i82557.c revision 1.126 1 /* $NetBSD: i82557.c,v 1.126 2009/03/09 10:33:33 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice unmodified, this list of conditions, and the following
43 * disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61 */
62
63 /*
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.126 2009/03/09 10:33:33 tsutsui Exp $");
70
71 #include "bpfilter.h"
72 #include "rnd.h"
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/device.h>
84 #include <sys/syslog.h>
85
86 #include <machine/endian.h>
87
88 #include <uvm/uvm_extern.h>
89
90 #if NRND > 0
91 #include <sys/rnd.h>
92 #endif
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/tcp.h>
103 #include <netinet/udp.h>
104
105 #if NBPFILTER > 0
106 #include <net/bpf.h>
107 #endif
108
109 #include <sys/bus.h>
110 #include <sys/intr.h>
111
112 #include <dev/mii/miivar.h>
113
114 #include <dev/ic/i82557reg.h>
115 #include <dev/ic/i82557var.h>
116
117 #include <dev/microcode/i8255x/rcvbundl.h>
118
119 /*
120 * NOTE! On the Alpha, we have an alignment constraint. The
121 * card DMAs the packet immediately following the RFA. However,
122 * the first thing in the packet is a 14-byte Ethernet header.
123 * This means that the packet is misaligned. To compensate,
124 * we actually offset the RFA 2 bytes into the cluster. This
125 * alignes the packet after the Ethernet header at a 32-bit
126 * boundary. HOWEVER! This means that the RFA is misaligned!
127 */
128 #define RFA_ALIGNMENT_FUDGE 2
129
130 /*
131 * The configuration byte map has several undefined fields which
132 * must be one or must be zero. Set up a template for these bits
133 * only (assuming an i82557 chip), leaving the actual configuration
134 * for fxp_init().
135 *
136 * See the definition of struct fxp_cb_config for the bit definitions.
137 */
138 const u_int8_t fxp_cb_config_template[] = {
139 0x0, 0x0, /* cb_status */
140 0x0, 0x0, /* cb_command */
141 0x0, 0x0, 0x0, 0x0, /* link_addr */
142 0x0, /* 0 */
143 0x0, /* 1 */
144 0x0, /* 2 */
145 0x0, /* 3 */
146 0x0, /* 4 */
147 0x0, /* 5 */
148 0x32, /* 6 */
149 0x0, /* 7 */
150 0x0, /* 8 */
151 0x0, /* 9 */
152 0x6, /* 10 */
153 0x0, /* 11 */
154 0x0, /* 12 */
155 0x0, /* 13 */
156 0xf2, /* 14 */
157 0x48, /* 15 */
158 0x0, /* 16 */
159 0x40, /* 17 */
160 0xf0, /* 18 */
161 0x0, /* 19 */
162 0x3f, /* 20 */
163 0x5, /* 21 */
164 0x0, /* 22 */
165 0x0, /* 23 */
166 0x0, /* 24 */
167 0x0, /* 25 */
168 0x0, /* 26 */
169 0x0, /* 27 */
170 0x0, /* 28 */
171 0x0, /* 29 */
172 0x0, /* 30 */
173 0x0, /* 31 */
174 };
175
176 void fxp_mii_initmedia(struct fxp_softc *);
177 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
178
179 void fxp_80c24_initmedia(struct fxp_softc *);
180 int fxp_80c24_mediachange(struct ifnet *);
181 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
182
183 void fxp_start(struct ifnet *);
184 int fxp_ioctl(struct ifnet *, u_long, void *);
185 void fxp_watchdog(struct ifnet *);
186 int fxp_init(struct ifnet *);
187 void fxp_stop(struct ifnet *, int);
188
189 void fxp_txintr(struct fxp_softc *);
190 int fxp_rxintr(struct fxp_softc *);
191
192 void fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
193 const struct fxp_rfa *, u_int);
194
195 void fxp_rxdrain(struct fxp_softc *);
196 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
197 int fxp_mdi_read(device_t, int, int);
198 void fxp_statchg(device_t);
199 void fxp_mdi_write(device_t, int, int, int);
200 void fxp_autosize_eeprom(struct fxp_softc*);
201 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
202 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
203 void fxp_eeprom_update_cksum(struct fxp_softc *);
204 void fxp_get_info(struct fxp_softc *, u_int8_t *);
205 void fxp_tick(void *);
206 void fxp_mc_setup(struct fxp_softc *);
207 void fxp_load_ucode(struct fxp_softc *);
208
209 int fxp_copy_small = 0;
210
211 /*
212 * Variables for interrupt mitigating microcode.
213 */
214 int fxp_int_delay = 1000; /* usec */
215 int fxp_bundle_max = 6; /* packets */
216
217 struct fxp_phytype {
218 int fp_phy; /* type of PHY, -1 for MII at the end. */
219 void (*fp_init)(struct fxp_softc *);
220 } fxp_phytype_table[] = {
221 { FXP_PHY_80C24, fxp_80c24_initmedia },
222 { -1, fxp_mii_initmedia },
223 };
224
225 /*
226 * Set initial transmit threshold at 64 (512 bytes). This is
227 * increased by 64 (512 bytes) at a time, to maximum of 192
228 * (1536 bytes), if an underrun occurs.
229 */
230 static int tx_threshold = 64;
231
232 /*
233 * Wait for the previous command to be accepted (but not necessarily
234 * completed).
235 */
236 static inline void
237 fxp_scb_wait(struct fxp_softc *sc)
238 {
239 int i = 10000;
240
241 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
242 delay(2);
243 if (i == 0)
244 log(LOG_WARNING,
245 "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
246 }
247
248 /*
249 * Submit a command to the i82557.
250 */
251 static inline void
252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253 {
254
255 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256 }
257
258 /*
259 * Finish attaching an i82557 interface. Called by bus-specific front-end.
260 */
261 void
262 fxp_attach(struct fxp_softc *sc)
263 {
264 u_int8_t enaddr[ETHER_ADDR_LEN];
265 struct ifnet *ifp;
266 bus_dma_segment_t seg;
267 int rseg, i, error;
268 struct fxp_phytype *fp;
269
270 callout_init(&sc->sc_callout, 0);
271
272 /*
273 * Enable use of extended RFDs and TCBs for 82550
274 * and later chips. Note: we need extended TXCB support
275 * too, but that's already enabled by the code above.
276 * Be careful to do this only on the right devices.
277 */
278 if (sc->sc_flags & FXPF_EXT_RFA)
279 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
280 else
281 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
282
283 sc->sc_rfa_size =
284 (sc->sc_flags & FXPF_EXT_RFA) ? RFA_EXT_SIZE : RFA_SIZE;
285
286 /*
287 * Allocate the control data structures, and create and load the
288 * DMA map for it.
