i82557.c revision 1.109 1 /* $NetBSD: i82557.c,v 1.109 2007/12/29 17:59:20 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.109 2007/12/29 17:59:20 tsutsui Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/syslog.h>
92
93 #include <machine/endian.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #if NRND > 0
98 #include <sys/rnd.h>
99 #endif
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <sys/bus.h>
111 #include <sys/intr.h>
112
113 #include <dev/mii/miivar.h>
114
115 #include <dev/ic/i82557reg.h>
116 #include <dev/ic/i82557var.h>
117
118 #include <dev/microcode/i8255x/rcvbundl.h>
119
120 /*
121 * NOTE! On the Alpha, we have an alignment constraint. The
122 * card DMAs the packet immediately following the RFA. However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned. To compensate,
125 * we actually offset the RFA 2 bytes into the cluster. This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary. HOWEVER! This means that the RFA is misaligned!
128 */
129 #define RFA_ALIGNMENT_FUDGE 2
130
131 /*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero. Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139 const u_int8_t fxp_cb_config_template[] = {
140 0x0, 0x0, /* cb_status */
141 0x0, 0x0, /* cb_command */
142 0x0, 0x0, 0x0, 0x0, /* link_addr */
143 0x0, /* 0 */
144 0x0, /* 1 */
145 0x0, /* 2 */
146 0x0, /* 3 */
147 0x0, /* 4 */
148 0x0, /* 5 */
149 0x32, /* 6 */
150 0x0, /* 7 */
151 0x0, /* 8 */
152 0x0, /* 9 */
153 0x6, /* 10 */
154 0x0, /* 11 */
155 0x0, /* 12 */
156 0x0, /* 13 */
157 0xf2, /* 14 */
158 0x48, /* 15 */
159 0x0, /* 16 */
160 0x40, /* 17 */
161 0xf0, /* 18 */
162 0x0, /* 19 */
163 0x3f, /* 20 */
164 0x5, /* 21 */
165 0x0, /* 22 */
166 0x0, /* 23 */
167 0x0, /* 24 */
168 0x0, /* 25 */
169 0x0, /* 26 */
170 0x0, /* 27 */
171 0x0, /* 28 */
172 0x0, /* 29 */
173 0x0, /* 30 */
174 0x0, /* 31 */
175 };
176
177 void fxp_mii_initmedia(struct fxp_softc *);
178 int fxp_mii_mediachange(struct ifnet *);
179 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
180
181 void fxp_80c24_initmedia(struct fxp_softc *);
182 int fxp_80c24_mediachange(struct ifnet *);
183 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
184
185 void fxp_start(struct ifnet *);
186 int fxp_ioctl(struct ifnet *, u_long, void *);
187 void fxp_watchdog(struct ifnet *);
188 int fxp_init(struct ifnet *);
189 void fxp_stop(struct ifnet *, int);
190
191 void fxp_txintr(struct fxp_softc *);
192 int fxp_rxintr(struct fxp_softc *);
193
194 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
195
196 void fxp_rxdrain(struct fxp_softc *);
197 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
198 int fxp_mdi_read(struct device *, int, int);
199 void fxp_statchg(struct device *);
200 void fxp_mdi_write(struct device *, int, int, int);
201 void fxp_autosize_eeprom(struct fxp_softc*);
202 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
204 void fxp_eeprom_update_cksum(struct fxp_softc *);
205 void fxp_get_info(struct fxp_softc *, u_int8_t *);
206 void fxp_tick(void *);
207 void fxp_mc_setup(struct fxp_softc *);
208 void fxp_load_ucode(struct fxp_softc *);
209
210 int fxp_copy_small = 0;
211
212 /*
213 * Variables for interrupt mitigating microcode.
214 */
215 int fxp_int_delay = 1000; /* usec */
216 int fxp_bundle_max = 6; /* packets */
217
218 struct fxp_phytype {
219 int fp_phy; /* type of PHY, -1 for MII at the end. */
220 void (*fp_init)(struct fxp_softc *);
221 } fxp_phytype_table[] = {
222 { FXP_PHY_80C24, fxp_80c24_initmedia },
223 { -1, fxp_mii_initmedia },
224 };
225
226 /*
227 * Set initial transmit threshold at 64 (512 bytes). This is
228 * increased by 64 (512 bytes) at a time, to maximum of 192
229 * (1536 bytes), if an underrun occurs.
230 */
231 static int tx_threshold = 64;
232
233 /*
234 * Wait for the previous command to be accepted (but not necessarily
235 * completed).
236 */
237 static inline void
238 fxp_scb_wait(struct fxp_softc *sc)
239 {
240 int i = 10000;
241
242 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
243 delay(2);
244 if (i == 0)
245 log(LOG_WARNING,
246 "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
247 }
248
249 /*
250 * Submit a command to the i82557.
251 */
252 static inline void
253 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
254 {
255
256 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
257 }
258
259 /*
260 * Finish attaching an i82557 interface. Called by bus-specific front-end.
261 */
262 void
263 fxp_attach(struct fxp_softc *sc)
264 {
265 u_int8_t enaddr[ETHER_ADDR_LEN];
266 struct ifnet *ifp;
267 bus_dma_segment_t seg;
268 int rseg, i, error;
269 struct fxp_phytype *fp;
270
271 callout_init(&sc->sc_callout, 0);
272
273 /*
274 * Enable some good stuff on i82558 and later.
275 */
276 if (sc->sc_rev >= FXP_REV_82558_A4) {
277 /* Enable the extended TxCB. */
278 sc->sc_flags |= FXPF_EXT_TXCB;
279 }
280
281 /*
282 * Enable use of extended RFDs and TCBs for 82550
283 * and later chips. Note: we need extended TXCB support
284 * too, but that's already enabled by the code above.
285 * Be careful to do this only on the right devices.
286 */
287 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
288 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
289 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
290 } else {
291 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
292 }
293
294 sc->sc_rfa_size =
295 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
296
297 /*
298 * Allocate the control data structures, and create and load the
299 * DMA map for it.
300 */
301 if ((error = bus_dmamem_alloc(sc->sc_dmat,
302 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
303 0)) != 0) {
304 aprint_error(
305 "%s: unable to allocate control data, error = %d\n",
306 sc->sc_dev.dv_xname, error);
307 goto fail_0;
308 }
309
310 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
311 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
312 BUS_DMA_COHERENT)) != 0) {
313 aprint_error("%s: unable to map control data, error = %d\n",
314 sc->sc_dev.dv_xname, error);
315 goto fail_1;
316 }
317 sc->sc_cdseg = seg;
318 sc->sc_cdnseg = rseg;
319
320 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
321
322 if ((error = bus_dmamap_create(sc->sc_dmat,
323 sizeof(struct fxp_control_data), 1,
324 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
325 aprint_error("%s: unable to create control data DMA map, "
326 "error = %d\n", sc->sc_dev.dv_xname, error);
327 goto fail_2;
328 }
329
330 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
331 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
332 0)) != 0) {
333 aprint_error(
334 "%s: can't load control data DMA map, error = %d\n",
335 sc->sc_dev.dv_xname, error);
336 goto fail_3;
337 }
338
339 /*
340 * Create the transmit buffer DMA maps.
341 */
342 for (i = 0; i < FXP_NTXCB; i++) {
343 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
344 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
345 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
346 aprint_error("%s: unable to create tx DMA map %d, "
347 "error = %d\n", sc->sc_dev.dv_xname, i, error);
348 goto fail_4;
349 }
350 }
351
352 /*
353 * Create the receive buffer DMA maps.
354 */
355 for (i = 0; i < FXP_NRFABUFS; i++) {
356 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
357 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
358 aprint_error("%s: unable to create rx DMA map %d, "
359 "error = %d\n", sc->sc_dev.dv_xname, i, error);
360 goto fail_5;
361 }
362 }
363
364 /* Initialize MAC address and media structures. */
365 fxp_get_info(sc, enaddr);
366
367 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
368 ether_sprintf(enaddr));
369
370 ifp = &sc->sc_ethercom.ec_if;
371
372 /*
373 * Get info about our media interface, and initialize it. Note
374 * the table terminates itself with a phy of -1, indicating
375 * that we're using MII.
