i82557.c revision 1.112 1 /* $NetBSD: i82557.c,v 1.112 2008/04/08 12:07:26 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.112 2008/04/08 12:07:26 cegger Exp $");
77
78 #include "bpfilter.h"
79 #include "rnd.h"
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/syslog.h>
92
93 #include <machine/endian.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #if NRND > 0
98 #include <sys/rnd.h>
99 #endif
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <sys/bus.h>
111 #include <sys/intr.h>
112
113 #include <dev/mii/miivar.h>
114
115 #include <dev/ic/i82557reg.h>
116 #include <dev/ic/i82557var.h>
117
118 #include <dev/microcode/i8255x/rcvbundl.h>
119
120 /*
121 * NOTE! On the Alpha, we have an alignment constraint. The
122 * card DMAs the packet immediately following the RFA. However,
123 * the first thing in the packet is a 14-byte Ethernet header.
124 * This means that the packet is misaligned. To compensate,
125 * we actually offset the RFA 2 bytes into the cluster. This
126 * alignes the packet after the Ethernet header at a 32-bit
127 * boundary. HOWEVER! This means that the RFA is misaligned!
128 */
129 #define RFA_ALIGNMENT_FUDGE 2
130
131 /*
132 * The configuration byte map has several undefined fields which
133 * must be one or must be zero. Set up a template for these bits
134 * only (assuming an i82557 chip), leaving the actual configuration
135 * for fxp_init().
136 *
137 * See the definition of struct fxp_cb_config for the bit definitions.
138 */
139 const u_int8_t fxp_cb_config_template[] = {
140 0x0, 0x0, /* cb_status */
141 0x0, 0x0, /* cb_command */
142 0x0, 0x0, 0x0, 0x0, /* link_addr */
143 0x0, /* 0 */
144 0x0, /* 1 */
145 0x0, /* 2 */
146 0x0, /* 3 */
147 0x0, /* 4 */
148 0x0, /* 5 */
149 0x32, /* 6 */
150 0x0, /* 7 */
151 0x0, /* 8 */
152 0x0, /* 9 */
153 0x6, /* 10 */
154 0x0, /* 11 */
155 0x0, /* 12 */
156 0x0, /* 13 */
157 0xf2, /* 14 */
158 0x48, /* 15 */
159 0x0, /* 16 */
160 0x40, /* 17 */
161 0xf0, /* 18 */
162 0x0, /* 19 */
163 0x3f, /* 20 */
164 0x5, /* 21 */
165 0x0, /* 22 */
166 0x0, /* 23 */
167 0x0, /* 24 */
168 0x0, /* 25 */
169 0x0, /* 26 */
170 0x0, /* 27 */
171 0x0, /* 28 */
172 0x0, /* 29 */
173 0x0, /* 30 */
174 0x0, /* 31 */
175 };
176
177 void fxp_mii_initmedia(struct fxp_softc *);
178 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 void fxp_80c24_initmedia(struct fxp_softc *);
181 int fxp_80c24_mediachange(struct ifnet *);
182 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
183
184 void fxp_start(struct ifnet *);
185 int fxp_ioctl(struct ifnet *, u_long, void *);
186 void fxp_watchdog(struct ifnet *);
187 int fxp_init(struct ifnet *);
188 void fxp_stop(struct ifnet *, int);
189
190 void fxp_txintr(struct fxp_softc *);
191 int fxp_rxintr(struct fxp_softc *);
192
193 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
194
195 void fxp_rxdrain(struct fxp_softc *);
196 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197 int fxp_mdi_read(struct device *, int, int);
198 void fxp_statchg(struct device *);
199 void fxp_mdi_write(struct device *, int, int, int);
200 void fxp_autosize_eeprom(struct fxp_softc*);
201 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_eeprom_update_cksum(struct fxp_softc *);
204 void fxp_get_info(struct fxp_softc *, u_int8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207 void fxp_load_ucode(struct fxp_softc *);
208
209 int fxp_copy_small = 0;
210
211 /*
212 * Variables for interrupt mitigating microcode.
213 */
214 int fxp_int_delay = 1000; /* usec */
215 int fxp_bundle_max = 6; /* packets */
216
217 struct fxp_phytype {
218 int fp_phy; /* type of PHY, -1 for MII at the end. */
219 void (*fp_init)(struct fxp_softc *);
220 } fxp_phytype_table[] = {
221 { FXP_PHY_80C24, fxp_80c24_initmedia },
222 { -1, fxp_mii_initmedia },
223 };
224
225 /*
226 * Set initial transmit threshold at 64 (512 bytes). This is
227 * increased by 64 (512 bytes) at a time, to maximum of 192
228 * (1536 bytes), if an underrun occurs.
229 */
230 static int tx_threshold = 64;
231
232 /*
233 * Wait for the previous command to be accepted (but not necessarily
234 * completed).
235 */
236 static inline void
237 fxp_scb_wait(struct fxp_softc *sc)
238 {
239 int i = 10000;
240
241 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
242 delay(2);
243 if (i == 0)
244 log(LOG_WARNING,
245 "%s: WARNING: SCB timed out!\n", device_xname(&sc->sc_dev));
246 }
247
248 /*
249 * Submit a command to the i82557.
250 */
251 static inline void
252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253 {
254
255 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256 }
257
258 /*
259 * Finish attaching an i82557 interface. Called by bus-specific front-end.
260 */
261 void
262 fxp_attach(struct fxp_softc *sc)
263 {
264 u_int8_t enaddr[ETHER_ADDR_LEN];
265 struct ifnet *ifp;
266 bus_dma_segment_t seg;
267 int rseg, i, error;
268 struct fxp_phytype *fp;
269
270 callout_init(&sc->sc_callout, 0);
271
272 /*
273 * Enable some good stuff on i82558 and later.
274 */
275 if (sc->sc_rev >= FXP_REV_82558_A4) {
276 /* Enable the extended TxCB. */
277 sc->sc_flags |= FXPF_EXT_TXCB;
278 }
279
280 /*
281 * Enable use of extended RFDs and TCBs for 82550
282 * and later chips. Note: we need extended TXCB support
283 * too, but that's already enabled by the code above.
284 * Be careful to do this only on the right devices.
285 */
286 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
287 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
288 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
289 } else {
290 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
291 }
292
293 sc->sc_rfa_size =
294 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
295
296 /*
297 * Allocate the control data structures, and create and load the
298 * DMA map for it.
299 */
300 if ((error = bus_dmamem_alloc(sc->sc_dmat,
301 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
302 0)) != 0) {
303 aprint_error_dev(&sc->sc_dev,
304 "unable to allocate control data, error = %d\n",
305 error);
306 goto fail_0;
307 }
308
309 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
310 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
311 BUS_DMA_COHERENT)) != 0) {
312 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
313 error);
314 goto fail_1;
315 }
316 sc->sc_cdseg = seg;
317 sc->sc_cdnseg = rseg;
318
319 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
320
321 if ((error = bus_dmamap_create(sc->sc_dmat,
322 sizeof(struct fxp_control_data), 1,
323 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
324 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
325 "error = %d\n", error);
326 goto fail_2;
327 }
328
329 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
330 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
331 0)) != 0) {
332 aprint_error_dev(&sc->sc_dev,
333 "can't load control data DMA map, error = %d\n",
334 error);
335 goto fail_3;
336 }
337
338 /*
339 * Create the transmit buffer DMA maps.
340 */
341 for (i = 0; i < FXP_NTXCB; i++) {
342 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
343 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
344 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
345 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
346 "error = %d\n", i, error);
347 goto fail_4;
348 }
349 }
350
351 /*
352 * Create the receive buffer DMA maps.
353 */
354 for (i = 0; i < FXP_NRFABUFS; i++) {
355 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
356 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
357 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
358 "error = %d\n", i, error);
359 goto fail_5;
360 }
361 }
362
363 /* Initialize MAC address and media structures. */
364 fxp_get_info(sc, enaddr);
365
366 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
367 ether_sprintf(enaddr));
368
369 ifp = &sc->sc_ethercom.ec_if;
370
371 /*
372 * Get info about our media interface, and initialize it. Note
373 * the table terminates itself with a phy of -1, indicating
374 * that we're using MII.
