i82557.c revision 1.111.6.3 1 /* $NetBSD: i82557.c,v 1.111.6.3 2009/01/17 13:28:55 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice unmodified, this list of conditions, and the following
43 * disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61 */
62
63 /*
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.111.6.3 2009/01/17 13:28:55 mjf Exp $");
70
71 #include "bpfilter.h"
72 #include "rnd.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/device.h>
84 #include <sys/syslog.h>
85
86 #include <machine/endian.h>
87
88 #include <uvm/uvm_extern.h>
89
90 #if NRND > 0
91 #include <sys/rnd.h>
92 #endif
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #endif
102
103 #include <sys/bus.h>
104 #include <sys/intr.h>
105
106 #include <dev/mii/miivar.h>
107
108 #include <dev/ic/i82557reg.h>
109 #include <dev/ic/i82557var.h>
110
111 #include <dev/microcode/i8255x/rcvbundl.h>
112
113 /*
114 * NOTE! On the Alpha, we have an alignment constraint. The
115 * card DMAs the packet immediately following the RFA. However,
116 * the first thing in the packet is a 14-byte Ethernet header.
117 * This means that the packet is misaligned. To compensate,
118 * we actually offset the RFA 2 bytes into the cluster. This
119 * alignes the packet after the Ethernet header at a 32-bit
120 * boundary. HOWEVER! This means that the RFA is misaligned!
121 */
122 #define RFA_ALIGNMENT_FUDGE 2
123
124 /*
125 * The configuration byte map has several undefined fields which
126 * must be one or must be zero. Set up a template for these bits
127 * only (assuming an i82557 chip), leaving the actual configuration
128 * for fxp_init().
129 *
130 * See the definition of struct fxp_cb_config for the bit definitions.
131 */
132 const u_int8_t fxp_cb_config_template[] = {
133 0x0, 0x0, /* cb_status */
134 0x0, 0x0, /* cb_command */
135 0x0, 0x0, 0x0, 0x0, /* link_addr */
136 0x0, /* 0 */
137 0x0, /* 1 */
138 0x0, /* 2 */
139 0x0, /* 3 */
140 0x0, /* 4 */
141 0x0, /* 5 */
142 0x32, /* 6 */
143 0x0, /* 7 */
144 0x0, /* 8 */
145 0x0, /* 9 */
146 0x6, /* 10 */
147 0x0, /* 11 */
148 0x0, /* 12 */
149 0x0, /* 13 */
150 0xf2, /* 14 */
151 0x48, /* 15 */
152 0x0, /* 16 */
153 0x40, /* 17 */
154 0xf0, /* 18 */
155 0x0, /* 19 */
156 0x3f, /* 20 */
157 0x5, /* 21 */
158 0x0, /* 22 */
159 0x0, /* 23 */
160 0x0, /* 24 */
161 0x0, /* 25 */
162 0x0, /* 26 */
163 0x0, /* 27 */
164 0x0, /* 28 */
165 0x0, /* 29 */
166 0x0, /* 30 */
167 0x0, /* 31 */
168 };
169
170 void fxp_mii_initmedia(struct fxp_softc *);
171 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
172
173 void fxp_80c24_initmedia(struct fxp_softc *);
174 int fxp_80c24_mediachange(struct ifnet *);
175 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
176
177 void fxp_start(struct ifnet *);
178 int fxp_ioctl(struct ifnet *, u_long, void *);
179 void fxp_watchdog(struct ifnet *);
180 int fxp_init(struct ifnet *);
181 void fxp_stop(struct ifnet *, int);
182
183 void fxp_txintr(struct fxp_softc *);
184 int fxp_rxintr(struct fxp_softc *);
185
186 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
187
188 void fxp_rxdrain(struct fxp_softc *);
189 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
190 int fxp_mdi_read(device_t, int, int);
191 void fxp_statchg(device_t);
192 void fxp_mdi_write(device_t, int, int, int);
193 void fxp_autosize_eeprom(struct fxp_softc*);
194 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
195 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
196 void fxp_eeprom_update_cksum(struct fxp_softc *);
197 void fxp_get_info(struct fxp_softc *, u_int8_t *);
198 void fxp_tick(void *);
199 void fxp_mc_setup(struct fxp_softc *);
200 void fxp_load_ucode(struct fxp_softc *);
201
202 int fxp_copy_small = 0;
203
204 /*
205 * Variables for interrupt mitigating microcode.
206 */
207 int fxp_int_delay = 1000; /* usec */
208 int fxp_bundle_max = 6; /* packets */
209
210 struct fxp_phytype {
211 int fp_phy; /* type of PHY, -1 for MII at the end. */
212 void (*fp_init)(struct fxp_softc *);
213 } fxp_phytype_table[] = {
214 { FXP_PHY_80C24, fxp_80c24_initmedia },
215 { -1, fxp_mii_initmedia },
216 };
217
218 /*
219 * Set initial transmit threshold at 64 (512 bytes). This is
220 * increased by 64 (512 bytes) at a time, to maximum of 192
221 * (1536 bytes), if an underrun occurs.
222 */
223 static int tx_threshold = 64;
224
225 /*
226 * Wait for the previous command to be accepted (but not necessarily
227 * completed).
228 */
229 static inline void
230 fxp_scb_wait(struct fxp_softc *sc)
231 {
232 int i = 10000;
233
234 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
235 delay(2);
236 if (i == 0)
237 log(LOG_WARNING,
238 "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
239 }
240
241 /*
242 * Submit a command to the i82557.
243 */
244 static inline void
245 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
246 {
247
248 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
249 }
250
251 /*
252 * Finish attaching an i82557 interface. Called by bus-specific front-end.
253 */
254 void
255 fxp_attach(struct fxp_softc *sc)
256 {
257 u_int8_t enaddr[ETHER_ADDR_LEN];
258 struct ifnet *ifp;
259 bus_dma_segment_t seg;
260 int rseg, i, error;
261 struct fxp_phytype *fp;
262
263 callout_init(&sc->sc_callout, 0);
264
265 /*
266 * Enable some good stuff on i82558 and later.
267 */
268 if (sc->sc_rev >= FXP_REV_82558_A4) {
269 /* Enable the extended TxCB. */
270 sc->sc_flags |= FXPF_EXT_TXCB;
271 }
272
273 /*
274 * Enable use of extended RFDs and TCBs for 82550
275 * and later chips. Note: we need extended TXCB support
276 * too, but that's already enabled by the code above.
277 * Be careful to do this only on the right devices.
278 */
279 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
280 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
281 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
282 } else {
283 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
284 }
285
286 sc->sc_rfa_size =
287 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
288
289 /*
290 * Allocate the control data structures, and create and load the
291 * DMA map for it.
292 */
293 if ((error = bus_dmamem_alloc(sc->sc_dmat,
294 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
295 0)) != 0) {
296 aprint_error_dev(sc->sc_dev,
297 "unable to allocate control data, error = %d\n",
298 error);
299 goto fail_0;
300 }
301
302 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
303 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
304 BUS_DMA_COHERENT)) != 0) {
305 aprint_error_dev(sc->sc_dev,
306 "unable to map control data, error = %d\n", error);
307 goto fail_1;
308 }
309 sc->sc_cdseg = seg;
310 sc->sc_cdnseg = rseg;
311
312 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
313
314 if ((error = bus_dmamap_create(sc->sc_dmat,
315 sizeof(struct fxp_control_data), 1,
316 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
317 aprint_error_dev(sc->sc_dev,
318 "unable to create control data DMA map, error = %d\n",
319 error);
320 goto fail_2;
321 }
322
323 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
324 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
325 0)) != 0) {
326 aprint_error_dev(sc->sc_dev,
327 "can't load control data DMA map, error = %d\n",
328 error);
329 goto fail_3;
330 }
331
332 /*
333 * Create the transmit buffer DMA maps.
334 */
335 for (i = 0; i < FXP_NTXCB; i++) {
336 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
337 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
338 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
339 aprint_error_dev(sc->sc_dev,
340 "unable to create tx DMA map %d, error = %d\n",
341 i, error);
342 goto fail_4;
343 }
344 }
345
346 /*
347 * Create the receive buffer DMA maps.
348 */
349 for (i = 0; i < FXP_NRFABUFS; i++) {
350 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
351 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
352 aprint_error_dev(sc->sc_dev,
353 "unable to create rx DMA map %d, error = %d\n",
354 i, error);
355 goto fail_5;
356 }
357 }
358
359 /* Initialize MAC address and media structures. */
360 fxp_get_info(sc, enaddr);
361
362 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
363 ether_sprintf(enaddr));
364
365 ifp = &sc->sc_ethercom.ec_if;
366
367 /*
368 * Get info about our media interface, and initialize it. Note
369 * the table terminates itself with a phy of -1, indicating
370 * that we're using MII.