376 */
377 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
378 if (fp->fp_phy == sc->phy_primary_device)
379 break;
380 (*fp->fp_init)(sc);
381
382 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
383 ifp->if_softc = sc;
384 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
385 ifp->if_ioctl = fxp_ioctl;
386 ifp->if_start = fxp_start;
387 ifp->if_watchdog = fxp_watchdog;
388 ifp->if_init = fxp_init;
389 ifp->if_stop = fxp_stop;
390 IFQ_SET_READY(&ifp->if_snd);
391
392 if (sc->sc_flags & FXPF_IPCB) {
393 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
394 /*
395 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
396 * at least, on i82550 rev.12.
397 * specifically, it doesn't calculate ipv4 checksum correctly
398 * when sending 20 byte ipv4 header + 1 or 2 byte data.
399 * FreeBSD driver has related comments.
400 */
401 ifp->if_capabilities =
402 IFCAP_CSUM_IPv4_Rx |
403 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
404 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
405 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
406 }
407
408 /*
409 * We can support 802.1Q VLAN-sized frames.
410 */
411 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
412
413 /*
414 * Attach the interface.
415 */
416 if_attach(ifp);
417 ether_ifattach(ifp, enaddr);
418 #if NRND > 0
419 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
420 RND_TYPE_NET, 0);
421 #endif
422
423 #ifdef FXP_EVENT_COUNTERS
424 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
425 NULL, sc->sc_dev.dv_xname, "txstall");
426 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
427 NULL, sc->sc_dev.dv_xname, "txintr");
428 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
429 NULL, sc->sc_dev.dv_xname, "rxintr");
430 if (sc->sc_rev >= FXP_REV_82558_A4) {
431 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
432 NULL, sc->sc_dev.dv_xname, "txpause");
433 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
434 NULL, sc->sc_dev.dv_xname, "rxpause");
435 }
436 #endif /* FXP_EVENT_COUNTERS */
437
438 /* The attach is successful. */
439 sc->sc_flags |= FXPF_ATTACHED;
440
441 return;
442
443 /*
444 * Free any resources we've allocated during the failed attach
445 * attempt. Do this in reverse order and fall though.
446 */
447 fail_5:
448 for (i = 0; i < FXP_NRFABUFS; i++) {
449 if (sc->sc_rxmaps[i] != NULL)
450 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
451 }
452 fail_4:
453 for (i = 0; i < FXP_NTXCB; i++) {
454 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
455 bus_dmamap_destroy(sc->sc_dmat,
456 FXP_DSTX(sc, i)->txs_dmamap);
457 }
458 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
459 fail_3:
460 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
461 fail_2:
462 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
463 sizeof(struct fxp_control_data));
464 fail_1:
465 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
466 fail_0:
467 return;
468 }
469
470 void
471 fxp_mii_initmedia(struct fxp_softc *sc)
472 {
473 int flags;
474
475 sc->sc_flags |= FXPF_MII;
476
477 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
478 sc->sc_mii.mii_readreg = fxp_mdi_read;
479 sc->sc_mii.mii_writereg = fxp_mdi_write;
480 sc->sc_mii.mii_statchg = fxp_statchg;
481 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, fxp_mii_mediachange,
482 fxp_mii_mediastatus);
483
484 flags = MIIF_NOISOLATE;
485 if (sc->sc_rev >= FXP_REV_82558_A4)
486 flags |= MIIF_DOPAUSE;
487 /*
488 * The i82557 wedges if all of its PHYs are isolated!
489 */
490 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
491 MII_OFFSET_ANY, flags);
492 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
493 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
494 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
495 } else
496 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497 }
498
499 void
500 fxp_80c24_initmedia(struct fxp_softc *sc)
501 {
502
503 /*
504 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
505 * doesn't have a programming interface of any sort. The
506 * media is sensed automatically based on how the link partner
507 * is configured. This is, in essence, manual configuration.
508 */
509 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
510 sc->sc_dev.dv_xname);
511 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
512 fxp_80c24_mediastatus);
513 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
514 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
515 }
516
517 /*
518 * Initialize the interface media.
519 */
520 void
521 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
522 {
523 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
524
525 /*
526 * Reset to a stable state.
527 */
528 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
529 DELAY(100);
530
531 sc->sc_eeprom_size = 0;
532 fxp_autosize_eeprom(sc);
533 if (sc->sc_eeprom_size == 0) {
534 aprint_error("%s: failed to detect EEPROM size\n",
535 sc->sc_dev.dv_xname);
536 sc->sc_eeprom_size = 6; /* XXX panic here? */
537 }
538 #ifdef DEBUG
539 aprint_debug("%s: detected %d word EEPROM\n",
540 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
541 #endif
542
543 /*
544 * Get info about the primary PHY
545 */
546 fxp_read_eeprom(sc, &data, 6, 1);
547 sc->phy_primary_device =
548 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
549
550 /*
551 * Read MAC address.
552 */
553 fxp_read_eeprom(sc, myea, 0, 3);
554 enaddr[0] = myea[0] & 0xff;
555 enaddr[1] = myea[0] >> 8;
556 enaddr[2] = myea[1] & 0xff;
557 enaddr[3] = myea[1] >> 8;
558 enaddr[4] = myea[2] & 0xff;
559 enaddr[5] = myea[2] >> 8;
560
561 /*
562 * Systems based on the ICH2/ICH2-M chip from Intel, as well
563 * as some i82559 designs, have a defect where the chip can
564 * cause a PCI protocol violation if it receives a CU_RESUME
565 * command when it is entering the IDLE state.
566 *
567 * The work-around is to disable Dynamic Standby Mode, so that
568 * the chip never deasserts #CLKRUN, and always remains in the
569 * active state.
570 *
571 * Unfortunately, the only way to disable Dynamic Standby is
572 * to frob an EEPROM setting and reboot (the EEPROM setting
573 * is only consulted when the PCI bus comes out of reset).
574 *
575 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
576 */
577 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
578 fxp_read_eeprom(sc, &data, 10, 1);
579 if (data & 0x02) { /* STB enable */
580 aprint_error("%s: WARNING: "
581 "Disabling dynamic standby mode in EEPROM "
582 "to work around a\n",
583 sc->sc_dev.dv_xname);
584 aprint_normal(
585 "%s: WARNING: hardware bug. You must reset "
586 "the system before using this\n",
587 sc->sc_dev.dv_xname);
588 aprint_normal("%s: WARNING: interface.\n",
589 sc->sc_dev.dv_xname);
590 data &= ~0x02;
591 fxp_write_eeprom(sc, &data, 10, 1);
592 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
593 sc->sc_dev.dv_xname, data);
594 fxp_eeprom_update_cksum(sc);
595 }
596 }
597
598 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
599 /* Due to false positives we make it conditional on setting link1 */
600 fxp_read_eeprom(sc, &data, 3, 1);
601 if ((data & 0x03) != 0x03) {
602 aprint_verbose("%s: May need receiver lock-up workaround\n",
603 sc->sc_dev.dv_xname);
604 }
605 }
606
607 static void
608 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
609 {
610 uint16_t reg;
611 int x;
612
613 for (x = 1 << (len - 1); x != 0; x >>= 1) {
614 DELAY(40);
615 if (data & x)
616 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
617 else
618 reg = FXP_EEPROM_EECS;
619 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
620 DELAY(40);
621 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
622 reg | FXP_EEPROM_EESK);
623 DELAY(40);
624 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
625 }
626 DELAY(40);
627 }
628
629 /*
630 * Figure out EEPROM size.
631 *
632 * 559's can have either 64-word or 256-word EEPROMs, the 558
633 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
634 * talks about the existence of 16 to 256 word EEPROMs.
635 *
636 * The only known sizes are 64 and 256, where the 256 version is used
637 * by CardBus cards to store CIS information.
638 *
639 * The address is shifted in msb-to-lsb, and after the last
640 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
641 * after which follows the actual data. We try to detect this zero, by
642 * probing the data-out bit in the EEPROM control register just after
643 * having shifted in a bit. If the bit is zero, we assume we've
644 * shifted enough address bits. The data-out should be tri-state,
645 * before this, which should translate to a logical one.
646 *
647 * Other ways to do this would be to try to read a register with known
648 * contents with a varying number of address bits, but no such
649 * register seem to be available. The high bits of register 10 are 01
650 * on the 558 and 559, but apparently not on the 557.
651 *
652 * The Linux driver computes a checksum on the EEPROM data, but the
653 * value of this checksum is not very well documented.