375 */
376 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
377 if (fp->fp_phy == sc->phy_primary_device)
378 break;
379 (*fp->fp_init)(sc);
380
381 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
382 ifp->if_softc = sc;
383 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
384 ifp->if_ioctl = fxp_ioctl;
385 ifp->if_start = fxp_start;
386 ifp->if_watchdog = fxp_watchdog;
387 ifp->if_init = fxp_init;
388 ifp->if_stop = fxp_stop;
389 IFQ_SET_READY(&ifp->if_snd);
390
391 if (sc->sc_flags & FXPF_IPCB) {
392 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
393 /*
394 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
395 * at least, on i82550 rev.12.
396 * specifically, it doesn't calculate ipv4 checksum correctly
397 * when sending 20 byte ipv4 header + 1 or 2 byte data.
398 * FreeBSD driver has related comments.
399 */
400 ifp->if_capabilities =
401 IFCAP_CSUM_IPv4_Rx |
402 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
403 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
404 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
405 }
406
407 /*
408 * We can support 802.1Q VLAN-sized frames.
409 */
410 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
411
412 /*
413 * Attach the interface.
414 */
415 if_attach(ifp);
416 ether_ifattach(ifp, enaddr);
417 #if NRND > 0
418 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
419 RND_TYPE_NET, 0);
420 #endif
421
422 #ifdef FXP_EVENT_COUNTERS
423 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
424 NULL, device_xname(&sc->sc_dev), "txstall");
425 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
426 NULL, device_xname(&sc->sc_dev), "txintr");
427 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
428 NULL, device_xname(&sc->sc_dev), "rxintr");
429 if (sc->sc_rev >= FXP_REV_82558_A4) {
430 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
431 NULL, device_xname(&sc->sc_dev), "txpause");
432 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
433 NULL, device_xname(&sc->sc_dev), "rxpause");
434 }
435 #endif /* FXP_EVENT_COUNTERS */
436
437 /* The attach is successful. */
438 sc->sc_flags |= FXPF_ATTACHED;
439
440 return;
441
442 /*
443 * Free any resources we've allocated during the failed attach
444 * attempt. Do this in reverse order and fall though.
445 */
446 fail_5:
447 for (i = 0; i < FXP_NRFABUFS; i++) {
448 if (sc->sc_rxmaps[i] != NULL)
449 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
450 }
451 fail_4:
452 for (i = 0; i < FXP_NTXCB; i++) {
453 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
454 bus_dmamap_destroy(sc->sc_dmat,
455 FXP_DSTX(sc, i)->txs_dmamap);
456 }
457 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
458 fail_3:
459 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
460 fail_2:
461 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
462 sizeof(struct fxp_control_data));
463 fail_1:
464 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
465 fail_0:
466 return;
467 }
468
469 void
470 fxp_mii_initmedia(struct fxp_softc *sc)
471 {
472 int flags;
473
474 sc->sc_flags |= FXPF_MII;
475
476 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
477 sc->sc_mii.mii_readreg = fxp_mdi_read;
478 sc->sc_mii.mii_writereg = fxp_mdi_write;
479 sc->sc_mii.mii_statchg = fxp_statchg;
480
481 sc->sc_ethercom.ec_mii = &sc->sc_mii;
482 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
483 fxp_mii_mediastatus);
484
485 flags = MIIF_NOISOLATE;
486 if (sc->sc_rev >= FXP_REV_82558_A4)
487 flags |= MIIF_DOPAUSE;
488 /*
489 * The i82557 wedges if all of its PHYs are isolated!
490 */
491 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
492 MII_OFFSET_ANY, flags);
493 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
495 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
496 } else
497 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
498 }
499
500 void
501 fxp_80c24_initmedia(struct fxp_softc *sc)
502 {
503
504 /*
505 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
506 * doesn't have a programming interface of any sort. The
507 * media is sensed automatically based on how the link partner
508 * is configured. This is, in essence, manual configuration.
509 */
510 aprint_normal_dev(&sc->sc_dev, "Seeq 80c24 AutoDUPLEX media interface present\n");
511 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
512 fxp_80c24_mediastatus);
513 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
514 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
515 }
516
517 /*
518 * Initialize the interface media.
519 */
520 void
521 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
522 {
523 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
524
525 /*
526 * Reset to a stable state.
527 */
528 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
529 DELAY(100);
530
531 sc->sc_eeprom_size = 0;
532 fxp_autosize_eeprom(sc);
533 if (sc->sc_eeprom_size == 0) {
534 aprint_error_dev(&sc->sc_dev, "failed to detect EEPROM size\n");
535 sc->sc_eeprom_size = 6; /* XXX panic here? */
536 }
537 #ifdef DEBUG
538 aprint_debug_dev(&sc->sc_dev, "detected %d word EEPROM\n",
539 1 << sc->sc_eeprom_size);
540 #endif
541
542 /*
543 * Get info about the primary PHY
544 */
545 fxp_read_eeprom(sc, &data, 6, 1);
546 sc->phy_primary_device =
547 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
548
549 /*
550 * Read MAC address.
551 */
552 fxp_read_eeprom(sc, myea, 0, 3);
553 enaddr[0] = myea[0] & 0xff;
554 enaddr[1] = myea[0] >> 8;
555 enaddr[2] = myea[1] & 0xff;
556 enaddr[3] = myea[1] >> 8;
557 enaddr[4] = myea[2] & 0xff;
558 enaddr[5] = myea[2] >> 8;
559
560 /*
561 * Systems based on the ICH2/ICH2-M chip from Intel, as well
562 * as some i82559 designs, have a defect where the chip can
563 * cause a PCI protocol violation if it receives a CU_RESUME
564 * command when it is entering the IDLE state.
565 *
566 * The work-around is to disable Dynamic Standby Mode, so that
567 * the chip never deasserts #CLKRUN, and always remains in the
568 * active state.
569 *
570 * Unfortunately, the only way to disable Dynamic Standby is
571 * to frob an EEPROM setting and reboot (the EEPROM setting
572 * is only consulted when the PCI bus comes out of reset).
573 *
574 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
575 */
576 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
577 fxp_read_eeprom(sc, &data, 10, 1);
578 if (data & 0x02) { /* STB enable */
579 aprint_error_dev(&sc->sc_dev, "WARNING: "
580 "Disabling dynamic standby mode in EEPROM "
581 "to work around a\n");
582 aprint_normal_dev(&sc->sc_dev,
583 "WARNING: hardware bug. You must reset "
584 "the system before using this\n");
585 aprint_normal_dev(&sc->sc_dev, "WARNING: interface.\n");
586 data &= ~0x02;
587 fxp_write_eeprom(sc, &data, 10, 1);
588 aprint_normal_dev(&sc->sc_dev, "new EEPROM ID: 0x%04x\n",
589 data);
590 fxp_eeprom_update_cksum(sc);
591 }
592 }
593
594 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
595 /* Due to false positives we make it conditional on setting link1 */
596 fxp_read_eeprom(sc, &data, 3, 1);
597 if ((data & 0x03) != 0x03) {
598 aprint_verbose_dev(&sc->sc_dev, "May need receiver lock-up workaround\n");
599 }
600 }
601
602 static void
603 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
604 {
605 uint16_t reg;
606 int x;
607
608 for (x = 1 << (len - 1); x != 0; x >>= 1) {
609 DELAY(40);
610 if (data & x)
611 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
612 else
613 reg = FXP_EEPROM_EECS;
614 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
615 DELAY(40);
616 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
617 reg | FXP_EEPROM_EESK);
618 DELAY(40);
619 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
620 }
621 DELAY(40);
622 }
623
624 /*
625 * Figure out EEPROM size.
626 *
627 * 559's can have either 64-word or 256-word EEPROMs, the 558
628 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
629 * talks about the existence of 16 to 256 word EEPROMs.
630 *
631 * The only known sizes are 64 and 256, where the 256 version is used
632 * by CardBus cards to store CIS information.
633 *
634 * The address is shifted in msb-to-lsb, and after the last
635 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
636 * after which follows the actual data. We try to detect this zero, by
637 * probing the data-out bit in the EEPROM control register just after
638 * having shifted in a bit. If the bit is zero, we assume we've
639 * shifted enough address bits. The data-out should be tri-state,
640 * before this, which should translate to a logical one.
641 *
642 * Other ways to do this would be to try to read a register with known
643 * contents with a varying number of address bits, but no such
644 * register seem to be available. The high bits of register 10 are 01
645 * on the 558 and 559, but apparently not on the 557.