371 */
372 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
373 if (fp->fp_phy == sc->phy_primary_device)
374 break;
375 (*fp->fp_init)(sc);
376
377 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
378 ifp->if_softc = sc;
379 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
380 ifp->if_ioctl = fxp_ioctl;
381 ifp->if_start = fxp_start;
382 ifp->if_watchdog = fxp_watchdog;
383 ifp->if_init = fxp_init;
384 ifp->if_stop = fxp_stop;
385 IFQ_SET_READY(&ifp->if_snd);
386
387 if (sc->sc_flags & FXPF_IPCB) {
388 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
389 /*
390 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
391 * at least, on i82550 rev.12.
392 * specifically, it doesn't set ipv4 checksum properly
393 * when sending UDP (and probably TCP) packets with
394 * 20 byte ipv4 header + 1 or 2 byte data,
395 * though ICMP packets seem working.
396 * FreeBSD driver has related comments.
397 * We've added a workaround to handle the bug by padding
398 * such packets manually.
399 */
400 ifp->if_capabilities =
401 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
402 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
403 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
404 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
405 }
406
407 /*
408 * We can support 802.1Q VLAN-sized frames.
409 */
410 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
411
412 /*
413 * Attach the interface.
414 */
415 if_attach(ifp);
416 ether_ifattach(ifp, enaddr);
417 #if NRND > 0
418 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
419 RND_TYPE_NET, 0);
420 #endif
421
422 #ifdef FXP_EVENT_COUNTERS
423 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
424 NULL, device_xname(sc->sc_dev), "txstall");
425 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
426 NULL, device_xname(sc->sc_dev), "txintr");
427 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
428 NULL, device_xname(sc->sc_dev), "rxintr");
429 if (sc->sc_rev >= FXP_REV_82558_A4) {
430 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
431 NULL, device_xname(sc->sc_dev), "txpause");
432 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
433 NULL, device_xname(sc->sc_dev), "rxpause");
434 }
435 #endif /* FXP_EVENT_COUNTERS */
436
437 /* The attach is successful. */
438 sc->sc_flags |= FXPF_ATTACHED;
439
440 return;
441
442 /*
443 * Free any resources we've allocated during the failed attach
444 * attempt. Do this in reverse order and fall though.
445 */
446 fail_5:
447 for (i = 0; i < FXP_NRFABUFS; i++) {
448 if (sc->sc_rxmaps[i] != NULL)
449 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
450 }
451 fail_4:
452 for (i = 0; i < FXP_NTXCB; i++) {
453 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
454 bus_dmamap_destroy(sc->sc_dmat,
455 FXP_DSTX(sc, i)->txs_dmamap);
456 }
457 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
458 fail_3:
459 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
460 fail_2:
461 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
462 sizeof(struct fxp_control_data));
463 fail_1:
464 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
465 fail_0:
466 return;
467 }
468
469 void
470 fxp_mii_initmedia(struct fxp_softc *sc)
471 {
472 int flags;
473
474 sc->sc_flags |= FXPF_MII;
475
476 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
477 sc->sc_mii.mii_readreg = fxp_mdi_read;
478 sc->sc_mii.mii_writereg = fxp_mdi_write;
479 sc->sc_mii.mii_statchg = fxp_statchg;
480
481 sc->sc_ethercom.ec_mii = &sc->sc_mii;
482 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
483 fxp_mii_mediastatus);
484
485 flags = MIIF_NOISOLATE;
486 if (sc->sc_rev >= FXP_REV_82558_A4)
487 flags |= MIIF_DOPAUSE;
488 /*
489 * The i82557 wedges if all of its PHYs are isolated!
490 */
491 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
492 MII_OFFSET_ANY, flags);
493 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
495 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
496 } else
497 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
498 }
499
500 void
501 fxp_80c24_initmedia(struct fxp_softc *sc)
502 {
503
504 /*
505 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
506 * doesn't have a programming interface of any sort. The
507 * media is sensed automatically based on how the link partner
508 * is configured. This is, in essence, manual configuration.
509 */
510 aprint_normal_dev(sc->sc_dev,
511 "Seeq 80c24 AutoDUPLEX media interface present\n");
512 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
513 fxp_80c24_mediastatus);
514 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
515 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
516 }
517
518 /*
519 * Initialize the interface media.
520 */
521 void
522 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
523 {
524 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
525
526 /*
527 * Reset to a stable state.
528 */
529 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
530 DELAY(100);
531
532 sc->sc_eeprom_size = 0;
533 fxp_autosize_eeprom(sc);
534 if (sc->sc_eeprom_size == 0) {
535 aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
536 sc->sc_eeprom_size = 6; /* XXX panic here? */
537 }
538 #ifdef DEBUG
539 aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
540 1 << sc->sc_eeprom_size);
541 #endif
542
543 /*
544 * Get info about the primary PHY
545 */
546 fxp_read_eeprom(sc, &data, 6, 1);
547 sc->phy_primary_device =
548 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
549
550 /*
551 * Read MAC address.
552 */
553 fxp_read_eeprom(sc, myea, 0, 3);
554 enaddr[0] = myea[0] & 0xff;
555 enaddr[1] = myea[0] >> 8;
556 enaddr[2] = myea[1] & 0xff;
557 enaddr[3] = myea[1] >> 8;
558 enaddr[4] = myea[2] & 0xff;
559 enaddr[5] = myea[2] >> 8;
560
561 /*
562 * Systems based on the ICH2/ICH2-M chip from Intel, as well
563 * as some i82559 designs, have a defect where the chip can
564 * cause a PCI protocol violation if it receives a CU_RESUME
565 * command when it is entering the IDLE state.
566 *
567 * The work-around is to disable Dynamic Standby Mode, so that
568 * the chip never deasserts #CLKRUN, and always remains in the
569 * active state.
570 *
571 * Unfortunately, the only way to disable Dynamic Standby is
572 * to frob an EEPROM setting and reboot (the EEPROM setting
573 * is only consulted when the PCI bus comes out of reset).
574 *
575 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
576 */
577 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
578 fxp_read_eeprom(sc, &data, 10, 1);
579 if (data & 0x02) { /* STB enable */
580 aprint_error_dev(sc->sc_dev, "WARNING: "
581 "Disabling dynamic standby mode in EEPROM "
582 "to work around a\n");
583 aprint_normal_dev(sc->sc_dev,
584 "WARNING: hardware bug. You must reset "
585 "the system before using this\n");
586 aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
587 data &= ~0x02;
588 fxp_write_eeprom(sc, &data, 10, 1);
589 aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
590 data);
591 fxp_eeprom_update_cksum(sc);
592 }
593 }
594
595 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
596 /* Due to false positives we make it conditional on setting link1 */
597 fxp_read_eeprom(sc, &data, 3, 1);
598 if ((data & 0x03) != 0x03) {
599 aprint_verbose_dev(sc->sc_dev,
600 "May need receiver lock-up workaround\n");
601 }
602 }
603
604 static void
605 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
606 {
607 uint16_t reg;
608 int x;
609
610 for (x = 1 << (len - 1); x != 0; x >>= 1) {
611 DELAY(40);
612 if (data & x)
613 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
614 else
615 reg = FXP_EEPROM_EECS;
616 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
617 DELAY(40);
618 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
619 reg | FXP_EEPROM_EESK);
620 DELAY(40);
621 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
622 }
623 DELAY(40);
624 }
625
626 /*
627 * Figure out EEPROM size.
628 *
629 * 559's can have either 64-word or 256-word EEPROMs, the 558
630 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
631 * talks about the existence of 16 to 256 word EEPROMs.
632 *
633 * The only known sizes are 64 and 256, where the 256 version is used
634 * by CardBus cards to store CIS information.
635 *
636 * The address is shifted in msb-to-lsb, and after the last
637 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
638 * after which follows the actual data. We try to detect this zero, by
639 * probing the data-out bit in the EEPROM control register just after
640 * having shifted in a bit. If the bit is zero, we assume we've
641 * shifted enough address bits. The data-out should be tri-state,
642 * before this, which should translate to a logical one.
643 *
644 * Other ways to do this would be to try to read a register with known
645 * contents with a varying number of address bits, but no such
646 * register seem to be available. The high bits of register 10 are 01
647 * on the 558 and 559, but apparently not on the 557.