654 */
655
656 void
657 fxp_autosize_eeprom(struct fxp_softc *sc)
658 {
659 int x;
660
661 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
662 DELAY(40);
663
664 /* Shift in read opcode. */
665 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
666
667 /*
668 * Shift in address, wait for the dummy zero following a correct
669 * address shift.
670 */
671 for (x = 1; x <= 8; x++) {
672 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
673 DELAY(40);
674 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
675 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
676 DELAY(40);
677 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
678 FXP_EEPROM_EEDO) == 0)
679 break;
680 DELAY(40);
681 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
682 DELAY(40);
683 }
684 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
685 DELAY(40);
686 if (x != 6 && x != 8) {
687 #ifdef DEBUG
688 printf("%s: strange EEPROM size (%d)\n",
689 sc->sc_dev.dv_xname, 1 << x);
690 #endif
691 } else
692 sc->sc_eeprom_size = x;
693 }
694
695 /*
696 * Read from the serial EEPROM. Basically, you manually shift in
697 * the read opcode (one bit at a time) and then shift in the address,
698 * and then you shift out the data (all of this one bit at a time).
699 * The word size is 16 bits, so you have to provide the address for
700 * every 16 bits of data.
701 */
702 void
703 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
704 {
705 u_int16_t reg;
706 int i, x;
707
708 for (i = 0; i < words; i++) {
709 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
710
711 /* Shift in read opcode. */
712 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
713
714 /* Shift in address. */
715 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
716
717 reg = FXP_EEPROM_EECS;
718 data[i] = 0;
719
720 /* Shift out data. */
721 for (x = 16; x > 0; x--) {
722 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
723 reg | FXP_EEPROM_EESK);
724 DELAY(40);
725 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
726 FXP_EEPROM_EEDO)
727 data[i] |= (1 << (x - 1));
728 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
729 DELAY(40);
730 }
731 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
732 DELAY(40);
733 }
734 }
735
736 /*
737 * Write data to the serial EEPROM.
738 */
739 void
740 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
741 {
742 int i, j;
743
744 for (i = 0; i < words; i++) {
745 /* Erase/write enable. */
746 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
747 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
748 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
749 sc->sc_eeprom_size);
750 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
751 DELAY(4);
752
753 /* Shift in write opcode, address, data. */
754 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
755 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
756 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
757 fxp_eeprom_shiftin(sc, data[i], 16);
758 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
759 DELAY(4);
760
761 /* Wait for the EEPROM to finish up. */
762 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
763 DELAY(4);
764 for (j = 0; j < 1000; j++) {
765 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
766 FXP_EEPROM_EEDO)
767 break;
768 DELAY(50);
769 }
770 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
771 DELAY(4);
772
773 /* Erase/write disable. */
774 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
775 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
776 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
777 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
778 DELAY(4);
779 }
780 }
781
782 /*
783 * Update the checksum of the EEPROM.
784 */
785 void
786 fxp_eeprom_update_cksum(struct fxp_softc *sc)
787 {
788 int i;
789 uint16_t data, cksum;
790
791 cksum = 0;
792 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
793 fxp_read_eeprom(sc, &data, i, 1);
794 cksum += data;
795 }
796 i = (1 << sc->sc_eeprom_size) - 1;
797 cksum = 0xbaba - cksum;
798 fxp_read_eeprom(sc, &data, i, 1);
799 fxp_write_eeprom(sc, &cksum, i, 1);
800 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
801 sc->sc_dev.dv_xname, i, data, cksum);
802 }
803
804 /*
805 * Start packet transmission on the interface.
806 */
807 void
808 fxp_start(struct ifnet *ifp)
809 {
810 struct fxp_softc *sc = ifp->if_softc;
811 struct mbuf *m0, *m;
812 struct fxp_txdesc *txd;
813 struct fxp_txsoft *txs;
814 bus_dmamap_t dmamap;
815 int error, lasttx, nexttx, opending, seg;
816
817 /*
818 * If we want a re-init, bail out now.
819 */
820 if (sc->sc_flags & FXPF_WANTINIT) {
821 ifp->if_flags |= IFF_OACTIVE;
822 return;
823 }
824
825 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
826 return;
827
828 /*
829 * Remember the previous txpending and the current lasttx.
830 */
831 opending = sc->sc_txpending;
832 lasttx = sc->sc_txlast;
833
834 /*
835 * Loop through the send queue, setting up transmit descriptors
836 * until we drain the queue, or use up all available transmit
837 * descriptors.
838 */
839 for (;;) {
840 struct fxp_tbd *tbdp;
841 int csum_flags;
842
843 /*
844 * Grab a packet off the queue.
845 */
846 IFQ_POLL(&ifp->if_snd, m0);
847 if (m0 == NULL)
848 break;
849 m = NULL;
850
851 if (sc->sc_txpending == FXP_NTXCB - 1) {
852 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
853 break;
854 }
855
856 /*
857 * Get the next available transmit descriptor.
858 */
859 nexttx = FXP_NEXTTX(sc->sc_txlast);
860 txd = FXP_CDTX(sc, nexttx);
861 txs = FXP_DSTX(sc, nexttx);
862 dmamap = txs->txs_dmamap;
863
864 /*
865 * Load the DMA map. If this fails, the packet either
866 * didn't fit in the allotted number of frags, or we were
867 * short on resources. In this case, we'll copy and try
868 * again.
869 */
870 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
871 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
872 MGETHDR(m, M_DONTWAIT, MT_DATA);
873 if (m == NULL) {
874 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
875 sc->sc_dev.dv_xname);
876 break;
877 }
878 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
879 if (m0->m_pkthdr.len > MHLEN) {
880 MCLGET(m, M_DONTWAIT);
881 if ((m->m_flags & M_EXT) == 0) {
882 log(LOG_ERR,
883 "%s: unable to allocate Tx "
884 "cluster\n", sc->sc_dev.dv_xname);
885 m_freem(m);
886 break;
887 }
888 }
889 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
890 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
891 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
892 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
893 if (error) {
894 log(LOG_ERR, "%s: unable to load Tx buffer, "
895 "error = %d\n", sc->sc_dev.dv_xname, error);
896 break;
897 }
898 }
899
900 IFQ_DEQUEUE(&ifp->if_snd, m0);
901 csum_flags = m0->m_pkthdr.csum_flags;
902 if (m != NULL) {
903 m_freem(m0);
904 m0 = m;
905 }
906
907 /* Initialize the fraglist. */
908 tbdp = txd->txd_tbd;
909 if (sc->sc_flags & FXPF_IPCB)
910 tbdp++;
911 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
912 tbdp[seg].tb_addr =
913 htole32(dmamap->dm_segs[seg].ds_addr);
914 tbdp[seg].tb_size =
915 htole32(dmamap->dm_segs[seg].ds_len);
916 }
917
918 /* Sync the DMA map. */
919 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
920 BUS_DMASYNC_PREWRITE);
921
922 /*
923 * Store a pointer to the packet so we can free it later.
924 */
925 txs->txs_mbuf = m0;
926
927 /*
928 * Initialize the transmit descriptor.
929 */
930 /* BIG_ENDIAN: no need to swap to store 0 */
931 txd->txd_txcb.cb_status = 0;
932 txd->txd_txcb.cb_command =
933 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
934 txd->txd_txcb.tx_threshold = tx_threshold;
935 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
936
937 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
938 if (sc->sc_flags & FXPF_IPCB) {
939 struct m_tag *vtag;
940 struct fxp_ipcb *ipcb;
941 /*
942 * Deal with TCP/IP checksum offload. Note that
943 * in order for TCP checksum offload to work,
944 * the pseudo header checksum must have already
945 * been computed and stored in the checksum field
946 * in the TCP header. The stack should have
947 * already done this for us.
948 */
949 ipcb = &txd->txd_u.txdu_ipcb;
950 memset(ipcb, 0, sizeof(*ipcb));
951 /*
952 * always do hardware parsing.
953 */
954 ipcb->ipcb_ip_activation_high =
955 FXP_IPCB_HARDWAREPARSING_ENABLE;
956 /*
957 * ip checksum offloading.
958 */
959 if (csum_flags & M_CSUM_IPv4) {
960 ipcb->ipcb_ip_schedule |=
961 FXP_IPCB_IP_CHECKSUM_ENABLE;
962 }
963 /*
964 * TCP/UDP checksum offloading.