646 *
647 * The Linux driver computes a checksum on the EEPROM data, but the
648 * value of this checksum is not very well documented.
649 */
650
651 void
652 fxp_autosize_eeprom(struct fxp_softc *sc)
653 {
654 int x;
655
656 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
657 DELAY(40);
658
659 /* Shift in read opcode. */
660 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
661
662 /*
663 * Shift in address, wait for the dummy zero following a correct
664 * address shift.
665 */
666 for (x = 1; x <= 8; x++) {
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
668 DELAY(40);
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
670 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
671 DELAY(40);
672 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
673 FXP_EEPROM_EEDO) == 0)
674 break;
675 DELAY(40);
676 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
677 DELAY(40);
678 }
679 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
680 DELAY(40);
681 if (x != 6 && x != 8) {
682 #ifdef DEBUG
683 printf("%s: strange EEPROM size (%d)\n",
684 device_xname(&sc->sc_dev), 1 << x);
685 #endif
686 } else
687 sc->sc_eeprom_size = x;
688 }
689
690 /*
691 * Read from the serial EEPROM. Basically, you manually shift in
692 * the read opcode (one bit at a time) and then shift in the address,
693 * and then you shift out the data (all of this one bit at a time).
694 * The word size is 16 bits, so you have to provide the address for
695 * every 16 bits of data.
696 */
697 void
698 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
699 {
700 u_int16_t reg;
701 int i, x;
702
703 for (i = 0; i < words; i++) {
704 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
705
706 /* Shift in read opcode. */
707 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
708
709 /* Shift in address. */
710 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
711
712 reg = FXP_EEPROM_EECS;
713 data[i] = 0;
714
715 /* Shift out data. */
716 for (x = 16; x > 0; x--) {
717 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
718 reg | FXP_EEPROM_EESK);
719 DELAY(40);
720 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
721 FXP_EEPROM_EEDO)
722 data[i] |= (1 << (x - 1));
723 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
724 DELAY(40);
725 }
726 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
727 DELAY(40);
728 }
729 }
730
731 /*
732 * Write data to the serial EEPROM.
733 */
734 void
735 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
736 {
737 int i, j;
738
739 for (i = 0; i < words; i++) {
740 /* Erase/write enable. */
741 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
742 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
743 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
744 sc->sc_eeprom_size);
745 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
746 DELAY(4);
747
748 /* Shift in write opcode, address, data. */
749 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
750 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
751 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
752 fxp_eeprom_shiftin(sc, data[i], 16);
753 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
754 DELAY(4);
755
756 /* Wait for the EEPROM to finish up. */
757 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
758 DELAY(4);
759 for (j = 0; j < 1000; j++) {
760 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
761 FXP_EEPROM_EEDO)
762 break;
763 DELAY(50);
764 }
765 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
766 DELAY(4);
767
768 /* Erase/write disable. */
769 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
770 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
771 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
772 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
773 DELAY(4);
774 }
775 }
776
777 /*
778 * Update the checksum of the EEPROM.
779 */
780 void
781 fxp_eeprom_update_cksum(struct fxp_softc *sc)
782 {
783 int i;
784 uint16_t data, cksum;
785
786 cksum = 0;
787 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
788 fxp_read_eeprom(sc, &data, i, 1);
789 cksum += data;
790 }
791 i = (1 << sc->sc_eeprom_size) - 1;
792 cksum = 0xbaba - cksum;
793 fxp_read_eeprom(sc, &data, i, 1);
794 fxp_write_eeprom(sc, &cksum, i, 1);
795 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
796 device_xname(&sc->sc_dev), i, data, cksum);
797 }
798
799 /*
800 * Start packet transmission on the interface.
801 */
802 void
803 fxp_start(struct ifnet *ifp)
804 {
805 struct fxp_softc *sc = ifp->if_softc;
806 struct mbuf *m0, *m;
807 struct fxp_txdesc *txd;
808 struct fxp_txsoft *txs;
809 bus_dmamap_t dmamap;
810 int error, lasttx, nexttx, opending, seg;
811
812 /*
813 * If we want a re-init, bail out now.
814 */
815 if (sc->sc_flags & FXPF_WANTINIT) {
816 ifp->if_flags |= IFF_OACTIVE;
817 return;
818 }
819
820 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
821 return;
822
823 /*
824 * Remember the previous txpending and the current lasttx.
825 */
826 opending = sc->sc_txpending;
827 lasttx = sc->sc_txlast;
828
829 /*
830 * Loop through the send queue, setting up transmit descriptors
831 * until we drain the queue, or use up all available transmit
832 * descriptors.
833 */
834 for (;;) {
835 struct fxp_tbd *tbdp;
836 int csum_flags;
837
838 /*
839 * Grab a packet off the queue.
840 */
841 IFQ_POLL(&ifp->if_snd, m0);
842 if (m0 == NULL)
843 break;
844 m = NULL;
845
846 if (sc->sc_txpending == FXP_NTXCB - 1) {
847 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
848 break;
849 }
850
851 /*
852 * Get the next available transmit descriptor.
853 */
854 nexttx = FXP_NEXTTX(sc->sc_txlast);
855 txd = FXP_CDTX(sc, nexttx);
856 txs = FXP_DSTX(sc, nexttx);
857 dmamap = txs->txs_dmamap;
858
859 /*
860 * Load the DMA map. If this fails, the packet either
861 * didn't fit in the allotted number of frags, or we were
862 * short on resources. In this case, we'll copy and try
863 * again.
864 */
865 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
866 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
867 MGETHDR(m, M_DONTWAIT, MT_DATA);
868 if (m == NULL) {
869 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
870 device_xname(&sc->sc_dev));
871 break;
872 }
873 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
874 if (m0->m_pkthdr.len > MHLEN) {
875 MCLGET(m, M_DONTWAIT);
876 if ((m->m_flags & M_EXT) == 0) {
877 log(LOG_ERR,
878 "%s: unable to allocate Tx "
879 "cluster\n", device_xname(&sc->sc_dev));
880 m_freem(m);
881 break;
882 }
883 }
884 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
885 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
886 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
887 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
888 if (error) {
889 log(LOG_ERR, "%s: unable to load Tx buffer, "
890 "error = %d\n", device_xname(&sc->sc_dev), error);
891 break;
892 }
893 }
894
895 IFQ_DEQUEUE(&ifp->if_snd, m0);
896 csum_flags = m0->m_pkthdr.csum_flags;
897 if (m != NULL) {
898 m_freem(m0);
899 m0 = m;
900 }
901
902 /* Initialize the fraglist. */
903 tbdp = txd->txd_tbd;
904 if (sc->sc_flags & FXPF_IPCB)
905 tbdp++;
906 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
907 tbdp[seg].tb_addr =
908 htole32(dmamap->dm_segs[seg].ds_addr);
909 tbdp[seg].tb_size =
910 htole32(dmamap->dm_segs[seg].ds_len);
911 }
912
913 /* Sync the DMA map. */
914 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
915 BUS_DMASYNC_PREWRITE);
916
917 /*
918 * Store a pointer to the packet so we can free it later.
919 */
920 txs->txs_mbuf = m0;
921
922 /*
923 * Initialize the transmit descriptor.
924 */
925 /* BIG_ENDIAN: no need to swap to store 0 */
926 txd->txd_txcb.cb_status = 0;
927 txd->txd_txcb.cb_command =
928 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
929 txd->txd_txcb.tx_threshold = tx_threshold;
930 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
931
932 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
933 if (sc->sc_flags & FXPF_IPCB) {
934 struct m_tag *vtag;
935 struct fxp_ipcb *ipcb;
936 /*
937 * Deal with TCP/IP checksum offload. Note that
938 * in order for TCP checksum offload to work,
939 * the pseudo header checksum must have already
940 * been computed and stored in the checksum field
941 * in the TCP header. The stack should have
942 * already done this for us.
943 */
944 ipcb = &txd->txd_u.txdu_ipcb;
945 memset(ipcb, 0, sizeof(*ipcb));
946 /*
947 * always do hardware parsing.
948 */
949 ipcb->ipcb_ip_activation_high =
950 FXP_IPCB_HARDWAREPARSING_ENABLE;
951 /*
952 * ip checksum offloading.
