i82557.c revision 1.116 1 /* $NetBSD: i82557.c,v 1.116 2008/12/03 14:21:15 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice unmodified, this list of conditions, and the following
43 * disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61 */
62
63 /*
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.116 2008/12/03 14:21:15 tsutsui Exp $");
70
71 #include "bpfilter.h"
72 #include "rnd.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/device.h>
84 #include <sys/syslog.h>
85
86 #include <machine/endian.h>
87
88 #include <uvm/uvm_extern.h>
89
90 #if NRND > 0
91 #include <sys/rnd.h>
92 #endif
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #endif
102
103 #include <sys/bus.h>
104 #include <sys/intr.h>
105
106 #include <dev/mii/miivar.h>
107
108 #include <dev/ic/i82557reg.h>
109 #include <dev/ic/i82557var.h>
110
111 #include <dev/microcode/i8255x/rcvbundl.h>
112
113 /*
114 * NOTE! On the Alpha, we have an alignment constraint. The
115 * card DMAs the packet immediately following the RFA. However,
116 * the first thing in the packet is a 14-byte Ethernet header.
117 * This means that the packet is misaligned. To compensate,
118 * we actually offset the RFA 2 bytes into the cluster. This
119 * alignes the packet after the Ethernet header at a 32-bit
120 * boundary. HOWEVER! This means that the RFA is misaligned!
121 */
122 #define RFA_ALIGNMENT_FUDGE 2
123
124 /*
125 * The configuration byte map has several undefined fields which
126 * must be one or must be zero. Set up a template for these bits
127 * only (assuming an i82557 chip), leaving the actual configuration
128 * for fxp_init().
129 *
130 * See the definition of struct fxp_cb_config for the bit definitions.
131 */
132 const u_int8_t fxp_cb_config_template[] = {
133 0x0, 0x0, /* cb_status */
134 0x0, 0x0, /* cb_command */
135 0x0, 0x0, 0x0, 0x0, /* link_addr */
136 0x0, /* 0 */
137 0x0, /* 1 */
138 0x0, /* 2 */
139 0x0, /* 3 */
140 0x0, /* 4 */
141 0x0, /* 5 */
142 0x32, /* 6 */
143 0x0, /* 7 */
144 0x0, /* 8 */
145 0x0, /* 9 */
146 0x6, /* 10 */
147 0x0, /* 11 */
148 0x0, /* 12 */
149 0x0, /* 13 */
150 0xf2, /* 14 */
151 0x48, /* 15 */
152 0x0, /* 16 */
153 0x40, /* 17 */
154 0xf0, /* 18 */
155 0x0, /* 19 */
156 0x3f, /* 20 */
157 0x5, /* 21 */
158 0x0, /* 22 */
159 0x0, /* 23 */
160 0x0, /* 24 */
161 0x0, /* 25 */
162 0x0, /* 26 */
163 0x0, /* 27 */
164 0x0, /* 28 */
165 0x0, /* 29 */
166 0x0, /* 30 */
167 0x0, /* 31 */
168 };
169
170 void fxp_mii_initmedia(struct fxp_softc *);
171 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
172
173 void fxp_80c24_initmedia(struct fxp_softc *);
174 int fxp_80c24_mediachange(struct ifnet *);
175 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
176
177 void fxp_start(struct ifnet *);
178 int fxp_ioctl(struct ifnet *, u_long, void *);
179 void fxp_watchdog(struct ifnet *);
180 int fxp_init(struct ifnet *);
181 void fxp_stop(struct ifnet *, int);
182
183 void fxp_txintr(struct fxp_softc *);
184 int fxp_rxintr(struct fxp_softc *);
185
186 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
187
188 void fxp_rxdrain(struct fxp_softc *);
189 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
190 int fxp_mdi_read(device_t, int, int);
191 void fxp_statchg(device_t);
192 void fxp_mdi_write(device_t, int, int, int);
193 void fxp_autosize_eeprom(struct fxp_softc*);
194 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
195 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
196 void fxp_eeprom_update_cksum(struct fxp_softc *);
197 void fxp_get_info(struct fxp_softc *, u_int8_t *);
198 void fxp_tick(void *);
199 void fxp_mc_setup(struct fxp_softc *);
200 void fxp_load_ucode(struct fxp_softc *);
201
202 int fxp_copy_small = 0;
203
204 /*
205 * Variables for interrupt mitigating microcode.
206 */
207 int fxp_int_delay = 1000; /* usec */
208 int fxp_bundle_max = 6; /* packets */
209
210 struct fxp_phytype {
211 int fp_phy; /* type of PHY, -1 for MII at the end. */
212 void (*fp_init)(struct fxp_softc *);
213 } fxp_phytype_table[] = {
214 { FXP_PHY_80C24, fxp_80c24_initmedia },
215 { -1, fxp_mii_initmedia },
216 };
217
218 /*
219 * Set initial transmit threshold at 64 (512 bytes). This is
220 * increased by 64 (512 bytes) at a time, to maximum of 192
221 * (1536 bytes), if an underrun occurs.
222 */
223 static int tx_threshold = 64;
224
225 /*
226 * Wait for the previous command to be accepted (but not necessarily
227 * completed).
228 */
229 static inline void
230 fxp_scb_wait(struct fxp_softc *sc)
231 {
232 int i = 10000;
233
234 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
235 delay(2);
236 if (i == 0)
237 log(LOG_WARNING,
238 "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
239 }
240
241 /*
242 * Submit a command to the i82557.
243 */
244 static inline void
245 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
246 {
247
248 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
249 }
250
251 /*
252 * Finish attaching an i82557 interface. Called by bus-specific front-end.
253 */
254 void
255 fxp_attach(struct fxp_softc *sc)
256 {
257 u_int8_t enaddr[ETHER_ADDR_LEN];
258 struct ifnet *ifp;
259 bus_dma_segment_t seg;
260 int rseg, i, error;
261 struct fxp_phytype *fp;
262
263 callout_init(&sc->sc_callout, 0);
264
265 /*
266 * Enable some good stuff on i82558 and later.
267 */
268 if (sc->sc_rev >= FXP_REV_82558_A4) {
269 /* Enable the extended TxCB. */
270 sc->sc_flags |= FXPF_EXT_TXCB;
271 }
272
273 /*
274 * Enable use of extended RFDs and TCBs for 82550
275 * and later chips. Note: we need extended TXCB support
276 * too, but that's already enabled by the code above.
277 * Be careful to do this only on the right devices.
278 */
279 if (sc->sc_rev == FXP_REV_82550 || sc->sc_rev == FXP_REV_82550_C) {
280 sc->sc_flags |= FXPF_EXT_RFA | FXPF_IPCB;
281 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
282 } else {
283 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
284 }
285
286 sc->sc_rfa_size =
287 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
288
289 /*
290 * Allocate the control data structures, and create and load the
291 * DMA map for it.
292 */
293 if ((error = bus_dmamem_alloc(sc->sc_dmat,
294 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
295 0)) != 0) {
296 aprint_error_dev(sc->sc_dev,
297 "unable to allocate control data, error = %d\n",
298 error);
299 goto fail_0;
300 }
301
302 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
303 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
304 BUS_DMA_COHERENT)) != 0) {
305 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
306 error);
307 goto fail_1;
308 }
309 sc->sc_cdseg = seg;
310 sc->sc_cdnseg = rseg;
311
312 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
313
314 if ((error = bus_dmamap_create(sc->sc_dmat,
315 sizeof(struct fxp_control_data), 1,
316 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
317 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
318 "error = %d\n", error);
319 goto fail_2;
320 }
321
322 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
323 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
324 0)) != 0) {
325 aprint_error_dev(sc->sc_dev,
326 "can't load control data DMA map, error = %d\n",
327 error);
328 goto fail_3;
329 }
330
331 /*
332 * Create the transmit buffer DMA maps.
333 */
334 for (i = 0; i < FXP_NTXCB; i++) {
335 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
336 (sc->sc_flags & FXPF_IPCB) ? FXP_IPCB_NTXSEG : FXP_NTXSEG,
337 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
338 aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
339 "error = %d\n", i, error);
340 goto fail_4;
341 }
342 }
343
344 /*
345 * Create the receive buffer DMA maps.