965 */
966 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
967 ipcb->ipcb_ip_schedule |=
968 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
969 }
970
971 /*
972 * request VLAN tag insertion if needed.
973 */
974 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
975 if (vtag) {
976 ipcb->ipcb_vlan_id =
977 htobe16(*(u_int *)(vtag + 1));
978 ipcb->ipcb_ip_activation_high |=
979 FXP_IPCB_INSERTVLAN_ENABLE;
980 }
981 } else {
982 KASSERT((csum_flags &
983 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
984 }
985
986 FXP_CDTXSYNC(sc, nexttx,
987 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
988
989 /* Advance the tx pointer. */
990 sc->sc_txpending++;
991 sc->sc_txlast = nexttx;
992
993 #if NBPFILTER > 0
994 /*
995 * Pass packet to bpf if there is a listener.
996 */
997 if (ifp->if_bpf)
998 bpf_mtap(ifp->if_bpf, m0);
999 #endif
1000 }
1001
1002 if (sc->sc_txpending == FXP_NTXCB - 1) {
1003 /* No more slots; notify upper layer. */
1004 ifp->if_flags |= IFF_OACTIVE;
1005 }
1006
1007 if (sc->sc_txpending != opending) {
1008 /*
1009 * We enqueued packets. If the transmitter was idle,
1010 * reset the txdirty pointer.
1011 */
1012 if (opending == 0)
1013 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1014
1015 /*
1016 * Cause the chip to interrupt and suspend command
1017 * processing once the last packet we've enqueued
1018 * has been transmitted.
1019 *
1020 * To avoid a race between updating status bits
1021 * by the fxp chip and clearing command bits
1022 * by this function on machines which don't have
1023 * atomic methods to clear/set bits in memory
1024 * smaller than 32bits (both cb_status and cb_command
1025 * members are uint16_t and in the same 32bit word),
1026 * we have to prepare a dummy TX descriptor which has
1027 * NOP command and just causes a TX completion interrupt.
1028 */
1029 sc->sc_txpending++;
1030 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1031 txd = FXP_CDTX(sc, sc->sc_txlast);
1032 /* BIG_ENDIAN: no need to swap to store 0 */
1033 txd->txd_txcb.cb_status = 0;
1034 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1035 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1036 FXP_CDTXSYNC(sc, sc->sc_txlast,
1037 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1038
1039 /*
1040 * The entire packet chain is set up. Clear the suspend bit
1041 * on the command prior to the first packet we set up.
1042 */
1043 FXP_CDTXSYNC(sc, lasttx,
1044 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1045 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1046 htole16(~FXP_CB_COMMAND_S);
1047 FXP_CDTXSYNC(sc, lasttx,
1048 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1049
1050 /*
1051 * Issue a Resume command in case the chip was suspended.
1052 */
1053 fxp_scb_wait(sc);
1054 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1055
1056 /* Set a watchdog timer in case the chip flakes out. */
1057 ifp->if_timer = 5;
1058 }
1059 }
1060
1061 /*
1062 * Process interface interrupts.
1063 */
1064 int
1065 fxp_intr(void *arg)
1066 {
1067 struct fxp_softc *sc = arg;
1068 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1069 bus_dmamap_t rxmap;
1070 int claimed = 0, rnr;
1071 u_int8_t statack;
1072
1073 if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1074 return (0);
1075 /*
1076 * If the interface isn't running, don't try to
1077 * service the interrupt.. just ack it and bail.
1078 */
1079 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1080 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1081 if (statack) {
1082 claimed = 1;
1083 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1084 }
1085 return (claimed);
1086 }
1087
1088 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1089 claimed = 1;
1090
1091 /*
1092 * First ACK all the interrupts in this pass.
1093 */
1094 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1095
1096 /*
1097 * Process receiver interrupts. If a no-resource (RNR)
1098 * condition exists, get whatever packets we can and
1099 * re-start the receiver.
1100 */
1101 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1102 1 : 0;
1103 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1104 FXP_SCB_STATACK_SWI)) {
1105 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1106 rnr |= fxp_rxintr(sc);
1107 }
1108
1109 /*
1110 * Free any finished transmit mbuf chains.
1111 */
1112 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1113 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1114 fxp_txintr(sc);
1115
1116 /*
1117 * Try to get more packets going.
1118 */
1119 fxp_start(ifp);
1120
1121 if (sc->sc_txpending == 0) {
1122 /*
1123 * If we want a re-init, do that now.
1124 */
1125 if (sc->sc_flags & FXPF_WANTINIT)
1126 (void) fxp_init(ifp);
1127 }
1128 }
1129
1130 if (rnr) {
1131 fxp_scb_wait(sc);
1132 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1133 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1134 fxp_scb_wait(sc);
1135 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1136 rxmap->dm_segs[0].ds_addr +
1137 RFA_ALIGNMENT_FUDGE);
1138 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1139 }
1140 }
1141
1142 #if NRND > 0
1143 if (claimed)
1144 rnd_add_uint32(&sc->rnd_source, statack);
1145 #endif
1146 return (claimed);
1147 }
1148
1149 /*
1150 * Handle transmit completion interrupts.
1151 */
1152 void
1153 fxp_txintr(struct fxp_softc *sc)
1154 {
1155 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1156 struct fxp_txdesc *txd;
1157 struct fxp_txsoft *txs;
1158 int i;
1159 u_int16_t txstat;
1160
1161 ifp->if_flags &= ~IFF_OACTIVE;
1162 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1163 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1164 txd = FXP_CDTX(sc, i);
1165 txs = FXP_DSTX(sc, i);
1166
1167 FXP_CDTXSYNC(sc, i,
1168 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1169
1170 /* skip dummy NOP TX descriptor */
1171 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1172 == FXP_CB_COMMAND_NOP)
1173 continue;
1174
1175 txstat = le16toh(txd->txd_txcb.cb_status);
1176
1177 if ((txstat & FXP_CB_STATUS_C) == 0)
1178 break;
1179
1180 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1181 0, txs->txs_dmamap->dm_mapsize,
1182 BUS_DMASYNC_POSTWRITE);
1183 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1184 m_freem(txs->txs_mbuf);
1185 txs->txs_mbuf = NULL;
1186 }
1187
1188 /* Update the dirty transmit buffer pointer. */
1189 sc->sc_txdirty = i;
1190
1191 /*
1192 * Cancel the watchdog timer if there are no pending
1193 * transmissions.
1194 */
1195 if (sc->sc_txpending == 0)
1196 ifp->if_timer = 0;
1197 }
1198
1199 /*
1200 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1201 */
1202
1203 int
1204 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1205 {
1206 u_int16_t rxparsestat;
1207 u_int16_t csum_stat;
1208 u_int32_t csum_data;
1209 int csum_flags;
1210
1211 /*
1212 * check VLAN tag stripping.
1213 */
1214
1215 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1216 struct m_tag *vtag;
1217
1218 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1219 if (vtag == NULL)
1220 return ENOMEM;
1221 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1222 m_tag_prepend(m, vtag);
1223 }
1224
1225 /*
1226 * check H/W Checksumming.
1227 */
1228
1229 csum_stat = le16toh(rfa->cksum_stat);
1230 rxparsestat = le16toh(rfa->rx_parse_stat);
1231 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1232 return 0;
1233
1234 csum_flags = 0;
1235 csum_data = 0;
1236
1237 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1238 csum_flags = M_CSUM_IPv4;
1239 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1240 csum_flags |= M_CSUM_IPv4_BAD;
1241 }
1242
1243 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1244 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1245 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1246 csum_flags |= M_CSUM_TCP_UDP_BAD;
1247 }
1248
1249 m->m_pkthdr.csum_flags = csum_flags;
1250 m->m_pkthdr.csum_data = csum_data;
1251
1252 return 0;
1253 }
1254
1255 /*
1256 * Handle receive interrupts.
1257 */
1258 int
1259 fxp_rxintr(struct fxp_softc *sc)
1260 {
1261 struct ethercom *ec = &sc->sc_ethercom;
1262 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1263 struct mbuf *m, *m0;
1264 bus_dmamap_t rxmap;
1265 struct fxp_rfa *rfa;
1266 int rnr;
1267 u_int16_t len, rxstat;
1268
1269 rnr = 0;
1270
1271 for (;;) {
1272 m = sc->sc_rxq.ifq_head;
1273 rfa = FXP_MTORFA(m);
1274 rxmap = M_GETCTX(m, bus_dmamap_t);
1275
1276 FXP_RFASYNC(sc, m,
1277 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1278
1279 rxstat = le16toh(rfa->rfa_status);
1280
1281 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1282 rnr = 1;
1283
1284 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1285 /*
1286 * We have processed all of the
1287 * receive buffers.
