i82557.c revision 1.124 1 /* $NetBSD: i82557.c,v 1.124 2009/03/04 10:15:08 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice unmodified, this list of conditions, and the following
43 * disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61 */
62
63 /*
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.124 2009/03/04 10:15:08 tsutsui Exp $");
70
71 #include "bpfilter.h"
72 #include "rnd.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/device.h>
84 #include <sys/syslog.h>
85
86 #include <machine/endian.h>
87
88 #include <uvm/uvm_extern.h>
89
90 #if NRND > 0
91 #include <sys/rnd.h>
92 #endif
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #endif
102
103 #include <sys/bus.h>
104 #include <sys/intr.h>
105
106 #include <dev/mii/miivar.h>
107
108 #include <dev/ic/i82557reg.h>
109 #include <dev/ic/i82557var.h>
110
111 #include <dev/microcode/i8255x/rcvbundl.h>
112
113 /*
114 * NOTE! On the Alpha, we have an alignment constraint. The
115 * card DMAs the packet immediately following the RFA. However,
116 * the first thing in the packet is a 14-byte Ethernet header.
117 * This means that the packet is misaligned. To compensate,
118 * we actually offset the RFA 2 bytes into the cluster. This
119 * alignes the packet after the Ethernet header at a 32-bit
120 * boundary. HOWEVER! This means that the RFA is misaligned!
121 */
122 #define RFA_ALIGNMENT_FUDGE 2
123
124 /*
125 * The configuration byte map has several undefined fields which
126 * must be one or must be zero. Set up a template for these bits
127 * only (assuming an i82557 chip), leaving the actual configuration
128 * for fxp_init().
129 *
130 * See the definition of struct fxp_cb_config for the bit definitions.
131 */
132 const u_int8_t fxp_cb_config_template[] = {
133 0x0, 0x0, /* cb_status */
134 0x0, 0x0, /* cb_command */
135 0x0, 0x0, 0x0, 0x0, /* link_addr */
136 0x0, /* 0 */
137 0x0, /* 1 */
138 0x0, /* 2 */
139 0x0, /* 3 */
140 0x0, /* 4 */
141 0x0, /* 5 */
142 0x32, /* 6 */
143 0x0, /* 7 */
144 0x0, /* 8 */
145 0x0, /* 9 */
146 0x6, /* 10 */
147 0x0, /* 11 */
148 0x0, /* 12 */
149 0x0, /* 13 */
150 0xf2, /* 14 */
151 0x48, /* 15 */
152 0x0, /* 16 */
153 0x40, /* 17 */
154 0xf0, /* 18 */
155 0x0, /* 19 */
156 0x3f, /* 20 */
157 0x5, /* 21 */
158 0x0, /* 22 */
159 0x0, /* 23 */
160 0x0, /* 24 */
161 0x0, /* 25 */
162 0x0, /* 26 */
163 0x0, /* 27 */
164 0x0, /* 28 */
165 0x0, /* 29 */
166 0x0, /* 30 */
167 0x0, /* 31 */
168 };
169
170 void fxp_mii_initmedia(struct fxp_softc *);
171 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
172
173 void fxp_80c24_initmedia(struct fxp_softc *);
174 int fxp_80c24_mediachange(struct ifnet *);
175 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
176
177 void fxp_start(struct ifnet *);
178 int fxp_ioctl(struct ifnet *, u_long, void *);
179 void fxp_watchdog(struct ifnet *);
180 int fxp_init(struct ifnet *);
181 void fxp_stop(struct ifnet *, int);
182
183 void fxp_txintr(struct fxp_softc *);
184 int fxp_rxintr(struct fxp_softc *);
185
186 int fxp_rx_hwcksum(struct mbuf *, const struct fxp_rfa *);
187
188 void fxp_rxdrain(struct fxp_softc *);
189 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
190 int fxp_mdi_read(device_t, int, int);
191 void fxp_statchg(device_t);
192 void fxp_mdi_write(device_t, int, int, int);
193 void fxp_autosize_eeprom(struct fxp_softc*);
194 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
195 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
196 void fxp_eeprom_update_cksum(struct fxp_softc *);
197 void fxp_get_info(struct fxp_softc *, u_int8_t *);
198 void fxp_tick(void *);
199 void fxp_mc_setup(struct fxp_softc *);
200 void fxp_load_ucode(struct fxp_softc *);
201
202 int fxp_copy_small = 0;
203
204 /*
205 * Variables for interrupt mitigating microcode.
206 */
207 int fxp_int_delay = 1000; /* usec */
208 int fxp_bundle_max = 6; /* packets */
209
210 struct fxp_phytype {
211 int fp_phy; /* type of PHY, -1 for MII at the end. */
212 void (*fp_init)(struct fxp_softc *);
213 } fxp_phytype_table[] = {
214 { FXP_PHY_80C24, fxp_80c24_initmedia },
215 { -1, fxp_mii_initmedia },
216 };
217
218 /*
219 * Set initial transmit threshold at 64 (512 bytes). This is
220 * increased by 64 (512 bytes) at a time, to maximum of 192
221 * (1536 bytes), if an underrun occurs.
222 */
223 static int tx_threshold = 64;
224
225 /*
226 * Wait for the previous command to be accepted (but not necessarily
227 * completed).
228 */
229 static inline void
230 fxp_scb_wait(struct fxp_softc *sc)
231 {
232 int i = 10000;
233
234 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
235 delay(2);
236 if (i == 0)
237 log(LOG_WARNING,
238 "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
239 }
240
241 /*
242 * Submit a command to the i82557.
243 */
244 static inline void
245 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
246 {
247
248 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
249 }
250
251 /*
252 * Finish attaching an i82557 interface. Called by bus-specific front-end.
253 */
254 void
255 fxp_attach(struct fxp_softc *sc)
256 {
257 u_int8_t enaddr[ETHER_ADDR_LEN];
258 struct ifnet *ifp;
259 bus_dma_segment_t seg;
260 int rseg, i, error;
261 struct fxp_phytype *fp;
262
263 callout_init(&sc->sc_callout, 0);
264
265 /*
266 * Enable use of extended RFDs and TCBs for 82550
267 * and later chips. Note: we need extended TXCB support
268 * too, but that's already enabled by the code above.
269 * Be careful to do this only on the right devices.
270 */
271 if (sc->sc_flags & FXPF_EXT_RFA)
272 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
273 else
274 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
275
276 sc->sc_rfa_size =
277 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
278
279 /*
280 * Allocate the control data structures, and create and load the
281 * DMA map for it.
282 */
283 if ((error = bus_dmamem_alloc(sc->sc_dmat,
284 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
285 0)) != 0) {
286 aprint_error_dev(sc->sc_dev,
287 "unable to allocate control data, error = %d\n",
288 error);
289 goto fail_0;
290 }
291
292 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
293 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
294 BUS_DMA_COHERENT)) != 0) {
295 aprint_error_dev(sc->sc_dev,
296 "unable to map control data, error = %d\n", error);
297 goto fail_1;
298 }
299 sc->sc_cdseg = seg;
300 sc->sc_cdnseg = rseg;
301
302 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
303
304 if ((error = bus_dmamap_create(sc->sc_dmat,
305 sizeof(struct fxp_control_data), 1,
306 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
307 aprint_error_dev(sc->sc_dev,
308 "unable to create control data DMA map, error = %d\n",
309 error);
310 goto fail_2;
311 }
312
313 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
314 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
315 0)) != 0) {
316 aprint_error_dev(sc->sc_dev,
317 "can't load control data DMA map, error = %d\n",
318 error);
319 goto fail_3;
320 }
321
322 /*
323 * Create the transmit buffer DMA maps.
324 */
325 for (i = 0; i < FXP_NTXCB; i++) {
326 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
327 (sc->sc_flags & FXPF_EXT_RFA) ?
328 FXP_IPCB_NTXSEG : FXP_NTXSEG,
329 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
330 aprint_error_dev(sc->sc_dev,
331 "unable to create tx DMA map %d, error = %d\n",
332 i, error);
333 goto fail_4;
334 }
335 }
336
337 /*
338 * Create the receive buffer DMA maps.
339 */
340 for (i = 0; i < FXP_NRFABUFS; i++) {
341 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
342 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
343 aprint_error_dev(sc->sc_dev,
344 "unable to create rx DMA map %d, error = %d\n",
345 i, error);
346 goto fail_5;
347 }
348 }
349
350 /* Initialize MAC address and media structures. */
351 fxp_get_info(sc, enaddr);
352
353 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
354 ether_sprintf(enaddr));
355
356 ifp = &sc->sc_ethercom.ec_if;
357
358 /*
359 * Get info about our media interface, and initialize it. Note
360 * the table terminates itself with a phy of -1, indicating
361 * that we're using MII.