346 */
347 for (i = 0; i < FXP_NRFABUFS; i++) {
348 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
349 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
350 aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
351 "error = %d\n", i, error);
352 goto fail_5;
353 }
354 }
355
356 /* Initialize MAC address and media structures. */
357 fxp_get_info(sc, enaddr);
358
359 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
360 ether_sprintf(enaddr));
361
362 ifp = &sc->sc_ethercom.ec_if;
363
364 /*
365 * Get info about our media interface, and initialize it. Note
366 * the table terminates itself with a phy of -1, indicating
367 * that we're using MII.
368 */
369 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
370 if (fp->fp_phy == sc->phy_primary_device)
371 break;
372 (*fp->fp_init)(sc);
373
374 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
375 ifp->if_softc = sc;
376 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
377 ifp->if_ioctl = fxp_ioctl;
378 ifp->if_start = fxp_start;
379 ifp->if_watchdog = fxp_watchdog;
380 ifp->if_init = fxp_init;
381 ifp->if_stop = fxp_stop;
382 IFQ_SET_READY(&ifp->if_snd);
383
384 if (sc->sc_flags & FXPF_IPCB) {
385 KASSERT(sc->sc_flags & FXPF_EXT_RFA); /* we have both or none */
386 /*
387 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
388 * at least, on i82550 rev.12.
389 * specifically, it doesn't calculate ipv4 checksum correctly
390 * when sending 20 byte ipv4 header + 1 or 2 byte data.
391 * FreeBSD driver has related comments.
392 */
393 ifp->if_capabilities =
394 IFCAP_CSUM_IPv4_Rx |
395 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
396 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
397 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
398 }
399
400 /*
401 * We can support 802.1Q VLAN-sized frames.
402 */
403 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
404
405 /*
406 * Attach the interface.
407 */
408 if_attach(ifp);
409 ether_ifattach(ifp, enaddr);
410 #if NRND > 0
411 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
412 RND_TYPE_NET, 0);
413 #endif
414
415 #ifdef FXP_EVENT_COUNTERS
416 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
417 NULL, device_xname(sc->sc_dev), "txstall");
418 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
419 NULL, device_xname(sc->sc_dev), "txintr");
420 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
421 NULL, device_xname(sc->sc_dev), "rxintr");
422 if (sc->sc_rev >= FXP_REV_82558_A4) {
423 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
424 NULL, device_xname(sc->sc_dev), "txpause");
425 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
426 NULL, device_xname(sc->sc_dev), "rxpause");
427 }
428 #endif /* FXP_EVENT_COUNTERS */
429
430 /* The attach is successful. */
431 sc->sc_flags |= FXPF_ATTACHED;
432
433 return;
434
435 /*
436 * Free any resources we've allocated during the failed attach
437 * attempt. Do this in reverse order and fall though.
438 */
439 fail_5:
440 for (i = 0; i < FXP_NRFABUFS; i++) {
441 if (sc->sc_rxmaps[i] != NULL)
442 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
443 }
444 fail_4:
445 for (i = 0; i < FXP_NTXCB; i++) {
446 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
447 bus_dmamap_destroy(sc->sc_dmat,
448 FXP_DSTX(sc, i)->txs_dmamap);
449 }
450 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
451 fail_3:
452 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
453 fail_2:
454 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
455 sizeof(struct fxp_control_data));
456 fail_1:
457 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
458 fail_0:
459 return;
460 }
461
462 void
463 fxp_mii_initmedia(struct fxp_softc *sc)
464 {
465 int flags;
466
467 sc->sc_flags |= FXPF_MII;
468
469 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
470 sc->sc_mii.mii_readreg = fxp_mdi_read;
471 sc->sc_mii.mii_writereg = fxp_mdi_write;
472 sc->sc_mii.mii_statchg = fxp_statchg;
473
474 sc->sc_ethercom.ec_mii = &sc->sc_mii;
475 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
476 fxp_mii_mediastatus);
477
478 flags = MIIF_NOISOLATE;
479 if (sc->sc_rev >= FXP_REV_82558_A4)
480 flags |= MIIF_DOPAUSE;
481 /*
482 * The i82557 wedges if all of its PHYs are isolated!
483 */
484 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
485 MII_OFFSET_ANY, flags);
486 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
487 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
488 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
489 } else
490 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
491 }
492
493 void
494 fxp_80c24_initmedia(struct fxp_softc *sc)
495 {
496
497 /*
498 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
499 * doesn't have a programming interface of any sort. The
500 * media is sensed automatically based on how the link partner
501 * is configured. This is, in essence, manual configuration.
502 */
503 aprint_normal_dev(sc->sc_dev, "Seeq 80c24 AutoDUPLEX media interface present\n");
504 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
505 fxp_80c24_mediastatus);
506 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
507 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
508 }
509
510 /*
511 * Initialize the interface media.
512 */
513 void
514 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
515 {
516 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
517
518 /*
519 * Reset to a stable state.
520 */
521 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
522 DELAY(100);
523
524 sc->sc_eeprom_size = 0;
525 fxp_autosize_eeprom(sc);
526 if (sc->sc_eeprom_size == 0) {
527 aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
528 sc->sc_eeprom_size = 6; /* XXX panic here? */
529 }
530 #ifdef DEBUG
531 aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
532 1 << sc->sc_eeprom_size);
533 #endif
534
535 /*
536 * Get info about the primary PHY
537 */
538 fxp_read_eeprom(sc, &data, 6, 1);
539 sc->phy_primary_device =
540 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
541
542 /*
543 * Read MAC address.
544 */
545 fxp_read_eeprom(sc, myea, 0, 3);
546 enaddr[0] = myea[0] & 0xff;
547 enaddr[1] = myea[0] >> 8;
548 enaddr[2] = myea[1] & 0xff;
549 enaddr[3] = myea[1] >> 8;
550 enaddr[4] = myea[2] & 0xff;
551 enaddr[5] = myea[2] >> 8;
552
553 /*
554 * Systems based on the ICH2/ICH2-M chip from Intel, as well
555 * as some i82559 designs, have a defect where the chip can
556 * cause a PCI protocol violation if it receives a CU_RESUME
557 * command when it is entering the IDLE state.
558 *
559 * The work-around is to disable Dynamic Standby Mode, so that
560 * the chip never deasserts #CLKRUN, and always remains in the
561 * active state.
562 *
563 * Unfortunately, the only way to disable Dynamic Standby is
564 * to frob an EEPROM setting and reboot (the EEPROM setting
565 * is only consulted when the PCI bus comes out of reset).
566 *
567 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
568 */
569 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
570 fxp_read_eeprom(sc, &data, 10, 1);
571 if (data & 0x02) { /* STB enable */
572 aprint_error_dev(sc->sc_dev, "WARNING: "
573 "Disabling dynamic standby mode in EEPROM "
574 "to work around a\n");
575 aprint_normal_dev(sc->sc_dev,
576 "WARNING: hardware bug. You must reset "
577 "the system before using this\n");
578 aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
579 data &= ~0x02;
580 fxp_write_eeprom(sc, &data, 10, 1);
581 aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
582 data);
583 fxp_eeprom_update_cksum(sc);
584 }
585 }
586
587 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
588 /* Due to false positives we make it conditional on setting link1 */
589 fxp_read_eeprom(sc, &data, 3, 1);
590 if ((data & 0x03) != 0x03) {
591 aprint_verbose_dev(sc->sc_dev, "May need receiver lock-up workaround\n");
592 }
593 }
594
595 static void
596 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
597 {
598 uint16_t reg;
599 int x;
600
601 for (x = 1 << (len - 1); x != 0; x >>= 1) {
602 DELAY(40);
603 if (data & x)
604 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
605 else
606 reg = FXP_EEPROM_EECS;
607 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
608 DELAY(40);
609 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
610 reg | FXP_EEPROM_EESK);
611 DELAY(40);
612 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
613 }
614 DELAY(40);
615 }
616
617 /*
618 * Figure out EEPROM size.
619 *
620 * 559's can have either 64-word or 256-word EEPROMs, the 558
621 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
622 * talks about the existence of 16 to 256 word EEPROMs.
623 *
624 * The only known sizes are 64 and 256, where the 256 version is used
625 * by CardBus cards to store CIS information.
626 *
627 * The address is shifted in msb-to-lsb, and after the last
628 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
629 * after which follows the actual data. We try to detect this zero, by
630 * probing the data-out bit in the EEPROM control register just after
631 * having shifted in a bit. If the bit is zero, we assume we've
632 * shifted enough address bits. The data-out should be tri-state,
633 * before this, which should translate to a logical one.