1288 */
1289 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1290 return rnr;
1291 }
1292
1293 IF_DEQUEUE(&sc->sc_rxq, m);
1294
1295 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1296
1297 len = le16toh(rfa->actual_size) &
1298 (m->m_ext.ext_size - 1);
1299
1300 if (len < sizeof(struct ether_header)) {
1301 /*
1302 * Runt packet; drop it now.
1303 */
1304 FXP_INIT_RFABUF(sc, m);
1305 continue;
1306 }
1307
1308 /*
1309 * If support for 802.1Q VLAN sized frames is
1310 * enabled, we need to do some additional error
1311 * checking (as we are saving bad frames, in
1312 * order to receive the larger ones).
1313 */
1314 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1315 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1316 FXP_RFA_STATUS_RNR|
1317 FXP_RFA_STATUS_ALIGN|
1318 FXP_RFA_STATUS_CRC)) != 0) {
1319 FXP_INIT_RFABUF(sc, m);
1320 continue;
1321 }
1322
1323 /* Do checksum checking. */
1324 m->m_pkthdr.csum_flags = 0;
1325 if (sc->sc_flags & FXPF_EXT_RFA)
1326 if (fxp_rx_hwcksum(m, rfa))
1327 goto dropit;
1328
1329 /*
1330 * If the packet is small enough to fit in a
1331 * single header mbuf, allocate one and copy
1332 * the data into it. This greatly reduces
1333 * memory consumption when we receive lots
1334 * of small packets.
1335 *
1336 * Otherwise, we add a new buffer to the receive
1337 * chain. If this fails, we drop the packet and
1338 * recycle the old buffer.
1339 */
1340 if (fxp_copy_small != 0 && len <= MHLEN) {
1341 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1342 if (m0 == NULL)
1343 goto dropit;
1344 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1345 memcpy(mtod(m0, void *),
1346 mtod(m, void *), len);
1347 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1348 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1349 FXP_INIT_RFABUF(sc, m);
1350 m = m0;
1351 } else {
1352 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1353 dropit:
1354 ifp->if_ierrors++;
1355 FXP_INIT_RFABUF(sc, m);
1356 continue;
1357 }
1358 }
1359
1360 m->m_pkthdr.rcvif = ifp;
1361 m->m_pkthdr.len = m->m_len = len;
1362
1363 #if NBPFILTER > 0
1364 /*
1365 * Pass this up to any BPF listeners, but only
1366 * pass it up the stack if it's for us.
1367 */
1368 if (ifp->if_bpf)
1369 bpf_mtap(ifp->if_bpf, m);
1370 #endif
1371
1372 /* Pass it on. */
1373 (*ifp->if_input)(ifp, m);
1374 }
1375 }
1376
1377 /*
1378 * Update packet in/out/collision statistics. The i82557 doesn't
1379 * allow you to access these counters without doing a fairly
1380 * expensive DMA to get _all_ of the statistics it maintains, so
1381 * we do this operation here only once per second. The statistics
1382 * counters in the kernel are updated from the previous dump-stats
1383 * DMA and then a new dump-stats DMA is started. The on-chip
1384 * counters are zeroed when the DMA completes. If we can't start
1385 * the DMA immediately, we don't wait - we just prepare to read
1386 * them again next time.
1387 */
1388 void
1389 fxp_tick(void *arg)
1390 {
1391 struct fxp_softc *sc = arg;
1392 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1393 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1394 int s;
1395
1396 if (!device_is_active(&sc->sc_dev))
1397 return;
1398
1399 s = splnet();
1400
1401 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1402
1403 ifp->if_opackets += le32toh(sp->tx_good);
1404 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1405 if (sp->rx_good) {
1406 ifp->if_ipackets += le32toh(sp->rx_good);
1407 sc->sc_rxidle = 0;
1408 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1409 sc->sc_rxidle++;
1410 }
1411 ifp->if_ierrors +=
1412 le32toh(sp->rx_crc_errors) +
1413 le32toh(sp->rx_alignment_errors) +
1414 le32toh(sp->rx_rnr_errors) +
1415 le32toh(sp->rx_overrun_errors);
1416 /*
1417 * If any transmit underruns occurred, bump up the transmit
1418 * threshold by another 512 bytes (64 * 8).
1419 */
1420 if (sp->tx_underruns) {
1421 ifp->if_oerrors += le32toh(sp->tx_underruns);
1422 if (tx_threshold < 192)
1423 tx_threshold += 64;
1424 }
1425 #ifdef FXP_EVENT_COUNTERS
1426 if (sc->sc_rev >= FXP_REV_82558_A4) {
1427 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1428 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1429 }
1430 #endif
1431
1432 /*
1433 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1434 * then assume the receiver has locked up and attempt to clear
1435 * the condition by reprogramming the multicast filter (actually,
1436 * resetting the interface). This is a work-around for a bug in
1437 * the 82557 where the receiver locks up if it gets certain types
1438 * of garbage in the synchronization bits prior to the packet header.
1439 * This bug is supposed to only occur in 10Mbps mode, but has been
1440 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1441 * speed transition).
1442 */
1443 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1444 (void) fxp_init(ifp);
1445 splx(s);
1446 return;
1447 }
1448 /*
1449 * If there is no pending command, start another stats
1450 * dump. Otherwise punt for now.
1451 */
1452 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1453 /*
1454 * Start another stats dump.
1455 */
1456 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1457 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1458 } else {
1459 /*
1460 * A previous command is still waiting to be accepted.
1461 * Just zero our copy of the stats and wait for the
1462 * next timer event to update them.
1463 */
1464 /* BIG_ENDIAN: no swap required to store 0 */
1465 sp->tx_good = 0;
1466 sp->tx_underruns = 0;
1467 sp->tx_total_collisions = 0;
1468
1469 sp->rx_good = 0;
1470 sp->rx_crc_errors = 0;
1471 sp->rx_alignment_errors = 0;
1472 sp->rx_rnr_errors = 0;
1473 sp->rx_overrun_errors = 0;
1474 if (sc->sc_rev >= FXP_REV_82558_A4) {
1475 sp->tx_pauseframes = 0;
1476 sp->rx_pauseframes = 0;
1477 }
1478 }
1479
1480 if (sc->sc_flags & FXPF_MII) {
1481 /* Tick the MII clock. */
1482 mii_tick(&sc->sc_mii);
1483 }
1484
1485 splx(s);
1486
1487 /*
1488 * Schedule another timeout one second from now.
1489 */
1490 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1491 }
1492
1493 /*
1494 * Drain the receive queue.
1495 */
1496 void
1497 fxp_rxdrain(struct fxp_softc *sc)
1498 {
1499 bus_dmamap_t rxmap;
1500 struct mbuf *m;
1501
1502 for (;;) {
1503 IF_DEQUEUE(&sc->sc_rxq, m);
1504 if (m == NULL)
1505 break;
1506 rxmap = M_GETCTX(m, bus_dmamap_t);
1507 bus_dmamap_unload(sc->sc_dmat, rxmap);
1508 FXP_RXMAP_PUT(sc, rxmap);
1509 m_freem(m);
1510 }
1511 }
1512
1513 /*
1514 * Stop the interface. Cancels the statistics updater and resets
1515 * the interface.
1516 */
1517 void
1518 fxp_stop(struct ifnet *ifp, int disable)
1519 {
1520 struct fxp_softc *sc = ifp->if_softc;
1521 struct fxp_txsoft *txs;
1522 int i;
1523
1524 /*
1525 * Turn down interface (done early to avoid bad interactions
1526 * between panics, shutdown hooks, and the watchdog timer)
1527 */
1528 ifp->if_timer = 0;
1529 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1530
1531 /*
1532 * Cancel stats updater.
1533 */
1534 callout_stop(&sc->sc_callout);
1535 if (sc->sc_flags & FXPF_MII) {
1536 /* Down the MII. */
1537 mii_down(&sc->sc_mii);
1538 }
1539
1540 /*
1541 * Issue software reset. This unloads any microcode that
1542 * might already be loaded.