362 */
363 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
364 if (fp->fp_phy == sc->phy_primary_device)
365 break;
366 (*fp->fp_init)(sc);
367
368 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
369 ifp->if_softc = sc;
370 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
371 ifp->if_ioctl = fxp_ioctl;
372 ifp->if_start = fxp_start;
373 ifp->if_watchdog = fxp_watchdog;
374 ifp->if_init = fxp_init;
375 ifp->if_stop = fxp_stop;
376 IFQ_SET_READY(&ifp->if_snd);
377
378 if (sc->sc_flags & FXPF_EXT_RFA) {
379 /*
380 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
381 * at least, on i82550 rev.12.
382 * specifically, it doesn't set ipv4 checksum properly
383 * when sending UDP (and probably TCP) packets with
384 * 20 byte ipv4 header + 1 or 2 byte data,
385 * though ICMP packets seem working.
386 * FreeBSD driver has related comments.
387 * We've added a workaround to handle the bug by padding
388 * such packets manually.
389 */
390 ifp->if_capabilities =
391 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
392 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
393 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
394 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
395 }
396
397 /*
398 * We can support 802.1Q VLAN-sized frames.
399 */
400 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
401
402 /*
403 * Attach the interface.
404 */
405 if_attach(ifp);
406 ether_ifattach(ifp, enaddr);
407 #if NRND > 0
408 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
409 RND_TYPE_NET, 0);
410 #endif
411
412 #ifdef FXP_EVENT_COUNTERS
413 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
414 NULL, device_xname(sc->sc_dev), "txstall");
415 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
416 NULL, device_xname(sc->sc_dev), "txintr");
417 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
418 NULL, device_xname(sc->sc_dev), "rxintr");
419 if (sc->sc_flags & FXPF_FC) {
420 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
421 NULL, device_xname(sc->sc_dev), "txpause");
422 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
423 NULL, device_xname(sc->sc_dev), "rxpause");
424 }
425 #endif /* FXP_EVENT_COUNTERS */
426
427 /* The attach is successful. */
428 sc->sc_flags |= FXPF_ATTACHED;
429
430 return;
431
432 /*
433 * Free any resources we've allocated during the failed attach
434 * attempt. Do this in reverse order and fall though.
435 */
436 fail_5:
437 for (i = 0; i < FXP_NRFABUFS; i++) {
438 if (sc->sc_rxmaps[i] != NULL)
439 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
440 }
441 fail_4:
442 for (i = 0; i < FXP_NTXCB; i++) {
443 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
444 bus_dmamap_destroy(sc->sc_dmat,
445 FXP_DSTX(sc, i)->txs_dmamap);
446 }
447 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
448 fail_3:
449 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
450 fail_2:
451 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
452 sizeof(struct fxp_control_data));
453 fail_1:
454 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
455 fail_0:
456 return;
457 }
458
459 void
460 fxp_mii_initmedia(struct fxp_softc *sc)
461 {
462 int flags;
463
464 sc->sc_flags |= FXPF_MII;
465
466 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
467 sc->sc_mii.mii_readreg = fxp_mdi_read;
468 sc->sc_mii.mii_writereg = fxp_mdi_write;
469 sc->sc_mii.mii_statchg = fxp_statchg;
470
471 sc->sc_ethercom.ec_mii = &sc->sc_mii;
472 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
473 fxp_mii_mediastatus);
474
475 flags = MIIF_NOISOLATE;
476 if (sc->sc_flags & FXPF_FC)
477 flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
478 /*
479 * The i82557 wedges if all of its PHYs are isolated!
480 */
481 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
482 MII_OFFSET_ANY, flags);
483 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
484 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
485 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
486 } else
487 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
488 }
489
490 void
491 fxp_80c24_initmedia(struct fxp_softc *sc)
492 {
493
494 /*
495 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
496 * doesn't have a programming interface of any sort. The
497 * media is sensed automatically based on how the link partner
498 * is configured. This is, in essence, manual configuration.
499 */
500 aprint_normal_dev(sc->sc_dev,
501 "Seeq 80c24 AutoDUPLEX media interface present\n");
502 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
503 fxp_80c24_mediastatus);
504 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
505 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
506 }
507
508 /*
509 * Initialize the interface media.
510 */
511 void
512 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
513 {
514 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
515
516 /*
517 * Reset to a stable state.
518 */
519 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
520 DELAY(100);
521
522 sc->sc_eeprom_size = 0;
523 fxp_autosize_eeprom(sc);
524 if (sc->sc_eeprom_size == 0) {
525 aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
526 sc->sc_eeprom_size = 6; /* XXX panic here? */
527 }
528 #ifdef DEBUG
529 aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
530 1 << sc->sc_eeprom_size);
531 #endif
532
533 /*
534 * Get info about the primary PHY
535 */
536 fxp_read_eeprom(sc, &data, 6, 1);
537 sc->phy_primary_device =
538 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
539
540 /*
541 * Read MAC address.
542 */
543 fxp_read_eeprom(sc, myea, 0, 3);
544 enaddr[0] = myea[0] & 0xff;
545 enaddr[1] = myea[0] >> 8;
546 enaddr[2] = myea[1] & 0xff;
547 enaddr[3] = myea[1] >> 8;
548 enaddr[4] = myea[2] & 0xff;
549 enaddr[5] = myea[2] >> 8;
550
551 /*
552 * Systems based on the ICH2/ICH2-M chip from Intel, as well
553 * as some i82559 designs, have a defect where the chip can
554 * cause a PCI protocol violation if it receives a CU_RESUME
555 * command when it is entering the IDLE state.
556 *
557 * The work-around is to disable Dynamic Standby Mode, so that
558 * the chip never deasserts #CLKRUN, and always remains in the
559 * active state.
560 *
561 * Unfortunately, the only way to disable Dynamic Standby is
562 * to frob an EEPROM setting and reboot (the EEPROM setting
563 * is only consulted when the PCI bus comes out of reset).
564 *
565 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
566 */
567 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
568 fxp_read_eeprom(sc, &data, 10, 1);
569 if (data & 0x02) { /* STB enable */
570 aprint_error_dev(sc->sc_dev, "WARNING: "
571 "Disabling dynamic standby mode in EEPROM "
572 "to work around a\n");
573 aprint_normal_dev(sc->sc_dev,
574 "WARNING: hardware bug. You must reset "
575 "the system before using this\n");
576 aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
577 data &= ~0x02;
578 fxp_write_eeprom(sc, &data, 10, 1);
579 aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
580 data);
581 fxp_eeprom_update_cksum(sc);
582 }
583 }
584
585 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
586 /* Due to false positives we make it conditional on setting link1 */
587 fxp_read_eeprom(sc, &data, 3, 1);
588 if ((data & 0x03) != 0x03) {
589 aprint_verbose_dev(sc->sc_dev,
590 "May need receiver lock-up workaround\n");
591 }
592 }
593
594 static void
595 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
596 {
597 uint16_t reg;
598 int x;
599
600 for (x = 1 << (len - 1); x != 0; x >>= 1) {
601 DELAY(40);
602 if (data & x)
603 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
604 else
605 reg = FXP_EEPROM_EECS;
606 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
607 DELAY(40);
608 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
609 reg | FXP_EEPROM_EESK);
610 DELAY(40);
611 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
612 }
613 DELAY(40);
614 }
615
616 /*
617 * Figure out EEPROM size.
618 *
619 * 559's can have either 64-word or 256-word EEPROMs, the 558
620 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
621 * talks about the existence of 16 to 256 word EEPROMs.
622 *
623 * The only known sizes are 64 and 256, where the 256 version is used
624 * by CardBus cards to store CIS information.
625 *
626 * The address is shifted in msb-to-lsb, and after the last
627 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
628 * after which follows the actual data. We try to detect this zero, by
629 * probing the data-out bit in the EEPROM control register just after
630 * having shifted in a bit. If the bit is zero, we assume we've
631 * shifted enough address bits. The data-out should be tri-state,
632 * before this, which should translate to a logical one.
633 *
634 * Other ways to do this would be to try to read a register with known
635 * contents with a varying number of address bits, but no such
636 * register seem to be available. The high bits of register 10 are 01
637 * on the 558 and 559, but apparently not on the 557.
638 *
639 * The Linux driver computes a checksum on the EEPROM data, but the
640 * value of this checksum is not very well documented.