648 *
649 * The Linux driver computes a checksum on the EEPROM data, but the
650 * value of this checksum is not very well documented.
651 */
652
653 void
654 fxp_autosize_eeprom(struct fxp_softc *sc)
655 {
656 int x;
657
658 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
659 DELAY(40);
660
661 /* Shift in read opcode. */
662 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
663
664 /*
665 * Shift in address, wait for the dummy zero following a correct
666 * address shift.
667 */
668 for (x = 1; x <= 8; x++) {
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
670 DELAY(40);
671 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
672 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
673 DELAY(40);
674 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
675 FXP_EEPROM_EEDO) == 0)
676 break;
677 DELAY(40);
678 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
679 DELAY(40);
680 }
681 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
682 DELAY(40);
683 if (x != 6 && x != 8) {
684 #ifdef DEBUG
685 printf("%s: strange EEPROM size (%d)\n",
686 device_xname(sc->sc_dev), 1 << x);
687 #endif
688 } else
689 sc->sc_eeprom_size = x;
690 }
691
692 /*
693 * Read from the serial EEPROM. Basically, you manually shift in
694 * the read opcode (one bit at a time) and then shift in the address,
695 * and then you shift out the data (all of this one bit at a time).
696 * The word size is 16 bits, so you have to provide the address for
697 * every 16 bits of data.
698 */
699 void
700 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
701 {
702 u_int16_t reg;
703 int i, x;
704
705 for (i = 0; i < words; i++) {
706 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
707
708 /* Shift in read opcode. */
709 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
710
711 /* Shift in address. */
712 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
713
714 reg = FXP_EEPROM_EECS;
715 data[i] = 0;
716
717 /* Shift out data. */
718 for (x = 16; x > 0; x--) {
719 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
720 reg | FXP_EEPROM_EESK);
721 DELAY(40);
722 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
723 FXP_EEPROM_EEDO)
724 data[i] |= (1 << (x - 1));
725 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
726 DELAY(40);
727 }
728 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
729 DELAY(40);
730 }
731 }
732
733 /*
734 * Write data to the serial EEPROM.
735 */
736 void
737 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
738 {
739 int i, j;
740
741 for (i = 0; i < words; i++) {
742 /* Erase/write enable. */
743 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
744 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
745 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
746 sc->sc_eeprom_size);
747 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
748 DELAY(4);
749
750 /* Shift in write opcode, address, data. */
751 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
752 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
753 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
754 fxp_eeprom_shiftin(sc, data[i], 16);
755 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
756 DELAY(4);
757
758 /* Wait for the EEPROM to finish up. */
759 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
760 DELAY(4);
761 for (j = 0; j < 1000; j++) {
762 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
763 FXP_EEPROM_EEDO)
764 break;
765 DELAY(50);
766 }
767 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
768 DELAY(4);
769
770 /* Erase/write disable. */
771 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
772 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
773 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
774 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
775 DELAY(4);
776 }
777 }
778
779 /*
780 * Update the checksum of the EEPROM.
781 */
782 void
783 fxp_eeprom_update_cksum(struct fxp_softc *sc)
784 {
785 int i;
786 uint16_t data, cksum;
787
788 cksum = 0;
789 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
790 fxp_read_eeprom(sc, &data, i, 1);
791 cksum += data;
792 }
793 i = (1 << sc->sc_eeprom_size) - 1;
794 cksum = 0xbaba - cksum;
795 fxp_read_eeprom(sc, &data, i, 1);
796 fxp_write_eeprom(sc, &cksum, i, 1);
797 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
798 device_xname(sc->sc_dev), i, data, cksum);
799 }
800
801 /*
802 * Start packet transmission on the interface.
803 */
804 void
805 fxp_start(struct ifnet *ifp)
806 {
807 struct fxp_softc *sc = ifp->if_softc;
808 struct mbuf *m0, *m;
809 struct fxp_txdesc *txd;
810 struct fxp_txsoft *txs;
811 bus_dmamap_t dmamap;
812 int error, lasttx, nexttx, opending, seg, nsegs, len;
813
814 /*
815 * If we want a re-init, bail out now.
816 */
817 if (sc->sc_flags & FXPF_WANTINIT) {
818 ifp->if_flags |= IFF_OACTIVE;
819 return;
820 }
821
822 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
823 return;
824
825 /*
826 * Remember the previous txpending and the current lasttx.
827 */
828 opending = sc->sc_txpending;
829 lasttx = sc->sc_txlast;
830
831 /*
832 * Loop through the send queue, setting up transmit descriptors
833 * until we drain the queue, or use up all available transmit
834 * descriptors.
835 */
836 for (;;) {
837 struct fxp_tbd *tbdp;
838 int csum_flags;
839
840 /*
841 * Grab a packet off the queue.
842 */
843 IFQ_POLL(&ifp->if_snd, m0);
844 if (m0 == NULL)
845 break;
846 m = NULL;
847
848 if (sc->sc_txpending == FXP_NTXCB - 1) {
849 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
850 break;
851 }
852
853 /*
854 * Get the next available transmit descriptor.
855 */
856 nexttx = FXP_NEXTTX(sc->sc_txlast);
857 txd = FXP_CDTX(sc, nexttx);
858 txs = FXP_DSTX(sc, nexttx);
859 dmamap = txs->txs_dmamap;
860
861 /*
862 * Load the DMA map. If this fails, the packet either
863 * didn't fit in the allotted number of frags, or we were
864 * short on resources. In this case, we'll copy and try
865 * again.
866 */
867 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
868 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
869 MGETHDR(m, M_DONTWAIT, MT_DATA);
870 if (m == NULL) {
871 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
872 device_xname(sc->sc_dev));
873 break;
874 }
875 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
876 if (m0->m_pkthdr.len > MHLEN) {
877 MCLGET(m, M_DONTWAIT);
878 if ((m->m_flags & M_EXT) == 0) {
879 log(LOG_ERR, "%s: unable to allocate "
880 "Tx cluster\n",
881 device_xname(sc->sc_dev));
882 m_freem(m);
883 break;
884 }
885 }
886 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
887 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
888 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
889 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
890 if (error) {
891 log(LOG_ERR, "%s: unable to load Tx buffer, "
892 "error = %d\n",
893 device_xname(sc->sc_dev), error);
894 break;
895 }
896 }
897
898 IFQ_DEQUEUE(&ifp->if_snd, m0);
899 csum_flags = m0->m_pkthdr.csum_flags;
900 if (m != NULL) {
901 m_freem(m0);
902 m0 = m;
903 }
904
905 /* Initialize the fraglist. */
906 tbdp = txd->txd_tbd;
907 len = m0->m_pkthdr.len;
908 nsegs = dmamap->dm_nsegs;
909 if (sc->sc_flags & FXPF_IPCB)
910 tbdp++;
911 for (seg = 0; seg < nsegs; seg++) {
912 tbdp[seg].tb_addr =
913 htole32(dmamap->dm_segs[seg].ds_addr);
914 tbdp[seg].tb_size =
915 htole32(dmamap->dm_segs[seg].ds_len);
916 }
917 if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
918 (csum_flags & M_CSUM_IPv4) != 0)) {
919 /*
920 * Pad short packets to avoid ip4csum-tx bug.
921 *
922 * XXX Should we still consider if such short
923 * (36 bytes or less) packets might already
924 * occupy FXP_IPCB_NTXSEG (15) fragments here?
925 */
926 KASSERT(nsegs < FXP_IPCB_NTXSEG);
927 nsegs++;
928 tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
929 tbdp[seg].tb_size =
930 htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
931 }
932
933 /* Sync the DMA map. */
934 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
935 BUS_DMASYNC_PREWRITE);
936
937 /*
938 * Store a pointer to the packet so we can free it later.
939 */
940 txs->txs_mbuf = m0;
941
942 /*
943 * Initialize the transmit descriptor.
944 */
945 /* BIG_ENDIAN: no need to swap to store 0 */
946 txd->txd_txcb.cb_status = 0;
947 txd->txd_txcb.cb_command =
948 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
949 txd->txd_txcb.tx_threshold = tx_threshold;
950 txd->txd_txcb.tbd_number = nsegs;
951
952 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
953 if (sc->sc_flags & FXPF_IPCB) {
954 struct m_tag *vtag;
955 struct fxp_ipcb *ipcb;
956 /*
957 * Deal with TCP/IP checksum offload. Note that
958 * in order for TCP checksum offload to work,
959 * the pseudo header checksum must have already
960 * been computed and stored in the checksum field
961 * in the TCP header. The stack should have
962 * already done this for us.