953 */
954 if (csum_flags & M_CSUM_IPv4) {
955 ipcb->ipcb_ip_schedule |=
956 FXP_IPCB_IP_CHECKSUM_ENABLE;
957 }
958 /*
959 * TCP/UDP checksum offloading.
960 */
961 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
962 ipcb->ipcb_ip_schedule |=
963 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
964 }
965
966 /*
967 * request VLAN tag insertion if needed.
968 */
969 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
970 if (vtag) {
971 ipcb->ipcb_vlan_id =
972 htobe16(*(u_int *)(vtag + 1));
973 ipcb->ipcb_ip_activation_high |=
974 FXP_IPCB_INSERTVLAN_ENABLE;
975 }
976 } else {
977 KASSERT((csum_flags &
978 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
979 }
980
981 FXP_CDTXSYNC(sc, nexttx,
982 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
983
984 /* Advance the tx pointer. */
985 sc->sc_txpending++;
986 sc->sc_txlast = nexttx;
987
988 #if NBPFILTER > 0
989 /*
990 * Pass packet to bpf if there is a listener.
991 */
992 if (ifp->if_bpf)
993 bpf_mtap(ifp->if_bpf, m0);
994 #endif
995 }
996
997 if (sc->sc_txpending == FXP_NTXCB - 1) {
998 /* No more slots; notify upper layer. */
999 ifp->if_flags |= IFF_OACTIVE;
1000 }
1001
1002 if (sc->sc_txpending != opending) {
1003 /*
1004 * We enqueued packets. If the transmitter was idle,
1005 * reset the txdirty pointer.
1006 */
1007 if (opending == 0)
1008 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1009
1010 /*
1011 * Cause the chip to interrupt and suspend command
1012 * processing once the last packet we've enqueued
1013 * has been transmitted.
1014 *
1015 * To avoid a race between updating status bits
1016 * by the fxp chip and clearing command bits
1017 * by this function on machines which don't have
1018 * atomic methods to clear/set bits in memory
1019 * smaller than 32bits (both cb_status and cb_command
1020 * members are uint16_t and in the same 32bit word),
1021 * we have to prepare a dummy TX descriptor which has
1022 * NOP command and just causes a TX completion interrupt.
1023 */
1024 sc->sc_txpending++;
1025 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1026 txd = FXP_CDTX(sc, sc->sc_txlast);
1027 /* BIG_ENDIAN: no need to swap to store 0 */
1028 txd->txd_txcb.cb_status = 0;
1029 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1030 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1031 FXP_CDTXSYNC(sc, sc->sc_txlast,
1032 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1033
1034 /*
1035 * The entire packet chain is set up. Clear the suspend bit
1036 * on the command prior to the first packet we set up.
1037 */
1038 FXP_CDTXSYNC(sc, lasttx,
1039 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1040 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1041 htole16(~FXP_CB_COMMAND_S);
1042 FXP_CDTXSYNC(sc, lasttx,
1043 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1044
1045 /*
1046 * Issue a Resume command in case the chip was suspended.
1047 */
1048 fxp_scb_wait(sc);
1049 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1050
1051 /* Set a watchdog timer in case the chip flakes out. */
1052 ifp->if_timer = 5;
1053 }
1054 }
1055
1056 /*
1057 * Process interface interrupts.
1058 */
1059 int
1060 fxp_intr(void *arg)
1061 {
1062 struct fxp_softc *sc = arg;
1063 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1064 bus_dmamap_t rxmap;
1065 int claimed = 0, rnr;
1066 u_int8_t statack;
1067
1068 if (!device_is_active(&sc->sc_dev) || sc->sc_enabled == 0)
1069 return (0);
1070 /*
1071 * If the interface isn't running, don't try to
1072 * service the interrupt.. just ack it and bail.
1073 */
1074 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1075 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1076 if (statack) {
1077 claimed = 1;
1078 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1079 }
1080 return (claimed);
1081 }
1082
1083 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1084 claimed = 1;
1085
1086 /*
1087 * First ACK all the interrupts in this pass.
1088 */
1089 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1090
1091 /*
1092 * Process receiver interrupts. If a no-resource (RNR)
1093 * condition exists, get whatever packets we can and
1094 * re-start the receiver.
1095 */
1096 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1097 1 : 0;
1098 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1099 FXP_SCB_STATACK_SWI)) {
1100 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1101 rnr |= fxp_rxintr(sc);
1102 }
1103
1104 /*
1105 * Free any finished transmit mbuf chains.
1106 */
1107 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1108 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1109 fxp_txintr(sc);
1110
1111 /*
1112 * Try to get more packets going.
1113 */
1114 fxp_start(ifp);
1115
1116 if (sc->sc_txpending == 0) {
1117 /*
1118 * If we want a re-init, do that now.
1119 */
1120 if (sc->sc_flags & FXPF_WANTINIT)
1121 (void) fxp_init(ifp);
1122 }
1123 }
1124
1125 if (rnr) {
1126 fxp_scb_wait(sc);
1127 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1128 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1129 fxp_scb_wait(sc);
1130 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1131 rxmap->dm_segs[0].ds_addr +
1132 RFA_ALIGNMENT_FUDGE);
1133 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1134 }
1135 }
1136
1137 #if NRND > 0
1138 if (claimed)
1139 rnd_add_uint32(&sc->rnd_source, statack);
1140 #endif
1141 return (claimed);
1142 }
1143
1144 /*
1145 * Handle transmit completion interrupts.
1146 */
1147 void
1148 fxp_txintr(struct fxp_softc *sc)
1149 {
1150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1151 struct fxp_txdesc *txd;
1152 struct fxp_txsoft *txs;
1153 int i;
1154 u_int16_t txstat;
1155
1156 ifp->if_flags &= ~IFF_OACTIVE;
1157 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1158 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1159 txd = FXP_CDTX(sc, i);
1160 txs = FXP_DSTX(sc, i);
1161
1162 FXP_CDTXSYNC(sc, i,
1163 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1164
1165 /* skip dummy NOP TX descriptor */
1166 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1167 == FXP_CB_COMMAND_NOP)
1168 continue;
1169
1170 txstat = le16toh(txd->txd_txcb.cb_status);
1171
1172 if ((txstat & FXP_CB_STATUS_C) == 0)
1173 break;
1174
1175 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1176 0, txs->txs_dmamap->dm_mapsize,
1177 BUS_DMASYNC_POSTWRITE);
1178 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1179 m_freem(txs->txs_mbuf);
1180 txs->txs_mbuf = NULL;
1181 }
1182
1183 /* Update the dirty transmit buffer pointer. */
1184 sc->sc_txdirty = i;
1185
1186 /*
1187 * Cancel the watchdog timer if there are no pending
1188 * transmissions.
1189 */
1190 if (sc->sc_txpending == 0)
1191 ifp->if_timer = 0;
1192 }
1193
1194 /*
1195 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1196 */
1197
1198 int
1199 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1200 {
1201 u_int16_t rxparsestat;
1202 u_int16_t csum_stat;
1203 u_int32_t csum_data;
1204 int csum_flags;
1205
1206 /*
1207 * check VLAN tag stripping.
1208 */
1209
1210 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1211 struct m_tag *vtag;
1212
1213 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1214 if (vtag == NULL)
1215 return ENOMEM;
1216 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1217 m_tag_prepend(m, vtag);
1218 }
1219
1220 /*
1221 * check H/W Checksumming.
1222 */
1223
1224 csum_stat = le16toh(rfa->cksum_stat);
1225 rxparsestat = le16toh(rfa->rx_parse_stat);
1226 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1227 return 0;
1228
1229 csum_flags = 0;
1230 csum_data = 0;
1231
1232 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1233 csum_flags = M_CSUM_IPv4;
1234 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1235 csum_flags |= M_CSUM_IPv4_BAD;
1236 }
1237
1238 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1239 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1240 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1241 csum_flags |= M_CSUM_TCP_UDP_BAD;
1242 }
1243
1244 m->m_pkthdr.csum_flags = csum_flags;
1245 m->m_pkthdr.csum_data = csum_data;
1246
1247 return 0;
1248 }
1249
1250 /*
1251 * Handle receive interrupts.