641 */
642
643 void
644 fxp_autosize_eeprom(struct fxp_softc *sc)
645 {
646 int x;
647
648 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
649 DELAY(40);
650
651 /* Shift in read opcode. */
652 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
653
654 /*
655 * Shift in address, wait for the dummy zero following a correct
656 * address shift.
657 */
658 for (x = 1; x <= 8; x++) {
659 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
660 DELAY(40);
661 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
662 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
663 DELAY(40);
664 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
665 FXP_EEPROM_EEDO) == 0)
666 break;
667 DELAY(40);
668 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
669 DELAY(40);
670 }
671 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
672 DELAY(40);
673 if (x != 6 && x != 8) {
674 #ifdef DEBUG
675 printf("%s: strange EEPROM size (%d)\n",
676 device_xname(sc->sc_dev), 1 << x);
677 #endif
678 } else
679 sc->sc_eeprom_size = x;
680 }
681
682 /*
683 * Read from the serial EEPROM. Basically, you manually shift in
684 * the read opcode (one bit at a time) and then shift in the address,
685 * and then you shift out the data (all of this one bit at a time).
686 * The word size is 16 bits, so you have to provide the address for
687 * every 16 bits of data.
688 */
689 void
690 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
691 {
692 u_int16_t reg;
693 int i, x;
694
695 for (i = 0; i < words; i++) {
696 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
697
698 /* Shift in read opcode. */
699 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
700
701 /* Shift in address. */
702 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
703
704 reg = FXP_EEPROM_EECS;
705 data[i] = 0;
706
707 /* Shift out data. */
708 for (x = 16; x > 0; x--) {
709 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
710 reg | FXP_EEPROM_EESK);
711 DELAY(40);
712 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
713 FXP_EEPROM_EEDO)
714 data[i] |= (1 << (x - 1));
715 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
716 DELAY(40);
717 }
718 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
719 DELAY(40);
720 }
721 }
722
723 /*
724 * Write data to the serial EEPROM.
725 */
726 void
727 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
728 {
729 int i, j;
730
731 for (i = 0; i < words; i++) {
732 /* Erase/write enable. */
733 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
734 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
735 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
736 sc->sc_eeprom_size);
737 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
738 DELAY(4);
739
740 /* Shift in write opcode, address, data. */
741 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
742 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
743 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
744 fxp_eeprom_shiftin(sc, data[i], 16);
745 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
746 DELAY(4);
747
748 /* Wait for the EEPROM to finish up. */
749 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
750 DELAY(4);
751 for (j = 0; j < 1000; j++) {
752 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
753 FXP_EEPROM_EEDO)
754 break;
755 DELAY(50);
756 }
757 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
758 DELAY(4);
759
760 /* Erase/write disable. */
761 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
762 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
763 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
764 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
765 DELAY(4);
766 }
767 }
768
769 /*
770 * Update the checksum of the EEPROM.
771 */
772 void
773 fxp_eeprom_update_cksum(struct fxp_softc *sc)
774 {
775 int i;
776 uint16_t data, cksum;
777
778 cksum = 0;
779 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
780 fxp_read_eeprom(sc, &data, i, 1);
781 cksum += data;
782 }
783 i = (1 << sc->sc_eeprom_size) - 1;
784 cksum = 0xbaba - cksum;
785 fxp_read_eeprom(sc, &data, i, 1);
786 fxp_write_eeprom(sc, &cksum, i, 1);
787 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
788 device_xname(sc->sc_dev), i, data, cksum);
789 }
790
791 /*
792 * Start packet transmission on the interface.
793 */
794 void
795 fxp_start(struct ifnet *ifp)
796 {
797 struct fxp_softc *sc = ifp->if_softc;
798 struct mbuf *m0, *m;
799 struct fxp_txdesc *txd;
800 struct fxp_txsoft *txs;
801 bus_dmamap_t dmamap;
802 int error, lasttx, nexttx, opending, seg, nsegs, len;
803
804 /*
805 * If we want a re-init, bail out now.
806 */
807 if (sc->sc_flags & FXPF_WANTINIT) {
808 ifp->if_flags |= IFF_OACTIVE;
809 return;
810 }
811
812 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
813 return;
814
815 /*
816 * Remember the previous txpending and the current lasttx.
817 */
818 opending = sc->sc_txpending;
819 lasttx = sc->sc_txlast;
820
821 /*
822 * Loop through the send queue, setting up transmit descriptors
823 * until we drain the queue, or use up all available transmit
824 * descriptors.
825 */
826 for (;;) {
827 struct fxp_tbd *tbdp;
828 int csum_flags;
829
830 /*
831 * Grab a packet off the queue.
832 */
833 IFQ_POLL(&ifp->if_snd, m0);
834 if (m0 == NULL)
835 break;
836 m = NULL;
837
838 if (sc->sc_txpending == FXP_NTXCB - 1) {
839 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
840 break;
841 }
842
843 /*
844 * Get the next available transmit descriptor.
845 */
846 nexttx = FXP_NEXTTX(sc->sc_txlast);
847 txd = FXP_CDTX(sc, nexttx);
848 txs = FXP_DSTX(sc, nexttx);
849 dmamap = txs->txs_dmamap;
850
851 /*
852 * Load the DMA map. If this fails, the packet either
853 * didn't fit in the allotted number of frags, or we were
854 * short on resources. In this case, we'll copy and try
855 * again.
856 */
857 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
858 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
859 MGETHDR(m, M_DONTWAIT, MT_DATA);
860 if (m == NULL) {
861 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
862 device_xname(sc->sc_dev));
863 break;
864 }
865 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
866 if (m0->m_pkthdr.len > MHLEN) {
867 MCLGET(m, M_DONTWAIT);
868 if ((m->m_flags & M_EXT) == 0) {
869 log(LOG_ERR, "%s: unable to allocate "
870 "Tx cluster\n",
871 device_xname(sc->sc_dev));
872 m_freem(m);
873 break;
874 }
875 }
876 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
877 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
878 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
879 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
880 if (error) {
881 log(LOG_ERR, "%s: unable to load Tx buffer, "
882 "error = %d\n",
883 device_xname(sc->sc_dev), error);
884 break;
885 }
886 }
887
888 IFQ_DEQUEUE(&ifp->if_snd, m0);
889 csum_flags = m0->m_pkthdr.csum_flags;
890 if (m != NULL) {
891 m_freem(m0);
892 m0 = m;
893 }
894
895 /* Initialize the fraglist. */
896 tbdp = txd->txd_tbd;
897 len = m0->m_pkthdr.len;
898 nsegs = dmamap->dm_nsegs;
899 if (sc->sc_flags & FXPF_EXT_RFA)
900 tbdp++;
901 for (seg = 0; seg < nsegs; seg++) {
902 tbdp[seg].tb_addr =
903 htole32(dmamap->dm_segs[seg].ds_addr);
904 tbdp[seg].tb_size =
905 htole32(dmamap->dm_segs[seg].ds_len);
906 }
907 if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
908 (csum_flags & M_CSUM_IPv4) != 0)) {
909 /*
910 * Pad short packets to avoid ip4csum-tx bug.
911 *
912 * XXX Should we still consider if such short
913 * (36 bytes or less) packets might already
914 * occupy FXP_IPCB_NTXSEG (15) fragments here?
915 */
916 KASSERT(nsegs < FXP_IPCB_NTXSEG);
917 nsegs++;
918 tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
919 tbdp[seg].tb_size =
920 htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
921 }
922
923 /* Sync the DMA map. */
924 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
925 BUS_DMASYNC_PREWRITE);
926
927 /*
928 * Store a pointer to the packet so we can free it later.
929 */
930 txs->txs_mbuf = m0;
931
932 /*
933 * Initialize the transmit descriptor.
934 */
935 /* BIG_ENDIAN: no need to swap to store 0 */
936 txd->txd_txcb.cb_status = 0;
937 txd->txd_txcb.cb_command =
938 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
939 txd->txd_txcb.tx_threshold = tx_threshold;
940 txd->txd_txcb.tbd_number = nsegs;
941
942 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
943 if (sc->sc_flags & FXPF_EXT_RFA) {
944 struct m_tag *vtag;
945 struct fxp_ipcb *ipcb;
946 /*
947 * Deal with TCP/IP checksum offload. Note that
948 * in order for TCP checksum offload to work,
949 * the pseudo header checksum must have already
950 * been computed and stored in the checksum field
951 * in the TCP header. The stack should have
952 * already done this for us.