634 *
635 * Other ways to do this would be to try to read a register with known
636 * contents with a varying number of address bits, but no such
637 * register seem to be available. The high bits of register 10 are 01
638 * on the 558 and 559, but apparently not on the 557.
639 *
640 * The Linux driver computes a checksum on the EEPROM data, but the
641 * value of this checksum is not very well documented.
642 */
643
644 void
645 fxp_autosize_eeprom(struct fxp_softc *sc)
646 {
647 int x;
648
649 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
650 DELAY(40);
651
652 /* Shift in read opcode. */
653 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
654
655 /*
656 * Shift in address, wait for the dummy zero following a correct
657 * address shift.
658 */
659 for (x = 1; x <= 8; x++) {
660 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
661 DELAY(40);
662 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
663 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
664 DELAY(40);
665 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
666 FXP_EEPROM_EEDO) == 0)
667 break;
668 DELAY(40);
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
670 DELAY(40);
671 }
672 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
673 DELAY(40);
674 if (x != 6 && x != 8) {
675 #ifdef DEBUG
676 printf("%s: strange EEPROM size (%d)\n",
677 device_xname(sc->sc_dev), 1 << x);
678 #endif
679 } else
680 sc->sc_eeprom_size = x;
681 }
682
683 /*
684 * Read from the serial EEPROM. Basically, you manually shift in
685 * the read opcode (one bit at a time) and then shift in the address,
686 * and then you shift out the data (all of this one bit at a time).
687 * The word size is 16 bits, so you have to provide the address for
688 * every 16 bits of data.
689 */
690 void
691 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
692 {
693 u_int16_t reg;
694 int i, x;
695
696 for (i = 0; i < words; i++) {
697 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
698
699 /* Shift in read opcode. */
700 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
701
702 /* Shift in address. */
703 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
704
705 reg = FXP_EEPROM_EECS;
706 data[i] = 0;
707
708 /* Shift out data. */
709 for (x = 16; x > 0; x--) {
710 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
711 reg | FXP_EEPROM_EESK);
712 DELAY(40);
713 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
714 FXP_EEPROM_EEDO)
715 data[i] |= (1 << (x - 1));
716 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
717 DELAY(40);
718 }
719 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
720 DELAY(40);
721 }
722 }
723
724 /*
725 * Write data to the serial EEPROM.
726 */
727 void
728 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
729 {
730 int i, j;
731
732 for (i = 0; i < words; i++) {
733 /* Erase/write enable. */
734 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
735 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
736 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
737 sc->sc_eeprom_size);
738 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
739 DELAY(4);
740
741 /* Shift in write opcode, address, data. */
742 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
743 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
744 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
745 fxp_eeprom_shiftin(sc, data[i], 16);
746 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
747 DELAY(4);
748
749 /* Wait for the EEPROM to finish up. */
750 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
751 DELAY(4);
752 for (j = 0; j < 1000; j++) {
753 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
754 FXP_EEPROM_EEDO)
755 break;
756 DELAY(50);
757 }
758 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
759 DELAY(4);
760
761 /* Erase/write disable. */
762 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
763 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
764 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
765 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
766 DELAY(4);
767 }
768 }
769
770 /*
771 * Update the checksum of the EEPROM.
772 */
773 void
774 fxp_eeprom_update_cksum(struct fxp_softc *sc)
775 {
776 int i;
777 uint16_t data, cksum;
778
779 cksum = 0;
780 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
781 fxp_read_eeprom(sc, &data, i, 1);
782 cksum += data;
783 }
784 i = (1 << sc->sc_eeprom_size) - 1;
785 cksum = 0xbaba - cksum;
786 fxp_read_eeprom(sc, &data, i, 1);
787 fxp_write_eeprom(sc, &cksum, i, 1);
788 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
789 device_xname(sc->sc_dev), i, data, cksum);
790 }
791
792 /*
793 * Start packet transmission on the interface.
794 */
795 void
796 fxp_start(struct ifnet *ifp)
797 {
798 struct fxp_softc *sc = ifp->if_softc;
799 struct mbuf *m0, *m;
800 struct fxp_txdesc *txd;
801 struct fxp_txsoft *txs;
802 bus_dmamap_t dmamap;
803 int error, lasttx, nexttx, opending, seg;
804
805 /*
806 * If we want a re-init, bail out now.
807 */
808 if (sc->sc_flags & FXPF_WANTINIT) {
809 ifp->if_flags |= IFF_OACTIVE;
810 return;
811 }
812
813 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
814 return;
815
816 /*
817 * Remember the previous txpending and the current lasttx.
818 */
819 opending = sc->sc_txpending;
820 lasttx = sc->sc_txlast;
821
822 /*
823 * Loop through the send queue, setting up transmit descriptors
824 * until we drain the queue, or use up all available transmit
825 * descriptors.
826 */
827 for (;;) {
828 struct fxp_tbd *tbdp;
829 int csum_flags;
830
831 /*
832 * Grab a packet off the queue.
833 */
834 IFQ_POLL(&ifp->if_snd, m0);
835 if (m0 == NULL)
836 break;
837 m = NULL;
838
839 if (sc->sc_txpending == FXP_NTXCB - 1) {
840 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
841 break;
842 }
843
844 /*
845 * Get the next available transmit descriptor.
846 */
847 nexttx = FXP_NEXTTX(sc->sc_txlast);
848 txd = FXP_CDTX(sc, nexttx);
849 txs = FXP_DSTX(sc, nexttx);
850 dmamap = txs->txs_dmamap;
851
852 /*
853 * Load the DMA map. If this fails, the packet either
854 * didn't fit in the allotted number of frags, or we were
855 * short on resources. In this case, we'll copy and try
856 * again.
857 */
858 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
859 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
860 MGETHDR(m, M_DONTWAIT, MT_DATA);
861 if (m == NULL) {
862 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
863 device_xname(sc->sc_dev));
864 break;
865 }
866 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
867 if (m0->m_pkthdr.len > MHLEN) {
868 MCLGET(m, M_DONTWAIT);
869 if ((m->m_flags & M_EXT) == 0) {
870 log(LOG_ERR,
871 "%s: unable to allocate Tx "
872 "cluster\n", device_xname(sc->sc_dev));
873 m_freem(m);
874 break;
875 }
876 }
877 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
878 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
879 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
880 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
881 if (error) {
882 log(LOG_ERR, "%s: unable to load Tx buffer, "
883 "error = %d\n", device_xname(sc->sc_dev), error);
884 break;
885 }
886 }
887
888 IFQ_DEQUEUE(&ifp->if_snd, m0);
889 csum_flags = m0->m_pkthdr.csum_flags;
890 if (m != NULL) {
891 m_freem(m0);
892 m0 = m;
893 }
894
895 /* Initialize the fraglist. */
896 tbdp = txd->txd_tbd;
897 if (sc->sc_flags & FXPF_IPCB)
898 tbdp++;
899 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
900 tbdp[seg].tb_addr =
901 htole32(dmamap->dm_segs[seg].ds_addr);
902 tbdp[seg].tb_size =
903 htole32(dmamap->dm_segs[seg].ds_len);
904 }
905
906 /* Sync the DMA map. */
907 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
908 BUS_DMASYNC_PREWRITE);
909
910 /*
911 * Store a pointer to the packet so we can free it later.
912 */
913 txs->txs_mbuf = m0;
914
915 /*
916 * Initialize the transmit descriptor.
917 */
918 /* BIG_ENDIAN: no need to swap to store 0 */
919 txd->txd_txcb.cb_status = 0;
920 txd->txd_txcb.cb_command =
921 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
922 txd->txd_txcb.tx_threshold = tx_threshold;
923 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
924
925 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
926 if (sc->sc_flags & FXPF_IPCB) {
927 struct m_tag *vtag;
928 struct fxp_ipcb *ipcb;
929 /*
930 * Deal with TCP/IP checksum offload. Note that
931 * in order for TCP checksum offload to work,
932 * the pseudo header checksum must have already
933 * been computed and stored in the checksum field
934 * in the TCP header. The stack should have
935 * already done this for us.
936 */
937 ipcb = &txd->txd_u.txdu_ipcb;
938 memset(ipcb, 0, sizeof(*ipcb));
939 /*
940 * always do hardware parsing.
941 */
942 ipcb->ipcb_ip_activation_high =
943 FXP_IPCB_HARDWAREPARSING_ENABLE;
944 /*
945 * ip checksum offloading.
