i82557.c revision 1.111 1 /* $NetBSD: i82557.c,v 1.111 2008/02/07 01:21:53 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.111 2008/02/07 01:21:53 dyoung Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/syslog.h>
92
93 #include <machine/endian.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #if NRND > 0
98 #include <sys/rnd.h>
99 #endif
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <sys/bus.h>
111 #include <sys/intr.h>
112
113 #include <dev/mii/miivar.h>
114
115 #include <dev/ic/i82557reg.h>
116 #include <dev/ic/i82557var.h>
117
118 #include <dev/microcode/i8255x/rcvbundl.h>
119
120 /*
121 * NOTE! On the Alpha, we have an alignment constraint. The
122 * card DMAs the packet immediately following the RFA. However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned. To compensate,
125 * we actually offset the RFA 2 bytes into the cluster. This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary. HOWEVER! This means that the RFA is misaligned!
128 */
129 #define RFA_ALIGNMENT_FUDGE 2
130
131 /*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero. Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139 const u_int8_t fxp_cb_config_template[] = {
140 0x0, 0x0, /* cb_status */
141 0x0, 0x0, /* cb_command */
142 0x0, 0x0, 0x0, 0x0, /* link_addr */
143 0x0, /* 0 */
144 0x0, /* 1 */
145 0x0, /* 2 */
146 0x0, /* 3 */
147 0x0, /* 4 */
148 0x0, /* 5 */
149 0x32, /* 6 */
150 0x0, /* 7 */
151 0x0, /* 8 */
152 0x0, /* 9 */
153 0x6, /* 10 */
154 0x0, /* 11 */
155 0x0, /* 12 */
156 0x0, /* 13 */
157 0xf2, /* 14 */
158 0x48, /* 15 */
159 0x0, /* 16 */
160 0x40, /* 17 */
161 0xf0, /* 18 */
162 0x0, /* 19 */
163 0x3f, /* 20 */
164 0x5, /* 21 */
165 0x0, /* 22 */
166 0x0, /* 23 */
167 0x0, /* 24 */
168 0x0, /* 25 */
169 0x0, /* 26 */
170 0x0, /* 27 */
171 0x0, /* 28 */
172 0x0, /* 29 */
173 0x0, /* 30 */
174 0x0, /* 31 */
175 };
176
177 void fxp_mii_initmedia(struct fxp_softc *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, void *);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 int fxp_rxintr(struct fxp_softc *);
192
193 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
194
195 void fxp_rxdrain(struct fxp_softc *);
196 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197 int fxp_mdi_read(struct device *, int, int);
198 void fxp_statchg(struct device *);
199 void fxp_mdi_write(struct device *, int, int, int);
200 void fxp_autosize_eeprom(struct fxp_softc*);
201 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_eeprom_update_cksum(struct fxp_softc *);
204 void fxp_get_info(struct fxp_softc *, u_int8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207 void fxp_load_ucode(struct fxp_softc *);
208
209 int fxp_copy_small = 0;
210
211 /*
212 * Variables for interrupt mitigating microcode.
213 */
214 int fxp_int_delay = 1000; /* usec */
215 int fxp_bundle_max = 6; /* packets */
216
217 struct fxp_phytype {
218 int fp_phy; /* type of PHY, -1 for MII at the end. */
219 void (*fp_init)(struct fxp_softc *);
220 } fxp_phytype_table[] = {
221 { FXP_PHY_80C24, fxp_80c24_initmedia },
222 { -1, fxp_mii_initmedia },
223 };
224
225 /*
226 * Set initial transmit threshold at 64 (512 bytes). This is
227 * increased by 64 (512 bytes) at a time, to maximum of 192
228 * (1536 bytes), if an underrun occurs.
229 */
230 static int tx_threshold = 64;
231
232 /*
233 * Wait for the previous command to be accepted (but not necessarily
234 * completed).
235 */
236 static inline void
237 fxp_scb_wait(struct fxp_softc *sc)
238 {
239 int i = 10000;
240
241 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
242 delay(2);
243 if (i == 0)
244 log(LOG_WARNING,
245 "%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
246 }
247
248 /*
249 * Submit a command to the i82557.
250 */
251 static inline void
252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253 {
254
255 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256 }
257
258 /*
259 * Finish attaching an i82557 interface. Called by bus-specific front-end.
260 */
261 void
262 fxp_attach(struct fxp_softc *sc)
263 {
264 u_int8_t enaddr[ETHER_ADDR_LEN];
265 struct ifnet *ifp;
266 bus_dma_segment_t seg;
267 int rseg, i, error;
268 struct fxp_phytype *fp;
269
270 callout_init(&sc->sc_callout, 0);
271
272 /*
273 * Enable some good stuff on i82558 and later.
274 */
275 if (sc->sc_rev >= FXP_REV_82558_A4) {
276 /* Enable the extended TxCB. */
277 sc->sc_flags |= FXPF_EXT_TXCB;
278 }
279
280 /*
281 * Enable use of extended RFDs and TCBs for 82550
282 * and later chips. Note: we need extended TXCB support
283 * too, but that's already enabled by the code above.
284 * Be careful to do this only on the right devices.
285 */
286 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
287 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
288 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
289 } else {
290 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
291 }
292
293 sc->sc_rfa_size =
294 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
295
296 /*
297 * Allocate the control data structures, and create and load the
298 * DMA map for it.
299 */
300 if ((error = bus_dmamem_alloc(sc->sc_dmat,
301 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
302 0)) != 0) {
303 aprint_error(
304 "%s: unable to allocate control data, error = %d\n",
305 sc->sc_dev.dv_xname, error);
306 goto fail_0;
307 }
308
309 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
310 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
311 BUS_DMA_COHERENT)) != 0) {
312 aprint_error("%s: unable to map control data, error = %d\n",
313 sc->sc_dev.dv_xname, error);
314 goto fail_1;
315 }
316 sc->sc_cdseg = seg;
317 sc->sc_cdnseg = rseg;
318
319 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
320
321 if ((error = bus_dmamap_create(sc->sc_dmat,
322 sizeof(struct fxp_control_data), 1,
323 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
324 aprint_error("%s: unable to create control data DMA map, "
325 "error = %d\n", sc->sc_dev.dv_xname, error);
326 goto fail_2;
327 }
328
329 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
330 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
331 0)) != 0) {
332 aprint_error(
333 "%s: can't load control data DMA map, error = %d\n",
334 sc->sc_dev.dv_xname, error);
335 goto fail_3;
336 }
337
338 /*
339 * Create the transmit buffer DMA maps.
340 */
341 for (i = 0; i < FXP_NTXCB; i++) {
342 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
343 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
344 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
345 aprint_error("%s: unable to create tx DMA map %d, "
346 "error = %d\n", sc->sc_dev.dv_xname, i, error);
347 goto fail_4;
348 }
349 }
350
351 /*
352 * Create the receive buffer DMA maps.
353 */
354 for (i = 0; i < FXP_NRFABUFS; i++) {
355 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
356 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
357 aprint_error("%s: unable to create rx DMA map %d, "
358 "error = %d\n", sc->sc_dev.dv_xname, i, error);
359 goto fail_5;
360 }
361 }
362
363 /* Initialize MAC address and media structures. */
364 fxp_get_info(sc, enaddr);
365
366 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
367 ether_sprintf(enaddr));
368
369 ifp = &sc->sc_ethercom.ec_if;
370
371 /*
372 * Get info about our media interface, and initialize it. Note
373 * the table terminates itself with a phy of -1, indicating
374 * that we're using MII.
375 */
376 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
377 if (fp->fp_phy == sc->phy_primary_device)
378 break;
379 (*fp->fp_init)(sc);
380
381 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
382 ifp->if_softc = sc;
383 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
384 ifp->if_ioctl = fxp_ioctl;
385 ifp->if_start = fxp_start;
386 ifp->if_watchdog = fxp_watchdog;
387 ifp->if_init = fxp_init;
388 ifp->if_stop = fxp_stop;
389 IFQ_SET_READY(&ifp->if_snd);
390
391 if (sc->sc_flags & FXPF_IPCB) {
392 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
393 /*
394 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
395 * at least, on i82550 rev.12.