1252 */
1253 int
1254 fxp_rxintr(struct fxp_softc *sc)
1255 {
1256 struct ethercom *ec = &sc->sc_ethercom;
1257 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1258 struct mbuf *m, *m0;
1259 bus_dmamap_t rxmap;
1260 struct fxp_rfa *rfa;
1261 int rnr;
1262 u_int16_t len, rxstat;
1263
1264 rnr = 0;
1265
1266 for (;;) {
1267 m = sc->sc_rxq.ifq_head;
1268 rfa = FXP_MTORFA(m);
1269 rxmap = M_GETCTX(m, bus_dmamap_t);
1270
1271 FXP_RFASYNC(sc, m,
1272 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1273
1274 rxstat = le16toh(rfa->rfa_status);
1275
1276 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1277 rnr = 1;
1278
1279 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1280 /*
1281 * We have processed all of the
1282 * receive buffers.
1283 */
1284 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1285 return rnr;
1286 }
1287
1288 IF_DEQUEUE(&sc->sc_rxq, m);
1289
1290 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1291
1292 len = le16toh(rfa->actual_size) &
1293 (m->m_ext.ext_size - 1);
1294
1295 if (len < sizeof(struct ether_header)) {
1296 /*
1297 * Runt packet; drop it now.
1298 */
1299 FXP_INIT_RFABUF(sc, m);
1300 continue;
1301 }
1302
1303 /*
1304 * If support for 802.1Q VLAN sized frames is
1305 * enabled, we need to do some additional error
1306 * checking (as we are saving bad frames, in
1307 * order to receive the larger ones).
1308 */
1309 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1310 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1311 FXP_RFA_STATUS_RNR|
1312 FXP_RFA_STATUS_ALIGN|
1313 FXP_RFA_STATUS_CRC)) != 0) {
1314 FXP_INIT_RFABUF(sc, m);
1315 continue;
1316 }
1317
1318 /* Do checksum checking. */
1319 m->m_pkthdr.csum_flags = 0;
1320 if (sc->sc_flags & FXPF_EXT_RFA)
1321 if (fxp_rx_hwcksum(m, rfa))
1322 goto dropit;
1323
1324 /*
1325 * If the packet is small enough to fit in a
1326 * single header mbuf, allocate one and copy
1327 * the data into it. This greatly reduces
1328 * memory consumption when we receive lots
1329 * of small packets.
1330 *
1331 * Otherwise, we add a new buffer to the receive
1332 * chain. If this fails, we drop the packet and
1333 * recycle the old buffer.
1334 */
1335 if (fxp_copy_small != 0 && len <= MHLEN) {
1336 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1337 if (m0 == NULL)
1338 goto dropit;
1339 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1340 memcpy(mtod(m0, void *),
1341 mtod(m, void *), len);
1342 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1343 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1344 FXP_INIT_RFABUF(sc, m);
1345 m = m0;
1346 } else {
1347 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1348 dropit:
1349 ifp->if_ierrors++;
1350 FXP_INIT_RFABUF(sc, m);
1351 continue;
1352 }
1353 }
1354
1355 m->m_pkthdr.rcvif = ifp;
1356 m->m_pkthdr.len = m->m_len = len;
1357
1358 #if NBPFILTER > 0
1359 /*
1360 * Pass this up to any BPF listeners, but only
1361 * pass it up the stack if it's for us.
1362 */
1363 if (ifp->if_bpf)
1364 bpf_mtap(ifp->if_bpf, m);
1365 #endif
1366
1367 /* Pass it on. */
1368 (*ifp->if_input)(ifp, m);
1369 }
1370 }
1371
1372 /*
1373 * Update packet in/out/collision statistics. The i82557 doesn't
1374 * allow you to access these counters without doing a fairly
1375 * expensive DMA to get _all_ of the statistics it maintains, so
1376 * we do this operation here only once per second. The statistics
1377 * counters in the kernel are updated from the previous dump-stats
1378 * DMA and then a new dump-stats DMA is started. The on-chip
1379 * counters are zeroed when the DMA completes. If we can't start
1380 * the DMA immediately, we don't wait - we just prepare to read
1381 * them again next time.
1382 */
1383 void
1384 fxp_tick(void *arg)
1385 {
1386 struct fxp_softc *sc = arg;
1387 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1388 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1389 int s;
1390
1391 if (!device_is_active(&sc->sc_dev))
1392 return;
1393
1394 s = splnet();
1395
1396 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1397
1398 ifp->if_opackets += le32toh(sp->tx_good);
1399 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1400 if (sp->rx_good) {
1401 ifp->if_ipackets += le32toh(sp->rx_good);
1402 sc->sc_rxidle = 0;
1403 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1404 sc->sc_rxidle++;
1405 }
1406 ifp->if_ierrors +=
1407 le32toh(sp->rx_crc_errors) +
1408 le32toh(sp->rx_alignment_errors) +
1409 le32toh(sp->rx_rnr_errors) +
1410 le32toh(sp->rx_overrun_errors);
1411 /*
1412 * If any transmit underruns occurred, bump up the transmit
1413 * threshold by another 512 bytes (64 * 8).
1414 */
1415 if (sp->tx_underruns) {
1416 ifp->if_oerrors += le32toh(sp->tx_underruns);
1417 if (tx_threshold < 192)
1418 tx_threshold += 64;
1419 }
1420 #ifdef FXP_EVENT_COUNTERS
1421 if (sc->sc_rev >= FXP_REV_82558_A4) {
1422 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1423 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1424 }
1425 #endif
1426
1427 /*
1428 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1429 * then assume the receiver has locked up and attempt to clear
1430 * the condition by reprogramming the multicast filter (actually,
1431 * resetting the interface). This is a work-around for a bug in
1432 * the 82557 where the receiver locks up if it gets certain types
1433 * of garbage in the synchronization bits prior to the packet header.
1434 * This bug is supposed to only occur in 10Mbps mode, but has been
1435 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1436 * speed transition).
1437 */
1438 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1439 (void) fxp_init(ifp);
1440 splx(s);
1441 return;
1442 }
1443 /*
1444 * If there is no pending command, start another stats
1445 * dump. Otherwise punt for now.
1446 */
1447 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1448 /*
1449 * Start another stats dump.
1450 */
1451 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1452 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1453 } else {
1454 /*
1455 * A previous command is still waiting to be accepted.
1456 * Just zero our copy of the stats and wait for the
1457 * next timer event to update them.
1458 */
1459 /* BIG_ENDIAN: no swap required to store 0 */
1460 sp->tx_good = 0;
1461 sp->tx_underruns = 0;
1462 sp->tx_total_collisions = 0;
1463
1464 sp->rx_good = 0;
1465 sp->rx_crc_errors = 0;
1466 sp->rx_alignment_errors = 0;
1467 sp->rx_rnr_errors = 0;
1468 sp->rx_overrun_errors = 0;
1469 if (sc->sc_rev >= FXP_REV_82558_A4) {
1470 sp->tx_pauseframes = 0;
1471 sp->rx_pauseframes = 0;
1472 }
1473 }
1474
1475 if (sc->sc_flags & FXPF_MII) {
1476 /* Tick the MII clock. */
1477 mii_tick(&sc->sc_mii);
1478 }
1479
1480 splx(s);
1481
1482 /*
1483 * Schedule another timeout one second from now.
1484 */
1485 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1486 }
1487
1488 /*
1489 * Drain the receive queue.
1490 */
1491 void
1492 fxp_rxdrain(struct fxp_softc *sc)
1493 {
1494 bus_dmamap_t rxmap;
1495 struct mbuf *m;
1496
1497 for (;;) {
1498 IF_DEQUEUE(&sc->sc_rxq, m);
1499 if (m == NULL)
1500 break;
1501 rxmap = M_GETCTX(m, bus_dmamap_t);
1502 bus_dmamap_unload(sc->sc_dmat, rxmap);
1503 FXP_RXMAP_PUT(sc, rxmap);
1504 m_freem(m);
1505 }
1506 }
1507
1508 /*
1509 * Stop the interface. Cancels the statistics updater and resets
1510 * the interface.
1511 */
1512 void
1513 fxp_stop(struct ifnet *ifp, int disable)
1514 {
1515 struct fxp_softc *sc = ifp->if_softc;
1516 struct fxp_txsoft *txs;
1517 int i;
1518
1519 /*
1520 * Turn down interface (done early to avoid bad interactions
1521 * between panics, shutdown hooks, and the watchdog timer)
1522 */
1523 ifp->if_timer = 0;
1524 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1525
1526 /*
1527 * Cancel stats updater.