963 */
964 ipcb = &txd->txd_u.txdu_ipcb;
965 memset(ipcb, 0, sizeof(*ipcb));
966 /*
967 * always do hardware parsing.
968 */
969 ipcb->ipcb_ip_activation_high =
970 FXP_IPCB_HARDWAREPARSING_ENABLE;
971 /*
972 * ip checksum offloading.
973 */
974 if (csum_flags & M_CSUM_IPv4) {
975 ipcb->ipcb_ip_schedule |=
976 FXP_IPCB_IP_CHECKSUM_ENABLE;
977 }
978 /*
979 * TCP/UDP checksum offloading.
980 */
981 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
982 ipcb->ipcb_ip_schedule |=
983 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
984 }
985
986 /*
987 * request VLAN tag insertion if needed.
988 */
989 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
990 if (vtag) {
991 ipcb->ipcb_vlan_id =
992 htobe16(*(u_int *)(vtag + 1));
993 ipcb->ipcb_ip_activation_high |=
994 FXP_IPCB_INSERTVLAN_ENABLE;
995 }
996 } else {
997 KASSERT((csum_flags &
998 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
999 }
1000
1001 FXP_CDTXSYNC(sc, nexttx,
1002 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1003
1004 /* Advance the tx pointer. */
1005 sc->sc_txpending++;
1006 sc->sc_txlast = nexttx;
1007
1008 #if NBPFILTER > 0
1009 /*
1010 * Pass packet to bpf if there is a listener.
1011 */
1012 if (ifp->if_bpf)
1013 bpf_mtap(ifp->if_bpf, m0);
1014 #endif
1015 }
1016
1017 if (sc->sc_txpending == FXP_NTXCB - 1) {
1018 /* No more slots; notify upper layer. */
1019 ifp->if_flags |= IFF_OACTIVE;
1020 }
1021
1022 if (sc->sc_txpending != opending) {
1023 /*
1024 * We enqueued packets. If the transmitter was idle,
1025 * reset the txdirty pointer.
1026 */
1027 if (opending == 0)
1028 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1029
1030 /*
1031 * Cause the chip to interrupt and suspend command
1032 * processing once the last packet we've enqueued
1033 * has been transmitted.
1034 *
1035 * To avoid a race between updating status bits
1036 * by the fxp chip and clearing command bits
1037 * by this function on machines which don't have
1038 * atomic methods to clear/set bits in memory
1039 * smaller than 32bits (both cb_status and cb_command
1040 * members are uint16_t and in the same 32bit word),
1041 * we have to prepare a dummy TX descriptor which has
1042 * NOP command and just causes a TX completion interrupt.
1043 */
1044 sc->sc_txpending++;
1045 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1046 txd = FXP_CDTX(sc, sc->sc_txlast);
1047 /* BIG_ENDIAN: no need to swap to store 0 */
1048 txd->txd_txcb.cb_status = 0;
1049 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1050 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1051 FXP_CDTXSYNC(sc, sc->sc_txlast,
1052 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1053
1054 /*
1055 * The entire packet chain is set up. Clear the suspend bit
1056 * on the command prior to the first packet we set up.
1057 */
1058 FXP_CDTXSYNC(sc, lasttx,
1059 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1060 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1061 htole16(~FXP_CB_COMMAND_S);
1062 FXP_CDTXSYNC(sc, lasttx,
1063 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1064
1065 /*
1066 * Issue a Resume command in case the chip was suspended.
1067 */
1068 fxp_scb_wait(sc);
1069 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1070
1071 /* Set a watchdog timer in case the chip flakes out. */
1072 ifp->if_timer = 5;
1073 }
1074 }
1075
1076 /*
1077 * Process interface interrupts.
1078 */
1079 int
1080 fxp_intr(void *arg)
1081 {
1082 struct fxp_softc *sc = arg;
1083 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1084 bus_dmamap_t rxmap;
1085 int claimed = 0, rnr;
1086 u_int8_t statack;
1087
1088 if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1089 return (0);
1090 /*
1091 * If the interface isn't running, don't try to
1092 * service the interrupt.. just ack it and bail.
1093 */
1094 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1095 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1096 if (statack) {
1097 claimed = 1;
1098 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1099 }
1100 return (claimed);
1101 }
1102
1103 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1104 claimed = 1;
1105
1106 /*
1107 * First ACK all the interrupts in this pass.
1108 */
1109 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1110
1111 /*
1112 * Process receiver interrupts. If a no-resource (RNR)
1113 * condition exists, get whatever packets we can and
1114 * re-start the receiver.
1115 */
1116 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1117 1 : 0;
1118 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1119 FXP_SCB_STATACK_SWI)) {
1120 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1121 rnr |= fxp_rxintr(sc);
1122 }
1123
1124 /*
1125 * Free any finished transmit mbuf chains.
1126 */
1127 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1128 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1129 fxp_txintr(sc);
1130
1131 /*
1132 * Try to get more packets going.
1133 */
1134 fxp_start(ifp);
1135
1136 if (sc->sc_txpending == 0) {
1137 /*
1138 * Tell them that they can re-init now.
1139 */
1140 if (sc->sc_flags & FXPF_WANTINIT)
1141 wakeup(sc);
1142 }
1143 }
1144
1145 if (rnr) {
1146 fxp_scb_wait(sc);
1147 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1148 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1149 fxp_scb_wait(sc);
1150 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1151 rxmap->dm_segs[0].ds_addr +
1152 RFA_ALIGNMENT_FUDGE);
1153 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1154 }
1155 }
1156
1157 #if NRND > 0
1158 if (claimed)
1159 rnd_add_uint32(&sc->rnd_source, statack);
1160 #endif
1161 return (claimed);
1162 }
1163
1164 /*
1165 * Handle transmit completion interrupts.
1166 */
1167 void
1168 fxp_txintr(struct fxp_softc *sc)
1169 {
1170 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1171 struct fxp_txdesc *txd;
1172 struct fxp_txsoft *txs;
1173 int i;
1174 u_int16_t txstat;
1175
1176 ifp->if_flags &= ~IFF_OACTIVE;
1177 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1178 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1179 txd = FXP_CDTX(sc, i);
1180 txs = FXP_DSTX(sc, i);
1181
1182 FXP_CDTXSYNC(sc, i,
1183 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1184
1185 /* skip dummy NOP TX descriptor */
1186 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1187 == FXP_CB_COMMAND_NOP)
1188 continue;
1189
1190 txstat = le16toh(txd->txd_txcb.cb_status);
1191
1192 if ((txstat & FXP_CB_STATUS_C) == 0)
1193 break;
1194
1195 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1196 0, txs->txs_dmamap->dm_mapsize,
1197 BUS_DMASYNC_POSTWRITE);
1198 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1199 m_freem(txs->txs_mbuf);
1200 txs->txs_mbuf = NULL;
1201 }
1202
1203 /* Update the dirty transmit buffer pointer. */
1204 sc->sc_txdirty = i;
1205
1206 /*
1207 * Cancel the watchdog timer if there are no pending
1208 * transmissions.
1209 */
1210 if (sc->sc_txpending == 0)
1211 ifp->if_timer = 0;
1212 }
1213
1214 /*
1215 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1216 */
1217
1218 int
1219 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1220 {
1221 u_int8_t rxparsestat;
1222 u_int8_t csum_stat;
1223 u_int32_t csum_data;
1224 int csum_flags;
1225
1226 /*
1227 * check VLAN tag stripping.
1228 */
1229
1230 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1231 struct m_tag *vtag;
1232
1233 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1234 if (vtag == NULL)
1235 return ENOMEM;
1236 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1237 m_tag_prepend(m, vtag);
1238 }
1239
1240 /*
1241 * check H/W Checksumming.
1242 */
1243
1244 csum_stat = rfa->cksum_stat;
1245 rxparsestat = rfa->rx_parse_stat;
1246 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1247 return 0;
1248
1249 csum_flags = 0;
1250 csum_data = 0;
1251
1252 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1253 csum_flags = M_CSUM_IPv4;
1254 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1255 csum_flags |= M_CSUM_IPv4_BAD;
1256 }
1257
1258 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1259 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1260 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1261 csum_flags |= M_CSUM_TCP_UDP_BAD;
1262 }
1263
1264 m->m_pkthdr.csum_flags = csum_flags;
1265 m->m_pkthdr.csum_data = csum_data;
1266
1267 return 0;
1268 }
1269
1270 /*
1271 * Handle receive interrupts.
