_ACTIVATE:
   2413 		error = EOPNOTSUPP;
   2414 		break;
   2415 
   2416 	case DVACT_DEACTIVATE:
   2417 		if (sc->sc_flags & FXPF_MII)
   2418 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   2419 			    MII_OFFSET_ANY);
   2420 		if_deactivate(&sc->sc_ethercom.ec_if);
   2421 		break;
   2422 	}
   2423 	splx(s);
   2424 
   2425 	return (error);
   2426 }
   2427 
   2428 /*
   2429  * fxp_detach:
   2430  *
   2431  *	Detach an i82557 interface.
   2432  */
   2433 int
   2434 fxp_detach(struct fxp_softc *sc)
   2435 {
   2436 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2437 	int i;
   2438 
   2439 	/* Succeed now if there's no work to do. */
   2440 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2441 		return (0);
   2442 
   2443 	/* Unhook our tick handler. */
   2444 	callout_stop(&sc->sc_callout);
   2445 
   2446 	if (sc->sc_flags & FXPF_MII) {
   2447 		/* Detach all PHYs */
   2448 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2449 	}
   2450 
   2451 	/* Delete all remaining media. */
   2452 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2453 
   2454 #if NRND > 0
   2455 	rnd_detach_source(&sc->rnd_source);
   2456 #endif
   2457 	ether_ifdetach(ifp);
   2458 	if_detach(ifp);
   2459 
   2460 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2461 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2462 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2463 	}
   2464 
   2465 	for (i = 0; i < FXP_NTXCB; i++) {
   2466 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2467 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2468 	}
   2469 
   2470 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2471 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2472 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   2473 	    sizeof(struct fxp_control_data));
   2474 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2475 
   2476 	shutdownhook_disestablish(sc->sc_sdhook);
   2477 
   2478 	return (0);
   2479 }
   2480