953 */
954 ipcb = &txd->txd_u.txdu_ipcb;
955 memset(ipcb, 0, sizeof(*ipcb));
956 /*
957 * always do hardware parsing.
958 */
959 ipcb->ipcb_ip_activation_high =
960 FXP_IPCB_HARDWAREPARSING_ENABLE;
961 /*
962 * ip checksum offloading.
963 */
964 if (csum_flags & M_CSUM_IPv4) {
965 ipcb->ipcb_ip_schedule |=
966 FXP_IPCB_IP_CHECKSUM_ENABLE;
967 }
968 /*
969 * TCP/UDP checksum offloading.
970 */
971 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
972 ipcb->ipcb_ip_schedule |=
973 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
974 }
975
976 /*
977 * request VLAN tag insertion if needed.
978 */
979 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
980 if (vtag) {
981 ipcb->ipcb_vlan_id =
982 htobe16(*(u_int *)(vtag + 1));
983 ipcb->ipcb_ip_activation_high |=
984 FXP_IPCB_INSERTVLAN_ENABLE;
985 }
986 } else {
987 KASSERT((csum_flags &
988 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
989 }
990
991 FXP_CDTXSYNC(sc, nexttx,
992 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
993
994 /* Advance the tx pointer. */
995 sc->sc_txpending++;
996 sc->sc_txlast = nexttx;
997
998 #if NBPFILTER > 0
999 /*
1000 * Pass packet to bpf if there is a listener.
1001 */
1002 if (ifp->if_bpf)
1003 bpf_mtap(ifp->if_bpf, m0);
1004 #endif
1005 }
1006
1007 if (sc->sc_txpending == FXP_NTXCB - 1) {
1008 /* No more slots; notify upper layer. */
1009 ifp->if_flags |= IFF_OACTIVE;
1010 }
1011
1012 if (sc->sc_txpending != opending) {
1013 /*
1014 * We enqueued packets. If the transmitter was idle,
1015 * reset the txdirty pointer.
1016 */
1017 if (opending == 0)
1018 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1019
1020 /*
1021 * Cause the chip to interrupt and suspend command
1022 * processing once the last packet we've enqueued
1023 * has been transmitted.
1024 *
1025 * To avoid a race between updating status bits
1026 * by the fxp chip and clearing command bits
1027 * by this function on machines which don't have
1028 * atomic methods to clear/set bits in memory
1029 * smaller than 32bits (both cb_status and cb_command
1030 * members are uint16_t and in the same 32bit word),
1031 * we have to prepare a dummy TX descriptor which has
1032 * NOP command and just causes a TX completion interrupt.
1033 */
1034 sc->sc_txpending++;
1035 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1036 txd = FXP_CDTX(sc, sc->sc_txlast);
1037 /* BIG_ENDIAN: no need to swap to store 0 */
1038 txd->txd_txcb.cb_status = 0;
1039 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1040 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1041 FXP_CDTXSYNC(sc, sc->sc_txlast,
1042 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1043
1044 /*
1045 * The entire packet chain is set up. Clear the suspend bit
1046 * on the command prior to the first packet we set up.
1047 */
1048 FXP_CDTXSYNC(sc, lasttx,
1049 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1050 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1051 htole16(~FXP_CB_COMMAND_S);
1052 FXP_CDTXSYNC(sc, lasttx,
1053 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1054
1055 /*
1056 * Issue a Resume command in case the chip was suspended.
1057 */
1058 fxp_scb_wait(sc);
1059 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1060
1061 /* Set a watchdog timer in case the chip flakes out. */
1062 ifp->if_timer = 5;
1063 }
1064 }
1065
1066 /*
1067 * Process interface interrupts.
1068 */
1069 int
1070 fxp_intr(void *arg)
1071 {
1072 struct fxp_softc *sc = arg;
1073 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1074 bus_dmamap_t rxmap;
1075 int claimed = 0, rnr;
1076 u_int8_t statack;
1077
1078 if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1079 return (0);
1080 /*
1081 * If the interface isn't running, don't try to
1082 * service the interrupt.. just ack it and bail.
1083 */
1084 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1085 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1086 if (statack) {
1087 claimed = 1;
1088 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1089 }
1090 return (claimed);
1091 }
1092
1093 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1094 claimed = 1;
1095
1096 /*
1097 * First ACK all the interrupts in this pass.
1098 */
1099 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1100
1101 /*
1102 * Process receiver interrupts. If a no-resource (RNR)
1103 * condition exists, get whatever packets we can and
1104 * re-start the receiver.
1105 */
1106 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1107 1 : 0;
1108 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1109 FXP_SCB_STATACK_SWI)) {
1110 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1111 rnr |= fxp_rxintr(sc);
1112 }
1113
1114 /*
1115 * Free any finished transmit mbuf chains.
1116 */
1117 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1118 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1119 fxp_txintr(sc);
1120
1121 /*
1122 * Try to get more packets going.
1123 */
1124 fxp_start(ifp);
1125
1126 if (sc->sc_txpending == 0) {
1127 /*
1128 * Tell them that they can re-init now.
1129 */
1130 if (sc->sc_flags & FXPF_WANTINIT)
1131 wakeup(sc);
1132 }
1133 }
1134
1135 if (rnr) {
1136 fxp_scb_wait(sc);
1137 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1138 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1139 fxp_scb_wait(sc);
1140 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1141 rxmap->dm_segs[0].ds_addr +
1142 RFA_ALIGNMENT_FUDGE);
1143 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1144 }
1145 }
1146
1147 #if NRND > 0
1148 if (claimed)
1149 rnd_add_uint32(&sc->rnd_source, statack);
1150 #endif
1151 return (claimed);
1152 }
1153
1154 /*
1155 * Handle transmit completion interrupts.
1156 */
1157 void
1158 fxp_txintr(struct fxp_softc *sc)
1159 {
1160 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1161 struct fxp_txdesc *txd;
1162 struct fxp_txsoft *txs;
1163 int i;
1164 u_int16_t txstat;
1165
1166 ifp->if_flags &= ~IFF_OACTIVE;
1167 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1168 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1169 txd = FXP_CDTX(sc, i);
1170 txs = FXP_DSTX(sc, i);
1171
1172 FXP_CDTXSYNC(sc, i,
1173 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1174
1175 /* skip dummy NOP TX descriptor */
1176 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1177 == FXP_CB_COMMAND_NOP)
1178 continue;
1179
1180 txstat = le16toh(txd->txd_txcb.cb_status);
1181
1182 if ((txstat & FXP_CB_STATUS_C) == 0)
1183 break;
1184
1185 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1186 0, txs->txs_dmamap->dm_mapsize,
1187 BUS_DMASYNC_POSTWRITE);
1188 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1189 m_freem(txs->txs_mbuf);
1190 txs->txs_mbuf = NULL;
1191 }
1192
1193 /* Update the dirty transmit buffer pointer. */
1194 sc->sc_txdirty = i;
1195
1196 /*
1197 * Cancel the watchdog timer if there are no pending
1198 * transmissions.
1199 */
1200 if (sc->sc_txpending == 0)
1201 ifp->if_timer = 0;
1202 }
1203
1204 /*
1205 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1206 */
1207
1208 int
1209 fxp_rx_hwcksum(struct mbuf *m, const struct fxp_rfa *rfa)
1210 {
1211 u_int8_t rxparsestat;
1212 u_int8_t csum_stat;
1213 u_int32_t csum_data;
1214 int csum_flags;
1215
1216 /*
1217 * check VLAN tag stripping.
1218 */
1219
1220 if (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) {
1221 struct m_tag *vtag;
1222
1223 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
1224 if (vtag == NULL)
1225 return ENOMEM;
1226 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1227 m_tag_prepend(m, vtag);
1228 }
1229
1230 /*
1231 * check H/W Checksumming.
1232 */
1233
1234 csum_stat = rfa->cksum_stat;
1235 rxparsestat = rfa->rx_parse_stat;
1236 if (!(rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)))
1237 return 0;
1238
1239 csum_flags = 0;
1240 csum_data = 0;
1241
1242 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1243 csum_flags = M_CSUM_IPv4;
1244 if (!(csum_stat & FXP_RFDX_CS_IP_CSUM_VALID))
1245 csum_flags |= M_CSUM_IPv4_BAD;
1246 }
1247
1248 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1249 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1250 if (!(csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID))
1251 csum_flags |= M_CSUM_TCP_UDP_BAD;
1252 }
1253
1254 m->m_pkthdr.csum_flags = csum_flags;
1255 m->m_pkthdr.csum_data = csum_data;
1256
1257 return 0;
1258 }
1259
1260 /*
1261 * Handle receive interrupts.