1272 */
1273 int
1274 fxp_rxintr(struct fxp_softc *sc)
1275 {
1276 struct ethercom *ec = &sc->sc_ethercom;
1277 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1278 struct mbuf *m, *m0;
1279 bus_dmamap_t rxmap;
1280 struct fxp_rfa *rfa;
1281 int rnr;
1282 u_int16_t len, rxstat;
1283
1284 rnr = 0;
1285
1286 for (;;) {
1287 m = sc->sc_rxq.ifq_head;
1288 rfa = FXP_MTORFA(m);
1289 rxmap = M_GETCTX(m, bus_dmamap_t);
1290
1291 FXP_RFASYNC(sc, m,
1292 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1293
1294 rxstat = le16toh(rfa->rfa_status);
1295
1296 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1297 rnr = 1;
1298
1299 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1300 /*
1301 * We have processed all of the
1302 * receive buffers.
1303 */
1304 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1305 return rnr;
1306 }
1307
1308 IF_DEQUEUE(&sc->sc_rxq, m);
1309
1310 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1311
1312 len = le16toh(rfa->actual_size) &
1313 (m->m_ext.ext_size - 1);
1314
1315 if (len < sizeof(struct ether_header)) {
1316 /*
1317 * Runt packet; drop it now.
1318 */
1319 FXP_INIT_RFABUF(sc, m);
1320 continue;
1321 }
1322
1323 /*
1324 * If support for 802.1Q VLAN sized frames is
1325 * enabled, we need to do some additional error
1326 * checking (as we are saving bad frames, in
1327 * order to receive the larger ones).
1328 */
1329 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1330 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1331 FXP_RFA_STATUS_RNR|
1332 FXP_RFA_STATUS_ALIGN|
1333 FXP_RFA_STATUS_CRC)) != 0) {
1334 FXP_INIT_RFABUF(sc, m);
1335 continue;
1336 }
1337
1338 /* Do checksum checking. */
1339 m->m_pkthdr.csum_flags = 0;
1340 if (sc->sc_flags & FXPF_EXT_RFA)
1341 if (fxp_rx_hwcksum(m, rfa))
1342 goto dropit;
1343
1344 /*
1345 * If the packet is small enough to fit in a
1346 * single header mbuf, allocate one and copy
1347 * the data into it. This greatly reduces
1348 * memory consumption when we receive lots
1349 * of small packets.
1350 *
1351 * Otherwise, we add a new buffer to the receive
1352 * chain. If this fails, we drop the packet and
1353 * recycle the old buffer.
1354 */
1355 if (fxp_copy_small != 0 && len <= MHLEN) {
1356 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1357 if (m0 == NULL)
1358 goto dropit;
1359 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1360 memcpy(mtod(m0, void *),
1361 mtod(m, void *), len);
1362 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1363 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1364 FXP_INIT_RFABUF(sc, m);
1365 m = m0;
1366 } else {
1367 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1368 dropit:
1369 ifp->if_ierrors++;
1370 FXP_INIT_RFABUF(sc, m);
1371 continue;
1372 }
1373 }
1374
1375 m->m_pkthdr.rcvif = ifp;
1376 m->m_pkthdr.len = m->m_len = len;
1377
1378 #if NBPFILTER > 0
1379 /*
1380 * Pass this up to any BPF listeners, but only
1381 * pass it up the stack if it's for us.
1382 */
1383 if (ifp->if_bpf)
1384 bpf_mtap(ifp->if_bpf, m);
1385 #endif
1386
1387 /* Pass it on. */
1388 (*ifp->if_input)(ifp, m);
1389 }
1390 }
1391
1392 /*
1393 * Update packet in/out/collision statistics. The i82557 doesn't
1394 * allow you to access these counters without doing a fairly
1395 * expensive DMA to get _all_ of the statistics it maintains, so
1396 * we do this operation here only once per second. The statistics
1397 * counters in the kernel are updated from the previous dump-stats
1398 * DMA and then a new dump-stats DMA is started. The on-chip
1399 * counters are zeroed when the DMA completes. If we can't start
1400 * the DMA immediately, we don't wait - we just prepare to read
1401 * them again next time.
1402 */
1403 void
1404 fxp_tick(void *arg)
1405 {
1406 struct fxp_softc *sc = arg;
1407 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1408 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1409 int s;
1410
1411 if (!device_is_active(sc->sc_dev))
1412 return;
1413
1414 s = splnet();
1415
1416 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1417
1418 ifp->if_opackets += le32toh(sp->tx_good);
1419 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1420 if (sp->rx_good) {
1421 ifp->if_ipackets += le32toh(sp->rx_good);
1422 sc->sc_rxidle = 0;
1423 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1424 sc->sc_rxidle++;
1425 }
1426 ifp->if_ierrors +=
1427 le32toh(sp->rx_crc_errors) +
1428 le32toh(sp->rx_alignment_errors) +
1429 le32toh(sp->rx_rnr_errors) +
1430 le32toh(sp->rx_overrun_errors);
1431 /*
1432 * If any transmit underruns occurred, bump up the transmit
1433 * threshold by another 512 bytes (64 * 8).
1434 */
1435 if (sp->tx_underruns) {
1436 ifp->if_oerrors += le32toh(sp->tx_underruns);
1437 if (tx_threshold < 192)
1438 tx_threshold += 64;
1439 }
1440 #ifdef FXP_EVENT_COUNTERS
1441 if (sc->sc_rev >= FXP_REV_82558_A4) {
1442 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1443 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1444 }
1445 #endif
1446
1447 /*
1448 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1449 * then assume the receiver has locked up and attempt to clear
1450 * the condition by reprogramming the multicast filter (actually,
1451 * resetting the interface). This is a work-around for a bug in
1452 * the 82557 where the receiver locks up if it gets certain types
1453 * of garbage in the synchronization bits prior to the packet header.
1454 * This bug is supposed to only occur in 10Mbps mode, but has been
1455 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1456 * speed transition).
1457 */
1458 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1459 (void) fxp_init(ifp);
1460 splx(s);
1461 return;
1462 }
1463 /*
1464 * If there is no pending command, start another stats
1465 * dump. Otherwise punt for now.
1466 */
1467 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1468 /*
1469 * Start another stats dump.
1470 */
1471 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1472 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1473 } else {
1474 /*
1475 * A previous command is still waiting to be accepted.
1476 * Just zero our copy of the stats and wait for the
1477 * next timer event to update them.
1478 */
1479 /* BIG_ENDIAN: no swap required to store 0 */
1480 sp->tx_good = 0;
1481 sp->tx_underruns = 0;
1482 sp->tx_total_collisions = 0;
1483
1484 sp->rx_good = 0;
1485 sp->rx_crc_errors = 0;
1486 sp->rx_alignment_errors = 0;
1487 sp->rx_rnr_errors = 0;
1488 sp->rx_overrun_errors = 0;
1489 if (sc->sc_rev >= FXP_REV_82558_A4) {
1490 sp->tx_pauseframes = 0;
1491 sp->rx_pauseframes = 0;
1492 }
1493 }
1494
1495 if (sc->sc_flags & FXPF_MII) {
1496 /* Tick the MII clock. */
1497 mii_tick(&sc->sc_mii);
1498 }
1499
1500 splx(s);
1501
1502 /*
1503 * Schedule another timeout one second from now.
1504 */
1505 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1506 }
1507
1508 /*
1509 * Drain the receive queue.
1510 */
1511 void
1512 fxp_rxdrain(struct fxp_softc *sc)
1513 {
1514 bus_dmamap_t rxmap;
1515 struct mbuf *m;
1516
1517 for (;;) {
1518 IF_DEQUEUE(&sc->sc_rxq, m);
1519 if (m == NULL)
1520 break;
1521 rxmap = M_GETCTX(m, bus_dmamap_t);
1522 bus_dmamap_unload(sc->sc_dmat, rxmap);
1523 FXP_RXMAP_PUT(sc, rxmap);
1524 m_freem(m);
1525 }
1526 }
1527
1528 /*
1529 * Stop the interface. Cancels the statistics updater and resets
1530 * the interface.
1531 */
1532 void
1533 fxp_stop(struct ifnet *ifp, int disable)
1534 {
1535 struct fxp_softc *sc = ifp->if_softc;
1536 struct fxp_txsoft *txs;
1537 int i;
1538
1539 /*
1540 * Turn down interface (done early to avoid bad interactions
1541 * between panics, shutdown hooks, and the watchdog timer)
1542 */
1543 ifp->if_timer = 0;
1544 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1545
1546 /*
1547 * Cancel stats updater.