946 */
947 if (csum_flags & M_CSUM_IPv4) {
948 ipcb->ipcb_ip_schedule |=
949 FXP_IPCB_IP_CHECKSUM_ENABLE;
950 }
951 /*
952 * TCP/UDP checksum offloading.
953 */
954 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
955 ipcb->ipcb_ip_schedule |=
956 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
957 }
958
959 /*
960 * request VLAN tag insertion if needed.
961 */
962 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
963 if (vtag) {
964 ipcb->ipcb_vlan_id =
965 htobe16(*(u_int *)(vtag + 1));
966 ipcb->ipcb_ip_activation_high |=
967 FXP_IPCB_INSERTVLAN_ENABLE;
968 }
969 } else {
970 KASSERT((csum_flags &
971 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
972 }
973
974 FXP_CDTXSYNC(sc, nexttx,
975 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
976
977 /* Advance the tx pointer. */
978 sc->sc_txpending++;
979 sc->sc_txlast = nexttx;
980
981 #if NBPFILTER > 0
982 /*
983 * Pass packet to bpf if there is a listener.
984 */
985 if (ifp->if_bpf)
986 bpf_mtap(ifp->if_bpf, m0);
987 #endif
988 }
989
990 if (sc->sc_txpending == FXP_NTXCB - 1) {
991 /* No more slots; notify upper layer. */
992 ifp->if_flags |= IFF_OACTIVE;
993 }
994
995 if (sc->sc_txpending != opending) {
996 /*
997 * We enqueued packets. If the transmitter was idle,
998 * reset the txdirty pointer.
999 */
1000 if (opending == 0)
1001 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1002
1003 /*
1004 * Cause the chip to interrupt and suspend command
1005 * processing once the last packet we've enqueued
1006 * has been transmitted.
1007 *
1008 * To avoid a race between updating status bits
1009 * by the fxp chip and clearing command bits
1010 * by this function on machines which don't have
1011 * atomic methods to clear/set bits in memory
1012 * smaller than 32bits (both cb_status and cb_command
1013 * members are uint16_t and in the same 32bit word),
1014 * we have to prepare a dummy TX descriptor which has
1015 * NOP command and just causes a TX completion interrupt.
1016 */
1017 sc->sc_txpending++;
1018 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1019 txd = FXP_CDTX(sc, sc->sc_txlast);
1020 /* BIG_ENDIAN: no need to swap to store 0 */
1021 txd->txd_txcb.cb_status = 0;
1022 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1023 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1024 FXP_CDTXSYNC(sc, sc->sc_txlast,
1025 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1026
1027 /*
1028 * The entire packet chain is set up. Clear the suspend bit
1029 * on the command prior to the first packet we set up.
1030 */
1031 FXP_CDTXSYNC(sc, lasttx,
1032 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1033 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1034 htole16(~FXP_CB_COMMAND_S);
1035 FXP_CDTXSYNC(sc, lasttx,
1036 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1037
1038 /*
1039 * Issue a Resume command in case the chip was suspended.
1040 */
1041 fxp_scb_wait(sc);
1042 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1043
1044 /* Set a watchdog timer in case the chip flakes out. */
1045 ifp->if_timer = 5;
1046 }
1047 }
1048
1049 /*
1050 * Process interface interrupts.
1051 */
1052 int
1053 fxp_intr(void *arg)
1054 {
1055 struct fxp_softc *sc = arg;
1056 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1057 bus_dmamap_t rxmap;
1058 int claimed = 0, rnr;
1059 u_int8_t statack;
1060
1061 if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1062 return (0);
1063 /*
1064 * If the interface isn't running, don't try to
1065 * service the interrupt.. just ack it and bail.
1066 */
1067 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1068 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1069 if (statack) {
1070 claimed = 1;
1071 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1072 }
1073 return (claimed);
1074 }
1075
1076 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1077 claimed = 1;
1078
1079 /*
1080 * First ACK all the interrupts in this pass.
1081 */
1082 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1083
1084 /*
1085 * Process receiver interrupts. If a no-resource (RNR)
1086 * condition exists, get whatever packets we can and
1087 * re-start the receiver.
1088 */
1089 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1090 1 : 0;
1091 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1092 FXP_SCB_STATACK_SWI)) {
1093 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1094 rnr |= fxp_rxintr(sc);
1095 }
1096
1097 /*
1098 * Free any finished transmit mbuf chains.
1099 */
1100 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1101 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1102 fxp_txintr(sc);
1103
1104 /*
1105 * Try to get more packets going.
1106 */
1107 fxp_start(ifp);
1108
1109 if (sc->sc_txpending == 0) {
1110 /*
1111 * Tell them that they can re-init now.
1112 */
1113 if (sc->sc_flags & FXPF_WANTINIT)
1114 wakeup(sc);
1115 }
1116 }
1117
1118 if (rnr) {
1119 fxp_scb_wait(sc);
1120 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1121 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1122 fxp_scb_wait(sc);
1123 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1124 rxmap->dm_segs[0].ds_addr +
1125 RFA_ALIGNMENT_FUDGE);
1126 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1127 }
1128 }
1129
1130 #if NRND > 0
1131 if (claimed)
1132 rnd_add_uint32(&sc->rnd_source, statack);
1133 #endif
1134 return (claimed);
1135 }
1136
1137 /*
1138 * Handle transmit completion interrupts.
1139 */
1140 void
1141 fxp_txintr(struct fxp_softc *sc)
1142 {
1143 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1144 struct fxp_txdesc *txd;
1145 struct fxp_txsoft *txs;
1146 int i;
1147 u_int16_t txstat;
1148
1149 ifp->if_flags &= ~IFF_OACTIVE;
1150 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1151 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1152 txd = FXP_CDTX(sc, i);
1153 txs = FXP_DSTX(sc, i);
1154
1155 FXP_CDTXSYNC(sc, i,
1156 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1157
1158 /* skip dummy NOP TX descriptor */
1159 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1160 == FXP_CB_COMMAND_NOP)
1161 continue;
1162
1163 txstat = le16toh(txd->txd_txcb.cb_status);
1164
1165 if ((txstat & FXP_CB_STATUS_C) == 0)
1166 break;
1167
1168 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1169 0, txs->txs_dmamap->dm_mapsize,
1170 BUS_DMASYNC_POSTWRITE);
1171 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1172 m_freem(txs->txs_mbuf);
1173 txs->txs_mbuf = NULL;
1174 }
1175
1176 /* Update the dirty transmit buffer pointer. */
1177 sc->sc_txdirty = i;
1178
1179 /*
1180 * Cancel the watchdog timer if there are no pending
1181 * transmissions.
1182 */
1183 if (sc->sc_txpending == 0)
1184 ifp->if_timer = 0;
1185 }
1186
1187 /*
1188 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1189 */
1190
1191 int
1192 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1193 {
1194 u_int16_t rxparsestat;
1195 u_int16_t csum_stat;
1196 u_int32_t csum_data;
1197 int csum_flags;
1198
1199 /*
1200 * check VLAN tag stripping.
1201 */
1202
1203 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1204 struct m_tag *vtag;
1205
1206 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1207 if (vtag == NULL)
1208 return ENOMEM;
1209 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1210 m_tag_prepend(m, vtag);
1211 }
1212
1213 /*
1214 * check H/W Checksumming.
1215 */
1216
1217 csum_stat = le16toh(rfa->cksum_stat);
1218 rxparsestat = le16toh(rfa->rx_parse_stat);
1219 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1220 return 0;
1221
1222 csum_flags = 0;
1223 csum_data = 0;
1224
1225 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1226 csum_flags = M_CSUM_IPv4;
1227 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1228 csum_flags |= M_CSUM_IPv4_BAD;
1229 }
1230
1231 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1232 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1233 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1234 csum_flags |= M_CSUM_TCP_UDP_BAD;
1235 }
1236
1237 m->m_pkthdr.csum_flags = csum_flags;
1238 m->m_pkthdr.csum_data = csum_data;
1239
1240 return 0;
1241 }
1242
1243 /*
1244 * Handle receive interrupts.
1245 */
1246 int
1247 fxp_rxintr(struct fxp_softc *sc)
1248 {
1249 struct ethercom *ec = &sc->sc_ethercom;
1250 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1251 struct mbuf *m, *m0;
1252 bus_dmamap_t rxmap;
1253 struct fxp_rfa *rfa;
1254 int rnr;
1255 u_int16_t len, rxstat;
1256
1257 rnr = 0;
1258
1259 for (;;) {
1260 m = sc->sc_rxq.ifq_head;
1261 rfa = FXP_MTORFA(m);
1262 rxmap = M_GETCTX(m, bus_dmamap_t);
1263
1264 FXP_RFASYNC(sc, m,
1265 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1266
1267 rxstat = le16toh(rfa->rfa_status);
1268
1269 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1270 rnr = 1;
1271
1272 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1273 /*
1274 * We have processed all of the
1275 * receive buffers.