1262 */
1263 int
1264 fxp_rxintr(struct fxp_softc *sc)
1265 {
1266 struct ethercom *ec = &sc->sc_ethercom;
1267 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1268 struct mbuf *m, *m0;
1269 bus_dmamap_t rxmap;
1270 struct fxp_rfa *rfa;
1271 int rnr;
1272 u_int16_t len, rxstat;
1273
1274 rnr = 0;
1275
1276 for (;;) {
1277 m = sc->sc_rxq.ifq_head;
1278 rfa = FXP_MTORFA(m);
1279 rxmap = M_GETCTX(m, bus_dmamap_t);
1280
1281 FXP_RFASYNC(sc, m,
1282 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1283
1284 rxstat = le16toh(rfa->rfa_status);
1285
1286 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1287 rnr = 1;
1288
1289 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1290 /*
1291 * We have processed all of the
1292 * receive buffers.
1293 */
1294 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1295 return rnr;
1296 }
1297
1298 IF_DEQUEUE(&sc->sc_rxq, m);
1299
1300 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1301
1302 len = le16toh(rfa->actual_size) &
1303 (m->m_ext.ext_size - 1);
1304
1305 if (len < sizeof(struct ether_header)) {
1306 /*
1307 * Runt packet; drop it now.
1308 */
1309 FXP_INIT_RFABUF(sc, m);
1310 continue;
1311 }
1312
1313 /*
1314 * If support for 802.1Q VLAN sized frames is
1315 * enabled, we need to do some additional error
1316 * checking (as we are saving bad frames, in
1317 * order to receive the larger ones).
1318 */
1319 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1320 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1321 FXP_RFA_STATUS_RNR|
1322 FXP_RFA_STATUS_ALIGN|
1323 FXP_RFA_STATUS_CRC)) != 0) {
1324 FXP_INIT_RFABUF(sc, m);
1325 continue;
1326 }
1327
1328 /* Do checksum checking. */
1329 m->m_pkthdr.csum_flags = 0;
1330 if (sc->sc_flags & FXPF_EXT_RFA)
1331 if (fxp_rx_hwcksum(m, rfa))
1332 goto dropit;
1333
1334 /*
1335 * If the packet is small enough to fit in a
1336 * single header mbuf, allocate one and copy
1337 * the data into it. This greatly reduces
1338 * memory consumption when we receive lots
1339 * of small packets.
1340 *
1341 * Otherwise, we add a new buffer to the receive
1342 * chain. If this fails, we drop the packet and
1343 * recycle the old buffer.
1344 */
1345 if (fxp_copy_small != 0 && len <= MHLEN) {
1346 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1347 if (m0 == NULL)
1348 goto dropit;
1349 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1350 memcpy(mtod(m0, void *),
1351 mtod(m, void *), len);
1352 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1353 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1354 FXP_INIT_RFABUF(sc, m);
1355 m = m0;
1356 } else {
1357 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1358 dropit:
1359 ifp->if_ierrors++;
1360 FXP_INIT_RFABUF(sc, m);
1361 continue;
1362 }
1363 }
1364
1365 m->m_pkthdr.rcvif = ifp;
1366 m->m_pkthdr.len = m->m_len = len;
1367
1368 #if NBPFILTER > 0
1369 /*
1370 * Pass this up to any BPF listeners, but only
1371 * pass it up the stack if it's for us.
1372 */
1373 if (ifp->if_bpf)
1374 bpf_mtap(ifp->if_bpf, m);
1375 #endif
1376
1377 /* Pass it on. */
1378 (*ifp->if_input)(ifp, m);
1379 }
1380 }
1381
1382 /*
1383 * Update packet in/out/collision statistics. The i82557 doesn't
1384 * allow you to access these counters without doing a fairly
1385 * expensive DMA to get _all_ of the statistics it maintains, so
1386 * we do this operation here only once per second. The statistics
1387 * counters in the kernel are updated from the previous dump-stats
1388 * DMA and then a new dump-stats DMA is started. The on-chip
1389 * counters are zeroed when the DMA completes. If we can't start
1390 * the DMA immediately, we don't wait - we just prepare to read
1391 * them again next time.
1392 */
1393 void
1394 fxp_tick(void *arg)
1395 {
1396 struct fxp_softc *sc = arg;
1397 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1398 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1399 int s;
1400
1401 if (!device_is_active(sc->sc_dev))
1402 return;
1403
1404 s = splnet();
1405
1406 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1407
1408 ifp->if_opackets += le32toh(sp->tx_good);
1409 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1410 if (sp->rx_good) {
1411 ifp->if_ipackets += le32toh(sp->rx_good);
1412 sc->sc_rxidle = 0;
1413 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1414 sc->sc_rxidle++;
1415 }
1416 ifp->if_ierrors +=
1417 le32toh(sp->rx_crc_errors) +
1418 le32toh(sp->rx_alignment_errors) +
1419 le32toh(sp->rx_rnr_errors) +
1420 le32toh(sp->rx_overrun_errors);
1421 /*
1422 * If any transmit underruns occurred, bump up the transmit
1423 * threshold by another 512 bytes (64 * 8).
1424 */
1425 if (sp->tx_underruns) {
1426 ifp->if_oerrors += le32toh(sp->tx_underruns);
1427 if (tx_threshold < 192)
1428 tx_threshold += 64;
1429 }
1430 #ifdef FXP_EVENT_COUNTERS
1431 if (sc->sc_flags & FXPF_FC) {
1432 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1433 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1434 }
1435 #endif
1436
1437 /*
1438 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1439 * then assume the receiver has locked up and attempt to clear
1440 * the condition by reprogramming the multicast filter (actually,
1441 * resetting the interface). This is a work-around for a bug in
1442 * the 82557 where the receiver locks up if it gets certain types
1443 * of garbage in the synchronization bits prior to the packet header.
1444 * This bug is supposed to only occur in 10Mbps mode, but has been
1445 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1446 * speed transition).
1447 */
1448 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1449 (void) fxp_init(ifp);
1450 splx(s);
1451 return;
1452 }
1453 /*
1454 * If there is no pending command, start another stats
1455 * dump. Otherwise punt for now.
1456 */
1457 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1458 /*
1459 * Start another stats dump.
1460 */
1461 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1462 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1463 } else {
1464 /*
1465 * A previous command is still waiting to be accepted.
1466 * Just zero our copy of the stats and wait for the
1467 * next timer event to update them.
1468 */
1469 /* BIG_ENDIAN: no swap required to store 0 */
1470 sp->tx_good = 0;
1471 sp->tx_underruns = 0;
1472 sp->tx_total_collisions = 0;
1473
1474 sp->rx_good = 0;
1475 sp->rx_crc_errors = 0;
1476 sp->rx_alignment_errors = 0;
1477 sp->rx_rnr_errors = 0;
1478 sp->rx_overrun_errors = 0;
1479 if (sc->sc_flags & FXPF_FC) {
1480 sp->tx_pauseframes = 0;
1481 sp->rx_pauseframes = 0;
1482 }
1483 }
1484
1485 if (sc->sc_flags & FXPF_MII) {
1486 /* Tick the MII clock. */
1487 mii_tick(&sc->sc_mii);
1488 }
1489
1490 splx(s);
1491
1492 /*
1493 * Schedule another timeout one second from now.
1494 */
1495 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1496 }
1497
1498 /*
1499 * Drain the receive queue.
1500 */
1501 void
1502 fxp_rxdrain(struct fxp_softc *sc)
1503 {
1504 bus_dmamap_t rxmap;
1505 struct mbuf *m;
1506
1507 for (;;) {
1508 IF_DEQUEUE(&sc->sc_rxq, m);
1509 if (m == NULL)
1510 break;
1511 rxmap = M_GETCTX(m, bus_dmamap_t);
1512 bus_dmamap_unload(sc->sc_dmat, rxmap);
1513 FXP_RXMAP_PUT(sc, rxmap);
1514 m_freem(m);
1515 }
1516 }
1517
1518 /*
1519 * Stop the interface. Cancels the statistics updater and resets
1520 * the interface.
1521 */
1522 void
1523 fxp_stop(struct ifnet *ifp, int disable)
1524 {
1525 struct fxp_softc *sc = ifp->if_softc;
1526 struct fxp_txsoft *txs;
1527 int i;
1528
1529 /*
1530 * Turn down interface (done early to avoid bad interactions
1531 * between panics, shutdown hooks, and the watchdog timer)
1532 */
1533 ifp->if_timer = 0;
1534 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1535
1536 /*
1537 * Cancel stats updater.