396 * specifically, it doesn't calculate ipv4 checksum correctly
397 * when sending 20 byte ipv4 header + 1 or 2 byte data.
398 * FreeBSD driver has related comments.
399 */
400 ifp->if_capabilities =
401 IFCAP_CSUM_IPv4_Rx |
402 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
403 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
404 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
405 }
406
407 /*
408 * We can support 802.1Q VLAN-sized frames.
409 */
410 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
411
412 /*
413 * Attach the interface.
414 */
415 if_attach(ifp);
416 ether_ifattach(ifp, enaddr);
417 #if NRND > 0
418 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
419 RND_TYPE_NET, 0);
420 #endif
421
422 #ifdef FXP_EVENT_COUNTERS
423 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
424 NULL, sc->sc_dev.dv_xname, "txstall");
425 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
426 NULL, sc->sc_dev.dv_xname, "txintr");
427 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
428 NULL, sc->sc_dev.dv_xname, "rxintr");
429 if (sc->sc_rev >= FXP_REV_82558_A4) {
430 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
431 NULL, sc->sc_dev.dv_xname, "txpause");
432 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
433 NULL, sc->sc_dev.dv_xname, "rxpause");
434 }
435 #endif /* FXP_EVENT_COUNTERS */
436
437 /* The attach is successful. */
438 sc->sc_flags |= FXPF_ATTACHED;
439
440 return;
441
442 /*
443 * Free any resources we've allocated during the failed attach
444 * attempt. Do this in reverse order and fall though.
445 */
446 fail_5:
447 for (i = 0; i < FXP_NRFABUFS; i++) {
448 if (sc->sc_rxmaps[i] != NULL)
449 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
450 }
451 fail_4:
452 for (i = 0; i < FXP_NTXCB; i++) {
453 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
454 bus_dmamap_destroy(sc->sc_dmat,
455 FXP_DSTX(sc, i)->txs_dmamap);
456 }
457 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
458 fail_3:
459 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
460 fail_2:
461 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
462 sizeof(struct fxp_control_data));
463 fail_1:
464 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
465 fail_0:
466 return;
467 }
468
469 void
470 fxp_mii_initmedia(struct fxp_softc *sc)
471 {
472 int flags;
473
474 sc->sc_flags |= FXPF_MII;
475
476 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
477 sc->sc_mii.mii_readreg = fxp_mdi_read;
478 sc->sc_mii.mii_writereg = fxp_mdi_write;
479 sc->sc_mii.mii_statchg = fxp_statchg;
480
481 sc->sc_ethercom.ec_mii = &sc->sc_mii;
482 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
483 fxp_mii_mediastatus);
484
485 flags = MIIF_NOISOLATE;
486 if (sc->sc_rev >= FXP_REV_82558_A4)
487 flags |= MIIF_DOPAUSE;
488 /*
489 * The i82557 wedges if all of its PHYs are isolated!
490 */
491 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
492 MII_OFFSET_ANY, flags);
493 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
495 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
496 } else
497 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
498 }
499
500 void
501 fxp_80c24_initmedia(struct fxp_softc *sc)
502 {
503
504 /*
505 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
506 * doesn't have a programming interface of any sort. The
507 * media is sensed automatically based on how the link partner
508 * is configured. This is, in essence, manual configuration.
509 */
510 aprint_normal("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
511 sc->sc_dev.dv_xname);
512 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
513 fxp_80c24_mediastatus);
514 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
515 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
516 }
517
518 /*
519 * Initialize the interface media.
520 */
521 void
522 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
523 {
524 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
525
526 /*
527 * Reset to a stable state.
528 */
529 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
530 DELAY(100);
531
532 sc->sc_eeprom_size = 0;
533 fxp_autosize_eeprom(sc);
534 if (sc->sc_eeprom_size == 0) {
535 aprint_error("%s: failed to detect EEPROM size\n",
536 sc->sc_dev.dv_xname);
537 sc->sc_eeprom_size = 6; /* XXX panic here? */
538 }
539 #ifdef DEBUG
540 aprint_debug("%s: detected %d word EEPROM\n",
541 sc->sc_dev.dv_xname, 1 << sc->sc_eeprom_size);
542 #endif
543
544 /*
545 * Get info about the primary PHY
546 */
547 fxp_read_eeprom(sc, &data, 6, 1);
548 sc->phy_primary_device =
549 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
550
551 /*
552 * Read MAC address.
553 */
554 fxp_read_eeprom(sc, myea, 0, 3);
555 enaddr[0] = myea[0] & 0xff;
556 enaddr[1] = myea[0] >> 8;
557 enaddr[2] = myea[1] & 0xff;
558 enaddr[3] = myea[1] >> 8;
559 enaddr[4] = myea[2] & 0xff;
560 enaddr[5] = myea[2] >> 8;
561
562 /*
563 * Systems based on the ICH2/ICH2-M chip from Intel, as well
564 * as some i82559 designs, have a defect where the chip can
565 * cause a PCI protocol violation if it receives a CU_RESUME
566 * command when it is entering the IDLE state.
567 *
568 * The work-around is to disable Dynamic Standby Mode, so that
569 * the chip never deasserts #CLKRUN, and always remains in the
570 * active state.
571 *
572 * Unfortunately, the only way to disable Dynamic Standby is
573 * to frob an EEPROM setting and reboot (the EEPROM setting
574 * is only consulted when the PCI bus comes out of reset).
575 *
576 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
577 */
578 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
579 fxp_read_eeprom(sc, &data, 10, 1);
580 if (data & 0x02) { /* STB enable */
581 aprint_error("%s: WARNING: "
582 "Disabling dynamic standby mode in EEPROM "
583 "to work around a\n",
584 sc->sc_dev.dv_xname);
585 aprint_normal(
586 "%s: WARNING: hardware bug. You must reset "
587 "the system before using this\n",
588 sc->sc_dev.dv_xname);
589 aprint_normal("%s: WARNING: interface.\n",
590 sc->sc_dev.dv_xname);
591 data &= ~0x02;
592 fxp_write_eeprom(sc, &data, 10, 1);
593 aprint_normal("%s: new EEPROM ID: 0x%04x\n",
594 sc->sc_dev.dv_xname, data);
595 fxp_eeprom_update_cksum(sc);
596 }
597 }
598
599 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
600 /* Due to false positives we make it conditional on setting link1 */
601 fxp_read_eeprom(sc, &data, 3, 1);
602 if ((data & 0x03) != 0x03) {
603 aprint_verbose("%s: May need receiver lock-up workaround\n",
604 sc->sc_dev.dv_xname);
605 }
606 }
607
608 static void
609 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
610 {
611 uint16_t reg;
612 int x;
613
614 for (x = 1 << (len - 1); x != 0; x >>= 1) {
615 DELAY(40);
616 if (data & x)
617 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
618 else
619 reg = FXP_EEPROM_EECS;
620 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
621 DELAY(40);
622 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
623 reg | FXP_EEPROM_EESK);
624 DELAY(40);
625 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
626 }
627 DELAY(40);
628 }
629
630 /*
631 * Figure out EEPROM size.
632 *
633 * 559's can have either 64-word or 256-word EEPROMs, the 558
634 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
635 * talks about the existence of 16 to 256 word EEPROMs.
636 *
637 * The only known sizes are 64 and 256, where the 256 version is used
638 * by CardBus cards to store CIS information.
639 *
640 * The address is shifted in msb-to-lsb, and after the last
641 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
642 * after which follows the actual data. We try to detect this zero, by
643 * probing the data-out bit in the EEPROM control register just after
644 * having shifted in a bit. If the bit is zero, we assume we've
645 * shifted enough address bits. The data-out should be tri-state,
646 * before this, which should translate to a logical one.
647 *
648 * Other ways to do this would be to try to read a register with known
649 * contents with a varying number of address bits, but no such
650 * register seem to be available. The high bits of register 10 are 01
651 * on the 558 and 559, but apparently not on the 557.
652 *
653 * The Linux driver computes a checksum on the EEPROM data, but the
654 * value of this checksum is not very well documented.
655 */
656
657 void
658 fxp_autosize_eeprom(struct fxp_softc *sc)
659 {
660 int x;
661
662 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
663 DELAY(40);
664
665 /* Shift in read opcode. */
666 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
667
668 /*
669 * Shift in address, wait for the dummy zero following a correct
670 * address shift.