1528 */
1529 callout_stop(&sc->sc_callout);
1530 if (sc->sc_flags & FXPF_MII) {
1531 /* Down the MII. */
1532 mii_down(&sc->sc_mii);
1533 }
1534
1535 /*
1536 * Issue software reset. This unloads any microcode that
1537 * might already be loaded.
1538 */
1539 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1540 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1541 DELAY(50);
1542
1543 /*
1544 * Release any xmit buffers.
1545 */
1546 for (i = 0; i < FXP_NTXCB; i++) {
1547 txs = FXP_DSTX(sc, i);
1548 if (txs->txs_mbuf != NULL) {
1549 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1550 m_freem(txs->txs_mbuf);
1551 txs->txs_mbuf = NULL;
1552 }
1553 }
1554 sc->sc_txpending = 0;
1555
1556 if (disable) {
1557 fxp_rxdrain(sc);
1558 fxp_disable(sc);
1559 }
1560
1561 }
1562
1563 /*
1564 * Watchdog/transmission transmit timeout handler. Called when a
1565 * transmission is started on the interface, but no interrupt is
1566 * received before the timeout. This usually indicates that the
1567 * card has wedged for some reason.
1568 */
1569 void
1570 fxp_watchdog(struct ifnet *ifp)
1571 {
1572 struct fxp_softc *sc = ifp->if_softc;
1573
1574 log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
1575 ifp->if_oerrors++;
1576
1577 (void) fxp_init(ifp);
1578 }
1579
1580 /*
1581 * Initialize the interface. Must be called at splnet().
1582 */
1583 int
1584 fxp_init(struct ifnet *ifp)
1585 {
1586 struct fxp_softc *sc = ifp->if_softc;
1587 struct fxp_cb_config *cbp;
1588 struct fxp_cb_ias *cb_ias;
1589 struct fxp_txdesc *txd;
1590 bus_dmamap_t rxmap;
1591 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1592
1593 if ((error = fxp_enable(sc)) != 0)
1594 goto out;
1595
1596 /*
1597 * Cancel any pending I/O
1598 */
1599 fxp_stop(ifp, 0);
1600
1601 /*
1602 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1603 * flag, and this prevents the MII from detaching resulting in
1604 * a panic. The flags field should perhaps be split in runtime
1605 * flags and more static information. For now, just clear the
1606 * only other flag set.
1607 */
1608
1609 sc->sc_flags &= ~FXPF_WANTINIT;
1610
1611 /*
1612 * Initialize base of CBL and RFA memory. Loading with zero
1613 * sets it up for regular linear addressing.
1614 */
1615 fxp_scb_wait(sc);
1616 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1617 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1618
1619 fxp_scb_wait(sc);
1620 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1621
1622 /*
1623 * Initialize the multicast filter. Do this now, since we might
1624 * have to setup the config block differently.
1625 */
1626 fxp_mc_setup(sc);
1627
1628 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1629 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1630
1631 /*
1632 * In order to support receiving 802.1Q VLAN frames, we have to
1633 * enable "save bad frames", since they are 4 bytes larger than
1634 * the normal Ethernet maximum frame length. On i82558 and later,
1635 * we have a better mechanism for this.
1636 */
1637 save_bf = 0;
1638 lrxen = 0;
1639 vlan_drop = 0;
1640 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1641 if (sc->sc_rev < FXP_REV_82558_A4)
1642 save_bf = 1;
1643 else
1644 lrxen = 1;
1645 if (sc->sc_rev >= FXP_REV_82550)
1646 vlan_drop = 1;
1647 }
1648
1649 /*
1650 * Initialize base of dump-stats buffer.
1651 */
1652 fxp_scb_wait(sc);
1653 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1654 sc->sc_cddma + FXP_CDSTATSOFF);
1655 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1656 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1657
1658 cbp = &sc->sc_control_data->fcd_configcb;
1659 memset(cbp, 0, sizeof(struct fxp_cb_config));
1660
1661 /*
1662 * Load microcode for this controller.
1663 */
1664 fxp_load_ucode(sc);
1665
1666 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1667 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1668 else
1669 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1670
1671 /*
1672 * This copy is kind of disgusting, but there are a bunch of must be
1673 * zero and must be one bits in this structure and this is the easiest
1674 * way to initialize them all to proper values.
1675 */
1676 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1677
1678 /* BIG_ENDIAN: no need to swap to store 0 */
1679 cbp->cb_status = 0;
1680 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1681 FXP_CB_COMMAND_EL);
1682 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1683 cbp->link_addr = 0xffffffff; /* (no) next command */
1684 /* bytes in config block */
1685 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1686 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1687 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1688 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1689 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1690 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1691 cbp->type_enable = 0; /* actually reserved */
1692 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1693 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1694 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1695 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1696 cbp->dma_mbce = 0; /* (disable) dma max counters */
1697 cbp->late_scb = 0; /* (don't) defer SCB update */
1698 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1699 cbp->ci_int = 1; /* interrupt on CU idle */
1700 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1701 cbp->ext_stats_dis = 1; /* disable extended counters */
1702 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1703 cbp->save_bf = save_bf;/* save bad frames */
1704 cbp->disc_short_rx = !prm; /* discard short packets */
1705 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1706 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1707 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1708 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1709 /* interface mode */
1710 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1711 cbp->csma_dis = 0; /* (don't) disable link */
1712 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1713 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1714 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1715 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1716 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1717 cbp->nsai = 1; /* (don't) disable source addr insert */
1718 cbp->preamble_length = 2; /* (7 byte) preamble */
1719 cbp->loopback = 0; /* (don't) loopback */
1720 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1721 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1722 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1723 cbp->promiscuous = prm; /* promiscuous mode */
1724 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1725 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1726 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1727 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1728 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1729 cbp->stripping = !prm; /* truncate rx packet to byte count */
1730 cbp->padding = 1; /* (do) pad short tx packets */
1731 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1732 cbp->long_rx_en = lrxen; /* long packet receive enable */
1733 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1734 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1735 /* must set wake_en in PMCSR also */
1736 cbp->force_fdx = 0; /* (don't) force full duplex */
1737 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1738 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1739 cbp->mc_all = allm; /* accept all multicasts */
1740 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1741 cbp->vlan_drop_en = vlan_drop;
1742
1743 if (sc->sc_rev < FXP_REV_82558_A4) {
1744 /*
1745 * The i82557 has no hardware flow control, the values
1746 * here are the defaults for the chip.
1747 */
1748 cbp->fc_delay_lsb = 0;
1749 cbp->fc_delay_msb = 0x40;
1750 cbp->pri_fc_thresh = 3;
1751 cbp->tx_fc_dis = 0;
1752 cbp->rx_fc_restop = 0;
1753 cbp->rx_fc_restart = 0;
1754 cbp->fc_filter = 0;
1755 cbp->pri_fc_loc = 1;
1756 } else {
1757 cbp->fc_delay_lsb = 0x1f;
1758 cbp->fc_delay_msb = 0x01;
1759 cbp->pri_fc_thresh = 3;
1760 cbp->tx_fc_dis = 0; /* enable transmit FC */
1761 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1762 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1763 cbp->fc_filter = !prm; /* drop FC frames to host */
1764 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1765 cbp->ext_stats_dis = 0; /* enable extended stats */
1766 }
1767
1768 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1769
1770 /*
1771 * Start the config command/DMA.
1772 */
1773 fxp_scb_wait(sc);
1774 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1775 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1776 /* ...and wait for it to complete. */
1777 i = 1000;
1778 do {
1779 FXP_CDCONFIGSYNC(sc,
1780 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1781 DELAY(1);
1782 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1783 if (i == 0) {
1784 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1785 device_xname(&sc->sc_dev), __LINE__);
1786 return (ETIMEDOUT);
1787 }
1788
1789 /*
1790 * Initialize the station address.
1791 */
1792 cb_ias = &sc->sc_control_data->fcd_iascb;
1793 /* BIG_ENDIAN: no need to swap to store 0 */
1794 cb_ias->cb_status = 0;
1795 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1796 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1797 cb_ias->link_addr = 0xffffffff;
1798 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1799
1800 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1801
1802 /*
1803 * Start the IAS (Individual Address Setup) command/DMA.