1543 */
1544 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1545 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1546 DELAY(50);
1547
1548 /*
1549 * Release any xmit buffers.
1550 */
1551 for (i = 0; i < FXP_NTXCB; i++) {
1552 txs = FXP_DSTX(sc, i);
1553 if (txs->txs_mbuf != NULL) {
1554 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1555 m_freem(txs->txs_mbuf);
1556 txs->txs_mbuf = NULL;
1557 }
1558 }
1559 sc->sc_txpending = 0;
1560
1561 if (disable) {
1562 fxp_rxdrain(sc);
1563 fxp_disable(sc);
1564 }
1565
1566 }
1567
1568 /*
1569 * Watchdog/transmission transmit timeout handler. Called when a
1570 * transmission is started on the interface, but no interrupt is
1571 * received before the timeout. This usually indicates that the
1572 * card has wedged for some reason.
1573 */
1574 void
1575 fxp_watchdog(struct ifnet *ifp)
1576 {
1577 struct fxp_softc *sc = ifp->if_softc;
1578
1579 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1580 ifp->if_oerrors++;
1581
1582 (void) fxp_init(ifp);
1583 }
1584
1585 /*
1586 * Initialize the interface. Must be called at splnet().
1587 */
1588 int
1589 fxp_init(struct ifnet *ifp)
1590 {
1591 struct fxp_softc *sc = ifp->if_softc;
1592 struct fxp_cb_config *cbp;
1593 struct fxp_cb_ias *cb_ias;
1594 struct fxp_txdesc *txd;
1595 bus_dmamap_t rxmap;
1596 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1597
1598 if ((error = fxp_enable(sc)) != 0)
1599 goto out;
1600
1601 /*
1602 * Cancel any pending I/O
1603 */
1604 fxp_stop(ifp, 0);
1605
1606 /*
1607 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1608 * flag, and this prevents the MII from detaching resulting in
1609 * a panic. The flags field should perhaps be split in runtime
1610 * flags and more static information. For now, just clear the
1611 * only other flag set.
1612 */
1613
1614 sc->sc_flags &= ~FXPF_WANTINIT;
1615
1616 /*
1617 * Initialize base of CBL and RFA memory. Loading with zero
1618 * sets it up for regular linear addressing.
1619 */
1620 fxp_scb_wait(sc);
1621 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1622 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1623
1624 fxp_scb_wait(sc);
1625 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1626
1627 /*
1628 * Initialize the multicast filter. Do this now, since we might
1629 * have to setup the config block differently.
1630 */
1631 fxp_mc_setup(sc);
1632
1633 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1634 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1635
1636 /*
1637 * In order to support receiving 802.1Q VLAN frames, we have to
1638 * enable "save bad frames", since they are 4 bytes larger than
1639 * the normal Ethernet maximum frame length. On i82558 and later,
1640 * we have a better mechanism for this.
1641 */
1642 save_bf = 0;
1643 lrxen = 0;
1644 vlan_drop = 0;
1645 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1646 if (sc->sc_rev < FXP_REV_82558_A4)
1647 save_bf = 1;
1648 else
1649 lrxen = 1;
1650 if (sc->sc_rev >= FXP_REV_82550)
1651 vlan_drop = 1;
1652 }
1653
1654 /*
1655 * Initialize base of dump-stats buffer.
1656 */
1657 fxp_scb_wait(sc);
1658 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1659 sc->sc_cddma + FXP_CDSTATSOFF);
1660 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1661 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1662
1663 cbp = &sc->sc_control_data->fcd_configcb;
1664 memset(cbp, 0, sizeof(struct fxp_cb_config));
1665
1666 /*
1667 * Load microcode for this controller.
1668 */
1669 fxp_load_ucode(sc);
1670
1671 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1672 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1673 else
1674 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1675
1676 /*
1677 * This copy is kind of disgusting, but there are a bunch of must be
1678 * zero and must be one bits in this structure and this is the easiest
1679 * way to initialize them all to proper values.
1680 */
1681 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1682
1683 /* BIG_ENDIAN: no need to swap to store 0 */
1684 cbp->cb_status = 0;
1685 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1686 FXP_CB_COMMAND_EL);
1687 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1688 cbp->link_addr = 0xffffffff; /* (no) next command */
1689 /* bytes in config block */
1690 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1691 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1692 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1693 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1694 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1695 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1696 cbp->type_enable = 0; /* actually reserved */
1697 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1698 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1699 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1700 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1701 cbp->dma_mbce = 0; /* (disable) dma max counters */
1702 cbp->late_scb = 0; /* (don't) defer SCB update */
1703 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1704 cbp->ci_int = 1; /* interrupt on CU idle */
1705 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1706 cbp->ext_stats_dis = 1; /* disable extended counters */
1707 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1708 cbp->save_bf = save_bf;/* save bad frames */
1709 cbp->disc_short_rx = !prm; /* discard short packets */
1710 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1711 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1712 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1713 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1714 /* interface mode */
1715 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1716 cbp->csma_dis = 0; /* (don't) disable link */
1717 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1718 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1719 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1720 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1721 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1722 cbp->nsai = 1; /* (don't) disable source addr insert */
1723 cbp->preamble_length = 2; /* (7 byte) preamble */
1724 cbp->loopback = 0; /* (don't) loopback */
1725 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1726 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1727 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1728 cbp->promiscuous = prm; /* promiscuous mode */
1729 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1730 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1731 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1732 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1733 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1734 cbp->stripping = !prm; /* truncate rx packet to byte count */
1735 cbp->padding = 1; /* (do) pad short tx packets */
1736 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1737 cbp->long_rx_en = lrxen; /* long packet receive enable */
1738 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1739 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1740 /* must set wake_en in PMCSR also */
1741 cbp->force_fdx = 0; /* (don't) force full duplex */
1742 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1743 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1744 cbp->mc_all = allm; /* accept all multicasts */
1745 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1746 cbp->vlan_drop_en = vlan_drop;
1747
1748 if (sc->sc_rev < FXP_REV_82558_A4) {
1749 /*
1750 * The i82557 has no hardware flow control, the values
1751 * here are the defaults for the chip.
1752 */
1753 cbp->fc_delay_lsb = 0;
1754 cbp->fc_delay_msb = 0x40;
1755 cbp->pri_fc_thresh = 3;
1756 cbp->tx_fc_dis = 0;
1757 cbp->rx_fc_restop = 0;
1758 cbp->rx_fc_restart = 0;
1759 cbp->fc_filter = 0;
1760 cbp->pri_fc_loc = 1;
1761 } else {
1762 cbp->fc_delay_lsb = 0x1f;
1763 cbp->fc_delay_msb = 0x01;
1764 cbp->pri_fc_thresh = 3;
1765 cbp->tx_fc_dis = 0; /* enable transmit FC */
1766 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1767 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1768 cbp->fc_filter = !prm; /* drop FC frames to host */
1769 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1770 cbp->ext_stats_dis = 0; /* enable extended stats */
1771 }
1772
1773 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1774
1775 /*
1776 * Start the config command/DMA.
1777 */
1778 fxp_scb_wait(sc);
1779 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1780 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1781 /* ...and wait for it to complete. */
1782 i = 1000;
1783 do {
1784 FXP_CDCONFIGSYNC(sc,
1785 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1786 DELAY(1);
1787 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1788 if (i == 0) {
1789 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1790 sc->sc_dev.dv_xname, __LINE__);
1791 return (ETIMEDOUT);
1792 }
1793
1794 /*
1795 * Initialize the station address.
1796 */
1797 cb_ias = &sc->sc_control_data->fcd_iascb;
1798 /* BIG_ENDIAN: no need to swap to store 0 */
1799 cb_ias->cb_status = 0;
1800 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1801 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1802 cb_ias->link_addr = 0xffffffff;
1803 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1804
1805 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1806
1807 /*
1808 * Start the IAS (Individual Address Setup) command/DMA.
1809 */
1810 fxp_scb_wait(sc);
1811 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1812 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1813 /* ...and wait for it to complete. */
1814 i = 1000;
1815 do {
1816 FXP_CDIASSYNC(sc,
1817 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1818 DELAY(1);
1819 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1820 if (i == 0) {
1821 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1822 sc->sc_dev.dv_xname, __LINE__);
1823 return (ETIMEDOUT);
1824 }
1825
1826 /*
1827 * Initialize the transmit descriptor ring. txlast is initialized
1828 * to the end of the list so that it will wrap around to the first
1829 * descriptor when the first packet is transmitted.