671 */
672 for (x = 1; x <= 8; x++) {
673 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
674 DELAY(40);
675 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
676 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
677 DELAY(40);
678 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
679 FXP_EEPROM_EEDO) == 0)
680 break;
681 DELAY(40);
682 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
683 DELAY(40);
684 }
685 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
686 DELAY(40);
687 if (x != 6 && x != 8) {
688 #ifdef DEBUG
689 printf("%s: strange EEPROM size (%d)\n",
690 sc->sc_dev.dv_xname, 1 << x);
691 #endif
692 } else
693 sc->sc_eeprom_size = x;
694 }
695
696 /*
697 * Read from the serial EEPROM. Basically, you manually shift in
698 * the read opcode (one bit at a time) and then shift in the address,
699 * and then you shift out the data (all of this one bit at a time).
700 * The word size is 16 bits, so you have to provide the address for
701 * every 16 bits of data.
702 */
703 void
704 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
705 {
706 u_int16_t reg;
707 int i, x;
708
709 for (i = 0; i < words; i++) {
710 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
711
712 /* Shift in read opcode. */
713 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
714
715 /* Shift in address. */
716 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
717
718 reg = FXP_EEPROM_EECS;
719 data[i] = 0;
720
721 /* Shift out data. */
722 for (x = 16; x > 0; x--) {
723 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
724 reg | FXP_EEPROM_EESK);
725 DELAY(40);
726 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
727 FXP_EEPROM_EEDO)
728 data[i] |= (1 << (x - 1));
729 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
730 DELAY(40);
731 }
732 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
733 DELAY(40);
734 }
735 }
736
737 /*
738 * Write data to the serial EEPROM.
739 */
740 void
741 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
742 {
743 int i, j;
744
745 for (i = 0; i < words; i++) {
746 /* Erase/write enable. */
747 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
748 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
749 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
750 sc->sc_eeprom_size);
751 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
752 DELAY(4);
753
754 /* Shift in write opcode, address, data. */
755 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
756 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
757 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
758 fxp_eeprom_shiftin(sc, data[i], 16);
759 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
760 DELAY(4);
761
762 /* Wait for the EEPROM to finish up. */
763 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
764 DELAY(4);
765 for (j = 0; j < 1000; j++) {
766 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
767 FXP_EEPROM_EEDO)
768 break;
769 DELAY(50);
770 }
771 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
772 DELAY(4);
773
774 /* Erase/write disable. */
775 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
776 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
777 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
778 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
779 DELAY(4);
780 }
781 }
782
783 /*
784 * Update the checksum of the EEPROM.
785 */
786 void
787 fxp_eeprom_update_cksum(struct fxp_softc *sc)
788 {
789 int i;
790 uint16_t data, cksum;
791
792 cksum = 0;
793 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
794 fxp_read_eeprom(sc, &data, i, 1);
795 cksum += data;
796 }
797 i = (1 << sc->sc_eeprom_size) - 1;
798 cksum = 0xbaba - cksum;
799 fxp_read_eeprom(sc, &data, i, 1);
800 fxp_write_eeprom(sc, &cksum, i, 1);
801 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
802 sc->sc_dev.dv_xname, i, data, cksum);
803 }
804
805 /*
806 * Start packet transmission on the interface.
807 */
808 void
809 fxp_start(struct ifnet *ifp)
810 {
811 struct fxp_softc *sc = ifp->if_softc;
812 struct mbuf *m0, *m;
813 struct fxp_txdesc *txd;
814 struct fxp_txsoft *txs;
815 bus_dmamap_t dmamap;
816 int error, lasttx, nexttx, opending, seg;
817
818 /*
819 * If we want a re-init, bail out now.
820 */
821 if (sc->sc_flags & FXPF_WANTINIT) {
822 ifp->if_flags |= IFF_OACTIVE;
823 return;
824 }
825
826 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
827 return;
828
829 /*
830 * Remember the previous txpending and the current lasttx.
831 */
832 opending = sc->sc_txpending;
833 lasttx = sc->sc_txlast;
834
835 /*
836 * Loop through the send queue, setting up transmit descriptors
837 * until we drain the queue, or use up all available transmit
838 * descriptors.
839 */
840 for (;;) {
841 struct fxp_tbd *tbdp;
842 int csum_flags;
843
844 /*
845 * Grab a packet off the queue.
846 */
847 IFQ_POLL(&ifp->if_snd, m0);
848 if (m0 == NULL)
849 break;
850 m = NULL;
851
852 if (sc->sc_txpending == FXP_NTXCB - 1) {
853 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
854 break;
855 }
856
857 /*
858 * Get the next available transmit descriptor.
859 */
860 nexttx = FXP_NEXTTX(sc->sc_txlast);
861 txd = FXP_CDTX(sc, nexttx);
862 txs = FXP_DSTX(sc, nexttx);
863 dmamap = txs->txs_dmamap;
864
865 /*
866 * Load the DMA map. If this fails, the packet either
867 * didn't fit in the allotted number of frags, or we were
868 * short on resources. In this case, we'll copy and try
869 * again.
870 */
871 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
872 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
873 MGETHDR(m, M_DONTWAIT, MT_DATA);
874 if (m == NULL) {
875 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
876 sc->sc_dev.dv_xname);
877 break;
878 }
879 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
880 if (m0->m_pkthdr.len > MHLEN) {
881 MCLGET(m, M_DONTWAIT);
882 if ((m->m_flags & M_EXT) == 0) {
883 log(LOG_ERR,
884 "%s: unable to allocate Tx "
885 "cluster\n", sc->sc_dev.dv_xname);
886 m_freem(m);
887 break;
888 }
889 }
890 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
891 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
892 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
893 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
894 if (error) {
895 log(LOG_ERR, "%s: unable to load Tx buffer, "
896 "error = %d\n", sc->sc_dev.dv_xname, error);
897 break;
898 }
899 }
900
901 IFQ_DEQUEUE(&ifp->if_snd, m0);
902 csum_flags = m0->m_pkthdr.csum_flags;
903 if (m != NULL) {
904 m_freem(m0);
905 m0 = m;
906 }
907
908 /* Initialize the fraglist. */
909 tbdp = txd->txd_tbd;
910 if (sc->sc_flags & FXPF_IPCB)
911 tbdp++;
912 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
913 tbdp[seg].tb_addr =
914 htole32(dmamap->dm_segs[seg].ds_addr);
915 tbdp[seg].tb_size =
916 htole32(dmamap->dm_segs[seg].ds_len);
917 }
918
919 /* Sync the DMA map. */
920 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
921 BUS_DMASYNC_PREWRITE);
922
923 /*
924 * Store a pointer to the packet so we can free it later.
925 */
926 txs->txs_mbuf = m0;
927
928 /*
929 * Initialize the transmit descriptor.
930 */
931 /* BIG_ENDIAN: no need to swap to store 0 */
932 txd->txd_txcb.cb_status = 0;
933 txd->txd_txcb.cb_command =
934 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
935 txd->txd_txcb.tx_threshold = tx_threshold;
936 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
937
938 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
939 if (sc->sc_flags & FXPF_IPCB) {
940 struct m_tag *vtag;
941 struct fxp_ipcb *ipcb;
942 /*
943 * Deal with TCP/IP checksum offload. Note that
944 * in order for TCP checksum offload to work,
945 * the pseudo header checksum must have already
946 * been computed and stored in the checksum field
947 * in the TCP header. The stack should have
948 * already done this for us.
949 */
950 ipcb = &txd->txd_u.txdu_ipcb;
951 memset(ipcb, 0, sizeof(*ipcb));
952 /*
953 * always do hardware parsing.
954 */
955 ipcb->ipcb_ip_activation_high =
956 FXP_IPCB_HARDWAREPARSING_ENABLE;
957 /*
958 * ip checksum offloading.
959 */
960 if (csum_flags & M_CSUM_IPv4) {
961 ipcb->ipcb_ip_schedule |=
962 FXP_IPCB_IP_CHECKSUM_ENABLE;
963 }
964 /*
965 * TCP/UDP checksum offloading.