289 */
290 if ((error = bus_dmamem_alloc(sc->sc_dmat,
291 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
292 0)) != 0) {
293 aprint_error_dev(sc->sc_dev,
294 "unable to allocate control data, error = %d\n",
295 error);
296 goto fail_0;
297 }
298
299 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
300 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
301 BUS_DMA_COHERENT)) != 0) {
302 aprint_error_dev(sc->sc_dev,
303 "unable to map control data, error = %d\n", error);
304 goto fail_1;
305 }
306 sc->sc_cdseg = seg;
307 sc->sc_cdnseg = rseg;
308
309 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
310
311 if ((error = bus_dmamap_create(sc->sc_dmat,
312 sizeof(struct fxp_control_data), 1,
313 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
314 aprint_error_dev(sc->sc_dev,
315 "unable to create control data DMA map, error = %d\n",
316 error);
317 goto fail_2;
318 }
319
320 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
321 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
322 0)) != 0) {
323 aprint_error_dev(sc->sc_dev,
324 "can't load control data DMA map, error = %d\n",
325 error);
326 goto fail_3;
327 }
328
329 /*
330 * Create the transmit buffer DMA maps.
331 */
332 for (i = 0; i < FXP_NTXCB; i++) {
333 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
334 (sc->sc_flags & FXPF_EXT_RFA) ?
335 FXP_IPCB_NTXSEG : FXP_NTXSEG,
336 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
337 aprint_error_dev(sc->sc_dev,
338 "unable to create tx DMA map %d, error = %d\n",
339 i, error);
340 goto fail_4;
341 }
342 }
343
344 /*
345 * Create the receive buffer DMA maps.
346 */
347 for (i = 0; i < FXP_NRFABUFS; i++) {
348 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
349 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
350 aprint_error_dev(sc->sc_dev,
351 "unable to create rx DMA map %d, error = %d\n",
352 i, error);
353 goto fail_5;
354 }
355 }
356
357 /* Initialize MAC address and media structures. */
358 fxp_get_info(sc, enaddr);
359
360 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
361 ether_sprintf(enaddr));
362
363 ifp = &sc->sc_ethercom.ec_if;
364
365 /*
366 * Get info about our media interface, and initialize it. Note
367 * the table terminates itself with a phy of -1, indicating
368 * that we're using MII.
369 */
370 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
371 if (fp->fp_phy == sc->phy_primary_device)
372 break;
373 (*fp->fp_init)(sc);
374
375 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
376 ifp->if_softc = sc;
377 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
378 ifp->if_ioctl = fxp_ioctl;
379 ifp->if_start = fxp_start;
380 ifp->if_watchdog = fxp_watchdog;
381 ifp->if_init = fxp_init;
382 ifp->if_stop = fxp_stop;
383 IFQ_SET_READY(&ifp->if_snd);
384
385 if (sc->sc_flags & FXPF_EXT_RFA) {
386 /*
387 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
388 * at least, on i82550 rev.12.
389 * specifically, it doesn't set ipv4 checksum properly
390 * when sending UDP (and probably TCP) packets with
391 * 20 byte ipv4 header + 1 or 2 byte data,
392 * though ICMP packets seem working.
393 * FreeBSD driver has related comments.
394 * We've added a workaround to handle the bug by padding
395 * such packets manually.
396 */
397 ifp->if_capabilities =
398 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
399 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
400 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
401 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
402 } else if (sc->sc_flags & FXPF_82559_RXCSUM) {
403 ifp->if_capabilities =
404 IFCAP_CSUM_TCPv4_Rx |
405 IFCAP_CSUM_UDPv4_Rx;
406 }
407
408 /*
409 * We can support 802.1Q VLAN-sized frames.
410 */
411 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
412
413 /*
414 * Attach the interface.
415 */
416 if_attach(ifp);
417 ether_ifattach(ifp, enaddr);
418 #if NRND > 0
419 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
420 RND_TYPE_NET, 0);
421 #endif
422
423 #ifdef FXP_EVENT_COUNTERS
424 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
425 NULL, device_xname(sc->sc_dev), "txstall");
426 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
427 NULL, device_xname(sc->sc_dev), "txintr");
428 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
429 NULL, device_xname(sc->sc_dev), "rxintr");
430 if (sc->sc_flags & FXPF_FC) {
431 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
432 NULL, device_xname(sc->sc_dev), "txpause");
433 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
434 NULL, device_xname(sc->sc_dev), "rxpause");
435 }
436 #endif /* FXP_EVENT_COUNTERS */
437
438 /* The attach is successful. */
439 sc->sc_flags |= FXPF_ATTACHED;
440
441 return;
442
443 /*
444 * Free any resources we've allocated during the failed attach
445 * attempt. Do this in reverse order and fall though.
446 */
447 fail_5:
448 for (i = 0; i < FXP_NRFABUFS; i++) {
449 if (sc->sc_rxmaps[i] != NULL)
450 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
451 }
452 fail_4:
453 for (i = 0; i < FXP_NTXCB; i++) {
454 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
455 bus_dmamap_destroy(sc->sc_dmat,
456 FXP_DSTX(sc, i)->txs_dmamap);
457 }
458 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
459 fail_3:
460 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
461 fail_2:
462 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
463 sizeof(struct fxp_control_data));
464 fail_1:
465 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
466 fail_0:
467 return;
468 }
469
470 void
471 fxp_mii_initmedia(struct fxp_softc *sc)
472 {
473 int flags;
474
475 sc->sc_flags |= FXPF_MII;
476
477 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
478 sc->sc_mii.mii_readreg = fxp_mdi_read;
479 sc->sc_mii.mii_writereg = fxp_mdi_write;
480 sc->sc_mii.mii_statchg = fxp_statchg;
481
482 sc->sc_ethercom.ec_mii = &sc->sc_mii;
483 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
484 fxp_mii_mediastatus);
485
486 flags = MIIF_NOISOLATE;
487 if (sc->sc_flags & FXPF_FC)
488 flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
489 /*
490 * The i82557 wedges if all of its PHYs are isolated!
491 */
492 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
493 MII_OFFSET_ANY, flags);
494 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
495 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
496 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
497 } else
498 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
499 }
500
501 void
502 fxp_80c24_initmedia(struct fxp_softc *sc)
503 {
504
505 /*
506 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
507 * doesn't have a programming interface of any sort. The
508 * media is sensed automatically based on how the link partner
509 * is configured. This is, in essence, manual configuration.
510 */
511 aprint_normal_dev(sc->sc_dev,
512 "Seeq 80c24 AutoDUPLEX media interface present\n");
513 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
514 fxp_80c24_mediastatus);
515 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
516 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
517 }
518
519 /*
520 * Initialize the interface media.