1276 */
1277 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1278 return rnr;
1279 }
1280
1281 IF_DEQUEUE(&sc->sc_rxq, m);
1282
1283 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1284
1285 len = le16toh(rfa->actual_size) &
1286 (m->m_ext.ext_size - 1);
1287
1288 if (len < sizeof(struct ether_header)) {
1289 /*
1290 * Runt packet; drop it now.
1291 */
1292 FXP_INIT_RFABUF(sc, m);
1293 continue;
1294 }
1295
1296 /*
1297 * If support for 802.1Q VLAN sized frames is
1298 * enabled, we need to do some additional error
1299 * checking (as we are saving bad frames, in
1300 * order to receive the larger ones).
1301 */
1302 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1303 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1304 FXP_RFA_STATUS_RNR|
1305 FXP_RFA_STATUS_ALIGN|
1306 FXP_RFA_STATUS_CRC)) != 0) {
1307 FXP_INIT_RFABUF(sc, m);
1308 continue;
1309 }
1310
1311 /* Do checksum checking. */
1312 m->m_pkthdr.csum_flags = 0;
1313 if (sc->sc_flags & FXPF_EXT_RFA)
1314 if (fxp_rx_hwcksum(m, rfa))
1315 goto dropit;
1316
1317 /*
1318 * If the packet is small enough to fit in a
1319 * single header mbuf, allocate one and copy
1320 * the data into it. This greatly reduces
1321 * memory consumption when we receive lots
1322 * of small packets.
1323 *
1324 * Otherwise, we add a new buffer to the receive
1325 * chain. If this fails, we drop the packet and
1326 * recycle the old buffer.
1327 */
1328 if (fxp_copy_small != 0 && len <= MHLEN) {
1329 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1330 if (m0 == NULL)
1331 goto dropit;
1332 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1333 memcpy(mtod(m0, void *),
1334 mtod(m, void *), len);
1335 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1336 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1337 FXP_INIT_RFABUF(sc, m);
1338 m = m0;
1339 } else {
1340 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1341 dropit:
1342 ifp->if_ierrors++;
1343 FXP_INIT_RFABUF(sc, m);
1344 continue;
1345 }
1346 }
1347
1348 m->m_pkthdr.rcvif = ifp;
1349 m->m_pkthdr.len = m->m_len = len;
1350
1351 #if NBPFILTER > 0
1352 /*
1353 * Pass this up to any BPF listeners, but only
1354 * pass it up the stack if it's for us.
1355 */
1356 if (ifp->if_bpf)
1357 bpf_mtap(ifp->if_bpf, m);
1358 #endif
1359
1360 /* Pass it on. */
1361 (*ifp->if_input)(ifp, m);
1362 }
1363 }
1364
1365 /*
1366 * Update packet in/out/collision statistics. The i82557 doesn't
1367 * allow you to access these counters without doing a fairly
1368 * expensive DMA to get _all_ of the statistics it maintains, so
1369 * we do this operation here only once per second. The statistics
1370 * counters in the kernel are updated from the previous dump-stats
1371 * DMA and then a new dump-stats DMA is started. The on-chip
1372 * counters are zeroed when the DMA completes. If we can't start
1373 * the DMA immediately, we don't wait - we just prepare to read
1374 * them again next time.
1375 */
1376 void
1377 fxp_tick(void *arg)
1378 {
1379 struct fxp_softc *sc = arg;
1380 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1381 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1382 int s;
1383
1384 if (!device_is_active(sc->sc_dev))
1385 return;
1386
1387 s = splnet();
1388
1389 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1390
1391 ifp->if_opackets += le32toh(sp->tx_good);
1392 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1393 if (sp->rx_good) {
1394 ifp->if_ipackets += le32toh(sp->rx_good);
1395 sc->sc_rxidle = 0;
1396 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1397 sc->sc_rxidle++;
1398 }
1399 ifp->if_ierrors +=
1400 le32toh(sp->rx_crc_errors) +
1401 le32toh(sp->rx_alignment_errors) +
1402 le32toh(sp->rx_rnr_errors) +
1403 le32toh(sp->rx_overrun_errors);
1404 /*
1405 * If any transmit underruns occurred, bump up the transmit
1406 * threshold by another 512 bytes (64 * 8).
1407 */
1408 if (sp->tx_underruns) {
1409 ifp->if_oerrors += le32toh(sp->tx_underruns);
1410 if (tx_threshold < 192)
1411 tx_threshold += 64;
1412 }
1413 #ifdef FXP_EVENT_COUNTERS
1414 if (sc->sc_rev >= FXP_REV_82558_A4) {
1415 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1416 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1417 }
1418 #endif
1419
1420 /*
1421 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1422 * then assume the receiver has locked up and attempt to clear
1423 * the condition by reprogramming the multicast filter (actually,
1424 * resetting the interface). This is a work-around for a bug in
1425 * the 82557 where the receiver locks up if it gets certain types
1426 * of garbage in the synchronization bits prior to the packet header.
1427 * This bug is supposed to only occur in 10Mbps mode, but has been
1428 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1429 * speed transition).
1430 */
1431 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1432 (void) fxp_init(ifp);
1433 splx(s);
1434 return;
1435 }
1436 /*
1437 * If there is no pending command, start another stats
1438 * dump. Otherwise punt for now.
1439 */
1440 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1441 /*
1442 * Start another stats dump.
1443 */
1444 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1445 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1446 } else {
1447 /*
1448 * A previous command is still waiting to be accepted.
1449 * Just zero our copy of the stats and wait for the
1450 * next timer event to update them.
1451 */
1452 /* BIG_ENDIAN: no swap required to store 0 */
1453 sp->tx_good = 0;
1454 sp->tx_underruns = 0;
1455 sp->tx_total_collisions = 0;
1456
1457 sp->rx_good = 0;
1458 sp->rx_crc_errors = 0;
1459 sp->rx_alignment_errors = 0;
1460 sp->rx_rnr_errors = 0;
1461 sp->rx_overrun_errors = 0;
1462 if (sc->sc_rev >= FXP_REV_82558_A4) {
1463 sp->tx_pauseframes = 0;
1464 sp->rx_pauseframes = 0;
1465 }
1466 }
1467
1468 if (sc->sc_flags & FXPF_MII) {
1469 /* Tick the MII clock. */
1470 mii_tick(&sc->sc_mii);
1471 }
1472
1473 splx(s);
1474
1475 /*
1476 * Schedule another timeout one second from now.
1477 */
1478 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1479 }
1480
1481 /*
1482 * Drain the receive queue.
1483 */
1484 void
1485 fxp_rxdrain(struct fxp_softc *sc)
1486 {
1487 bus_dmamap_t rxmap;
1488 struct mbuf *m;
1489
1490 for (;;) {
1491 IF_DEQUEUE(&sc->sc_rxq, m);
1492 if (m == NULL)
1493 break;
1494 rxmap = M_GETCTX(m, bus_dmamap_t);
1495 bus_dmamap_unload(sc->sc_dmat, rxmap);
1496 FXP_RXMAP_PUT(sc, rxmap);
1497 m_freem(m);
1498 }
1499 }
1500
1501 /*
1502 * Stop the interface. Cancels the statistics updater and resets
1503 * the interface.
1504 */
1505 void
1506 fxp_stop(struct ifnet *ifp, int disable)
1507 {
1508 struct fxp_softc *sc = ifp->if_softc;
1509 struct fxp_txsoft *txs;
1510 int i;
1511
1512 /*
1513 * Turn down interface (done early to avoid bad interactions
1514 * between panics, shutdown hooks, and the watchdog timer)
1515 */
1516 ifp->if_timer = 0;
1517 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1518
1519 /*
1520 * Cancel stats updater.
1521 */
1522 callout_stop(&sc->sc_callout);
1523 if (sc->sc_flags & FXPF_MII) {
1524 /* Down the MII. */
1525 mii_down(&sc->sc_mii);
1526 }
1527
1528 /*
1529 * Issue software reset. This unloads any microcode that
1530 * might already be loaded.