966 */
967 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
968 ipcb->ipcb_ip_schedule |=
969 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
970 }
971
972 /*
973 * request VLAN tag insertion if needed.
974 */
975 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
976 if (vtag) {
977 ipcb->ipcb_vlan_id =
978 htobe16(*(u_int *)(vtag + 1));
979 ipcb->ipcb_ip_activation_high |=
980 FXP_IPCB_INSERTVLAN_ENABLE;
981 }
982 } else {
983 KASSERT((csum_flags &
984 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
985 }
986
987 FXP_CDTXSYNC(sc, nexttx,
988 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
989
990 /* Advance the tx pointer. */
991 sc->sc_txpending++;
992 sc->sc_txlast = nexttx;
993
994 #if NBPFILTER > 0
995 /*
996 * Pass packet to bpf if there is a listener.
997 */
998 if (ifp->if_bpf)
999 bpf_mtap(ifp->if_bpf, m0);
1000 #endif
1001 }
1002
1003 if (sc->sc_txpending == FXP_NTXCB - 1) {
1004 /* No more slots; notify upper layer. */
1005 ifp->if_flags |= IFF_OACTIVE;
1006 }
1007
1008 if (sc->sc_txpending != opending) {
1009 /*
1010 * We enqueued packets. If the transmitter was idle,
1011 * reset the txdirty pointer.
1012 */
1013 if (opending == 0)
1014 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1015
1016 /*
1017 * Cause the chip to interrupt and suspend command
1018 * processing once the last packet we've enqueued
1019 * has been transmitted.
1020 *
1021 * To avoid a race between updating status bits
1022 * by the fxp chip and clearing command bits
1023 * by this function on machines which don't have
1024 * atomic methods to clear/set bits in memory
1025 * smaller than 32bits (both cb_status and cb_command
1026 * members are uint16_t and in the same 32bit word),
1027 * we have to prepare a dummy TX descriptor which has
1028 * NOP command and just causes a TX completion interrupt.
1029 */
1030 sc->sc_txpending++;
1031 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1032 txd = FXP_CDTX(sc, sc->sc_txlast);
1033 /* BIG_ENDIAN: no need to swap to store 0 */
1034 txd->txd_txcb.cb_status = 0;
1035 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1036 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1037 FXP_CDTXSYNC(sc, sc->sc_txlast,
1038 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1039
1040 /*
1041 * The entire packet chain is set up. Clear the suspend bit
1042 * on the command prior to the first packet we set up.
1043 */
1044 FXP_CDTXSYNC(sc, lasttx,
1045 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1046 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1047 htole16(~FXP_CB_COMMAND_S);
1048 FXP_CDTXSYNC(sc, lasttx,
1049 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1050
1051 /*
1052 * Issue a Resume command in case the chip was suspended.
1053 */
1054 fxp_scb_wait(sc);
1055 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1056
1057 /* Set a watchdog timer in case the chip flakes out. */
1058 ifp->if_timer = 5;
1059 }
1060 }
1061
1062 /*
1063 * Process interface interrupts.
1064 */
1065 int
1066 fxp_intr(void *arg)
1067 {
1068 struct fxp_softc *sc = arg;
1069 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1070 bus_dmamap_t rxmap;
1071 int claimed = 0, rnr;
1072 u_int8_t statack;
1073
1074 if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1075 return (0);
1076 /*
1077 * If the interface isn't running, don't try to
1078 * service the interrupt.. just ack it and bail.
1079 */
1080 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1081 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1082 if (statack) {
1083 claimed = 1;
1084 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1085 }
1086 return (claimed);
1087 }
1088
1089 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1090 claimed = 1;
1091
1092 /*
1093 * First ACK all the interrupts in this pass.
1094 */
1095 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1096
1097 /*
1098 * Process receiver interrupts. If a no-resource (RNR)
1099 * condition exists, get whatever packets we can and
1100 * re-start the receiver.
1101 */
1102 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1103 1 : 0;
1104 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1105 FXP_SCB_STATACK_SWI)) {
1106 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1107 rnr |= fxp_rxintr(sc);
1108 }
1109
1110 /*
1111 * Free any finished transmit mbuf chains.
1112 */
1113 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1114 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1115 fxp_txintr(sc);
1116
1117 /*
1118 * Try to get more packets going.
1119 */
1120 fxp_start(ifp);
1121
1122 if (sc->sc_txpending == 0) {
1123 /*
1124 * If we want a re-init, do that now.
1125 */
1126 if (sc->sc_flags & FXPF_WANTINIT)
1127 (void) fxp_init(ifp);
1128 }
1129 }
1130
1131 if (rnr) {
1132 fxp_scb_wait(sc);
1133 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1134 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1135 fxp_scb_wait(sc);
1136 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1137 rxmap->dm_segs[0].ds_addr +
1138 RFA_ALIGNMENT_FUDGE);
1139 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1140 }
1141 }
1142
1143 #if NRND > 0
1144 if (claimed)
1145 rnd_add_uint32(&sc->rnd_source, statack);
1146 #endif
1147 return (claimed);
1148 }
1149
1150 /*
1151 * Handle transmit completion interrupts.
1152 */
1153 void
1154 fxp_txintr(struct fxp_softc *sc)
1155 {
1156 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1157 struct fxp_txdesc *txd;
1158 struct fxp_txsoft *txs;
1159 int i;
1160 u_int16_t txstat;
1161
1162 ifp->if_flags &= ~IFF_OACTIVE;
1163 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1164 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1165 txd = FXP_CDTX(sc, i);
1166 txs = FXP_DSTX(sc, i);
1167
1168 FXP_CDTXSYNC(sc, i,
1169 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1170
1171 /* skip dummy NOP TX descriptor */
1172 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1173 == FXP_CB_COMMAND_NOP)
1174 continue;
1175
1176 txstat = le16toh(txd->txd_txcb.cb_status);
1177
1178 if ((txstat & FXP_CB_STATUS_C) == 0)
1179 break;
1180
1181 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1182 0, txs->txs_dmamap->dm_mapsize,
1183 BUS_DMASYNC_POSTWRITE);
1184 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1185 m_freem(txs->txs_mbuf);
1186 txs->txs_mbuf = NULL;
1187 }
1188
1189 /* Update the dirty transmit buffer pointer. */
1190 sc->sc_txdirty = i;
1191
1192 /*
1193 * Cancel the watchdog timer if there are no pending
1194 * transmissions.
1195 */
1196 if (sc->sc_txpending == 0)
1197 ifp->if_timer = 0;
1198 }
1199
1200 /*
1201 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1202 */
1203
1204 int
1205 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1206 {
1207 u_int16_t rxparsestat;
1208 u_int16_t csum_stat;
1209 u_int32_t csum_data;
1210 int csum_flags;
1211
1212 /*
1213 * check VLAN tag stripping.
1214 */
1215
1216 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1217 struct m_tag *vtag;
1218
1219 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1220 if (vtag == NULL)
1221 return ENOMEM;
1222 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1223 m_tag_prepend(m, vtag);
1224 }
1225
1226 /*
1227 * check H/W Checksumming.
1228 */
1229
1230 csum_stat = le16toh(rfa->cksum_stat);
1231 rxparsestat = le16toh(rfa->rx_parse_stat);
1232 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1233 return 0;
1234
1235 csum_flags = 0;
1236 csum_data = 0;
1237
1238 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1239 csum_flags = M_CSUM_IPv4;
1240 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1241 csum_flags |= M_CSUM_IPv4_BAD;
1242 }
1243
1244 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1245 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1246 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1247 csum_flags |= M_CSUM_TCP_UDP_BAD;
1248 }
1249
1250 m->m_pkthdr.csum_flags = csum_flags;
1251 m->m_pkthdr.csum_data = csum_data;
1252
1253 return 0;
1254 }
1255
1256 /*
1257 * Handle receive interrupts.
1258 */
1259 int
1260 fxp_rxintr(struct fxp_softc *sc)
1261 {
1262 struct ethercom *ec = &sc->sc_ethercom;
1263 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1264 struct mbuf *m, *m0;
1265 bus_dmamap_t rxmap;
1266 struct fxp_rfa *rfa;
1267 int rnr;
1268 u_int16_t len, rxstat;
1269
1270 rnr = 0;
1271
1272 for (;;) {
1273 m = sc->sc_rxq.ifq_head;
1274 rfa = FXP_MTORFA(m);
1275 rxmap = M_GETCTX(m, bus_dmamap_t);
1276
1277 FXP_RFASYNC(sc, m,
1278 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1279
1280 rxstat = le16toh(rfa->rfa_status);
1281
1282 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1283 rnr = 1;
1284
1285 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1286 /*
1287 * We have processed all of the
1288 * receive buffers.