1548 */
1549 callout_stop(&sc->sc_callout);
1550 if (sc->sc_flags & FXPF_MII) {
1551 /* Down the MII. */
1552 mii_down(&sc->sc_mii);
1553 }
1554
1555 /*
1556 * Issue software reset. This unloads any microcode that
1557 * might already be loaded.
1558 */
1559 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1560 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1561 DELAY(50);
1562
1563 /*
1564 * Release any xmit buffers.
1565 */
1566 for (i = 0; i < FXP_NTXCB; i++) {
1567 txs = FXP_DSTX(sc, i);
1568 if (txs->txs_mbuf != NULL) {
1569 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1570 m_freem(txs->txs_mbuf);
1571 txs->txs_mbuf = NULL;
1572 }
1573 }
1574 sc->sc_txpending = 0;
1575
1576 if (disable) {
1577 fxp_rxdrain(sc);
1578 fxp_disable(sc);
1579 }
1580
1581 }
1582
1583 /*
1584 * Watchdog/transmission transmit timeout handler. Called when a
1585 * transmission is started on the interface, but no interrupt is
1586 * received before the timeout. This usually indicates that the
1587 * card has wedged for some reason.
1588 */
1589 void
1590 fxp_watchdog(struct ifnet *ifp)
1591 {
1592 struct fxp_softc *sc = ifp->if_softc;
1593
1594 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1595 ifp->if_oerrors++;
1596
1597 (void) fxp_init(ifp);
1598 }
1599
1600 /*
1601 * Initialize the interface. Must be called at splnet().
1602 */
1603 int
1604 fxp_init(struct ifnet *ifp)
1605 {
1606 struct fxp_softc *sc = ifp->if_softc;
1607 struct fxp_cb_config *cbp;
1608 struct fxp_cb_ias *cb_ias;
1609 struct fxp_txdesc *txd;
1610 bus_dmamap_t rxmap;
1611 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1612 uint16_t status;
1613
1614 if ((error = fxp_enable(sc)) != 0)
1615 goto out;
1616
1617 /*
1618 * Cancel any pending I/O
1619 */
1620 fxp_stop(ifp, 0);
1621
1622 /*
1623 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1624 * flag, and this prevents the MII from detaching resulting in
1625 * a panic. The flags field should perhaps be split in runtime
1626 * flags and more static information. For now, just clear the
1627 * only other flag set.
1628 */
1629
1630 sc->sc_flags &= ~FXPF_WANTINIT;
1631
1632 /*
1633 * Initialize base of CBL and RFA memory. Loading with zero
1634 * sets it up for regular linear addressing.
1635 */
1636 fxp_scb_wait(sc);
1637 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1638 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1639
1640 fxp_scb_wait(sc);
1641 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1642
1643 /*
1644 * Initialize the multicast filter. Do this now, since we might
1645 * have to setup the config block differently.
1646 */
1647 fxp_mc_setup(sc);
1648
1649 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1650 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1651
1652 /*
1653 * In order to support receiving 802.1Q VLAN frames, we have to
1654 * enable "save bad frames", since they are 4 bytes larger than
1655 * the normal Ethernet maximum frame length. On i82558 and later,
1656 * we have a better mechanism for this.
1657 */
1658 save_bf = 0;
1659 lrxen = 0;
1660 vlan_drop = 0;
1661 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1662 if (sc->sc_rev < FXP_REV_82558_A4)
1663 save_bf = 1;
1664 else
1665 lrxen = 1;
1666 if (sc->sc_rev >= FXP_REV_82550)
1667 vlan_drop = 1;
1668 }
1669
1670 /*
1671 * Initialize base of dump-stats buffer.
1672 */
1673 fxp_scb_wait(sc);
1674 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1675 sc->sc_cddma + FXP_CDSTATSOFF);
1676 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1677 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1678
1679 cbp = &sc->sc_control_data->fcd_configcb;
1680 memset(cbp, 0, sizeof(struct fxp_cb_config));
1681
1682 /*
1683 * Load microcode for this controller.
1684 */
1685 fxp_load_ucode(sc);
1686
1687 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1688 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1689 else
1690 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1691
1692 /*
1693 * This copy is kind of disgusting, but there are a bunch of must be
1694 * zero and must be one bits in this structure and this is the easiest
1695 * way to initialize them all to proper values.
1696 */
1697 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1698
1699 /* BIG_ENDIAN: no need to swap to store 0 */
1700 cbp->cb_status = 0;
1701 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1702 FXP_CB_COMMAND_EL);
1703 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1704 cbp->link_addr = 0xffffffff; /* (no) next command */
1705 /* bytes in config block */
1706 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1707 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1708 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1709 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1710 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1711 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1712 cbp->type_enable = 0; /* actually reserved */
1713 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1714 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1715 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1716 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1717 cbp->dma_mbce = 0; /* (disable) dma max counters */
1718 cbp->late_scb = 0; /* (don't) defer SCB update */
1719 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1720 cbp->ci_int = 1; /* interrupt on CU idle */
1721 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1722 cbp->ext_stats_dis = 1; /* disable extended counters */
1723 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1724 cbp->save_bf = save_bf;/* save bad frames */
1725 cbp->disc_short_rx = !prm; /* discard short packets */
1726 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1727 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1728 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1729 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1730 /* interface mode */
1731 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1732 cbp->csma_dis = 0; /* (don't) disable link */
1733 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1734 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1735 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1736 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1737 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1738 cbp->nsai = 1; /* (don't) disable source addr insert */
1739 cbp->preamble_length = 2; /* (7 byte) preamble */
1740 cbp->loopback = 0; /* (don't) loopback */
1741 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1742 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1743 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1744 cbp->promiscuous = prm; /* promiscuous mode */
1745 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1746 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1747 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1748 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1749 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1750 cbp->stripping = !prm; /* truncate rx packet to byte count */
1751 cbp->padding = 1; /* (do) pad short tx packets */
1752 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1753 cbp->long_rx_en = lrxen; /* long packet receive enable */
1754 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1755 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1756 /* must set wake_en in PMCSR also */
1757 cbp->force_fdx = 0; /* (don't) force full duplex */
1758 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1759 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1760 cbp->mc_all = allm; /* accept all multicasts */
1761 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1762 cbp->vlan_drop_en = vlan_drop;
1763
1764 if (sc->sc_rev < FXP_REV_82558_A4) {
1765 /*
1766 * The i82557 has no hardware flow control, the values
1767 * here are the defaults for the chip.
1768 */
1769 cbp->fc_delay_lsb = 0;
1770 cbp->fc_delay_msb = 0x40;
1771 cbp->pri_fc_thresh = 3;
1772 cbp->tx_fc_dis = 0;
1773 cbp->rx_fc_restop = 0;
1774 cbp->rx_fc_restart = 0;
1775 cbp->fc_filter = 0;
1776 cbp->pri_fc_loc = 1;
1777 } else {
1778 cbp->fc_delay_lsb = 0x1f;
1779 cbp->fc_delay_msb = 0x01;
1780 cbp->pri_fc_thresh = 3;
1781 cbp->tx_fc_dis = 0; /* enable transmit FC */
1782 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1783 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1784 cbp->fc_filter = !prm; /* drop FC frames to host */
1785 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1786 cbp->ext_stats_dis = 0; /* enable extended stats */
1787 }
1788
1789 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1790
1791 /*
1792 * Start the config command/DMA.
1793 */
1794 fxp_scb_wait(sc);
1795 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1796 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1797 /* ...and wait for it to complete. */
1798 for (i = 1000; i > 0; i--) {
1799 FXP_CDCONFIGSYNC(sc,
1800 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1801 status = le16toh(cbp->cb_status);
1802 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1803 if ((status & FXP_CB_STATUS_C) != 0)
1804 break;
1805 DELAY(1);
1806 }
1807 if (i == 0) {
1808 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1809 device_xname(sc->sc_dev), __LINE__);
1810 return (ETIMEDOUT);
1811 }
1812
1813 /*
1814 * Initialize the station address.
1815 */
1816 cb_ias = &sc->sc_control_data->fcd_iascb;
1817 /* BIG_ENDIAN: no need to swap to store 0 */
1818 cb_ias->cb_status = 0;
1819 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1820 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1821 cb_ias->link_addr = 0xffffffff;
1822 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1823
1824 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1825
1826 /*
1827 * Start the IAS (Individual Address Setup) command/DMA.