1804 */
1805 fxp_scb_wait(sc);
1806 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1807 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1808 /* ...and wait for it to complete. */
1809 i = 1000;
1810 do {
1811 FXP_CDIASSYNC(sc,
1812 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1813 DELAY(1);
1814 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1815 if (i == 0) {
1816 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1817 device_xname(&sc->sc_dev), __LINE__);
1818 return (ETIMEDOUT);
1819 }
1820
1821 /*
1822 * Initialize the transmit descriptor ring. txlast is initialized
1823 * to the end of the list so that it will wrap around to the first
1824 * descriptor when the first packet is transmitted.
1825 */
1826 for (i = 0; i < FXP_NTXCB; i++) {
1827 txd = FXP_CDTX(sc, i);
1828 memset(txd, 0, sizeof(*txd));
1829 txd->txd_txcb.cb_command =
1830 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1831 txd->txd_txcb.link_addr =
1832 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1833 if (sc->sc_flags & FXPF_EXT_TXCB)
1834 txd->txd_txcb.tbd_array_addr =
1835 htole32(FXP_CDTBDADDR(sc, i) +
1836 (2 * sizeof(struct fxp_tbd)));
1837 else
1838 txd->txd_txcb.tbd_array_addr =
1839 htole32(FXP_CDTBDADDR(sc, i));
1840 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1841 }
1842 sc->sc_txpending = 0;
1843 sc->sc_txdirty = 0;
1844 sc->sc_txlast = FXP_NTXCB - 1;
1845
1846 /*
1847 * Initialize the receive buffer list.
1848 */
1849 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1850 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1851 rxmap = FXP_RXMAP_GET(sc);
1852 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1853 log(LOG_ERR, "%s: unable to allocate or map rx "
1854 "buffer %d, error = %d\n",
1855 device_xname(&sc->sc_dev),
1856 sc->sc_rxq.ifq_len, error);
1857 /*
1858 * XXX Should attempt to run with fewer receive
1859 * XXX buffers instead of just failing.
1860 */
1861 FXP_RXMAP_PUT(sc, rxmap);
1862 fxp_rxdrain(sc);
1863 goto out;
1864 }
1865 }
1866 sc->sc_rxidle = 0;
1867
1868 /*
1869 * Give the transmit ring to the chip. We do this by pointing
1870 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1871 * issuing a start command. It will execute the NOP and then
1872 * suspend, pointing at the first descriptor.
1873 */
1874 fxp_scb_wait(sc);
1875 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1876 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1877
1878 /*
1879 * Initialize receiver buffer area - RFA.
1880 */
1881 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1882 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1883 fxp_scb_wait(sc);
1884 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1885 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1886 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1887 #endif
1888
1889 if (sc->sc_flags & FXPF_MII) {
1890 /*
1891 * Set current media.
1892 */
1893 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1894 goto out;
1895 }
1896
1897 /*
1898 * ...all done!
1899 */
1900 ifp->if_flags |= IFF_RUNNING;
1901 ifp->if_flags &= ~IFF_OACTIVE;
1902
1903 /*
1904 * Request a software generated interrupt that will be used to
1905 * (re)start the RU processing. If we direct the chip to start
1906 * receiving from the start of queue now, instead of letting the
1907 * interrupt handler first process all received packets, we run
1908 * the risk of having it overwrite mbuf clusters while they are
1909 * being processed or after they have been returned to the pool.
1910 */
1911 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1912
1913 /*
1914 * Start the one second timer.
1915 */
1916 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1917
1918 /*
1919 * Attempt to start output on the interface.
1920 */
1921 fxp_start(ifp);
1922
1923 out:
1924 if (error) {
1925 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1926 ifp->if_timer = 0;
1927 log(LOG_ERR, "%s: interface not running\n",
1928 device_xname(&sc->sc_dev));
1929 }
1930 return (error);
1931 }
1932
1933 /*
1934 * Notify the world which media we're using.
1935 */
1936 void
1937 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1938 {
1939 struct fxp_softc *sc = ifp->if_softc;
1940
1941 if (sc->sc_enabled == 0) {
1942 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1943 ifmr->ifm_status = 0;
1944 return;
1945 }
1946
1947 ether_mediastatus(ifp, ifmr);
1948
1949 /*
1950 * XXX Flow control is always turned on if the chip supports
1951 * XXX it; we can't easily control it dynamically, since it
1952 * XXX requires sending a setup packet.
1953 */
1954 if (sc->sc_rev >= FXP_REV_82558_A4)
1955 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1956 }
1957
1958 int
1959 fxp_80c24_mediachange(struct ifnet *ifp)
1960 {
1961
1962 /* Nothing to do here. */
1963 return (0);
1964 }
1965
1966 void
1967 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1968 {
1969 struct fxp_softc *sc = ifp->if_softc;
1970
1971 /*
1972 * Media is currently-selected media. We cannot determine
1973 * the link status.
1974 */
1975 ifmr->ifm_status = 0;
1976 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1977 }
1978
1979 /*
1980 * Add a buffer to the end of the RFA buffer list.
1981 * Return 0 if successful, error code on failure.
1982 *
1983 * The RFA struct is stuck at the beginning of mbuf cluster and the
1984 * data pointer is fixed up to point just past it.
1985 */
1986 int
1987 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1988 {
1989 struct mbuf *m;
1990 int error;
1991
1992 MGETHDR(m, M_DONTWAIT, MT_DATA);
1993 if (m == NULL)
1994 return (ENOBUFS);
1995
1996 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1997 MCLGET(m, M_DONTWAIT);
1998 if ((m->m_flags & M_EXT) == 0) {
1999 m_freem(m);
2000 return (ENOBUFS);
2001 }
2002
2003 if (unload)
2004 bus_dmamap_unload(sc->sc_dmat, rxmap);
2005
2006 M_SETCTX(m, rxmap);
2007
2008 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2009 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2010 BUS_DMA_READ|BUS_DMA_NOWAIT);
2011 if (error) {
2012 /* XXX XXX XXX */
2013 aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2014 sc->sc_rxq.ifq_len, error);
2015 panic("fxp_add_rfabuf");
2016 }
2017
2018 FXP_INIT_RFABUF(sc, m);
2019
2020 return (0);
2021 }
2022
2023 int
2024 fxp_mdi_read(struct device *self, int phy, int reg)
2025 {
2026 struct fxp_softc *sc = (struct fxp_softc *)self;
2027 int count = 10000;
2028 int value;
2029
2030 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2031 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2032
2033 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2034 0x10000000) == 0 && count--)
2035 DELAY(10);
2036
2037 if (count <= 0)
2038 log(LOG_WARNING,
2039 "%s: fxp_mdi_read: timed out\n", device_xname(&sc->sc_dev));
2040
2041 return (value & 0xffff);
2042 }
2043
2044 void
2045 fxp_statchg(struct device *self)
2046 {
2047
2048 /* Nothing to do. */
2049 }
2050
2051 void
2052 fxp_mdi_write(struct device *self, int phy, int reg, int value)
2053 {
2054 struct fxp_softc *sc = (struct fxp_softc *)self;
2055 int count = 10000;
2056
2057 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2058 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2059 (value & 0xffff));
2060
2061 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2062 count--)
2063 DELAY(10);
2064
2065 if (count <= 0)
2066 log(LOG_WARNING,
2067 "%s: fxp_mdi_write: timed out\n", device_xname(&sc->sc_dev));
2068 }
2069
2070 int
2071 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2072 {
2073 struct fxp_softc *sc = ifp->if_softc;
2074 struct ifreq *ifr = (struct ifreq *)data;
2075 int s, error;
2076
2077 s = splnet();
2078
2079 switch (cmd) {
2080 case SIOCSIFMEDIA:
2081 case SIOCGIFMEDIA:
2082 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2083 break;
2084
2085 default:
2086 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2087 break;
2088
2089 error = 0;
2090
2091 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2092 ;
2093 else if (ifp->if_flags & IFF_RUNNING) {
2094 /*
2095 * Multicast list has changed; set the
2096 * hardware filter accordingly.
2097 */
2098 if (sc->sc_txpending) {
2099 sc->sc_flags |= FXPF_WANTINIT;
2100 } else
2101 error = fxp_init(ifp);
2102 }
2103 break;
2104 }
2105
2106 /* Try to get more packets going. */
2107 if (sc->sc_enabled)
2108 fxp_start(ifp);
2109
2110 splx(s);
2111 return (error);
2112 }
2113
2114 /*
2115 * Program the multicast filter.