1289 */
1290 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1291 return rnr;
1292 }
1293
1294 IF_DEQUEUE(&sc->sc_rxq, m);
1295
1296 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1297
1298 len = le16toh(rfa->actual_size) &
1299 (m->m_ext.ext_size - 1);
1300
1301 if (len < sizeof(struct ether_header)) {
1302 /*
1303 * Runt packet; drop it now.
1304 */
1305 FXP_INIT_RFABUF(sc, m);
1306 continue;
1307 }
1308
1309 /*
1310 * If support for 802.1Q VLAN sized frames is
1311 * enabled, we need to do some additional error
1312 * checking (as we are saving bad frames, in
1313 * order to receive the larger ones).
1314 */
1315 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1316 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1317 FXP_RFA_STATUS_RNR|
1318 FXP_RFA_STATUS_ALIGN|
1319 FXP_RFA_STATUS_CRC)) != 0) {
1320 FXP_INIT_RFABUF(sc, m);
1321 continue;
1322 }
1323
1324 /* Do checksum checking. */
1325 m->m_pkthdr.csum_flags = 0;
1326 if (sc->sc_flags & FXPF_EXT_RFA)
1327 if (fxp_rx_hwcksum(m, rfa))
1328 goto dropit;
1329
1330 /*
1331 * If the packet is small enough to fit in a
1332 * single header mbuf, allocate one and copy
1333 * the data into it. This greatly reduces
1334 * memory consumption when we receive lots
1335 * of small packets.
1336 *
1337 * Otherwise, we add a new buffer to the receive
1338 * chain. If this fails, we drop the packet and
1339 * recycle the old buffer.
1340 */
1341 if (fxp_copy_small != 0 && len <= MHLEN) {
1342 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1343 if (m0 == NULL)
1344 goto dropit;
1345 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1346 memcpy(mtod(m0, void *),
1347 mtod(m, void *), len);
1348 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1349 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1350 FXP_INIT_RFABUF(sc, m);
1351 m = m0;
1352 } else {
1353 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1354 dropit:
1355 ifp->if_ierrors++;
1356 FXP_INIT_RFABUF(sc, m);
1357 continue;
1358 }
1359 }
1360
1361 m->m_pkthdr.rcvif = ifp;
1362 m->m_pkthdr.len = m->m_len = len;
1363
1364 #if NBPFILTER > 0
1365 /*
1366 * Pass this up to any BPF listeners, but only
1367 * pass it up the stack if it's for us.
1368 */
1369 if (ifp->if_bpf)
1370 bpf_mtap(ifp->if_bpf, m);
1371 #endif
1372
1373 /* Pass it on. */
1374 (*ifp->if_input)(ifp, m);
1375 }
1376 }
1377
1378 /*
1379 * Update packet in/out/collision statistics. The i82557 doesn't
1380 * allow you to access these counters without doing a fairly
1381 * expensive DMA to get _all_ of the statistics it maintains, so
1382 * we do this operation here only once per second. The statistics
1383 * counters in the kernel are updated from the previous dump-stats
1384 * DMA and then a new dump-stats DMA is started. The on-chip
1385 * counters are zeroed when the DMA completes. If we can't start
1386 * the DMA immediately, we don't wait - we just prepare to read
1387 * them again next time.
1388 */
1389 void
1390 fxp_tick(void *arg)
1391 {
1392 struct fxp_softc *sc = arg;
1393 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1394 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1395 int s;
1396
1397 if (!device_is_active(&sc->sc_dev))
1398 return;
1399
1400 s = splnet();
1401
1402 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1403
1404 ifp->if_opackets += le32toh(sp->tx_good);
1405 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1406 if (sp->rx_good) {
1407 ifp->if_ipackets += le32toh(sp->rx_good);
1408 sc->sc_rxidle = 0;
1409 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1410 sc->sc_rxidle++;
1411 }
1412 ifp->if_ierrors +=
1413 le32toh(sp->rx_crc_errors) +
1414 le32toh(sp->rx_alignment_errors) +
1415 le32toh(sp->rx_rnr_errors) +
1416 le32toh(sp->rx_overrun_errors);
1417 /*
1418 * If any transmit underruns occurred, bump up the transmit
1419 * threshold by another 512 bytes (64 * 8).
1420 */
1421 if (sp->tx_underruns) {
1422 ifp->if_oerrors += le32toh(sp->tx_underruns);
1423 if (tx_threshold < 192)
1424 tx_threshold += 64;
1425 }
1426 #ifdef FXP_EVENT_COUNTERS
1427 if (sc->sc_rev >= FXP_REV_82558_A4) {
1428 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1429 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1430 }
1431 #endif
1432
1433 /*
1434 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1435 * then assume the receiver has locked up and attempt to clear
1436 * the condition by reprogramming the multicast filter (actually,
1437 * resetting the interface). This is a work-around for a bug in
1438 * the 82557 where the receiver locks up if it gets certain types
1439 * of garbage in the synchronization bits prior to the packet header.
1440 * This bug is supposed to only occur in 10Mbps mode, but has been
1441 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1442 * speed transition).
1443 */
1444 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1445 (void) fxp_init(ifp);
1446 splx(s);
1447 return;
1448 }
1449 /*
1450 * If there is no pending command, start another stats
1451 * dump. Otherwise punt for now.
1452 */
1453 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1454 /*
1455 * Start another stats dump.
1456 */
1457 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1458 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1459 } else {
1460 /*
1461 * A previous command is still waiting to be accepted.
1462 * Just zero our copy of the stats and wait for the
1463 * next timer event to update them.
1464 */
1465 /* BIG_ENDIAN: no swap required to store 0 */
1466 sp->tx_good = 0;
1467 sp->tx_underruns = 0;
1468 sp->tx_total_collisions = 0;
1469
1470 sp->rx_good = 0;
1471 sp->rx_crc_errors = 0;
1472 sp->rx_alignment_errors = 0;
1473 sp->rx_rnr_errors = 0;
1474 sp->rx_overrun_errors = 0;
1475 if (sc->sc_rev >= FXP_REV_82558_A4) {
1476 sp->tx_pauseframes = 0;
1477 sp->rx_pauseframes = 0;
1478 }
1479 }
1480
1481 if (sc->sc_flags & FXPF_MII) {
1482 /* Tick the MII clock. */
1483 mii_tick(&sc->sc_mii);
1484 }
1485
1486 splx(s);
1487
1488 /*
1489 * Schedule another timeout one second from now.
1490 */
1491 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1492 }
1493
1494 /*
1495 * Drain the receive queue.
1496 */
1497 void
1498 fxp_rxdrain(struct fxp_softc *sc)
1499 {
1500 bus_dmamap_t rxmap;
1501 struct mbuf *m;
1502
1503 for (;;) {
1504 IF_DEQUEUE(&sc->sc_rxq, m);
1505 if (m == NULL)
1506 break;
1507 rxmap = M_GETCTX(m, bus_dmamap_t);
1508 bus_dmamap_unload(sc->sc_dmat, rxmap);
1509 FXP_RXMAP_PUT(sc, rxmap);
1510 m_freem(m);
1511 }
1512 }
1513
1514 /*
1515 * Stop the interface. Cancels the statistics updater and resets
1516 * the interface.
1517 */
1518 void
1519 fxp_stop(struct ifnet *ifp, int disable)
1520 {
1521 struct fxp_softc *sc = ifp->if_softc;
1522 struct fxp_txsoft *txs;
1523 int i;
1524
1525 /*
1526 * Turn down interface (done early to avoid bad interactions
1527 * between panics, shutdown hooks, and the watchdog timer)
1528 */
1529 ifp->if_timer = 0;
1530 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1531
1532 /*
1533 * Cancel stats updater.