1538 */
1539 callout_stop(&sc->sc_callout);
1540 if (sc->sc_flags & FXPF_MII) {
1541 /* Down the MII. */
1542 mii_down(&sc->sc_mii);
1543 }
1544
1545 /*
1546 * Issue software reset. This unloads any microcode that
1547 * might already be loaded.
1548 */
1549 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1550 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1551 DELAY(50);
1552
1553 /*
1554 * Release any xmit buffers.
1555 */
1556 for (i = 0; i < FXP_NTXCB; i++) {
1557 txs = FXP_DSTX(sc, i);
1558 if (txs->txs_mbuf != NULL) {
1559 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1560 m_freem(txs->txs_mbuf);
1561 txs->txs_mbuf = NULL;
1562 }
1563 }
1564 sc->sc_txpending = 0;
1565
1566 if (disable) {
1567 fxp_rxdrain(sc);
1568 fxp_disable(sc);
1569 }
1570
1571 }
1572
1573 /*
1574 * Watchdog/transmission transmit timeout handler. Called when a
1575 * transmission is started on the interface, but no interrupt is
1576 * received before the timeout. This usually indicates that the
1577 * card has wedged for some reason.
1578 */
1579 void
1580 fxp_watchdog(struct ifnet *ifp)
1581 {
1582 struct fxp_softc *sc = ifp->if_softc;
1583
1584 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1585 ifp->if_oerrors++;
1586
1587 (void) fxp_init(ifp);
1588 }
1589
1590 /*
1591 * Initialize the interface. Must be called at splnet().
1592 */
1593 int
1594 fxp_init(struct ifnet *ifp)
1595 {
1596 struct fxp_softc *sc = ifp->if_softc;
1597 struct fxp_cb_config *cbp;
1598 struct fxp_cb_ias *cb_ias;
1599 struct fxp_txdesc *txd;
1600 bus_dmamap_t rxmap;
1601 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1602 uint16_t status;
1603
1604 if ((error = fxp_enable(sc)) != 0)
1605 goto out;
1606
1607 /*
1608 * Cancel any pending I/O
1609 */
1610 fxp_stop(ifp, 0);
1611
1612 /*
1613 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1614 * flag, and this prevents the MII from detaching resulting in
1615 * a panic. The flags field should perhaps be split in runtime
1616 * flags and more static information. For now, just clear the
1617 * only other flag set.
1618 */
1619
1620 sc->sc_flags &= ~FXPF_WANTINIT;
1621
1622 /*
1623 * Initialize base of CBL and RFA memory. Loading with zero
1624 * sets it up for regular linear addressing.
1625 */
1626 fxp_scb_wait(sc);
1627 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1628 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1629
1630 fxp_scb_wait(sc);
1631 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1632
1633 /*
1634 * Initialize the multicast filter. Do this now, since we might
1635 * have to setup the config block differently.
1636 */
1637 fxp_mc_setup(sc);
1638
1639 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1640 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1641
1642 /*
1643 * In order to support receiving 802.1Q VLAN frames, we have to
1644 * enable "save bad frames", since they are 4 bytes larger than
1645 * the normal Ethernet maximum frame length. On i82558 and later,
1646 * we have a better mechanism for this.
1647 */
1648 save_bf = 0;
1649 lrxen = 0;
1650 vlan_drop = 0;
1651 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1652 if (sc->sc_rev < FXP_REV_82558_A4)
1653 save_bf = 1;
1654 else
1655 lrxen = 1;
1656 if (sc->sc_rev >= FXP_REV_82550)
1657 vlan_drop = 1;
1658 }
1659
1660 /*
1661 * Initialize base of dump-stats buffer.
1662 */
1663 fxp_scb_wait(sc);
1664 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1665 sc->sc_cddma + FXP_CDSTATSOFF);
1666 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1667 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1668
1669 cbp = &sc->sc_control_data->fcd_configcb;
1670 memset(cbp, 0, sizeof(struct fxp_cb_config));
1671
1672 /*
1673 * Load microcode for this controller.
1674 */
1675 fxp_load_ucode(sc);
1676
1677 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1678 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1679 else
1680 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1681
1682 /*
1683 * This copy is kind of disgusting, but there are a bunch of must be
1684 * zero and must be one bits in this structure and this is the easiest
1685 * way to initialize them all to proper values.
1686 */
1687 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1688
1689 /* BIG_ENDIAN: no need to swap to store 0 */
1690 cbp->cb_status = 0;
1691 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1692 FXP_CB_COMMAND_EL);
1693 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1694 cbp->link_addr = 0xffffffff; /* (no) next command */
1695 /* bytes in config block */
1696 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1697 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1698 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1699 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1700 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1701 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1702 cbp->type_enable = 0; /* actually reserved */
1703 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1704 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1705 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1706 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1707 cbp->dma_mbce = 0; /* (disable) dma max counters */
1708 cbp->late_scb = 0; /* (don't) defer SCB update */
1709 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1710 cbp->ci_int = 1; /* interrupt on CU idle */
1711 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1712 cbp->ext_stats_dis = 1; /* disable extended counters */
1713 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1714 cbp->save_bf = save_bf;/* save bad frames */
1715 cbp->disc_short_rx = !prm; /* discard short packets */
1716 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1717 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1718 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1719 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1720 /* interface mode */
1721 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1722 cbp->csma_dis = 0; /* (don't) disable link */
1723 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1724 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1725 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1726 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1727 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1728 cbp->nsai = 1; /* (don't) disable source addr insert */
1729 cbp->preamble_length = 2; /* (7 byte) preamble */
1730 cbp->loopback = 0; /* (don't) loopback */
1731 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1732 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1733 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1734 cbp->promiscuous = prm; /* promiscuous mode */
1735 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1736 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1737 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1738 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1739 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1740 cbp->stripping = !prm; /* truncate rx packet to byte count */
1741 cbp->padding = 1; /* (do) pad short tx packets */
1742 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1743 cbp->long_rx_en = lrxen; /* long packet receive enable */
1744 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1745 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1746 /* must set wake_en in PMCSR also */
1747 cbp->force_fdx = 0; /* (don't) force full duplex */
1748 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1749 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1750 cbp->mc_all = allm; /* accept all multicasts */
1751 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1752 cbp->vlan_drop_en = vlan_drop;
1753
1754 if (!(sc->sc_flags & FXPF_FC)) {
1755 /*
1756 * The i82557 has no hardware flow control, the values
1757 * here are the defaults for the chip.
1758 */
1759 cbp->fc_delay_lsb = 0;
1760 cbp->fc_delay_msb = 0x40;
1761 cbp->pri_fc_thresh = 3;
1762 cbp->tx_fc_dis = 0;
1763 cbp->rx_fc_restop = 0;
1764 cbp->rx_fc_restart = 0;
1765 cbp->fc_filter = 0;
1766 cbp->pri_fc_loc = 1;
1767 } else {
1768 cbp->fc_delay_lsb = 0x1f;
1769 cbp->fc_delay_msb = 0x01;
1770 cbp->pri_fc_thresh = 3;
1771 cbp->tx_fc_dis = 0; /* enable transmit FC */
1772 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1773 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1774 cbp->fc_filter = !prm; /* drop FC frames to host */
1775 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1776 cbp->ext_stats_dis = 0; /* enable extended stats */
1777 }
1778
1779 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1780
1781 /*
1782 * Start the config command/DMA.
1783 */
1784 fxp_scb_wait(sc);
1785 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1786 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1787 /* ...and wait for it to complete. */
1788 for (i = 1000; i > 0; i--) {
1789 FXP_CDCONFIGSYNC(sc,
1790 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1791 status = le16toh(cbp->cb_status);
1792 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1793 if ((status & FXP_CB_STATUS_C) != 0)
1794 break;
1795 DELAY(1);
1796 }
1797 if (i == 0) {
1798 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1799 device_xname(sc->sc_dev), __LINE__);
1800 return (ETIMEDOUT);
1801 }
1802
1803 /*
1804 * Initialize the station address.
1805 */
1806 cb_ias = &sc->sc_control_data->fcd_iascb;
1807 /* BIG_ENDIAN: no need to swap to store 0 */
1808 cb_ias->cb_status = 0;
1809 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1810 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1811 cb_ias->link_addr = 0xffffffff;
1812 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1813
1814 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1815
1816 /*
1817 * Start the IAS (Individual Address Setup) command/DMA.