2116 *
2117 * This function must be called at splnet().
2118 */
2119 void
2120 fxp_mc_setup(struct fxp_softc *sc)
2121 {
2122 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2123 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2124 struct ethercom *ec = &sc->sc_ethercom;
2125 struct ether_multi *enm;
2126 struct ether_multistep step;
2127 int count, nmcasts;
2128
2129 #ifdef DIAGNOSTIC
2130 if (sc->sc_txpending)
2131 panic("fxp_mc_setup: pending transmissions");
2132 #endif
2133
2134 ifp->if_flags &= ~IFF_ALLMULTI;
2135
2136 /*
2137 * Initialize multicast setup descriptor.
2138 */
2139 nmcasts = 0;
2140 ETHER_FIRST_MULTI(step, ec, enm);
2141 while (enm != NULL) {
2142 /*
2143 * Check for too many multicast addresses or if we're
2144 * listening to a range. Either way, we simply have
2145 * to accept all multicasts.
2146 */
2147 if (nmcasts >= MAXMCADDR ||
2148 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2149 ETHER_ADDR_LEN) != 0) {
2150 /*
2151 * Callers of this function must do the
2152 * right thing with this. If we're called
2153 * from outside fxp_init(), the caller must
2154 * detect if the state if IFF_ALLMULTI changes.
2155 * If it does, the caller must then call
2156 * fxp_init(), since allmulti is handled by
2157 * the config block.
2158 */
2159 ifp->if_flags |= IFF_ALLMULTI;
2160 return;
2161 }
2162 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2163 ETHER_ADDR_LEN);
2164 nmcasts++;
2165 ETHER_NEXT_MULTI(step, enm);
2166 }
2167
2168 /* BIG_ENDIAN: no need to swap to store 0 */
2169 mcsp->cb_status = 0;
2170 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2171 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2172 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2173
2174 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2175
2176 /*
2177 * Wait until the command unit is not active. This should never
2178 * happen since nothing is queued, but make sure anyway.
2179 */
2180 count = 100;
2181 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2182 FXP_SCB_CUS_ACTIVE && --count)
2183 DELAY(1);
2184 if (count == 0) {
2185 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2186 device_xname(&sc->sc_dev), __LINE__);
2187 return;
2188 }
2189
2190 /*
2191 * Start the multicast setup command/DMA.
2192 */
2193 fxp_scb_wait(sc);
2194 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2195 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2196
2197 /* ...and wait for it to complete. */
2198 count = 1000;
2199 do {
2200 FXP_CDMCSSYNC(sc,
2201 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2202 DELAY(1);
2203 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2204 if (count == 0) {
2205 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2206 device_xname(&sc->sc_dev), __LINE__);
2207 return;
2208 }
2209 }
2210
2211 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2212 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2213 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2214 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2215 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2216 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2217
2218 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2219
2220 static const struct ucode {
2221 int32_t revision;
2222 const uint32_t *ucode;
2223 size_t length;
2224 uint16_t int_delay_offset;
2225 uint16_t bundle_max_offset;
2226 } ucode_table[] = {
2227 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2228 D101_CPUSAVER_DWORD, 0 },
2229
2230 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2231 D101_CPUSAVER_DWORD, 0 },
2232
2233 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2234 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2235
2236 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2237 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2238
2239 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2240 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2241
2242 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2243 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2244
2245 { 0, NULL, 0, 0, 0 }
2246 };
2247
2248 void
2249 fxp_load_ucode(struct fxp_softc *sc)
2250 {
2251 const struct ucode *uc;
2252 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2253 int count, i;
2254
2255 if (sc->sc_flags & FXPF_UCODE_LOADED)
2256 return;
2257
2258 /*
2259 * Only load the uCode if the user has requested that
2260 * we do so.
2261 */
2262 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2263 sc->sc_int_delay = 0;
2264 sc->sc_bundle_max = 0;
2265 return;
2266 }
2267
2268 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2269 if (sc->sc_rev == uc->revision)
2270 break;
2271 }
2272 if (uc->ucode == NULL)
2273 return;
2274
2275 /* BIG ENDIAN: no need to swap to store 0 */
2276 cbp->cb_status = 0;
2277 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2278 cbp->link_addr = 0xffffffff; /* (no) next command */
2279 for (i = 0; i < uc->length; i++)
2280 cbp->ucode[i] = htole32(uc->ucode[i]);
2281
2282 if (uc->int_delay_offset)
2283 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2284 htole16(fxp_int_delay + (fxp_int_delay / 2));
2285
2286 if (uc->bundle_max_offset)
2287 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2288 htole16(fxp_bundle_max);
2289
2290 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2291
2292 /*
2293 * Download the uCode to the chip.
2294 */
2295 fxp_scb_wait(sc);
2296 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2297 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2298
2299 /* ...and wait for it to complete. */
2300 count = 10000;
2301 do {
2302 FXP_CDUCODESYNC(sc,
2303 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2304 DELAY(2);
2305 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2306 if (count == 0) {
2307 sc->sc_int_delay = 0;
2308 sc->sc_bundle_max = 0;
2309 log(LOG_WARNING, "%s: timeout loading microcode\n",
2310 device_xname(&sc->sc_dev));
2311 return;
2312 }
2313
2314 if (sc->sc_int_delay != fxp_int_delay ||
2315 sc->sc_bundle_max != fxp_bundle_max) {
2316 sc->sc_int_delay = fxp_int_delay;
2317 sc->sc_bundle_max = fxp_bundle_max;
2318 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2319 "max bundle: %d\n", device_xname(&sc->sc_dev),
2320 sc->sc_int_delay,
2321 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2322 }
2323
2324 sc->sc_flags |= FXPF_UCODE_LOADED;
2325 }
2326
2327 int
2328 fxp_enable(struct fxp_softc *sc)
2329 {
2330
2331 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2332 if ((*sc->sc_enable)(sc) != 0) {
2333 log(LOG_ERR, "%s: device enable failed\n",
2334 device_xname(&sc->sc_dev));
2335 return (EIO);
2336 }
2337 }
2338
2339 sc->sc_enabled = 1;
2340 return (0);
2341 }
2342
2343 void
2344 fxp_disable(struct fxp_softc *sc)
2345 {
2346
2347 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2348 (*sc->sc_disable)(sc);
2349 sc->sc_enabled = 0;
2350 }
2351 }
2352
2353 /*
2354 * fxp_activate:
2355 *
2356 * Handle device activation/deactivation requests.
2357 */
2358 int
2359 fxp_activate(struct device *self, enum devact act)
2360 {
2361 struct fxp_softc *sc = (void *) self;
2362 int s, error = 0;
2363
2364 s = splnet();
2365 switch (act) {
2366 case DVACT_ACTIVATE:
2367 error = EOPNOTSUPP;
2368 break;
2369
2370 case DVACT_DEACTIVATE:
2371 if (sc->sc_flags & FXPF_MII)
2372 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2373 MII_OFFSET_ANY);
2374 if_deactivate(&sc->sc_ethercom.ec_if);
2375 break;
2376 }
2377 splx(s);
2378
2379 return (error);
2380 }
2381
2382 /*
2383 * fxp_detach:
2384 *
2385 * Detach an i82557 interface.
2386 */
2387 int
2388 fxp_detach(struct fxp_softc *sc)
2389 {
2390 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2391 int i;
2392
2393 /* Succeed now if there's no work to do. */
2394 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2395 return (0);
2396
2397 /* Unhook our tick handler. */
2398 callout_stop(&sc->sc_callout);
2399
2400 if (sc->sc_flags & FXPF_MII) {
2401 /* Detach all PHYs */
2402 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2403 }
2404
2405 /* Delete all remaining media. */
2406 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2407
2408 #if NRND > 0
2409 rnd_detach_source(&sc->rnd_source);
2410 #endif
2411 ether_ifdetach(ifp);
2412 if_detach(ifp);
2413
2414 for (i = 0; i < FXP_NRFABUFS; i++) {
2415 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2416 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2417 }
2418
2419 for (i = 0; i < FXP_NTXCB; i++) {
2420 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2421 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2422 }
2423
2424 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2425 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2426 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2427 sizeof(struct fxp_control_data));
2428 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2429
2430 return (0);
2431 }
2432