1830 */
1831 for (i = 0; i < FXP_NTXCB; i++) {
1832 txd = FXP_CDTX(sc, i);
1833 memset(txd, 0, sizeof(*txd));
1834 txd->txd_txcb.cb_command =
1835 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1836 txd->txd_txcb.link_addr =
1837 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1838 if (sc->sc_flags & FXPF_EXT_TXCB)
1839 txd->txd_txcb.tbd_array_addr =
1840 htole32(FXP_CDTBDADDR(sc, i) +
1841 (2 * sizeof(struct fxp_tbd)));
1842 else
1843 txd->txd_txcb.tbd_array_addr =
1844 htole32(FXP_CDTBDADDR(sc, i));
1845 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1846 }
1847 sc->sc_txpending = 0;
1848 sc->sc_txdirty = 0;
1849 sc->sc_txlast = FXP_NTXCB - 1;
1850
1851 /*
1852 * Initialize the receive buffer list.
1853 */
1854 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1855 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1856 rxmap = FXP_RXMAP_GET(sc);
1857 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1858 log(LOG_ERR, "%s: unable to allocate or map rx "
1859 "buffer %d, error = %d\n",
1860 sc->sc_dev.dv_xname,
1861 sc->sc_rxq.ifq_len, error);
1862 /*
1863 * XXX Should attempt to run with fewer receive
1864 * XXX buffers instead of just failing.
1865 */
1866 FXP_RXMAP_PUT(sc, rxmap);
1867 fxp_rxdrain(sc);
1868 goto out;
1869 }
1870 }
1871 sc->sc_rxidle = 0;
1872
1873 /*
1874 * Give the transmit ring to the chip. We do this by pointing
1875 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1876 * issuing a start command. It will execute the NOP and then
1877 * suspend, pointing at the first descriptor.
1878 */
1879 fxp_scb_wait(sc);
1880 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1881 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1882
1883 /*
1884 * Initialize receiver buffer area - RFA.
1885 */
1886 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1887 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1888 fxp_scb_wait(sc);
1889 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1890 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1891 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1892 #endif
1893
1894 if (sc->sc_flags & FXPF_MII) {
1895 /*
1896 * Set current media.
1897 */
1898 mii_mediachg(&sc->sc_mii);
1899 }
1900
1901 /*
1902 * ...all done!
1903 */
1904 ifp->if_flags |= IFF_RUNNING;
1905 ifp->if_flags &= ~IFF_OACTIVE;
1906
1907 /*
1908 * Request a software generated interrupt that will be used to
1909 * (re)start the RU processing. If we direct the chip to start
1910 * receiving from the start of queue now, instead of letting the
1911 * interrupt handler first process all received packets, we run
1912 * the risk of having it overwrite mbuf clusters while they are
1913 * being processed or after they have been returned to the pool.
1914 */
1915 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1916
1917 /*
1918 * Start the one second timer.
1919 */
1920 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1921
1922 /*
1923 * Attempt to start output on the interface.
1924 */
1925 fxp_start(ifp);
1926
1927 out:
1928 if (error) {
1929 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1930 ifp->if_timer = 0;
1931 log(LOG_ERR, "%s: interface not running\n",
1932 sc->sc_dev.dv_xname);
1933 }
1934 return (error);
1935 }
1936
1937 /*
1938 * Change media according to request.
1939 */
1940 int
1941 fxp_mii_mediachange(struct ifnet *ifp)
1942 {
1943 struct fxp_softc *sc = ifp->if_softc;
1944
1945 if (ifp->if_flags & IFF_UP)
1946 mii_mediachg(&sc->sc_mii);
1947 return (0);
1948 }
1949
1950 /*
1951 * Notify the world which media we're using.
1952 */
1953 void
1954 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1955 {
1956 struct fxp_softc *sc = ifp->if_softc;
1957
1958 if (sc->sc_enabled == 0) {
1959 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1960 ifmr->ifm_status = 0;
1961 return;
1962 }
1963
1964 mii_pollstat(&sc->sc_mii);
1965 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1966 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1967
1968 /*
1969 * XXX Flow control is always turned on if the chip supports
1970 * XXX it; we can't easily control it dynamically, since it
1971 * XXX requires sending a setup packet.
1972 */
1973 if (sc->sc_rev >= FXP_REV_82558_A4)
1974 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1975 }
1976
1977 int
1978 fxp_80c24_mediachange(struct ifnet *ifp)
1979 {
1980
1981 /* Nothing to do here. */
1982 return (0);
1983 }
1984
1985 void
1986 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1987 {
1988 struct fxp_softc *sc = ifp->if_softc;
1989
1990 /*
1991 * Media is currently-selected media. We cannot determine
1992 * the link status.
1993 */
1994 ifmr->ifm_status = 0;
1995 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1996 }
1997
1998 /*
1999 * Add a buffer to the end of the RFA buffer list.
2000 * Return 0 if successful, error code on failure.
2001 *
2002 * The RFA struct is stuck at the beginning of mbuf cluster and the
2003 * data pointer is fixed up to point just past it.
2004 */
2005 int
2006 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2007 {
2008 struct mbuf *m;
2009 int error;
2010
2011 MGETHDR(m, M_DONTWAIT, MT_DATA);
2012 if (m == NULL)
2013 return (ENOBUFS);
2014
2015 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2016 MCLGET(m, M_DONTWAIT);
2017 if ((m->m_flags & M_EXT) == 0) {
2018 m_freem(m);
2019 return (ENOBUFS);
2020 }
2021
2022 if (unload)
2023 bus_dmamap_unload(sc->sc_dmat, rxmap);
2024
2025 M_SETCTX(m, rxmap);
2026
2027 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2028 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2029 BUS_DMA_READ|BUS_DMA_NOWAIT);
2030 if (error) {
2031 /* XXX XXX XXX */
2032 printf("%s: can't load rx DMA map %d, error = %d\n",
2033 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2034 panic("fxp_add_rfabuf");
2035 }
2036
2037 FXP_INIT_RFABUF(sc, m);
2038
2039 return (0);
2040 }
2041
2042 int
2043 fxp_mdi_read(struct device *self, int phy, int reg)
2044 {
2045 struct fxp_softc *sc = (struct fxp_softc *)self;
2046 int count = 10000;
2047 int value;
2048
2049 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2050 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2051
2052 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2053 0x10000000) == 0 && count--)
2054 DELAY(10);
2055
2056 if (count <= 0)
2057 log(LOG_WARNING,
2058 "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2059
2060 return (value & 0xffff);
2061 }
2062
2063 void
2064 fxp_statchg(struct device *self)
2065 {
2066
2067 /* Nothing to do. */
2068 }
2069
2070 void
2071 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2072 {
2073 struct fxp_softc *sc = (struct fxp_softc *)self;
2074 int count = 10000;
2075
2076 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2077 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2078 (value & 0xffff));
2079
2080 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2081 count--)
2082 DELAY(10);
2083
2084 if (count <= 0)
2085 log(LOG_WARNING,
2086 "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2087 }
2088
2089 int
2090 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2091 {
2092 struct fxp_softc *sc = ifp->if_softc;
2093 struct ifreq *ifr = (struct ifreq *)data;
2094 int s, error;
2095
2096 s = splnet();
2097
2098 switch (cmd) {
2099 case SIOCSIFMEDIA:
2100 case SIOCGIFMEDIA:
2101 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2102 break;
2103
2104 default:
2105 error = ether_ioctl(ifp, cmd, data);
2106 if (error == ENETRESET) {
2107 if (ifp->if_flags & IFF_RUNNING) {
2108 /*
2109 * Multicast list has changed; set the
2110 * hardware filter accordingly.
2111 */
2112 if (sc->sc_txpending) {
2113 sc->sc_flags |= FXPF_WANTINIT;
2114 error = 0;
2115 } else
2116 error = fxp_init(ifp);
2117 } else
2118 error = 0;
2119 }
2120 break;
2121 }
2122
2123 /* Try to get more packets going. */
2124 if (sc->sc_enabled)
2125 fxp_start(ifp);
2126
2127 splx(s);
2128 return (error);
2129 }
2130
2131 /*
2132 * Program the multicast filter.