1531 */
1532 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1533 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1534 DELAY(50);
1535
1536 /*
1537 * Release any xmit buffers.
1538 */
1539 for (i = 0; i < FXP_NTXCB; i++) {
1540 txs = FXP_DSTX(sc, i);
1541 if (txs->txs_mbuf != NULL) {
1542 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1543 m_freem(txs->txs_mbuf);
1544 txs->txs_mbuf = NULL;
1545 }
1546 }
1547 sc->sc_txpending = 0;
1548
1549 if (disable) {
1550 fxp_rxdrain(sc);
1551 fxp_disable(sc);
1552 }
1553
1554 }
1555
1556 /*
1557 * Watchdog/transmission transmit timeout handler. Called when a
1558 * transmission is started on the interface, but no interrupt is
1559 * received before the timeout. This usually indicates that the
1560 * card has wedged for some reason.
1561 */
1562 void
1563 fxp_watchdog(struct ifnet *ifp)
1564 {
1565 struct fxp_softc *sc = ifp->if_softc;
1566
1567 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1568 ifp->if_oerrors++;
1569
1570 (void) fxp_init(ifp);
1571 }
1572
1573 /*
1574 * Initialize the interface. Must be called at splnet().
1575 */
1576 int
1577 fxp_init(struct ifnet *ifp)
1578 {
1579 struct fxp_softc *sc = ifp->if_softc;
1580 struct fxp_cb_config *cbp;
1581 struct fxp_cb_ias *cb_ias;
1582 struct fxp_txdesc *txd;
1583 bus_dmamap_t rxmap;
1584 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1585 uint16_t status;
1586
1587 if ((error = fxp_enable(sc)) != 0)
1588 goto out;
1589
1590 /*
1591 * Cancel any pending I/O
1592 */
1593 fxp_stop(ifp, 0);
1594
1595 /*
1596 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1597 * flag, and this prevents the MII from detaching resulting in
1598 * a panic. The flags field should perhaps be split in runtime
1599 * flags and more static information. For now, just clear the
1600 * only other flag set.
1601 */
1602
1603 sc->sc_flags &= ~FXPF_WANTINIT;
1604
1605 /*
1606 * Initialize base of CBL and RFA memory. Loading with zero
1607 * sets it up for regular linear addressing.
1608 */
1609 fxp_scb_wait(sc);
1610 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1611 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1612
1613 fxp_scb_wait(sc);
1614 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1615
1616 /*
1617 * Initialize the multicast filter. Do this now, since we might
1618 * have to setup the config block differently.
1619 */
1620 fxp_mc_setup(sc);
1621
1622 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1623 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1624
1625 /*
1626 * In order to support receiving 802.1Q VLAN frames, we have to
1627 * enable "save bad frames", since they are 4 bytes larger than
1628 * the normal Ethernet maximum frame length. On i82558 and later,
1629 * we have a better mechanism for this.
1630 */
1631 save_bf = 0;
1632 lrxen = 0;
1633 vlan_drop = 0;
1634 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1635 if (sc->sc_rev < FXP_REV_82558_A4)
1636 save_bf = 1;
1637 else
1638 lrxen = 1;
1639 if (sc->sc_rev >= FXP_REV_82550)
1640 vlan_drop = 1;
1641 }
1642
1643 /*
1644 * Initialize base of dump-stats buffer.
1645 */
1646 fxp_scb_wait(sc);
1647 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1648 sc->sc_cddma + FXP_CDSTATSOFF);
1649 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1650 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1651
1652 cbp = &sc->sc_control_data->fcd_configcb;
1653 memset(cbp, 0, sizeof(struct fxp_cb_config));
1654
1655 /*
1656 * Load microcode for this controller.
1657 */
1658 fxp_load_ucode(sc);
1659
1660 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1661 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1662 else
1663 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1664
1665 /*
1666 * This copy is kind of disgusting, but there are a bunch of must be
1667 * zero and must be one bits in this structure and this is the easiest
1668 * way to initialize them all to proper values.
1669 */
1670 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1671
1672 /* BIG_ENDIAN: no need to swap to store 0 */
1673 cbp->cb_status = 0;
1674 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1675 FXP_CB_COMMAND_EL);
1676 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1677 cbp->link_addr = 0xffffffff; /* (no) next command */
1678 /* bytes in config block */
1679 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1680 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1681 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1682 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1683 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1684 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1685 cbp->type_enable = 0; /* actually reserved */
1686 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1687 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1688 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1689 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1690 cbp->dma_mbce = 0; /* (disable) dma max counters */
1691 cbp->late_scb = 0; /* (don't) defer SCB update */
1692 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1693 cbp->ci_int = 1; /* interrupt on CU idle */
1694 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1695 cbp->ext_stats_dis = 1; /* disable extended counters */
1696 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1697 cbp->save_bf = save_bf;/* save bad frames */
1698 cbp->disc_short_rx = !prm; /* discard short packets */
1699 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1700 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1701 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1702 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1703 /* interface mode */
1704 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1705 cbp->csma_dis = 0; /* (don't) disable link */
1706 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1707 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1708 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1709 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1710 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1711 cbp->nsai = 1; /* (don't) disable source addr insert */
1712 cbp->preamble_length = 2; /* (7 byte) preamble */
1713 cbp->loopback = 0; /* (don't) loopback */
1714 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1715 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1716 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1717 cbp->promiscuous = prm; /* promiscuous mode */
1718 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1719 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1720 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1721 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1722 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1723 cbp->stripping = !prm; /* truncate rx packet to byte count */
1724 cbp->padding = 1; /* (do) pad short tx packets */
1725 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1726 cbp->long_rx_en = lrxen; /* long packet receive enable */
1727 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1728 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1729 /* must set wake_en in PMCSR also */
1730 cbp->force_fdx = 0; /* (don't) force full duplex */
1731 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1732 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1733 cbp->mc_all = allm; /* accept all multicasts */
1734 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1735 cbp->vlan_drop_en = vlan_drop;
1736
1737 if (sc->sc_rev < FXP_REV_82558_A4) {
1738 /*
1739 * The i82557 has no hardware flow control, the values
1740 * here are the defaults for the chip.
1741 */
1742 cbp->fc_delay_lsb = 0;
1743 cbp->fc_delay_msb = 0x40;
1744 cbp->pri_fc_thresh = 3;
1745 cbp->tx_fc_dis = 0;
1746 cbp->rx_fc_restop = 0;
1747 cbp->rx_fc_restart = 0;
1748 cbp->fc_filter = 0;
1749 cbp->pri_fc_loc = 1;
1750 } else {
1751 cbp->fc_delay_lsb = 0x1f;
1752 cbp->fc_delay_msb = 0x01;
1753 cbp->pri_fc_thresh = 3;
1754 cbp->tx_fc_dis = 0; /* enable transmit FC */
1755 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1756 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1757 cbp->fc_filter = !prm; /* drop FC frames to host */
1758 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1759 cbp->ext_stats_dis = 0; /* enable extended stats */
1760 }
1761
1762 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1763
1764 /*
1765 * Start the config command/DMA.
1766 */
1767 fxp_scb_wait(sc);
1768 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1769 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1770 /* ...and wait for it to complete. */
1771 for (i = 1000; i > 0; i--) {
1772 FXP_CDCONFIGSYNC(sc,
1773 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1774 status = le16toh(cbp->cb_status);
1775 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1776 if ((status & FXP_CB_STATUS_C) != 0)
1777 break;
1778 DELAY(1);
1779 }
1780 if (i == 0) {
1781 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1782 device_xname(sc->sc_dev), __LINE__);
1783 return (ETIMEDOUT);
1784 }
1785
1786 /*
1787 * Initialize the station address.
1788 */
1789 cb_ias = &sc->sc_control_data->fcd_iascb;
1790 /* BIG_ENDIAN: no need to swap to store 0 */
1791 cb_ias->cb_status = 0;
1792 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1793 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1794 cb_ias->link_addr = 0xffffffff;
1795 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1796
1797 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1798
1799 /*
1800 * Start the IAS (Individual Address Setup) command/DMA.