521 */
522 void
523 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
524 {
525 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
526
527 /*
528 * Reset to a stable state.
529 */
530 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
531 DELAY(100);
532
533 sc->sc_eeprom_size = 0;
534 fxp_autosize_eeprom(sc);
535 if (sc->sc_eeprom_size == 0) {
536 aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
537 sc->sc_eeprom_size = 6; /* XXX panic here? */
538 }
539 #ifdef DEBUG
540 aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
541 1 << sc->sc_eeprom_size);
542 #endif
543
544 /*
545 * Get info about the primary PHY
546 */
547 fxp_read_eeprom(sc, &data, 6, 1);
548 sc->phy_primary_device =
549 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
550
551 /*
552 * Read MAC address.
553 */
554 fxp_read_eeprom(sc, myea, 0, 3);
555 enaddr[0] = myea[0] & 0xff;
556 enaddr[1] = myea[0] >> 8;
557 enaddr[2] = myea[1] & 0xff;
558 enaddr[3] = myea[1] >> 8;
559 enaddr[4] = myea[2] & 0xff;
560 enaddr[5] = myea[2] >> 8;
561
562 /*
563 * Systems based on the ICH2/ICH2-M chip from Intel, as well
564 * as some i82559 designs, have a defect where the chip can
565 * cause a PCI protocol violation if it receives a CU_RESUME
566 * command when it is entering the IDLE state.
567 *
568 * The work-around is to disable Dynamic Standby Mode, so that
569 * the chip never deasserts #CLKRUN, and always remains in the
570 * active state.
571 *
572 * Unfortunately, the only way to disable Dynamic Standby is
573 * to frob an EEPROM setting and reboot (the EEPROM setting
574 * is only consulted when the PCI bus comes out of reset).
575 *
576 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
577 */
578 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
579 fxp_read_eeprom(sc, &data, 10, 1);
580 if (data & 0x02) { /* STB enable */
581 aprint_error_dev(sc->sc_dev, "WARNING: "
582 "Disabling dynamic standby mode in EEPROM "
583 "to work around a\n");
584 aprint_normal_dev(sc->sc_dev,
585 "WARNING: hardware bug. You must reset "
586 "the system before using this\n");
587 aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
588 data &= ~0x02;
589 fxp_write_eeprom(sc, &data, 10, 1);
590 aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
591 data);
592 fxp_eeprom_update_cksum(sc);
593 }
594 }
595
596 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
597 /* Due to false positives we make it conditional on setting link1 */
598 fxp_read_eeprom(sc, &data, 3, 1);
599 if ((data & 0x03) != 0x03) {
600 aprint_verbose_dev(sc->sc_dev,
601 "May need receiver lock-up workaround\n");
602 }
603 }
604
605 static void
606 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
607 {
608 uint16_t reg;
609 int x;
610
611 for (x = 1 << (len - 1); x != 0; x >>= 1) {
612 DELAY(40);
613 if (data & x)
614 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
615 else
616 reg = FXP_EEPROM_EECS;
617 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
618 DELAY(40);
619 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
620 reg | FXP_EEPROM_EESK);
621 DELAY(40);
622 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
623 }
624 DELAY(40);
625 }
626
627 /*
628 * Figure out EEPROM size.
629 *
630 * 559's can have either 64-word or 256-word EEPROMs, the 558
631 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
632 * talks about the existence of 16 to 256 word EEPROMs.
633 *
634 * The only known sizes are 64 and 256, where the 256 version is used
635 * by CardBus cards to store CIS information.
636 *
637 * The address is shifted in msb-to-lsb, and after the last
638 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
639 * after which follows the actual data. We try to detect this zero, by
640 * probing the data-out bit in the EEPROM control register just after
641 * having shifted in a bit. If the bit is zero, we assume we've
642 * shifted enough address bits. The data-out should be tri-state,
643 * before this, which should translate to a logical one.
644 *
645 * Other ways to do this would be to try to read a register with known
646 * contents with a varying number of address bits, but no such
647 * register seem to be available. The high bits of register 10 are 01
648 * on the 558 and 559, but apparently not on the 557.
649 *
650 * The Linux driver computes a checksum on the EEPROM data, but the
651 * value of this checksum is not very well documented.
652 */
653
654 void
655 fxp_autosize_eeprom(struct fxp_softc *sc)
656 {
657 int x;
658
659 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
660 DELAY(40);
661
662 /* Shift in read opcode. */
663 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
664
665 /*
666 * Shift in address, wait for the dummy zero following a correct
667 * address shift.
668 */
669 for (x = 1; x <= 8; x++) {
670 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
671 DELAY(40);
672 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
673 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
674 DELAY(40);
675 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
676 FXP_EEPROM_EEDO) == 0)
677 break;
678 DELAY(40);
679 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
680 DELAY(40);
681 }
682 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
683 DELAY(40);
684 if (x != 6 && x != 8) {
685 #ifdef DEBUG
686 printf("%s: strange EEPROM size (%d)\n",
687 device_xname(sc->sc_dev), 1 << x);
688 #endif
689 } else
690 sc->sc_eeprom_size = x;
691 }
692
693 /*
694 * Read from the serial EEPROM. Basically, you manually shift in
695 * the read opcode (one bit at a time) and then shift in the address,
696 * and then you shift out the data (all of this one bit at a time).
697 * The word size is 16 bits, so you have to provide the address for
698 * every 16 bits of data.
699 */
700 void
701 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
702 {
703 u_int16_t reg;
704 int i, x;
705
706 for (i = 0; i < words; i++) {
707 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
708
709 /* Shift in read opcode. */
710 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
711
712 /* Shift in address. */
713 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
714
715 reg = FXP_EEPROM_EECS;
716 data[i] = 0;
717
718 /* Shift out data. */
719 for (x = 16; x > 0; x--) {
720 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
721 reg | FXP_EEPROM_EESK);
722 DELAY(40);
723 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
724 FXP_EEPROM_EEDO)
725 data[i] |= (1 << (x - 1));
726 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
727 DELAY(40);
728 }
729 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
730 DELAY(40);
731 }
732 }
733
734 /*
735 * Write data to the serial EEPROM.
736 */
737 void
738 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
739 {
740 int i, j;
741
742 for (i = 0; i < words; i++) {
743 /* Erase/write enable. */
744 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
745 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
746 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
747 sc->sc_eeprom_size);
748 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
749 DELAY(4);
750
751 /* Shift in write opcode, address, data. */
752 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
753 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
754 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
755 fxp_eeprom_shiftin(sc, data[i], 16);
756 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
757 DELAY(4);
758
759 /* Wait for the EEPROM to finish up. */
760 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
761 DELAY(4);
762 for (j = 0; j < 1000; j++) {
763 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
764 FXP_EEPROM_EEDO)
765 break;
766 DELAY(50);
767 }
768 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
769 DELAY(4);
770
771 /* Erase/write disable. */
772 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
773 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
774 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
775 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
776 DELAY(4);
777 }
778 }
779
780 /*
781 * Update the checksum of the EEPROM.