1534 */
1535 callout_stop(&sc->sc_callout);
1536 if (sc->sc_flags & FXPF_MII) {
1537 /* Down the MII. */
1538 mii_down(&sc->sc_mii);
1539 }
1540
1541 /*
1542 * Issue software reset. This unloads any microcode that
1543 * might already be loaded.
1544 */
1545 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1546 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1547 DELAY(50);
1548
1549 /*
1550 * Release any xmit buffers.
1551 */
1552 for (i = 0; i < FXP_NTXCB; i++) {
1553 txs = FXP_DSTX(sc, i);
1554 if (txs->txs_mbuf != NULL) {
1555 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1556 m_freem(txs->txs_mbuf);
1557 txs->txs_mbuf = NULL;
1558 }
1559 }
1560 sc->sc_txpending = 0;
1561
1562 if (disable) {
1563 fxp_rxdrain(sc);
1564 fxp_disable(sc);
1565 }
1566
1567 }
1568
1569 /*
1570 * Watchdog/transmission transmit timeout handler. Called when a
1571 * transmission is started on the interface, but no interrupt is
1572 * received before the timeout. This usually indicates that the
1573 * card has wedged for some reason.
1574 */
1575 void
1576 fxp_watchdog(struct ifnet *ifp)
1577 {
1578 struct fxp_softc *sc = ifp->if_softc;
1579
1580 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1581 ifp->if_oerrors++;
1582
1583 (void) fxp_init(ifp);
1584 }
1585
1586 /*
1587 * Initialize the interface. Must be called at splnet().
1588 */
1589 int
1590 fxp_init(struct ifnet *ifp)
1591 {
1592 struct fxp_softc *sc = ifp->if_softc;
1593 struct fxp_cb_config *cbp;
1594 struct fxp_cb_ias *cb_ias;
1595 struct fxp_txdesc *txd;
1596 bus_dmamap_t rxmap;
1597 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1598
1599 if ((error = fxp_enable(sc)) != 0)
1600 goto out;
1601
1602 /*
1603 * Cancel any pending I/O
1604 */
1605 fxp_stop(ifp, 0);
1606
1607 /*
1608 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1609 * flag, and this prevents the MII from detaching resulting in
1610 * a panic. The flags field should perhaps be split in runtime
1611 * flags and more static information. For now, just clear the
1612 * only other flag set.
1613 */
1614
1615 sc->sc_flags &= ~FXPF_WANTINIT;
1616
1617 /*
1618 * Initialize base of CBL and RFA memory. Loading with zero
1619 * sets it up for regular linear addressing.
1620 */
1621 fxp_scb_wait(sc);
1622 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1623 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1624
1625 fxp_scb_wait(sc);
1626 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1627
1628 /*
1629 * Initialize the multicast filter. Do this now, since we might
1630 * have to setup the config block differently.
1631 */
1632 fxp_mc_setup(sc);
1633
1634 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1635 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1636
1637 /*
1638 * In order to support receiving 802.1Q VLAN frames, we have to
1639 * enable "save bad frames", since they are 4 bytes larger than
1640 * the normal Ethernet maximum frame length. On i82558 and later,
1641 * we have a better mechanism for this.
1642 */
1643 save_bf = 0;
1644 lrxen = 0;
1645 vlan_drop = 0;
1646 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1647 if (sc->sc_rev < FXP_REV_82558_A4)
1648 save_bf = 1;
1649 else
1650 lrxen = 1;
1651 if (sc->sc_rev >= FXP_REV_82550)
1652 vlan_drop = 1;
1653 }
1654
1655 /*
1656 * Initialize base of dump-stats buffer.
1657 */
1658 fxp_scb_wait(sc);
1659 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1660 sc->sc_cddma + FXP_CDSTATSOFF);
1661 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1662 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1663
1664 cbp = &sc->sc_control_data->fcd_configcb;
1665 memset(cbp, 0, sizeof(struct fxp_cb_config));
1666
1667 /*
1668 * Load microcode for this controller.
1669 */
1670 fxp_load_ucode(sc);
1671
1672 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1673 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1674 else
1675 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1676
1677 /*
1678 * This copy is kind of disgusting, but there are a bunch of must be
1679 * zero and must be one bits in this structure and this is the easiest
1680 * way to initialize them all to proper values.
1681 */
1682 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1683
1684 /* BIG_ENDIAN: no need to swap to store 0 */
1685 cbp->cb_status = 0;
1686 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1687 FXP_CB_COMMAND_EL);
1688 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1689 cbp->link_addr = 0xffffffff; /* (no) next command */
1690 /* bytes in config block */
1691 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1692 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1693 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1694 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1695 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1696 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1697 cbp->type_enable = 0; /* actually reserved */
1698 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1699 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1700 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1701 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1702 cbp->dma_mbce = 0; /* (disable) dma max counters */
1703 cbp->late_scb = 0; /* (don't) defer SCB update */
1704 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1705 cbp->ci_int = 1; /* interrupt on CU idle */
1706 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1707 cbp->ext_stats_dis = 1; /* disable extended counters */
1708 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1709 cbp->save_bf = save_bf;/* save bad frames */
1710 cbp->disc_short_rx = !prm; /* discard short packets */
1711 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1712 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1713 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1714 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1715 /* interface mode */
1716 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1717 cbp->csma_dis = 0; /* (don't) disable link */
1718 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1719 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1720 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1721 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1722 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1723 cbp->nsai = 1; /* (don't) disable source addr insert */
1724 cbp->preamble_length = 2; /* (7 byte) preamble */
1725 cbp->loopback = 0; /* (don't) loopback */
1726 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1727 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1728 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1729 cbp->promiscuous = prm; /* promiscuous mode */
1730 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1731 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1732 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1733 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1734 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1735 cbp->stripping = !prm; /* truncate rx packet to byte count */
1736 cbp->padding = 1; /* (do) pad short tx packets */
1737 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1738 cbp->long_rx_en = lrxen; /* long packet receive enable */
1739 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1740 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1741 /* must set wake_en in PMCSR also */
1742 cbp->force_fdx = 0; /* (don't) force full duplex */
1743 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1744 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1745 cbp->mc_all = allm; /* accept all multicasts */
1746 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1747 cbp->vlan_drop_en = vlan_drop;
1748
1749 if (sc->sc_rev < FXP_REV_82558_A4) {
1750 /*
1751 * The i82557 has no hardware flow control, the values
1752 * here are the defaults for the chip.
1753 */
1754 cbp->fc_delay_lsb = 0;
1755 cbp->fc_delay_msb = 0x40;
1756 cbp->pri_fc_thresh = 3;
1757 cbp->tx_fc_dis = 0;
1758 cbp->rx_fc_restop = 0;
1759 cbp->rx_fc_restart = 0;
1760 cbp->fc_filter = 0;
1761 cbp->pri_fc_loc = 1;
1762 } else {
1763 cbp->fc_delay_lsb = 0x1f;
1764 cbp->fc_delay_msb = 0x01;
1765 cbp->pri_fc_thresh = 3;
1766 cbp->tx_fc_dis = 0; /* enable transmit FC */
1767 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1768 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1769 cbp->fc_filter = !prm; /* drop FC frames to host */
1770 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1771 cbp->ext_stats_dis = 0; /* enable extended stats */
1772 }
1773
1774 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1775
1776 /*
1777 * Start the config command/DMA.
1778 */
1779 fxp_scb_wait(sc);
1780 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1781 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1782 /* ...and wait for it to complete. */
1783 i = 1000;
1784 do {
1785 FXP_CDCONFIGSYNC(sc,
1786 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1787 DELAY(1);
1788 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1789 if (i == 0) {
1790 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1791 sc->sc_dev.dv_xname, __LINE__);
1792 return (ETIMEDOUT);
1793 }
1794
1795 /*
1796 * Initialize the station address.
1797 */
1798 cb_ias = &sc->sc_control_data->fcd_iascb;
1799 /* BIG_ENDIAN: no need to swap to store 0 */
1800 cb_ias->cb_status = 0;
1801 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1802 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1803 cb_ias->link_addr = 0xffffffff;
1804 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1805
1806 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1807
1808 /*
1809 * Start the IAS (Individual Address Setup) command/DMA.