1828 */
1829 fxp_scb_wait(sc);
1830 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1831 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1832 /* ...and wait for it to complete. */
1833 for (i = 1000; i > 0; i++) {
1834 FXP_CDIASSYNC(sc,
1835 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1836 status = le16toh(cb_ias->cb_status);
1837 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1838 if ((status & FXP_CB_STATUS_C) != 0)
1839 break;
1840 DELAY(1);
1841 }
1842 if (i == 0) {
1843 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1844 device_xname(sc->sc_dev), __LINE__);
1845 return (ETIMEDOUT);
1846 }
1847
1848 /*
1849 * Initialize the transmit descriptor ring. txlast is initialized
1850 * to the end of the list so that it will wrap around to the first
1851 * descriptor when the first packet is transmitted.
1852 */
1853 for (i = 0; i < FXP_NTXCB; i++) {
1854 txd = FXP_CDTX(sc, i);
1855 memset(txd, 0, sizeof(*txd));
1856 txd->txd_txcb.cb_command =
1857 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1858 txd->txd_txcb.link_addr =
1859 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1860 if (sc->sc_flags & FXPF_EXT_TXCB)
1861 txd->txd_txcb.tbd_array_addr =
1862 htole32(FXP_CDTBDADDR(sc, i) +
1863 (2 * sizeof(struct fxp_tbd)));
1864 else
1865 txd->txd_txcb.tbd_array_addr =
1866 htole32(FXP_CDTBDADDR(sc, i));
1867 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1868 }
1869 sc->sc_txpending = 0;
1870 sc->sc_txdirty = 0;
1871 sc->sc_txlast = FXP_NTXCB - 1;
1872
1873 /*
1874 * Initialize the receive buffer list.
1875 */
1876 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1877 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1878 rxmap = FXP_RXMAP_GET(sc);
1879 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1880 log(LOG_ERR, "%s: unable to allocate or map rx "
1881 "buffer %d, error = %d\n",
1882 device_xname(sc->sc_dev),
1883 sc->sc_rxq.ifq_len, error);
1884 /*
1885 * XXX Should attempt to run with fewer receive
1886 * XXX buffers instead of just failing.
1887 */
1888 FXP_RXMAP_PUT(sc, rxmap);
1889 fxp_rxdrain(sc);
1890 goto out;
1891 }
1892 }
1893 sc->sc_rxidle = 0;
1894
1895 /*
1896 * Give the transmit ring to the chip. We do this by pointing
1897 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1898 * issuing a start command. It will execute the NOP and then
1899 * suspend, pointing at the first descriptor.
1900 */
1901 fxp_scb_wait(sc);
1902 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1903 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1904
1905 /*
1906 * Initialize receiver buffer area - RFA.
1907 */
1908 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1909 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1910 fxp_scb_wait(sc);
1911 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1912 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1913 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1914 #endif
1915
1916 if (sc->sc_flags & FXPF_MII) {
1917 /*
1918 * Set current media.
1919 */
1920 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1921 goto out;
1922 }
1923
1924 /*
1925 * ...all done!
1926 */
1927 ifp->if_flags |= IFF_RUNNING;
1928 ifp->if_flags &= ~IFF_OACTIVE;
1929
1930 /*
1931 * Request a software generated interrupt that will be used to
1932 * (re)start the RU processing. If we direct the chip to start
1933 * receiving from the start of queue now, instead of letting the
1934 * interrupt handler first process all received packets, we run
1935 * the risk of having it overwrite mbuf clusters while they are
1936 * being processed or after they have been returned to the pool.
1937 */
1938 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1939
1940 /*
1941 * Start the one second timer.
1942 */
1943 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1944
1945 /*
1946 * Attempt to start output on the interface.
1947 */
1948 fxp_start(ifp);
1949
1950 out:
1951 if (error) {
1952 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1953 ifp->if_timer = 0;
1954 log(LOG_ERR, "%s: interface not running\n",
1955 device_xname(sc->sc_dev));
1956 }
1957 return (error);
1958 }
1959
1960 /*
1961 * Notify the world which media we're using.
1962 */
1963 void
1964 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1965 {
1966 struct fxp_softc *sc = ifp->if_softc;
1967
1968 if (sc->sc_enabled == 0) {
1969 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1970 ifmr->ifm_status = 0;
1971 return;
1972 }
1973
1974 ether_mediastatus(ifp, ifmr);
1975
1976 /*
1977 * XXX Flow control is always turned on if the chip supports
1978 * XXX it; we can't easily control it dynamically, since it
1979 * XXX requires sending a setup packet.
1980 */
1981 if (sc->sc_rev >= FXP_REV_82558_A4)
1982 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1983 }
1984
1985 int
1986 fxp_80c24_mediachange(struct ifnet *ifp)
1987 {
1988
1989 /* Nothing to do here. */
1990 return (0);
1991 }
1992
1993 void
1994 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1995 {
1996 struct fxp_softc *sc = ifp->if_softc;
1997
1998 /*
1999 * Media is currently-selected media. We cannot determine
2000 * the link status.
2001 */
2002 ifmr->ifm_status = 0;
2003 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2004 }
2005
2006 /*
2007 * Add a buffer to the end of the RFA buffer list.
2008 * Return 0 if successful, error code on failure.
2009 *
2010 * The RFA struct is stuck at the beginning of mbuf cluster and the
2011 * data pointer is fixed up to point just past it.
2012 */
2013 int
2014 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2015 {
2016 struct mbuf *m;
2017 int error;
2018
2019 MGETHDR(m, M_DONTWAIT, MT_DATA);
2020 if (m == NULL)
2021 return (ENOBUFS);
2022
2023 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2024 MCLGET(m, M_DONTWAIT);
2025 if ((m->m_flags & M_EXT) == 0) {
2026 m_freem(m);
2027 return (ENOBUFS);
2028 }
2029
2030 if (unload)
2031 bus_dmamap_unload(sc->sc_dmat, rxmap);
2032
2033 M_SETCTX(m, rxmap);
2034
2035 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2036 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2037 BUS_DMA_READ|BUS_DMA_NOWAIT);
2038 if (error) {
2039 /* XXX XXX XXX */
2040 aprint_error_dev(sc->sc_dev,
2041 "can't load rx DMA map %d, error = %d\n",
2042 sc->sc_rxq.ifq_len, error);
2043 panic("fxp_add_rfabuf");
2044 }
2045
2046 FXP_INIT_RFABUF(sc, m);
2047
2048 return (0);
2049 }
2050
2051 int
2052 fxp_mdi_read(device_t self, int phy, int reg)
2053 {
2054 struct fxp_softc *sc = device_private(self);
2055 int count = 10000;
2056 int value;
2057
2058 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2059 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2060
2061 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2062 0x10000000) == 0 && count--)
2063 DELAY(10);
2064
2065 if (count <= 0)
2066 log(LOG_WARNING,
2067 "%s: fxp_mdi_read: timed out\n", device_xname(self));
2068
2069 return (value & 0xffff);
2070 }
2071
2072 void
2073 fxp_statchg(device_t self)
2074 {
2075
2076 /* Nothing to do. */
2077 }
2078
2079 void
2080 fxp_mdi_write(device_t self, int phy, int reg, int value)
2081 {
2082 struct fxp_softc *sc = device_private(self);
2083 int count = 10000;
2084
2085 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2086 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2087 (value & 0xffff));
2088
2089 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2090 count--)
2091 DELAY(10);
2092
2093 if (count <= 0)
2094 log(LOG_WARNING,
2095 "%s: fxp_mdi_write: timed out\n", device_xname(self));
2096 }
2097
2098 int
2099 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2100 {
2101 struct fxp_softc *sc = ifp->if_softc;
2102 struct ifreq *ifr = (struct ifreq *)data;
2103 int s, error;
2104
2105 s = splnet();
2106
2107 switch (cmd) {
2108 case SIOCSIFMEDIA:
2109 case SIOCGIFMEDIA:
2110 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2111 break;
2112
2113 default:
2114 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2115 break;
2116
2117 error = 0;
2118
2119 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2120 ;
2121 else if (ifp->if_flags & IFF_RUNNING) {
2122 /*
2123 * Multicast list has changed; set the
2124 * hardware filter accordingly.
2125 */
2126 while (sc->sc_txpending) {
2127 sc->sc_flags |= FXPF_WANTINIT;
2128 tsleep(sc, PSOCK, "fxp_init", 0);
2129 }
2130 error = fxp_init(ifp);
2131 }
2132 break;
2133 }
2134
2135 /* Try to get more packets going. */
2136 if (sc->sc_enabled)
2137 fxp_start(ifp);
2138
2139 splx(s);
2140 return (error);
2141 }
2142
2143 /*
2144 * Program the multicast filter.
2145 *
2146 * This function must be called at splnet().