782 */
783 void
784 fxp_eeprom_update_cksum(struct fxp_softc *sc)
785 {
786 int i;
787 uint16_t data, cksum;
788
789 cksum = 0;
790 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
791 fxp_read_eeprom(sc, &data, i, 1);
792 cksum += data;
793 }
794 i = (1 << sc->sc_eeprom_size) - 1;
795 cksum = 0xbaba - cksum;
796 fxp_read_eeprom(sc, &data, i, 1);
797 fxp_write_eeprom(sc, &cksum, i, 1);
798 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
799 device_xname(sc->sc_dev), i, data, cksum);
800 }
801
802 /*
803 * Start packet transmission on the interface.
804 */
805 void
806 fxp_start(struct ifnet *ifp)
807 {
808 struct fxp_softc *sc = ifp->if_softc;
809 struct mbuf *m0, *m;
810 struct fxp_txdesc *txd;
811 struct fxp_txsoft *txs;
812 bus_dmamap_t dmamap;
813 int error, lasttx, nexttx, opending, seg, nsegs, len;
814
815 /*
816 * If we want a re-init, bail out now.
817 */
818 if (sc->sc_flags & FXPF_WANTINIT) {
819 ifp->if_flags |= IFF_OACTIVE;
820 return;
821 }
822
823 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
824 return;
825
826 /*
827 * Remember the previous txpending and the current lasttx.
828 */
829 opending = sc->sc_txpending;
830 lasttx = sc->sc_txlast;
831
832 /*
833 * Loop through the send queue, setting up transmit descriptors
834 * until we drain the queue, or use up all available transmit
835 * descriptors.
836 */
837 for (;;) {
838 struct fxp_tbd *tbdp;
839 int csum_flags;
840
841 /*
842 * Grab a packet off the queue.
843 */
844 IFQ_POLL(&ifp->if_snd, m0);
845 if (m0 == NULL)
846 break;
847 m = NULL;
848
849 if (sc->sc_txpending == FXP_NTXCB - 1) {
850 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
851 break;
852 }
853
854 /*
855 * Get the next available transmit descriptor.
856 */
857 nexttx = FXP_NEXTTX(sc->sc_txlast);
858 txd = FXP_CDTX(sc, nexttx);
859 txs = FXP_DSTX(sc, nexttx);
860 dmamap = txs->txs_dmamap;
861
862 /*
863 * Load the DMA map. If this fails, the packet either
864 * didn't fit in the allotted number of frags, or we were
865 * short on resources. In this case, we'll copy and try
866 * again.
867 */
868 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
869 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
870 MGETHDR(m, M_DONTWAIT, MT_DATA);
871 if (m == NULL) {
872 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
873 device_xname(sc->sc_dev));
874 break;
875 }
876 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
877 if (m0->m_pkthdr.len > MHLEN) {
878 MCLGET(m, M_DONTWAIT);
879 if ((m->m_flags & M_EXT) == 0) {
880 log(LOG_ERR, "%s: unable to allocate "
881 "Tx cluster\n",
882 device_xname(sc->sc_dev));
883 m_freem(m);
884 break;
885 }
886 }
887 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
888 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
889 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
890 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
891 if (error) {
892 log(LOG_ERR, "%s: unable to load Tx buffer, "
893 "error = %d\n",
894 device_xname(sc->sc_dev), error);
895 break;
896 }
897 }
898
899 IFQ_DEQUEUE(&ifp->if_snd, m0);
900 csum_flags = m0->m_pkthdr.csum_flags;
901 if (m != NULL) {
902 m_freem(m0);
903 m0 = m;
904 }
905
906 /* Initialize the fraglist. */
907 tbdp = txd->txd_tbd;
908 len = m0->m_pkthdr.len;
909 nsegs = dmamap->dm_nsegs;
910 if (sc->sc_flags & FXPF_EXT_RFA)
911 tbdp++;
912 for (seg = 0; seg < nsegs; seg++) {
913 tbdp[seg].tb_addr =
914 htole32(dmamap->dm_segs[seg].ds_addr);
915 tbdp[seg].tb_size =
916 htole32(dmamap->dm_segs[seg].ds_len);
917 }
918 if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
919 (csum_flags & M_CSUM_IPv4) != 0)) {
920 /*
921 * Pad short packets to avoid ip4csum-tx bug.
922 *
923 * XXX Should we still consider if such short
924 * (36 bytes or less) packets might already
925 * occupy FXP_IPCB_NTXSEG (15) fragments here?
926 */
927 KASSERT(nsegs < FXP_IPCB_NTXSEG);
928 nsegs++;
929 tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
930 tbdp[seg].tb_size =
931 htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
932 }
933
934 /* Sync the DMA map. */
935 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
936 BUS_DMASYNC_PREWRITE);
937
938 /*
939 * Store a pointer to the packet so we can free it later.
940 */
941 txs->txs_mbuf = m0;
942
943 /*
944 * Initialize the transmit descriptor.
945 */
946 /* BIG_ENDIAN: no need to swap to store 0 */
947 txd->txd_txcb.cb_status = 0;
948 txd->txd_txcb.cb_command =
949 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
950 txd->txd_txcb.tx_threshold = tx_threshold;
951 txd->txd_txcb.tbd_number = nsegs;
952
953 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
954 if (sc->sc_flags & FXPF_EXT_RFA) {
955 struct m_tag *vtag;
956 struct fxp_ipcb *ipcb;
957 /*
958 * Deal with TCP/IP checksum offload. Note that
959 * in order for TCP checksum offload to work,
960 * the pseudo header checksum must have already
961 * been computed and stored in the checksum field
962 * in the TCP header. The stack should have
963 * already done this for us.
964 */
965 ipcb = &txd->txd_u.txdu_ipcb;
966 memset(ipcb, 0, sizeof(*ipcb));
967 /*
968 * always do hardware parsing.
969 */
970 ipcb->ipcb_ip_activation_high =
971 FXP_IPCB_HARDWAREPARSING_ENABLE;
972 /*
973 * ip checksum offloading.
974 */
975 if (csum_flags & M_CSUM_IPv4) {
976 ipcb->ipcb_ip_schedule |=
977 FXP_IPCB_IP_CHECKSUM_ENABLE;
978 }
979 /*
980 * TCP/UDP checksum offloading.
981 */
982 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
983 ipcb->ipcb_ip_schedule |=
984 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
985 }
986
987 /*
988 * request VLAN tag insertion if needed.