1801 */
1802 fxp_scb_wait(sc);
1803 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1804 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1805 /* ...and wait for it to complete. */
1806 for (i = 1000; i > 0; i++) {
1807 FXP_CDIASSYNC(sc,
1808 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1809 status = le16toh(cb_ias->cb_status);
1810 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1811 if ((status & FXP_CB_STATUS_C) != 0)
1812 break;
1813 DELAY(1);
1814 }
1815 if (i == 0) {
1816 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1817 device_xname(sc->sc_dev), __LINE__);
1818 return (ETIMEDOUT);
1819 }
1820
1821 /*
1822 * Initialize the transmit descriptor ring. txlast is initialized
1823 * to the end of the list so that it will wrap around to the first
1824 * descriptor when the first packet is transmitted.
1825 */
1826 for (i = 0; i < FXP_NTXCB; i++) {
1827 txd = FXP_CDTX(sc, i);
1828 memset(txd, 0, sizeof(*txd));
1829 txd->txd_txcb.cb_command =
1830 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1831 txd->txd_txcb.link_addr =
1832 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1833 if (sc->sc_flags & FXPF_EXT_TXCB)
1834 txd->txd_txcb.tbd_array_addr =
1835 htole32(FXP_CDTBDADDR(sc, i) +
1836 (2 * sizeof(struct fxp_tbd)));
1837 else
1838 txd->txd_txcb.tbd_array_addr =
1839 htole32(FXP_CDTBDADDR(sc, i));
1840 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1841 }
1842 sc->sc_txpending = 0;
1843 sc->sc_txdirty = 0;
1844 sc->sc_txlast = FXP_NTXCB - 1;
1845
1846 /*
1847 * Initialize the receive buffer list.
1848 */
1849 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1850 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1851 rxmap = FXP_RXMAP_GET(sc);
1852 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1853 log(LOG_ERR, "%s: unable to allocate or map rx "
1854 "buffer %d, error = %d\n",
1855 device_xname(sc->sc_dev),
1856 sc->sc_rxq.ifq_len, error);
1857 /*
1858 * XXX Should attempt to run with fewer receive
1859 * XXX buffers instead of just failing.
1860 */
1861 FXP_RXMAP_PUT(sc, rxmap);
1862 fxp_rxdrain(sc);
1863 goto out;
1864 }
1865 }
1866 sc->sc_rxidle = 0;
1867
1868 /*
1869 * Give the transmit ring to the chip. We do this by pointing
1870 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1871 * issuing a start command. It will execute the NOP and then
1872 * suspend, pointing at the first descriptor.
1873 */
1874 fxp_scb_wait(sc);
1875 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1876 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1877
1878 /*
1879 * Initialize receiver buffer area - RFA.
1880 */
1881 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1882 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1883 fxp_scb_wait(sc);
1884 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1885 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1886 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1887 #endif
1888
1889 if (sc->sc_flags & FXPF_MII) {
1890 /*
1891 * Set current media.
1892 */
1893 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1894 goto out;
1895 }
1896
1897 /*
1898 * ...all done!
1899 */
1900 ifp->if_flags |= IFF_RUNNING;
1901 ifp->if_flags &= ~IFF_OACTIVE;
1902
1903 /*
1904 * Request a software generated interrupt that will be used to
1905 * (re)start the RU processing. If we direct the chip to start
1906 * receiving from the start of queue now, instead of letting the
1907 * interrupt handler first process all received packets, we run
1908 * the risk of having it overwrite mbuf clusters while they are
1909 * being processed or after they have been returned to the pool.
1910 */
1911 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1912
1913 /*
1914 * Start the one second timer.
1915 */
1916 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1917
1918 /*
1919 * Attempt to start output on the interface.
1920 */
1921 fxp_start(ifp);
1922
1923 out:
1924 if (error) {
1925 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1926 ifp->if_timer = 0;
1927 log(LOG_ERR, "%s: interface not running\n",
1928 device_xname(sc->sc_dev));
1929 }
1930 return (error);
1931 }
1932
1933 /*
1934 * Notify the world which media we're using.
1935 */
1936 void
1937 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1938 {
1939 struct fxp_softc *sc = ifp->if_softc;
1940
1941 if (sc->sc_enabled == 0) {
1942 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1943 ifmr->ifm_status = 0;
1944 return;
1945 }
1946
1947 ether_mediastatus(ifp, ifmr);
1948
1949 /*
1950 * XXX Flow control is always turned on if the chip supports
1951 * XXX it; we can't easily control it dynamically, since it
1952 * XXX requires sending a setup packet.
1953 */
1954 if (sc->sc_rev >= FXP_REV_82558_A4)
1955 ifmr->ifm_active |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
1956 }
1957
1958 int
1959 fxp_80c24_mediachange(struct ifnet *ifp)
1960 {
1961
1962 /* Nothing to do here. */
1963 return (0);
1964 }
1965
1966 void
1967 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1968 {
1969 struct fxp_softc *sc = ifp->if_softc;
1970
1971 /*
1972 * Media is currently-selected media. We cannot determine
1973 * the link status.
1974 */
1975 ifmr->ifm_status = 0;
1976 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1977 }
1978
1979 /*
1980 * Add a buffer to the end of the RFA buffer list.
1981 * Return 0 if successful, error code on failure.
1982 *
1983 * The RFA struct is stuck at the beginning of mbuf cluster and the
1984 * data pointer is fixed up to point just past it.
1985 */
1986 int
1987 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1988 {
1989 struct mbuf *m;
1990 int error;
1991
1992 MGETHDR(m, M_DONTWAIT, MT_DATA);
1993 if (m == NULL)
1994 return (ENOBUFS);
1995
1996 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1997 MCLGET(m, M_DONTWAIT);
1998 if ((m->m_flags & M_EXT) == 0) {
1999 m_freem(m);
2000 return (ENOBUFS);
2001 }
2002
2003 if (unload)
2004 bus_dmamap_unload(sc->sc_dmat, rxmap);
2005
2006 M_SETCTX(m, rxmap);
2007
2008 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2009 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2010 BUS_DMA_READ|BUS_DMA_NOWAIT);
2011 if (error) {
2012 /* XXX XXX XXX */
2013 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2014 sc->sc_rxq.ifq_len, error);
2015 panic("fxp_add_rfabuf");
2016 }
2017
2018 FXP_INIT_RFABUF(sc, m);
2019
2020 return (0);
2021 }
2022
2023 int
2024 fxp_mdi_read(device_t self, int phy, int reg)
2025 {
2026 struct fxp_softc *sc = device_private(self);
2027 int count = 10000;
2028 int value;
2029
2030 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2031 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2032
2033 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2034 0x10000000) == 0 && count--)
2035 DELAY(10);
2036
2037 if (count <= 0)
2038 log(LOG_WARNING,
2039 "%s: fxp_mdi_read: timed out\n", device_xname(self));
2040
2041 return (value & 0xffff);
2042 }
2043
2044 void
2045 fxp_statchg(device_t self)
2046 {
2047
2048 /* Nothing to do. */
2049 }
2050
2051 void
2052 fxp_mdi_write(device_t self, int phy, int reg, int value)
2053 {
2054 struct fxp_softc *sc = device_private(self);
2055 int count = 10000;
2056
2057 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2058 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2059 (value & 0xffff));
2060
2061 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2062 count--)
2063 DELAY(10);
2064
2065 if (count <= 0)
2066 log(LOG_WARNING,
2067 "%s: fxp_mdi_write: timed out\n", device_xname(self));
2068 }
2069
2070 int
2071 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2072 {
2073 struct fxp_softc *sc = ifp->if_softc;
2074 struct ifreq *ifr = (struct ifreq *)data;
2075 int s, error;
2076
2077 s = splnet();
2078
2079 switch (cmd) {
2080 case SIOCSIFMEDIA:
2081 case SIOCGIFMEDIA:
2082 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2083 break;
2084
2085 default:
2086 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2087 break;
2088
2089 error = 0;
2090
2091 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2092 ;
2093 else if (ifp->if_flags & IFF_RUNNING) {
2094 /*
2095 * Multicast list has changed; set the
2096 * hardware filter accordingly.
2097 */
2098 while (sc->sc_txpending) {
2099 sc->sc_flags |= FXPF_WANTINIT;
2100 tsleep(sc, PSOCK, "fxp_init", 0);
2101 }
2102 error = fxp_init(ifp);
2103 }
2104 break;
2105 }
2106
2107 /* Try to get more packets going. */
2108 if (sc->sc_enabled)
2109 fxp_start(ifp);
2110
2111 splx(s);
2112 return (error);
2113 }
2114
2115 /*
2116 * Program the multicast filter.
2117 *
2118 * This function must be called at splnet().