2133 *
2134 * This function must be called at splnet().
2135 */
2136 void
2137 fxp_mc_setup(struct fxp_softc *sc)
2138 {
2139 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2140 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2141 struct ethercom *ec = &sc->sc_ethercom;
2142 struct ether_multi *enm;
2143 struct ether_multistep step;
2144 int count, nmcasts;
2145
2146 #ifdef DIAGNOSTIC
2147 if (sc->sc_txpending)
2148 panic("fxp_mc_setup: pending transmissions");
2149 #endif
2150
2151 ifp->if_flags &= ~IFF_ALLMULTI;
2152
2153 /*
2154 * Initialize multicast setup descriptor.
2155 */
2156 nmcasts = 0;
2157 ETHER_FIRST_MULTI(step, ec, enm);
2158 while (enm != NULL) {
2159 /*
2160 * Check for too many multicast addresses or if we're
2161 * listening to a range. Either way, we simply have
2162 * to accept all multicasts.
2163 */
2164 if (nmcasts >= MAXMCADDR ||
2165 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2166 ETHER_ADDR_LEN) != 0) {
2167 /*
2168 * Callers of this function must do the
2169 * right thing with this. If we're called
2170 * from outside fxp_init(), the caller must
2171 * detect if the state if IFF_ALLMULTI changes.
2172 * If it does, the caller must then call
2173 * fxp_init(), since allmulti is handled by
2174 * the config block.
2175 */
2176 ifp->if_flags |= IFF_ALLMULTI;
2177 return;
2178 }
2179 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2180 ETHER_ADDR_LEN);
2181 nmcasts++;
2182 ETHER_NEXT_MULTI(step, enm);
2183 }
2184
2185 /* BIG_ENDIAN: no need to swap to store 0 */
2186 mcsp->cb_status = 0;
2187 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2188 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2189 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2190
2191 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2192
2193 /*
2194 * Wait until the command unit is not active. This should never
2195 * happen since nothing is queued, but make sure anyway.
2196 */
2197 count = 100;
2198 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2199 FXP_SCB_CUS_ACTIVE && --count)
2200 DELAY(1);
2201 if (count == 0) {
2202 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2203 sc->sc_dev.dv_xname, __LINE__);
2204 return;
2205 }
2206
2207 /*
2208 * Start the multicast setup command/DMA.
2209 */
2210 fxp_scb_wait(sc);
2211 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2212 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2213
2214 /* ...and wait for it to complete. */
2215 count = 1000;
2216 do {
2217 FXP_CDMCSSYNC(sc,
2218 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2219 DELAY(1);
2220 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2221 if (count == 0) {
2222 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2223 sc->sc_dev.dv_xname, __LINE__);
2224 return;
2225 }
2226 }
2227
2228 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2229 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2230 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2231 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2232 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2233 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2234
2235 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2236
2237 static const struct ucode {
2238 int32_t revision;
2239 const uint32_t *ucode;
2240 size_t length;
2241 uint16_t int_delay_offset;
2242 uint16_t bundle_max_offset;
2243 } ucode_table[] = {
2244 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2245 D101_CPUSAVER_DWORD, 0 },
2246
2247 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2248 D101_CPUSAVER_DWORD, 0 },
2249
2250 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2251 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2252
2253 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2254 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2255
2256 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2257 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2258
2259 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2260 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2261
2262 { 0, NULL, 0, 0, 0 }
2263 };
2264
2265 void
2266 fxp_load_ucode(struct fxp_softc *sc)
2267 {
2268 const struct ucode *uc;
2269 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2270 int count, i;
2271
2272 if (sc->sc_flags & FXPF_UCODE_LOADED)
2273 return;
2274
2275 /*
2276 * Only load the uCode if the user has requested that
2277 * we do so.
2278 */
2279 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2280 sc->sc_int_delay = 0;
2281 sc->sc_bundle_max = 0;
2282 return;
2283 }
2284
2285 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2286 if (sc->sc_rev == uc->revision)
2287 break;
2288 }
2289 if (uc->ucode == NULL)
2290 return;
2291
2292 /* BIG ENDIAN: no need to swap to store 0 */
2293 cbp->cb_status = 0;
2294 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2295 cbp->link_addr = 0xffffffff; /* (no) next command */
2296 for (i = 0; i < uc->length; i++)
2297 cbp->ucode[i] = htole32(uc->ucode[i]);
2298
2299 if (uc->int_delay_offset)
2300 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2301 htole16(fxp_int_delay + (fxp_int_delay / 2));
2302
2303 if (uc->bundle_max_offset)
2304 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2305 htole16(fxp_bundle_max);
2306
2307 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2308
2309 /*
2310 * Download the uCode to the chip.
2311 */
2312 fxp_scb_wait(sc);
2313 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2314 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2315
2316 /* ...and wait for it to complete. */
2317 count = 10000;
2318 do {
2319 FXP_CDUCODESYNC(sc,
2320 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2321 DELAY(2);
2322 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2323 if (count == 0) {
2324 sc->sc_int_delay = 0;
2325 sc->sc_bundle_max = 0;
2326 log(LOG_WARNING, "%s: timeout loading microcode\n",
2327 sc->sc_dev.dv_xname);
2328 return;
2329 }
2330
2331 if (sc->sc_int_delay != fxp_int_delay ||
2332 sc->sc_bundle_max != fxp_bundle_max) {
2333 sc->sc_int_delay = fxp_int_delay;
2334 sc->sc_bundle_max = fxp_bundle_max;
2335 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2336 "max bundle: %d\n", sc->sc_dev.dv_xname,
2337 sc->sc_int_delay,
2338 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2339 }
2340
2341 sc->sc_flags |= FXPF_UCODE_LOADED;
2342 }
2343
2344 int
2345 fxp_enable(struct fxp_softc *sc)
2346 {
2347
2348 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2349 if ((*sc->sc_enable)(sc) != 0) {
2350 log(LOG_ERR, "%s: device enable failed\n",
2351 sc->sc_dev.dv_xname);
2352 return (EIO);
2353 }
2354 }
2355
2356 sc->sc_enabled = 1;
2357 return (0);
2358 }
2359
2360 void
2361 fxp_disable(struct fxp_softc *sc)
2362 {
2363
2364 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2365 (*sc->sc_disable)(sc);
2366 sc->sc_enabled = 0;
2367 }
2368 }
2369
2370 /*
2371 * fxp_activate:
2372 *
2373 * Handle device activation/deactivation requests.
2374 */
2375 int
2376 fxp_activate(struct device *self, enum devact act)
2377 {
2378 struct fxp_softc *sc = (void *) self;
2379 int s, error = 0;
2380
2381 s = splnet();
2382 switch (act) {
2383 case DVACT_ACTIVATE:
2384 error = EOPNOTSUPP;
2385 break;
2386
2387 case DVACT_DEACTIVATE:
2388 if (sc->sc_flags & FXPF_MII)
2389 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2390 MII_OFFSET_ANY);
2391 if_deactivate(&sc->sc_ethercom.ec_if);
2392 break;
2393 }
2394 splx(s);
2395
2396 return (error);
2397 }
2398
2399 /*
2400 * fxp_detach:
2401 *
2402 * Detach an i82557 interface.
2403 */
2404 int
2405 fxp_detach(struct fxp_softc *sc)
2406 {
2407 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2408 int i;
2409
2410 /* Succeed now if there's no work to do. */
2411 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2412 return (0);
2413
2414 /* Unhook our tick handler. */
2415 callout_stop(&sc->sc_callout);
2416
2417 if (sc->sc_flags & FXPF_MII) {
2418 /* Detach all PHYs */
2419 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2420 }
2421
2422 /* Delete all remaining media. */
2423 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2424
2425 #if NRND > 0
2426 rnd_detach_source(&sc->rnd_source);
2427 #endif
2428 ether_ifdetach(ifp);
2429 if_detach(ifp);
2430
2431 for (i = 0; i < FXP_NRFABUFS; i++) {
2432 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2433 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2434 }
2435
2436 for (i = 0; i < FXP_NTXCB; i++) {
2437 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2438 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2439 }
2440
2441 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2442 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2443 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2444 sizeof(struct fxp_control_data));
2445 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2446
2447 return (0);
2448 }
2449