989 */
990 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
991 if (vtag) {
992 ipcb->ipcb_vlan_id =
993 htobe16(*(u_int *)(vtag + 1));
994 ipcb->ipcb_ip_activation_high |=
995 FXP_IPCB_INSERTVLAN_ENABLE;
996 }
997 } else {
998 KASSERT((csum_flags &
999 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
1000 }
1001
1002 FXP_CDTXSYNC(sc, nexttx,
1003 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1004
1005 /* Advance the tx pointer. */
1006 sc->sc_txpending++;
1007 sc->sc_txlast = nexttx;
1008
1009 #if NBPFILTER > 0
1010 /*
1011 * Pass packet to bpf if there is a listener.
1012 */
1013 if (ifp->if_bpf)
1014 bpf_mtap(ifp->if_bpf, m0);
1015 #endif
1016 }
1017
1018 if (sc->sc_txpending == FXP_NTXCB - 1) {
1019 /* No more slots; notify upper layer. */
1020 ifp->if_flags |= IFF_OACTIVE;
1021 }
1022
1023 if (sc->sc_txpending != opending) {
1024 /*
1025 * We enqueued packets. If the transmitter was idle,
1026 * reset the txdirty pointer.
1027 */
1028 if (opending == 0)
1029 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1030
1031 /*
1032 * Cause the chip to interrupt and suspend command
1033 * processing once the last packet we've enqueued
1034 * has been transmitted.
1035 *
1036 * To avoid a race between updating status bits
1037 * by the fxp chip and clearing command bits
1038 * by this function on machines which don't have
1039 * atomic methods to clear/set bits in memory
1040 * smaller than 32bits (both cb_status and cb_command
1041 * members are uint16_t and in the same 32bit word),
1042 * we have to prepare a dummy TX descriptor which has
1043 * NOP command and just causes a TX completion interrupt.
1044 */
1045 sc->sc_txpending++;
1046 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1047 txd = FXP_CDTX(sc, sc->sc_txlast);
1048 /* BIG_ENDIAN: no need to swap to store 0 */
1049 txd->txd_txcb.cb_status = 0;
1050 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1051 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1052 FXP_CDTXSYNC(sc, sc->sc_txlast,
1053 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1054
1055 /*
1056 * The entire packet chain is set up. Clear the suspend bit
1057 * on the command prior to the first packet we set up.
1058 */
1059 FXP_CDTXSYNC(sc, lasttx,
1060 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1061 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1062 htole16(~FXP_CB_COMMAND_S);
1063 FXP_CDTXSYNC(sc, lasttx,
1064 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1065
1066 /*
1067 * Issue a Resume command in case the chip was suspended.
1068 */
1069 fxp_scb_wait(sc);
1070 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1071
1072 /* Set a watchdog timer in case the chip flakes out. */
1073 ifp->if_timer = 5;
1074 }
1075 }
1076
1077 /*
1078 * Process interface interrupts.
1079 */
1080 int
1081 fxp_intr(void *arg)
1082 {
1083 struct fxp_softc *sc = arg;
1084 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1085 bus_dmamap_t rxmap;
1086 int claimed = 0, rnr;
1087 u_int8_t statack;
1088
1089 if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1090 return (0);
1091 /*
1092 * If the interface isn't running, don't try to
1093 * service the interrupt.. just ack it and bail.
1094 */
1095 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1096 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1097 if (statack) {
1098 claimed = 1;
1099 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1100 }
1101 return (claimed);
1102 }
1103
1104 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1105 claimed = 1;
1106
1107 /*
1108 * First ACK all the interrupts in this pass.
1109 */
1110 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1111
1112 /*
1113 * Process receiver interrupts. If a no-resource (RNR)
1114 * condition exists, get whatever packets we can and
1115 * re-start the receiver.
1116 */
1117 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1118 1 : 0;
1119 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1120 FXP_SCB_STATACK_SWI)) {
1121 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1122 rnr |= fxp_rxintr(sc);
1123 }
1124
1125 /*
1126 * Free any finished transmit mbuf chains.
1127 */
1128 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1129 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1130 fxp_txintr(sc);
1131
1132 /*
1133 * Try to get more packets going.
1134 */
1135 fxp_start(ifp);
1136
1137 if (sc->sc_txpending == 0) {
1138 /*
1139 * Tell them that they can re-init now.
1140 */
1141 if (sc->sc_flags & FXPF_WANTINIT)
1142 wakeup(sc);
1143 }
1144 }
1145
1146 if (rnr) {
1147 fxp_scb_wait(sc);
1148 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1149 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1150 fxp_scb_wait(sc);
1151 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1152 rxmap->dm_segs[0].ds_addr +
1153 RFA_ALIGNMENT_FUDGE);
1154 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1155 }
1156 }
1157
1158 #if NRND > 0
1159 if (claimed)
1160 rnd_add_uint32(&sc->rnd_source, statack);
1161 #endif
1162 return (claimed);
1163 }
1164
1165 /*
1166 * Handle transmit completion interrupts.
1167 */
1168 void
1169 fxp_txintr(struct fxp_softc *sc)
1170 {
1171 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1172 struct fxp_txdesc *txd;
1173 struct fxp_txsoft *txs;
1174 int i;
1175 u_int16_t txstat;
1176
1177 ifp->if_flags &= ~IFF_OACTIVE;
1178 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1179 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1180 txd = FXP_CDTX(sc, i);
1181 txs = FXP_DSTX(sc, i);
1182
1183 FXP_CDTXSYNC(sc, i,
1184 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1185
1186 /* skip dummy NOP TX descriptor */
1187 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1188 == FXP_CB_COMMAND_NOP)
1189 continue;
1190
1191 txstat = le16toh(txd->txd_txcb.cb_status);
1192
1193 if ((txstat & FXP_CB_STATUS_C) == 0)
1194 break;
1195
1196 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1197 0, txs->txs_dmamap->dm_mapsize,
1198 BUS_DMASYNC_POSTWRITE);
1199 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1200 m_freem(txs->txs_mbuf);
1201 txs->txs_mbuf = NULL;
1202 }
1203
1204 /* Update the dirty transmit buffer pointer. */
1205 sc->sc_txdirty = i;
1206
1207 /*
1208 * Cancel the watchdog timer if there are no pending
1209 * transmissions.
1210 */
1211 if (sc->sc_txpending == 0)
1212 ifp->if_timer = 0;
1213 }
1214
1215 /*
1216 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1217 */
1218
1219 void
1220 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1221 u_int len)
1222 {
1223 uint32_t csum_data;
1224 int csum_flags;
1225
1226 /*
1227 * check H/W Checksumming.