2147 */
2148 void
2149 fxp_mc_setup(struct fxp_softc *sc)
2150 {
2151 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2152 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2153 struct ethercom *ec = &sc->sc_ethercom;
2154 struct ether_multi *enm;
2155 struct ether_multistep step;
2156 int count, nmcasts;
2157 uint16_t status;
2158
2159 #ifdef DIAGNOSTIC
2160 if (sc->sc_txpending)
2161 panic("fxp_mc_setup: pending transmissions");
2162 #endif
2163
2164 ifp->if_flags &= ~IFF_ALLMULTI;
2165
2166 /*
2167 * Initialize multicast setup descriptor.
2168 */
2169 nmcasts = 0;
2170 ETHER_FIRST_MULTI(step, ec, enm);
2171 while (enm != NULL) {
2172 /*
2173 * Check for too many multicast addresses or if we're
2174 * listening to a range. Either way, we simply have
2175 * to accept all multicasts.
2176 */
2177 if (nmcasts >= MAXMCADDR ||
2178 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2179 ETHER_ADDR_LEN) != 0) {
2180 /*
2181 * Callers of this function must do the
2182 * right thing with this. If we're called
2183 * from outside fxp_init(), the caller must
2184 * detect if the state if IFF_ALLMULTI changes.
2185 * If it does, the caller must then call
2186 * fxp_init(), since allmulti is handled by
2187 * the config block.
2188 */
2189 ifp->if_flags |= IFF_ALLMULTI;
2190 return;
2191 }
2192 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2193 ETHER_ADDR_LEN);
2194 nmcasts++;
2195 ETHER_NEXT_MULTI(step, enm);
2196 }
2197
2198 /* BIG_ENDIAN: no need to swap to store 0 */
2199 mcsp->cb_status = 0;
2200 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2201 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2202 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2203
2204 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2205
2206 /*
2207 * Wait until the command unit is not active. This should never
2208 * happen since nothing is queued, but make sure anyway.
2209 */
2210 count = 100;
2211 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2212 FXP_SCB_CUS_ACTIVE && --count)
2213 DELAY(1);
2214 if (count == 0) {
2215 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2216 device_xname(sc->sc_dev), __LINE__);
2217 return;
2218 }
2219
2220 /*
2221 * Start the multicast setup command/DMA.
2222 */
2223 fxp_scb_wait(sc);
2224 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2225 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2226
2227 /* ...and wait for it to complete. */
2228 for (count = 1000; count > 0; count--) {
2229 FXP_CDMCSSYNC(sc,
2230 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2231 status = le16toh(mcsp->cb_status);
2232 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2233 if ((status & FXP_CB_STATUS_C) != 0)
2234 break;
2235 DELAY(1);
2236 }
2237 if (count == 0) {
2238 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2239 device_xname(sc->sc_dev), __LINE__);
2240 return;
2241 }
2242 }
2243
2244 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2245 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2246 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2247 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2248 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2249 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2250
2251 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2252
2253 static const struct ucode {
2254 int32_t revision;
2255 const uint32_t *ucode;
2256 size_t length;
2257 uint16_t int_delay_offset;
2258 uint16_t bundle_max_offset;
2259 } ucode_table[] = {
2260 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2261 D101_CPUSAVER_DWORD, 0 },
2262
2263 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2264 D101_CPUSAVER_DWORD, 0 },
2265
2266 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2267 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2268
2269 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2270 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2271
2272 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2273 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2274
2275 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2276 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2277
2278 { 0, NULL, 0, 0, 0 }
2279 };
2280
2281 void
2282 fxp_load_ucode(struct fxp_softc *sc)
2283 {
2284 const struct ucode *uc;
2285 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2286 int count, i;
2287 uint16_t status;
2288
2289 if (sc->sc_flags & FXPF_UCODE_LOADED)
2290 return;
2291
2292 /*
2293 * Only load the uCode if the user has requested that
2294 * we do so.
2295 */
2296 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2297 sc->sc_int_delay = 0;
2298 sc->sc_bundle_max = 0;
2299 return;
2300 }
2301
2302 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2303 if (sc->sc_rev == uc->revision)
2304 break;
2305 }
2306 if (uc->ucode == NULL)
2307 return;
2308
2309 /* BIG ENDIAN: no need to swap to store 0 */
2310 cbp->cb_status = 0;
2311 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2312 cbp->link_addr = 0xffffffff; /* (no) next command */
2313 for (i = 0; i < uc->length; i++)
2314 cbp->ucode[i] = htole32(uc->ucode[i]);
2315
2316 if (uc->int_delay_offset)
2317 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2318 htole16(fxp_int_delay + (fxp_int_delay / 2));
2319
2320 if (uc->bundle_max_offset)
2321 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2322 htole16(fxp_bundle_max);
2323
2324 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2325
2326 /*
2327 * Download the uCode to the chip.
2328 */
2329 fxp_scb_wait(sc);
2330 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2331 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2332
2333 /* ...and wait for it to complete. */
2334 for (count = 10000; count > 0; count--) {
2335 FXP_CDUCODESYNC(sc,
2336 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2337 status = le16toh(cbp->cb_status);
2338 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2339 if ((status & FXP_CB_STATUS_C) != 0)
2340 break;
2341 DELAY(2);
2342 }
2343 if (count == 0) {
2344 sc->sc_int_delay = 0;
2345 sc->sc_bundle_max = 0;
2346 log(LOG_WARNING, "%s: timeout loading microcode\n",
2347 device_xname(sc->sc_dev));
2348 return;
2349 }
2350
2351 if (sc->sc_int_delay != fxp_int_delay ||
2352 sc->sc_bundle_max != fxp_bundle_max) {
2353 sc->sc_int_delay = fxp_int_delay;
2354 sc->sc_bundle_max = fxp_bundle_max;
2355 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2356 "max bundle: %d\n", device_xname(sc->sc_dev),
2357 sc->sc_int_delay,
2358 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2359 }
2360
2361 sc->sc_flags |= FXPF_UCODE_LOADED;
2362 }
2363
2364 int
2365 fxp_enable(struct fxp_softc *sc)
2366 {
2367
2368 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2369 if ((*sc->sc_enable)(sc) != 0) {
2370 log(LOG_ERR, "%s: device enable failed\n",
2371 device_xname(sc->sc_dev));
2372 return (EIO);
2373 }
2374 }
2375
2376 sc->sc_enabled = 1;
2377 return (0);
2378 }
2379
2380 void
2381 fxp_disable(struct fxp_softc *sc)
2382 {
2383
2384 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2385 (*sc->sc_disable)(sc);
2386 sc->sc_enabled = 0;
2387 }
2388 }
2389
2390 /*
2391 * fxp_activate:
2392 *
2393 * Handle device activation/deactivation requests.
2394 */
2395 int
2396 fxp_activate(device_t self, enum devact act)
2397 {
2398 struct fxp_softc *sc = device_private(self);
2399 int s, error = 0;
2400
2401 s = splnet();
2402 switch (act) {
2403 case DVACT_ACTIVATE:
2404 error = EOPNOTSUPP;
2405 break;
2406
2407 case DVACT_DEACTIVATE:
2408 if (sc->sc_flags & FXPF_MII)
2409 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2410 MII_OFFSET_ANY);
2411 if_deactivate(&sc->sc_ethercom.ec_if);
2412 break;
2413 }
2414 splx(s);
2415
2416 return (error);
2417 }
2418
2419 /*
2420 * fxp_detach:
2421 *
2422 * Detach an i82557 interface.
2423 */
2424 int
2425 fxp_detach(struct fxp_softc *sc)
2426 {
2427 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2428 int i;
2429
2430 /* Succeed now if there's no work to do. */
2431 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2432 return (0);
2433
2434 /* Unhook our tick handler. */
2435 callout_stop(&sc->sc_callout);
2436
2437 if (sc->sc_flags & FXPF_MII) {
2438 /* Detach all PHYs */
2439 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2440 }
2441
2442 /* Delete all remaining media. */
2443 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2444
2445 #if NRND > 0
2446 rnd_detach_source(&sc->rnd_source);
2447 #endif
2448 ether_ifdetach(ifp);
2449 if_detach(ifp);
2450
2451 for (i = 0; i < FXP_NRFABUFS; i++) {
2452 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2453 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2454 }
2455
2456 for (i = 0; i < FXP_NTXCB; i++) {
2457 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2458 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2459 }
2460
2461 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2462 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2463 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2464 sizeof(struct fxp_control_data));
2465 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2466
2467 return (0);
2468 }
2469