1818 */
1819 fxp_scb_wait(sc);
1820 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1821 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1822 /* ...and wait for it to complete. */
1823 for (i = 1000; i > 0; i++) {
1824 FXP_CDIASSYNC(sc,
1825 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1826 status = le16toh(cb_ias->cb_status);
1827 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1828 if ((status & FXP_CB_STATUS_C) != 0)
1829 break;
1830 DELAY(1);
1831 }
1832 if (i == 0) {
1833 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1834 device_xname(sc->sc_dev), __LINE__);
1835 return (ETIMEDOUT);
1836 }
1837
1838 /*
1839 * Initialize the transmit descriptor ring. txlast is initialized
1840 * to the end of the list so that it will wrap around to the first
1841 * descriptor when the first packet is transmitted.
1842 */
1843 for (i = 0; i < FXP_NTXCB; i++) {
1844 txd = FXP_CDTX(sc, i);
1845 memset(txd, 0, sizeof(*txd));
1846 txd->txd_txcb.cb_command =
1847 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1848 txd->txd_txcb.link_addr =
1849 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1850 if (sc->sc_flags & FXPF_EXT_TXCB)
1851 txd->txd_txcb.tbd_array_addr =
1852 htole32(FXP_CDTBDADDR(sc, i) +
1853 (2 * sizeof(struct fxp_tbd)));
1854 else
1855 txd->txd_txcb.tbd_array_addr =
1856 htole32(FXP_CDTBDADDR(sc, i));
1857 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1858 }
1859 sc->sc_txpending = 0;
1860 sc->sc_txdirty = 0;
1861 sc->sc_txlast = FXP_NTXCB - 1;
1862
1863 /*
1864 * Initialize the receive buffer list.
1865 */
1866 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1867 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1868 rxmap = FXP_RXMAP_GET(sc);
1869 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1870 log(LOG_ERR, "%s: unable to allocate or map rx "
1871 "buffer %d, error = %d\n",
1872 device_xname(sc->sc_dev),
1873 sc->sc_rxq.ifq_len, error);
1874 /*
1875 * XXX Should attempt to run with fewer receive
1876 * XXX buffers instead of just failing.
1877 */
1878 FXP_RXMAP_PUT(sc, rxmap);
1879 fxp_rxdrain(sc);
1880 goto out;
1881 }
1882 }
1883 sc->sc_rxidle = 0;
1884
1885 /*
1886 * Give the transmit ring to the chip. We do this by pointing
1887 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1888 * issuing a start command. It will execute the NOP and then
1889 * suspend, pointing at the first descriptor.
1890 */
1891 fxp_scb_wait(sc);
1892 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1893 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1894
1895 /*
1896 * Initialize receiver buffer area - RFA.
1897 */
1898 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1899 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1900 fxp_scb_wait(sc);
1901 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1902 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1903 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1904 #endif
1905
1906 if (sc->sc_flags & FXPF_MII) {
1907 /*
1908 * Set current media.
1909 */
1910 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1911 goto out;
1912 }
1913
1914 /*
1915 * ...all done!
1916 */
1917 ifp->if_flags |= IFF_RUNNING;
1918 ifp->if_flags &= ~IFF_OACTIVE;
1919
1920 /*
1921 * Request a software generated interrupt that will be used to
1922 * (re)start the RU processing. If we direct the chip to start
1923 * receiving from the start of queue now, instead of letting the
1924 * interrupt handler first process all received packets, we run
1925 * the risk of having it overwrite mbuf clusters while they are
1926 * being processed or after they have been returned to the pool.
1927 */
1928 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
1929
1930 /*
1931 * Start the one second timer.
1932 */
1933 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1934
1935 /*
1936 * Attempt to start output on the interface.
1937 */
1938 fxp_start(ifp);
1939
1940 out:
1941 if (error) {
1942 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1943 ifp->if_timer = 0;
1944 log(LOG_ERR, "%s: interface not running\n",
1945 device_xname(sc->sc_dev));
1946 }
1947 return (error);
1948 }
1949
1950 /*
1951 * Notify the world which media we're using.
1952 */
1953 void
1954 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1955 {
1956 struct fxp_softc *sc = ifp->if_softc;
1957
1958 if (sc->sc_enabled == 0) {
1959 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1960 ifmr->ifm_status = 0;
1961 return;
1962 }
1963
1964 ether_mediastatus(ifp, ifmr);
1965 }
1966
1967 int
1968 fxp_80c24_mediachange(struct ifnet *ifp)
1969 {
1970
1971 /* Nothing to do here. */
1972 return (0);
1973 }
1974
1975 void
1976 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1977 {
1978 struct fxp_softc *sc = ifp->if_softc;
1979
1980 /*
1981 * Media is currently-selected media. We cannot determine
1982 * the link status.
1983 */
1984 ifmr->ifm_status = 0;
1985 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1986 }
1987
1988 /*
1989 * Add a buffer to the end of the RFA buffer list.
1990 * Return 0 if successful, error code on failure.
1991 *
1992 * The RFA struct is stuck at the beginning of mbuf cluster and the
1993 * data pointer is fixed up to point just past it.
1994 */
1995 int
1996 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1997 {
1998 struct mbuf *m;
1999 int error;
2000
2001 MGETHDR(m, M_DONTWAIT, MT_DATA);
2002 if (m == NULL)
2003 return (ENOBUFS);
2004
2005 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2006 MCLGET(m, M_DONTWAIT);
2007 if ((m->m_flags & M_EXT) == 0) {
2008 m_freem(m);
2009 return (ENOBUFS);
2010 }
2011
2012 if (unload)
2013 bus_dmamap_unload(sc->sc_dmat, rxmap);
2014
2015 M_SETCTX(m, rxmap);
2016
2017 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2018 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2019 BUS_DMA_READ|BUS_DMA_NOWAIT);
2020 if (error) {
2021 /* XXX XXX XXX */
2022 aprint_error_dev(sc->sc_dev,
2023 "can't load rx DMA map %d, error = %d\n",
2024 sc->sc_rxq.ifq_len, error);
2025 panic("fxp_add_rfabuf");
2026 }
2027
2028 FXP_INIT_RFABUF(sc, m);
2029
2030 return (0);
2031 }
2032
2033 int
2034 fxp_mdi_read(device_t self, int phy, int reg)
2035 {
2036 struct fxp_softc *sc = device_private(self);
2037 int count = 10000;
2038 int value;
2039
2040 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2041 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2042
2043 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2044 0x10000000) == 0 && count--)
2045 DELAY(10);
2046
2047 if (count <= 0)
2048 log(LOG_WARNING,
2049 "%s: fxp_mdi_read: timed out\n", device_xname(self));
2050
2051 return (value & 0xffff);
2052 }
2053
2054 void
2055 fxp_statchg(device_t self)
2056 {
2057
2058 /* Nothing to do. */
2059 }
2060
2061 void
2062 fxp_mdi_write(device_t self, int phy, int reg, int value)
2063 {
2064 struct fxp_softc *sc = device_private(self);
2065 int count = 10000;
2066
2067 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2068 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2069 (value & 0xffff));
2070
2071 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2072 count--)
2073 DELAY(10);
2074
2075 if (count <= 0)
2076 log(LOG_WARNING,
2077 "%s: fxp_mdi_write: timed out\n", device_xname(self));
2078 }
2079
2080 int
2081 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2082 {
2083 struct fxp_softc *sc = ifp->if_softc;
2084 struct ifreq *ifr = (struct ifreq *)data;
2085 int s, error;
2086
2087 s = splnet();
2088
2089 switch (cmd) {
2090 case SIOCSIFMEDIA:
2091 case SIOCGIFMEDIA:
2092 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2093 break;
2094
2095 default:
2096 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2097 break;
2098
2099 error = 0;
2100
2101 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2102 ;
2103 else if (ifp->if_flags & IFF_RUNNING) {
2104 /*
2105 * Multicast list has changed; set the
2106 * hardware filter accordingly.
2107 */
2108 while (sc->sc_txpending) {
2109 sc->sc_flags |= FXPF_WANTINIT;
2110 tsleep(sc, PSOCK, "fxp_init", 0);
2111 }
2112 error = fxp_init(ifp);
2113 }
2114 break;
2115 }
2116
2117 /* Try to get more packets going. */
2118 if (sc->sc_enabled)
2119 fxp_start(ifp);
2120
2121 splx(s);
2122 return (error);
2123 }
2124
2125 /*
2126 * Program the multicast filter.
2127 *
2128 * This function must be called at splnet().