1228 */
1229
1230 csum_flags = 0;
1231 csum_data = 0;
1232
1233 if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1234 uint8_t rxparsestat;
1235 uint8_t csum_stat;
1236
1237 csum_stat = rfa->cksum_stat;
1238 rxparsestat = rfa->rx_parse_stat;
1239 if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1240 goto out;
1241
1242 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1243 csum_flags = M_CSUM_IPv4;
1244 if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1245 csum_flags |= M_CSUM_IPv4_BAD;
1246 }
1247
1248 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1249 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1250 if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1251 csum_flags |= M_CSUM_TCP_UDP_BAD;
1252 }
1253
1254 } else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1255 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1256 struct ether_header *eh;
1257 struct ip *ip;
1258 struct udphdr *uh;
1259 u_int hlen, pktlen;
1260
1261 if (len < ETHER_HDR_LEN + sizeof(struct ip))
1262 goto out;
1263 pktlen = len - ETHER_HDR_LEN;
1264 eh = mtod(m, struct ether_header *);
1265 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1266 goto out;
1267 ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1268 if (ip->ip_v != IPVERSION)
1269 goto out;
1270
1271 hlen = ip->ip_hl << 2;
1272 if (hlen < sizeof(struct ip))
1273 goto out;
1274
1275 /*
1276 * Bail if too short, has random trailing garbage, truncated,
1277 * fragment, or has ethernet pad.
1278 */
1279 if (ntohs(ip->ip_len) < hlen ||
1280 ntohs(ip->ip_len) != pktlen ||
1281 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1282 goto out;
1283
1284 switch (ip->ip_p) {
1285 case IPPROTO_TCP:
1286 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1287 pktlen < (hlen + sizeof(struct tcphdr)))
1288 goto out;
1289 csum_flags =
1290 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1291 break;
1292 case IPPROTO_UDP:
1293 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1294 pktlen < (hlen + sizeof(struct udphdr)))
1295 goto out;
1296 uh = (struct udphdr *)((uint8_t *)ip + hlen);
1297 if (uh->uh_sum == 0)
1298 goto out; /* no checksum */
1299 csum_flags =
1300 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1301 break;
1302 default:
1303 goto out;
1304 }
1305
1306 /* Extract computed checksum. */
1307 csum_data = be16dec(mtod(m, uint8_t *) + len);
1308
1309 /*
1310 * The computed checksum includes IP headers,
1311 * so we have to deduct them.
1312 */
1313 #if 0
1314 /*
1315 * But in TCP/UDP layer we can assume the IP header is valid,
1316 * i.e. a sum of the whole IP header should be 0xffff,
1317 * so we don't have to bother to deduct it.
1318 */
1319 if (hlen > 0) {
1320 uint32_t hsum;
1321 const uint16_t *iphdr;
1322 hsum = 0;
1323 iphdr = (uint16_t *)ip;
1324
1325 while (hlen > 1) {
1326 hsum += ntohs(*iphdr++);
1327 hlen -= sizeof(uint16_t);
1328 }
1329 while (hsum >> 16)
1330 hsum = (hsum >> 16) + (hsum & 0xffff);
1331
1332 csum_data = ~(~csum_data - ~hsum);
1333
1334 while (csum_data >> 16)
1335 csum_data =
1336 (csum_data >> 16) + (csum_data & 0xffff);
1337 }
1338 #endif
1339 }
1340 out:
1341 m->m_pkthdr.csum_flags = csum_flags;
1342 m->m_pkthdr.csum_data = csum_data;
1343 }
1344
1345 /*
1346 * Handle receive interrupts.
1347 */
1348 int
1349 fxp_rxintr(struct fxp_softc *sc)
1350 {
1351 struct ethercom *ec = &sc->sc_ethercom;
1352 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1353 struct mbuf *m, *m0;
1354 bus_dmamap_t rxmap;
1355 struct fxp_rfa *rfa;
1356 int rnr;
1357 u_int16_t len, rxstat;
1358
1359 rnr = 0;
1360
1361 for (;;) {
1362 m = sc->sc_rxq.ifq_head;
1363 rfa = FXP_MTORFA(m);
1364 rxmap = M_GETCTX(m, bus_dmamap_t);
1365
1366 FXP_RFASYNC(sc, m,
1367 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1368
1369 rxstat = le16toh(rfa->rfa_status);
1370
1371 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1372 rnr = 1;
1373
1374 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1375 /*
1376 * We have processed all of the
1377 * receive buffers.
1378 */
1379 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1380 return rnr;
1381 }
1382
1383 IF_DEQUEUE(&sc->sc_rxq, m);
1384
1385 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1386
1387 len = le16toh(rfa->actual_size) &
1388 (m->m_ext.ext_size - 1);
1389 if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1390 /* Adjust for appended checksum bytes. */
1391 len -= sizeof(uint16_t);
1392 }
1393
1394 if (len < sizeof(struct ether_header)) {
1395 /*
1396 * Runt packet; drop it now.
1397 */
1398 FXP_INIT_RFABUF(sc, m);
1399 continue;
1400 }
1401
1402 /*
1403 * If support for 802.1Q VLAN sized frames is
1404 * enabled, we need to do some additional error
1405 * checking (as we are saving bad frames, in
1406 * order to receive the larger ones).
1407 */
1408 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1409 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1410 FXP_RFA_STATUS_RNR|
1411 FXP_RFA_STATUS_ALIGN|
1412 FXP_RFA_STATUS_CRC)) != 0) {
1413 FXP_INIT_RFABUF(sc, m);
1414 continue;
1415 }
1416
1417 /*
1418 * check VLAN tag stripping.
1419 */
1420 if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1421 (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
1422 struct m_tag *vtag;
1423
1424 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1425 M_NOWAIT);
1426 if (vtag == NULL)
1427 goto dropit;
1428 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1429 m_tag_prepend(m, vtag);
1430 }
1431
1432 /* Do checksum checking. */
1433 if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
1434 fxp_rx_hwcksum(sc, m, rfa, len);
1435
1436 /*
1437 * If the packet is small enough to fit in a
1438 * single header mbuf, allocate one and copy
1439 * the data into it. This greatly reduces
1440 * memory consumption when we receive lots
1441 * of small packets.
1442 *
1443 * Otherwise, we add a new buffer to the receive
1444 * chain. If this fails, we drop the packet and
1445 * recycle the old buffer.
1446 */
1447 if (fxp_copy_small != 0 && len <= MHLEN) {
1448 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1449 if (m0 == NULL)
1450 goto dropit;
1451 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1452 memcpy(mtod(m0, void *),
1453 mtod(m, void *), len);
1454 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1455 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1456 FXP_INIT_RFABUF(sc, m);
1457 m = m0;
1458 } else {
1459 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1460 dropit:
1461 ifp->if_ierrors++;
1462 FXP_INIT_RFABUF(sc, m);
1463 continue;
1464 }
1465 }
1466
1467 m->m_pkthdr.rcvif = ifp;
1468 m->m_pkthdr.len = m->m_len = len;
1469
1470 #if NBPFILTER > 0
1471 /*
1472 * Pass this up to any BPF listeners, but only
1473 * pass it up the stack if it's for us.