2119 */
2120 void
2121 fxp_mc_setup(struct fxp_softc *sc)
2122 {
2123 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2124 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2125 struct ethercom *ec = &sc->sc_ethercom;
2126 struct ether_multi *enm;
2127 struct ether_multistep step;
2128 int count, nmcasts;
2129 uint16_t status;
2130
2131 #ifdef DIAGNOSTIC
2132 if (sc->sc_txpending)
2133 panic("fxp_mc_setup: pending transmissions");
2134 #endif
2135
2136 ifp->if_flags &= ~IFF_ALLMULTI;
2137
2138 /*
2139 * Initialize multicast setup descriptor.
2140 */
2141 nmcasts = 0;
2142 ETHER_FIRST_MULTI(step, ec, enm);
2143 while (enm != NULL) {
2144 /*
2145 * Check for too many multicast addresses or if we're
2146 * listening to a range. Either way, we simply have
2147 * to accept all multicasts.
2148 */
2149 if (nmcasts >= MAXMCADDR ||
2150 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2151 ETHER_ADDR_LEN) != 0) {
2152 /*
2153 * Callers of this function must do the
2154 * right thing with this. If we're called
2155 * from outside fxp_init(), the caller must
2156 * detect if the state if IFF_ALLMULTI changes.
2157 * If it does, the caller must then call
2158 * fxp_init(), since allmulti is handled by
2159 * the config block.
2160 */
2161 ifp->if_flags |= IFF_ALLMULTI;
2162 return;
2163 }
2164 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2165 ETHER_ADDR_LEN);
2166 nmcasts++;
2167 ETHER_NEXT_MULTI(step, enm);
2168 }
2169
2170 /* BIG_ENDIAN: no need to swap to store 0 */
2171 mcsp->cb_status = 0;
2172 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2173 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2174 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2175
2176 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2177
2178 /*
2179 * Wait until the command unit is not active. This should never
2180 * happen since nothing is queued, but make sure anyway.
2181 */
2182 count = 100;
2183 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2184 FXP_SCB_CUS_ACTIVE && --count)
2185 DELAY(1);
2186 if (count == 0) {
2187 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2188 device_xname(sc->sc_dev), __LINE__);
2189 return;
2190 }
2191
2192 /*
2193 * Start the multicast setup command/DMA.
2194 */
2195 fxp_scb_wait(sc);
2196 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2197 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2198
2199 /* ...and wait for it to complete. */
2200 for (count = 1000; count > 0; count--) {
2201 FXP_CDMCSSYNC(sc,
2202 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2203 status = le16toh(mcsp->cb_status);
2204 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2205 if ((status & FXP_CB_STATUS_C) != 0)
2206 break;
2207 DELAY(1);
2208 }
2209 if (count == 0) {
2210 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2211 device_xname(sc->sc_dev), __LINE__);
2212 return;
2213 }
2214 }
2215
2216 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2217 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2218 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2219 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2220 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2221 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2222
2223 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2224
2225 static const struct ucode {
2226 int32_t revision;
2227 const uint32_t *ucode;
2228 size_t length;
2229 uint16_t int_delay_offset;
2230 uint16_t bundle_max_offset;
2231 } ucode_table[] = {
2232 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2233 D101_CPUSAVER_DWORD, 0 },
2234
2235 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2236 D101_CPUSAVER_DWORD, 0 },
2237
2238 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2239 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2240
2241 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2242 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2243
2244 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2245 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2246
2247 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2248 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2249
2250 { 0, NULL, 0, 0, 0 }
2251 };
2252
2253 void
2254 fxp_load_ucode(struct fxp_softc *sc)
2255 {
2256 const struct ucode *uc;
2257 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2258 int count, i;
2259 uint16_t status;
2260
2261 if (sc->sc_flags & FXPF_UCODE_LOADED)
2262 return;
2263
2264 /*
2265 * Only load the uCode if the user has requested that
2266 * we do so.
2267 */
2268 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2269 sc->sc_int_delay = 0;
2270 sc->sc_bundle_max = 0;
2271 return;
2272 }
2273
2274 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2275 if (sc->sc_rev == uc->revision)
2276 break;
2277 }
2278 if (uc->ucode == NULL)
2279 return;
2280
2281 /* BIG ENDIAN: no need to swap to store 0 */
2282 cbp->cb_status = 0;
2283 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2284 cbp->link_addr = 0xffffffff; /* (no) next command */
2285 for (i = 0; i < uc->length; i++)
2286 cbp->ucode[i] = htole32(uc->ucode[i]);
2287
2288 if (uc->int_delay_offset)
2289 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2290 htole16(fxp_int_delay + (fxp_int_delay / 2));
2291
2292 if (uc->bundle_max_offset)
2293 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2294 htole16(fxp_bundle_max);
2295
2296 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2297
2298 /*
2299 * Download the uCode to the chip.
2300 */
2301 fxp_scb_wait(sc);
2302 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2303 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2304
2305 /* ...and wait for it to complete. */
2306 for (count = 10000; count > 0; count--) {
2307 FXP_CDUCODESYNC(sc,
2308 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2309 status = le16toh(cbp->cb_status);
2310 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2311 if ((status & FXP_CB_STATUS_C) != 0)
2312 break;
2313 DELAY(2);
2314 }
2315 if (count == 0) {
2316 sc->sc_int_delay = 0;
2317 sc->sc_bundle_max = 0;
2318 log(LOG_WARNING, "%s: timeout loading microcode\n",
2319 device_xname(sc->sc_dev));
2320 return;
2321 }
2322
2323 if (sc->sc_int_delay != fxp_int_delay ||
2324 sc->sc_bundle_max != fxp_bundle_max) {
2325 sc->sc_int_delay = fxp_int_delay;
2326 sc->sc_bundle_max = fxp_bundle_max;
2327 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2328 "max bundle: %d\n", device_xname(sc->sc_dev),
2329 sc->sc_int_delay,
2330 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2331 }
2332
2333 sc->sc_flags |= FXPF_UCODE_LOADED;
2334 }
2335
2336 int
2337 fxp_enable(struct fxp_softc *sc)
2338 {
2339
2340 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2341 if ((*sc->sc_enable)(sc) != 0) {
2342 log(LOG_ERR, "%s: device enable failed\n",
2343 device_xname(sc->sc_dev));
2344 return (EIO);
2345 }
2346 }
2347
2348 sc->sc_enabled = 1;
2349 return (0);
2350 }
2351
2352 void
2353 fxp_disable(struct fxp_softc *sc)
2354 {
2355
2356 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2357 (*sc->sc_disable)(sc);
2358 sc->sc_enabled = 0;
2359 }
2360 }
2361
2362 /*
2363 * fxp_activate:
2364 *
2365 * Handle device activation/deactivation requests.
2366 */
2367 int
2368 fxp_activate(device_t self, enum devact act)
2369 {
2370 struct fxp_softc *sc = device_private(self);
2371 int s, error = 0;
2372
2373 s = splnet();
2374 switch (act) {
2375 case DVACT_ACTIVATE:
2376 error = EOPNOTSUPP;
2377 break;
2378
2379 case DVACT_DEACTIVATE:
2380 if (sc->sc_flags & FXPF_MII)
2381 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2382 MII_OFFSET_ANY);
2383 if_deactivate(&sc->sc_ethercom.ec_if);
2384 break;
2385 }
2386 splx(s);
2387
2388 return (error);
2389 }
2390
2391 /*
2392 * fxp_detach:
2393 *
2394 * Detach an i82557 interface.
2395 */
2396 int
2397 fxp_detach(struct fxp_softc *sc)
2398 {
2399 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2400 int i;
2401
2402 /* Succeed now if there's no work to do. */
2403 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2404 return (0);
2405
2406 /* Unhook our tick handler. */
2407 callout_stop(&sc->sc_callout);
2408
2409 if (sc->sc_flags & FXPF_MII) {
2410 /* Detach all PHYs */
2411 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2412 }
2413
2414 /* Delete all remaining media. */
2415 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2416
2417 #if NRND > 0
2418 rnd_detach_source(&sc->rnd_source);
2419 #endif
2420 ether_ifdetach(ifp);
2421 if_detach(ifp);
2422
2423 for (i = 0; i < FXP_NRFABUFS; i++) {
2424 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2425 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2426 }
2427
2428 for (i = 0; i < FXP_NTXCB; i++) {
2429 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2430 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2431 }
2432
2433 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2434 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2435 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2436 sizeof(struct fxp_control_data));
2437 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2438
2439 return (0);
2440 }
2441