2129 */
2130 void
2131 fxp_mc_setup(struct fxp_softc *sc)
2132 {
2133 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2134 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2135 struct ethercom *ec = &sc->sc_ethercom;
2136 struct ether_multi *enm;
2137 struct ether_multistep step;
2138 int count, nmcasts;
2139 uint16_t status;
2140
2141 #ifdef DIAGNOSTIC
2142 if (sc->sc_txpending)
2143 panic("fxp_mc_setup: pending transmissions");
2144 #endif
2145
2146 ifp->if_flags &= ~IFF_ALLMULTI;
2147
2148 /*
2149 * Initialize multicast setup descriptor.
2150 */
2151 nmcasts = 0;
2152 ETHER_FIRST_MULTI(step, ec, enm);
2153 while (enm != NULL) {
2154 /*
2155 * Check for too many multicast addresses or if we're
2156 * listening to a range. Either way, we simply have
2157 * to accept all multicasts.
2158 */
2159 if (nmcasts >= MAXMCADDR ||
2160 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2161 ETHER_ADDR_LEN) != 0) {
2162 /*
2163 * Callers of this function must do the
2164 * right thing with this. If we're called
2165 * from outside fxp_init(), the caller must
2166 * detect if the state if IFF_ALLMULTI changes.
2167 * If it does, the caller must then call
2168 * fxp_init(), since allmulti is handled by
2169 * the config block.
2170 */
2171 ifp->if_flags |= IFF_ALLMULTI;
2172 return;
2173 }
2174 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2175 ETHER_ADDR_LEN);
2176 nmcasts++;
2177 ETHER_NEXT_MULTI(step, enm);
2178 }
2179
2180 /* BIG_ENDIAN: no need to swap to store 0 */
2181 mcsp->cb_status = 0;
2182 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2183 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2184 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2185
2186 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2187
2188 /*
2189 * Wait until the command unit is not active. This should never
2190 * happen since nothing is queued, but make sure anyway.
2191 */
2192 count = 100;
2193 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2194 FXP_SCB_CUS_ACTIVE && --count)
2195 DELAY(1);
2196 if (count == 0) {
2197 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2198 device_xname(sc->sc_dev), __LINE__);
2199 return;
2200 }
2201
2202 /*
2203 * Start the multicast setup command/DMA.
2204 */
2205 fxp_scb_wait(sc);
2206 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2207 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2208
2209 /* ...and wait for it to complete. */
2210 for (count = 1000; count > 0; count--) {
2211 FXP_CDMCSSYNC(sc,
2212 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2213 status = le16toh(mcsp->cb_status);
2214 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2215 if ((status & FXP_CB_STATUS_C) != 0)
2216 break;
2217 DELAY(1);
2218 }
2219 if (count == 0) {
2220 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2221 device_xname(sc->sc_dev), __LINE__);
2222 return;
2223 }
2224 }
2225
2226 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2227 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2228 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2229 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2230 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2231 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2232
2233 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2234
2235 static const struct ucode {
2236 int32_t revision;
2237 const uint32_t *ucode;
2238 size_t length;
2239 uint16_t int_delay_offset;
2240 uint16_t bundle_max_offset;
2241 } ucode_table[] = {
2242 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2243 D101_CPUSAVER_DWORD, 0 },
2244
2245 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2246 D101_CPUSAVER_DWORD, 0 },
2247
2248 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2249 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2250
2251 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2252 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2253
2254 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2255 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2256
2257 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2258 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2259
2260 { 0, NULL, 0, 0, 0 }
2261 };
2262
2263 void
2264 fxp_load_ucode(struct fxp_softc *sc)
2265 {
2266 const struct ucode *uc;
2267 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2268 int count, i;
2269 uint16_t status;
2270
2271 if (sc->sc_flags & FXPF_UCODE_LOADED)
2272 return;
2273
2274 /*
2275 * Only load the uCode if the user has requested that
2276 * we do so.
2277 */
2278 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2279 sc->sc_int_delay = 0;
2280 sc->sc_bundle_max = 0;
2281 return;
2282 }
2283
2284 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2285 if (sc->sc_rev == uc->revision)
2286 break;
2287 }
2288 if (uc->ucode == NULL)
2289 return;
2290
2291 /* BIG ENDIAN: no need to swap to store 0 */
2292 cbp->cb_status = 0;
2293 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2294 cbp->link_addr = 0xffffffff; /* (no) next command */
2295 for (i = 0; i < uc->length; i++)
2296 cbp->ucode[i] = htole32(uc->ucode[i]);
2297
2298 if (uc->int_delay_offset)
2299 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2300 htole16(fxp_int_delay + (fxp_int_delay / 2));
2301
2302 if (uc->bundle_max_offset)
2303 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2304 htole16(fxp_bundle_max);
2305
2306 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2307
2308 /*
2309 * Download the uCode to the chip.
2310 */
2311 fxp_scb_wait(sc);
2312 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2313 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2314
2315 /* ...and wait for it to complete. */
2316 for (count = 10000; count > 0; count--) {
2317 FXP_CDUCODESYNC(sc,
2318 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2319 status = le16toh(cbp->cb_status);
2320 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2321 if ((status & FXP_CB_STATUS_C) != 0)
2322 break;
2323 DELAY(2);
2324 }
2325 if (count == 0) {
2326 sc->sc_int_delay = 0;
2327 sc->sc_bundle_max = 0;
2328 log(LOG_WARNING, "%s: timeout loading microcode\n",
2329 device_xname(sc->sc_dev));
2330 return;
2331 }
2332
2333 if (sc->sc_int_delay != fxp_int_delay ||
2334 sc->sc_bundle_max != fxp_bundle_max) {
2335 sc->sc_int_delay = fxp_int_delay;
2336 sc->sc_bundle_max = fxp_bundle_max;
2337 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2338 "max bundle: %d\n", device_xname(sc->sc_dev),
2339 sc->sc_int_delay,
2340 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2341 }
2342
2343 sc->sc_flags |= FXPF_UCODE_LOADED;
2344 }
2345
2346 int
2347 fxp_enable(struct fxp_softc *sc)
2348 {
2349
2350 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2351 if ((*sc->sc_enable)(sc) != 0) {
2352 log(LOG_ERR, "%s: device enable failed\n",
2353 device_xname(sc->sc_dev));
2354 return (EIO);
2355 }
2356 }
2357
2358 sc->sc_enabled = 1;
2359 return (0);
2360 }
2361
2362 void
2363 fxp_disable(struct fxp_softc *sc)
2364 {
2365
2366 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2367 (*sc->sc_disable)(sc);
2368 sc->sc_enabled = 0;
2369 }
2370 }
2371
2372 /*
2373 * fxp_activate:
2374 *
2375 * Handle device activation/deactivation requests.
2376 */
2377 int
2378 fxp_activate(device_t self, enum devact act)
2379 {
2380 struct fxp_softc *sc = device_private(self);
2381 int s, error = 0;
2382
2383 s = splnet();
2384 switch (act) {
2385 case DVACT_ACTIVATE:
2386 error = EOPNOTSUPP;
2387 break;
2388
2389 case DVACT_DEACTIVATE:
2390 if (sc->sc_flags & FXPF_MII)
2391 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2392 MII_OFFSET_ANY);
2393 if_deactivate(&sc->sc_ethercom.ec_if);
2394 break;
2395 }
2396 splx(s);
2397
2398 return (error);
2399 }
2400
2401 /*
2402 * fxp_detach:
2403 *
2404 * Detach an i82557 interface.
2405 */
2406 int
2407 fxp_detach(struct fxp_softc *sc)
2408 {
2409 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2410 int i;
2411
2412 /* Succeed now if there's no work to do. */
2413 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2414 return (0);
2415
2416 /* Unhook our tick handler. */
2417 callout_stop(&sc->sc_callout);
2418
2419 if (sc->sc_flags & FXPF_MII) {
2420 /* Detach all PHYs */
2421 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2422 }
2423
2424 /* Delete all remaining media. */
2425 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2426
2427 #if NRND > 0
2428 rnd_detach_source(&sc->rnd_source);
2429 #endif
2430 ether_ifdetach(ifp);
2431 if_detach(ifp);
2432
2433 for (i = 0; i < FXP_NRFABUFS; i++) {
2434 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2435 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2436 }
2437
2438 for (i = 0; i < FXP_NTXCB; i++) {
2439 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2440 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2441 }
2442
2443 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2444 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2445 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2446 sizeof(struct fxp_control_data));
2447 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2448
2449 return (0);
2450 }
2451