1474 */
1475 if (ifp->if_bpf)
1476 bpf_mtap(ifp->if_bpf, m);
1477 #endif
1478
1479 /* Pass it on. */
1480 (*ifp->if_input)(ifp, m);
1481 }
1482 }
1483
1484 /*
1485 * Update packet in/out/collision statistics. The i82557 doesn't
1486 * allow you to access these counters without doing a fairly
1487 * expensive DMA to get _all_ of the statistics it maintains, so
1488 * we do this operation here only once per second. The statistics
1489 * counters in the kernel are updated from the previous dump-stats
1490 * DMA and then a new dump-stats DMA is started. The on-chip
1491 * counters are zeroed when the DMA completes. If we can't start
1492 * the DMA immediately, we don't wait - we just prepare to read
1493 * them again next time.
1494 */
1495 void
1496 fxp_tick(void *arg)
1497 {
1498 struct fxp_softc *sc = arg;
1499 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1500 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1501 int s;
1502
1503 if (!device_is_active(sc->sc_dev))
1504 return;
1505
1506 s = splnet();
1507
1508 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1509
1510 ifp->if_opackets += le32toh(sp->tx_good);
1511 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1512 if (sp->rx_good) {
1513 ifp->if_ipackets += le32toh(sp->rx_good);
1514 sc->sc_rxidle = 0;
1515 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1516 sc->sc_rxidle++;
1517 }
1518 ifp->if_ierrors +=
1519 le32toh(sp->rx_crc_errors) +
1520 le32toh(sp->rx_alignment_errors) +
1521 le32toh(sp->rx_rnr_errors) +
1522 le32toh(sp->rx_overrun_errors);
1523 /*
1524 * If any transmit underruns occurred, bump up the transmit
1525 * threshold by another 512 bytes (64 * 8).
1526 */
1527 if (sp->tx_underruns) {
1528 ifp->if_oerrors += le32toh(sp->tx_underruns);
1529 if (tx_threshold < 192)
1530 tx_threshold += 64;
1531 }
1532 #ifdef FXP_EVENT_COUNTERS
1533 if (sc->sc_flags & FXPF_FC) {
1534 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1535 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1536 }
1537 #endif
1538
1539 /*
1540 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1541 * then assume the receiver has locked up and attempt to clear
1542 * the condition by reprogramming the multicast filter (actually,
1543 * resetting the interface). This is a work-around for a bug in
1544 * the 82557 where the receiver locks up if it gets certain types
1545 * of garbage in the synchronization bits prior to the packet header.
1546 * This bug is supposed to only occur in 10Mbps mode, but has been
1547 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1548 * speed transition).
1549 */
1550 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1551 (void) fxp_init(ifp);
1552 splx(s);
1553 return;
1554 }
1555 /*
1556 * If there is no pending command, start another stats
1557 * dump. Otherwise punt for now.
1558 */
1559 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1560 /*
1561 * Start another stats dump.
1562 */
1563 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1564 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1565 } else {
1566 /*
1567 * A previous command is still waiting to be accepted.
1568 * Just zero our copy of the stats and wait for the
1569 * next timer event to update them.
1570 */
1571 /* BIG_ENDIAN: no swap required to store 0 */
1572 sp->tx_good = 0;
1573 sp->tx_underruns = 0;
1574 sp->tx_total_collisions = 0;
1575
1576 sp->rx_good = 0;
1577 sp->rx_crc_errors = 0;
1578 sp->rx_alignment_errors = 0;
1579 sp->rx_rnr_errors = 0;
1580 sp->rx_overrun_errors = 0;
1581 if (sc->sc_flags & FXPF_FC) {
1582 sp->tx_pauseframes = 0;
1583 sp->rx_pauseframes = 0;
1584 }
1585 }
1586
1587 if (sc->sc_flags & FXPF_MII) {
1588 /* Tick the MII clock. */
1589 mii_tick(&sc->sc_mii);
1590 }
1591
1592 splx(s);
1593
1594 /*
1595 * Schedule another timeout one second from now.
1596 */
1597 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1598 }
1599
1600 /*
1601 * Drain the receive queue.
1602 */
1603 void
1604 fxp_rxdrain(struct fxp_softc *sc)
1605 {
1606 bus_dmamap_t rxmap;
1607 struct mbuf *m;
1608
1609 for (;;) {
1610 IF_DEQUEUE(&sc->sc_rxq, m);
1611 if (m == NULL)
1612 break;
1613 rxmap = M_GETCTX(m, bus_dmamap_t);
1614 bus_dmamap_unload(sc->sc_dmat, rxmap);
1615 FXP_RXMAP_PUT(sc, rxmap);
1616 m_freem(m);
1617 }
1618 }
1619
1620 /*
1621 * Stop the interface. Cancels the statistics updater and resets
1622 * the interface.
1623 */
1624 void
1625 fxp_stop(struct ifnet *ifp, int disable)
1626 {
1627 struct fxp_softc *sc = ifp->if_softc;
1628 struct fxp_txsoft *txs;
1629 int i;
1630
1631 /*
1632 * Turn down interface (done early to avoid bad interactions
1633 * between panics, shutdown hooks, and the watchdog timer)
1634 */
1635 ifp->if_timer = 0;
1636 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1637
1638 /*
1639 * Cancel stats updater.
1640 */
1641 callout_stop(&sc->sc_callout);
1642 if (sc->sc_flags & FXPF_MII) {
1643 /* Down the MII. */
1644 mii_down(&sc->sc_mii);
1645 }
1646
1647 /*
1648 * Issue software reset. This unloads any microcode that
1649 * might already be loaded.
1650 */
1651 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1652 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1653 DELAY(50);
1654
1655 /*
1656 * Release any xmit buffers.
1657 */
1658 for (i = 0; i < FXP_NTXCB; i++) {
1659 txs = FXP_DSTX(sc, i);
1660 if (txs->txs_mbuf != NULL) {
1661 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1662 m_freem(txs->txs_mbuf);
1663 txs->txs_mbuf = NULL;
1664 }
1665 }
1666 sc->sc_txpending = 0;
1667
1668 if (disable) {
1669 fxp_rxdrain(sc);
1670 fxp_disable(sc);
1671 }
1672
1673 }
1674
1675 /*
1676 * Watchdog/transmission transmit timeout handler. Called when a
1677 * transmission is started on the interface, but no interrupt is
1678 * received before the timeout. This usually indicates that the
1679 * card has wedged for some reason.