1810 */
1811 fxp_scb_wait(sc);
1812 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1813 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1814 /* ...and wait for it to complete. */
1815 i = 1000;
1816 do {
1817 FXP_CDIASSYNC(sc,
1818 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1819 DELAY(1);
1820 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1821 if (i == 0) {
1822 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1823 sc->sc_dev.dv_xname, __LINE__);
1824 return (ETIMEDOUT);
1825 }
1826
1827 /*
1828 * Initialize the transmit descriptor ring. txlast is initialized
1829 * to the end of the list so that it will wrap around to the first
1830 * descriptor when the first packet is transmitted.
1831 */
1832 for (i = 0; i < FXP_NTXCB; i++) {
1833 txd = FXP_CDTX(sc, i);
1834 memset(txd, 0, sizeof(*txd));
1835 txd->txd_txcb.cb_command =
1836 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1837 txd->txd_txcb.link_addr =
1838 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1839 if (sc->sc_flags & FXPF_EXT_TXCB)
1840 txd->txd_txcb.tbd_array_addr =
1841 htole32(FXP_CDTBDADDR(sc, i) +
1842 (2 * sizeof(struct fxp_tbd)));
1843 else
1844 txd->txd_txcb.tbd_array_addr =
1845 htole32(FXP_CDTBDADDR(sc, i));
1846 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1847 }
1848 sc->sc_txpending = 0;
1849 sc->sc_txdirty = 0;
1850 sc->sc_txlast = FXP_NTXCB - 1;
1851
1852 /*
1853 * Initialize the receive buffer list.
1854 */
1855 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1856 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1857 rxmap = FXP_RXMAP_GET(sc);
1858 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1859 log(LOG_ERR, "%s: unable to allocate or map rx "
1860 "buffer %d, error = %d\n",
1861 sc->sc_dev.dv_xname,
1862 sc->sc_rxq.ifq_len, error);
1863 /*
1864 * XXX Should attempt to run with fewer receive
1865 * XXX buffers instead of just failing.
1866 */
1867 FXP_RXMAP_PUT(sc, rxmap);
1868 fxp_rxdrain(sc);
1869 goto out;
1870 }
1871 }
1872 sc->sc_rxidle = 0;
1873
1874 /*
1875 * Give the transmit ring to the chip. We do this by pointing
1876 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1877 * issuing a start command. It will execute the NOP and then
1878 * suspend, pointing at the first descriptor.
1879 */
1880 fxp_scb_wait(sc);
1881 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1882 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1883
1884 /*
1885 * Initialize receiver buffer area - RFA.
1886 */
1887 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1888 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1889 fxp_scb_wait(sc);
1890 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1891 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1892 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1893 #endif
1894
1895 if (sc->sc_flags & FXPF_MII) {
1896 /*
1897 * Set current media.
1898 */
1899 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1900 goto out;
1901 }
1902
1903 /*
1904 * ...all done!
1905 */
1906 ifp->if_flags |= IFF_RUNNING;
1907 ifp->if_flags &= ~IFF_OACTIVE;
1908
1909 /*
1910 * Request a software generated interrupt that will be used to
1911 * (re)start the RU processing. If we direct the chip to start
1912 * receiving from the start of queue now, instead of letting the
1913 * interrupt handler first process all received packets, we run
1914 * the risk of having it overwrite mbuf clusters while they are
1915 * being processed or after they have been returned to the pool.
1916 */
1917 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1918
1919 /*
1920 * Start the one second timer.
1921 */
1922 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1923
1924 /*
1925 * Attempt to start output on the interface.
1926 */
1927 fxp_start(ifp);
1928
1929 out:
1930 if (error) {
1931 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1932 ifp->if_timer = 0;
1933 log(LOG_ERR, "%s: interface not running\n",
1934 sc->sc_dev.dv_xname);
1935 }
1936 return (error);
1937 }
1938
1939 /*
1940 * Notify the world which media we're using.
1941 */
1942 void
1943 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1944 {
1945 struct fxp_softc *sc = ifp->if_softc;
1946
1947 if (sc->sc_enabled == 0) {
1948 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1949 ifmr->ifm_status = 0;
1950 return;
1951 }
1952
1953 ether_mediastatus(ifp, ifmr);
1954
1955 /*
1956 * XXX Flow control is always turned on if the chip supports
1957 * XXX it; we can't easily control it dynamically, since it
1958 * XXX requires sending a setup packet.
1959 */
1960 if (sc->sc_rev >= FXP_REV_82558_A4)
1961 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1962 }
1963
1964 int
1965 fxp_80c24_mediachange(struct ifnet *ifp)
1966 {
1967
1968 /* Nothing to do here. */
1969 return (0);
1970 }
1971
1972 void
1973 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1974 {
1975 struct fxp_softc *sc = ifp->if_softc;
1976
1977 /*
1978 * Media is currently-selected media. We cannot determine
1979 * the link status.
1980 */
1981 ifmr->ifm_status = 0;
1982 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1983 }
1984
1985 /*
1986 * Add a buffer to the end of the RFA buffer list.
1987 * Return 0 if successful, error code on failure.
1988 *
1989 * The RFA struct is stuck at the beginning of mbuf cluster and the
1990 * data pointer is fixed up to point just past it.
1991 */
1992 int
1993 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1994 {
1995 struct mbuf *m;
1996 int error;
1997
1998 MGETHDR(m, M_DONTWAIT, MT_DATA);
1999 if (m == NULL)
2000 return (ENOBUFS);
2001
2002 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2003 MCLGET(m, M_DONTWAIT);
2004 if ((m->m_flags & M_EXT) == 0) {
2005 m_freem(m);
2006 return (ENOBUFS);
2007 }
2008
2009 if (unload)
2010 bus_dmamap_unload(sc->sc_dmat, rxmap);
2011
2012 M_SETCTX(m, rxmap);
2013
2014 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2015 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2016 BUS_DMA_READ|BUS_DMA_NOWAIT);
2017 if (error) {
2018 /* XXX XXX XXX */
2019 printf("%s: can't load rx DMA map %d, error = %d\n",
2020 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
2021 panic("fxp_add_rfabuf");
2022 }
2023
2024 FXP_INIT_RFABUF(sc, m);
2025
2026 return (0);
2027 }
2028
2029 int
2030 fxp_mdi_read(struct device *self, int phy, int reg)
2031 {
2032 struct fxp_softc *sc = (struct fxp_softc *)self;
2033 int count = 10000;
2034 int value;
2035
2036 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2037 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2038
2039 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2040 0x10000000) == 0 && count--)
2041 DELAY(10);
2042
2043 if (count <= 0)
2044 log(LOG_WARNING,
2045 "%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
2046
2047 return (value & 0xffff);
2048 }
2049
2050 void
2051 fxp_statchg(struct device *self)
2052 {
2053
2054 /* Nothing to do. */
2055 }
2056
2057 void
2058 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2059 {
2060 struct fxp_softc *sc = (struct fxp_softc *)self;
2061 int count = 10000;
2062
2063 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2064 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2065 (value & 0xffff));
2066
2067 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2068 count--)
2069 DELAY(10);
2070
2071 if (count <= 0)
2072 log(LOG_WARNING,
2073 "%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
2074 }
2075
2076 int
2077 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2078 {
2079 struct fxp_softc *sc = ifp->if_softc;
2080 struct ifreq *ifr = (struct ifreq *)data;
2081 int s, error;
2082
2083 s = splnet();
2084
2085 switch (cmd) {
2086 case SIOCSIFMEDIA:
2087 case SIOCGIFMEDIA:
2088 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2089 break;
2090
2091 default:
2092 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2093 break;
2094
2095 error = 0;
2096
2097 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2098 ;
2099 else if (ifp->if_flags & IFF_RUNNING) {
2100 /*
2101 * Multicast list has changed; set the
2102 * hardware filter accordingly.
2103 */
2104 if (sc->sc_txpending) {
2105 sc->sc_flags |= FXPF_WANTINIT;
2106 } else
2107 error = fxp_init(ifp);
2108 }
2109 break;
2110 }
2111
2112 /* Try to get more packets going. */
2113 if (sc->sc_enabled)
2114 fxp_start(ifp);
2115
2116 splx(s);
2117 return (error);
2118 }
2119
2120 /*
2121 * Program the multicast filter.
2122 *
2123 * This function must be called at splnet().
2124 */
2125 void
2126 fxp_mc_setup(struct fxp_softc *sc)
2127 {
2128 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2129 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2130 struct ethercom *ec = &sc->sc_ethercom;
2131 struct ether_multi *enm;
2132 struct ether_multistep step;
2133 int count, nmcasts;
2134
2135 #ifdef DIAGNOSTIC
2136 if (sc->sc_txpending)
2137 panic("fxp_mc_setup: pending transmissions");
2138 #endif
2139
2140 ifp->if_flags &= ~IFF_ALLMULTI;
2141
2142 /*
2143 * Initialize multicast setup descriptor.
2144 */
2145 nmcasts = 0;
2146 ETHER_FIRST_MULTI(step, ec, enm);
2147 while (enm != NULL) {
2148 /*
2149 * Check for too many multicast addresses or if we're
2150 * listening to a range. Either way, we simply have
2151 * to accept all multicasts.
2152 */
2153 if (nmcasts >= MAXMCADDR ||
2154 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2155 ETHER_ADDR_LEN) != 0) {
2156 /*
2157 * Callers of this function must do the
2158 * right thing with this. If we're called
2159 * from outside fxp_init(), the caller must
2160 * detect if the state if IFF_ALLMULTI changes.
2161 * If it does, the caller must then call
2162 * fxp_init(), since allmulti is handled by
2163 * the config block.
2164 */
2165 ifp->if_flags |= IFF_ALLMULTI;
2166 return;
2167 }
2168 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2169 ETHER_ADDR_LEN);
2170 nmcasts++;
2171 ETHER_NEXT_MULTI(step, enm);
2172 }
2173
2174 /* BIG_ENDIAN: no need to swap to store 0 */
2175 mcsp->cb_status = 0;
2176 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2177 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2178 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2179
2180 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2181
2182 /*
2183 * Wait until the command unit is not active. This should never
2184 * happen since nothing is queued, but make sure anyway.
2185 */
2186 count = 100;
2187 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2188 FXP_SCB_CUS_ACTIVE && --count)
2189 DELAY(1);
2190 if (count == 0) {
2191 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2192 sc->sc_dev.dv_xname, __LINE__);
2193 return;
2194 }
2195
2196 /*
2197 * Start the multicast setup command/DMA.
2198 */
2199 fxp_scb_wait(sc);
2200 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2201 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2202
2203 /* ...and wait for it to complete. */
2204 count = 1000;
2205 do {
2206 FXP_CDMCSSYNC(sc,
2207 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2208 DELAY(1);
2209 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2210 if (count == 0) {
2211 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2212 sc->sc_dev.dv_xname, __LINE__);
2213 return;
2214 }
2215 }
2216
2217 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2218 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2219 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2220 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2221 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2222 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2223
2224 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2225
2226 static const struct ucode {
2227 int32_t revision;
2228 const uint32_t *ucode;
2229 size_t length;
2230 uint16_t int_delay_offset;
2231 uint16_t bundle_max_offset;
2232 } ucode_table[] = {
2233 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2234 D101_CPUSAVER_DWORD, 0 },
2235
2236 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2237 D101_CPUSAVER_DWORD, 0 },
2238
2239 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2240 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2241
2242 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2243 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2244
2245 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2246 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2247
2248 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2249 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2250
2251 { 0, NULL, 0, 0, 0 }
2252 };
2253
2254 void
2255 fxp_load_ucode(struct fxp_softc *sc)
2256 {
2257 const struct ucode *uc;
2258 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2259 int count, i;
2260
2261 if (sc->sc_flags & FXPF_UCODE_LOADED)
2262 return;
2263
2264 /*
2265 * Only load the uCode if the user has requested that
2266 * we do so.
2267 */
2268 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2269 sc->sc_int_delay = 0;
2270 sc->sc_bundle_max = 0;
2271 return;
2272 }
2273
2274 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2275 if (sc->sc_rev == uc->revision)
2276 break;
2277 }
2278 if (uc->ucode == NULL)
2279 return;
2280
2281 /* BIG ENDIAN: no need to swap to store 0 */
2282 cbp->cb_status = 0;
2283 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2284 cbp->link_addr = 0xffffffff; /* (no) next command */
2285 for (i = 0; i < uc->length; i++)
2286 cbp->ucode[i] = htole32(uc->ucode[i]);
2287
2288 if (uc->int_delay_offset)
2289 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2290 htole16(fxp_int_delay + (fxp_int_delay / 2));
2291
2292 if (uc->bundle_max_offset)
2293 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2294 htole16(fxp_bundle_max);
2295
2296 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2297
2298 /*
2299 * Download the uCode to the chip.
2300 */
2301 fxp_scb_wait(sc);
2302 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2303 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2304
2305 /* ...and wait for it to complete. */
2306 count = 10000;
2307 do {
2308 FXP_CDUCODESYNC(sc,
2309 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2310 DELAY(2);
2311 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2312 if (count == 0) {
2313 sc->sc_int_delay = 0;
2314 sc->sc_bundle_max = 0;
2315 log(LOG_WARNING, "%s: timeout loading microcode\n",
2316 sc->sc_dev.dv_xname);
2317 return;
2318 }
2319
2320 if (sc->sc_int_delay != fxp_int_delay ||
2321 sc->sc_bundle_max != fxp_bundle_max) {
2322 sc->sc_int_delay = fxp_int_delay;
2323 sc->sc_bundle_max = fxp_bundle_max;
2324 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2325 "max bundle: %d\n", sc->sc_dev.dv_xname,
2326 sc->sc_int_delay,
2327 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2328 }
2329
2330 sc->sc_flags |= FXPF_UCODE_LOADED;
2331 }
2332
2333 int
2334 fxp_enable(struct fxp_softc *sc)
2335 {
2336
2337 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2338 if ((*sc->sc_enable)(sc) != 0) {
2339 log(LOG_ERR, "%s: device enable failed\n",
2340 sc->sc_dev.dv_xname);
2341 return (EIO);
2342 }
2343 }
2344
2345 sc->sc_enabled = 1;
2346 return (0);
2347 }
2348
2349 void
2350 fxp_disable(struct fxp_softc *sc)
2351 {
2352
2353 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2354 (*sc->sc_disable)(sc);
2355 sc->sc_enabled = 0;
2356 }
2357 }
2358
2359 /*
2360 * fxp_activate:
2361 *
2362 * Handle device activation/deactivation requests.
2363 */
2364 int
2365 fxp_activate(struct device *self, enum devact act)
2366 {
2367 struct fxp_softc *sc = (void *) self;
2368 int s, error = 0;
2369
2370 s = splnet();
2371 switch (act) {
2372 case DVACT_ACTIVATE:
2373 error = EOPNOTSUPP;
2374 break;
2375
2376 case DVACT_DEACTIVATE:
2377 if (sc->sc_flags & FXPF_MII)
2378 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2379 MII_OFFSET_ANY);
2380 if_deactivate(&sc->sc_ethercom.ec_if);
2381 break;
2382 }
2383 splx(s);
2384
2385 return (error);
2386 }
2387
2388 /*
2389 * fxp_detach:
2390 *
2391 * Detach an i82557 interface.
2392 */
2393 int
2394 fxp_detach(struct fxp_softc *sc)
2395 {
2396 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2397 int i;
2398
2399 /* Succeed now if there's no work to do. */
2400 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2401 return (0);
2402
2403 /* Unhook our tick handler. */
2404 callout_stop(&sc->sc_callout);
2405
2406 if (sc->sc_flags & FXPF_MII) {
2407 /* Detach all PHYs */
2408 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2409 }
2410
2411 /* Delete all remaining media. */
2412 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2413
2414 #if NRND > 0
2415 rnd_detach_source(&sc->rnd_source);
2416 #endif
2417 ether_ifdetach(ifp);
2418 if_detach(ifp);
2419
2420 for (i = 0; i < FXP_NRFABUFS; i++) {
2421 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2422 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2423 }
2424
2425 for (i = 0; i < FXP_NTXCB; i++) {
2426 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2427 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2428 }
2429
2430 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2431 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2432 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2433 sizeof(struct fxp_control_data));
2434 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2435
2436 return (0);
2437 }
2438