1680 */
1681 void
1682 fxp_watchdog(struct ifnet *ifp)
1683 {
1684 struct fxp_softc *sc = ifp->if_softc;
1685
1686 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1687 ifp->if_oerrors++;
1688
1689 (void) fxp_init(ifp);
1690 }
1691
1692 /*
1693 * Initialize the interface. Must be called at splnet().
1694 */
1695 int
1696 fxp_init(struct ifnet *ifp)
1697 {
1698 struct fxp_softc *sc = ifp->if_softc;
1699 struct fxp_cb_config *cbp;
1700 struct fxp_cb_ias *cb_ias;
1701 struct fxp_txdesc *txd;
1702 bus_dmamap_t rxmap;
1703 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1704 uint16_t status;
1705
1706 if ((error = fxp_enable(sc)) != 0)
1707 goto out;
1708
1709 /*
1710 * Cancel any pending I/O
1711 */
1712 fxp_stop(ifp, 0);
1713
1714 /*
1715 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1716 * flag, and this prevents the MII from detaching resulting in
1717 * a panic. The flags field should perhaps be split in runtime
1718 * flags and more static information. For now, just clear the
1719 * only other flag set.
1720 */
1721
1722 sc->sc_flags &= ~FXPF_WANTINIT;
1723
1724 /*
1725 * Initialize base of CBL and RFA memory. Loading with zero
1726 * sets it up for regular linear addressing.
1727 */
1728 fxp_scb_wait(sc);
1729 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1730 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1731
1732 fxp_scb_wait(sc);
1733 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1734
1735 /*
1736 * Initialize the multicast filter. Do this now, since we might
1737 * have to setup the config block differently.
1738 */
1739 fxp_mc_setup(sc);
1740
1741 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1742 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1743
1744 /*
1745 * In order to support receiving 802.1Q VLAN frames, we have to
1746 * enable "save bad frames", since they are 4 bytes larger than
1747 * the normal Ethernet maximum frame length. On i82558 and later,
1748 * we have a better mechanism for this.
1749 */
1750 save_bf = 0;
1751 lrxen = 0;
1752 vlan_drop = 0;
1753 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1754 if (sc->sc_rev < FXP_REV_82558_A4)
1755 save_bf = 1;
1756 else
1757 lrxen = 1;
1758 if (sc->sc_rev >= FXP_REV_82550)
1759 vlan_drop = 1;
1760 }
1761
1762 /*
1763 * Initialize base of dump-stats buffer.
1764 */
1765 fxp_scb_wait(sc);
1766 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1767 sc->sc_cddma + FXP_CDSTATSOFF);
1768 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1769 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1770
1771 cbp = &sc->sc_control_data->fcd_configcb;
1772 memset(cbp, 0, sizeof(struct fxp_cb_config));
1773
1774 /*
1775 * Load microcode for this controller.
1776 */
1777 fxp_load_ucode(sc);
1778
1779 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1780 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1781 else
1782 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1783
1784 /*
1785 * This copy is kind of disgusting, but there are a bunch of must be
1786 * zero and must be one bits in this structure and this is the easiest
1787 * way to initialize them all to proper values.
1788 */
1789 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1790
1791 /* BIG_ENDIAN: no need to swap to store 0 */
1792 cbp->cb_status = 0;
1793 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1794 FXP_CB_COMMAND_EL);
1795 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1796 cbp->link_addr = 0xffffffff; /* (no) next command */
1797 /* bytes in config block */
1798 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1799 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1800 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1801 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1802 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1803 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1804 cbp->type_enable = 0; /* actually reserved */
1805 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1806 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1807 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1808 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1809 cbp->dma_mbce = 0; /* (disable) dma max counters */
1810 cbp->late_scb = 0; /* (don't) defer SCB update */
1811 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1812 cbp->ci_int = 1; /* interrupt on CU idle */
1813 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1814 cbp->ext_stats_dis = 1; /* disable extended counters */
1815 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1816 cbp->save_bf = save_bf;/* save bad frames */
1817 cbp->disc_short_rx = !prm; /* discard short packets */
1818 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1819 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1820 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1821 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1822 /* interface mode */
1823 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1824 cbp->csma_dis = 0; /* (don't) disable link */
1825 cbp->tcp_udp_cksum = (sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1826 /* (don't) enable RX checksum */
1827 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1828 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1829 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1830 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1831 cbp->nsai = 1; /* (don't) disable source addr insert */
1832 cbp->preamble_length = 2; /* (7 byte) preamble */
1833 cbp->loopback = 0; /* (don't) loopback */
1834 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1835 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1836 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1837 cbp->promiscuous = prm; /* promiscuous mode */
1838 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1839 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1840 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1841 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1842 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1843 cbp->stripping = !prm; /* truncate rx packet to byte count */
1844 cbp->padding = 1; /* (do) pad short tx packets */
1845 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1846 cbp->long_rx_en = lrxen; /* long packet receive enable */
1847 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1848 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1849 /* must set wake_en in PMCSR also */
1850 cbp->force_fdx = 0; /* (don't) force full duplex */
1851 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1852 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1853 cbp->mc_all = allm; /* accept all multicasts */
1854 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1855 cbp->vlan_drop_en = vlan_drop;
1856
1857 if (!(sc->sc_flags & FXPF_FC)) {
1858 /*
1859 * The i82557 has no hardware flow control, the values
1860 * here are the defaults for the chip.
1861 */
1862 cbp->fc_delay_lsb = 0;
1863 cbp->fc_delay_msb = 0x40;
1864 cbp->pri_fc_thresh = 3;
1865 cbp->tx_fc_dis = 0;
1866 cbp->rx_fc_restop = 0;
1867 cbp->rx_fc_restart = 0;
1868 cbp->fc_filter = 0;
1869 cbp->pri_fc_loc = 1;
1870 } else {
1871 cbp->fc_delay_lsb = 0x1f;
1872 cbp->fc_delay_msb = 0x01;
1873 cbp->pri_fc_thresh = 3;
1874 cbp->tx_fc_dis = 0; /* enable transmit FC */
1875 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1876 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1877 cbp->fc_filter = !prm; /* drop FC frames to host */
1878 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1879 cbp->ext_stats_dis = 0; /* enable extended stats */
1880 }
1881
1882 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1883
1884 /*
1885 * Start the config command/DMA.
1886 */
1887 fxp_scb_wait(sc);
1888 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1889 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1890 /* ...and wait for it to complete. */
1891 for (i = 1000; i > 0; i--) {
1892 FXP_CDCONFIGSYNC(sc,
1893 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1894 status = le16toh(cbp->cb_status);
1895 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1896 if ((status & FXP_CB_STATUS_C) != 0)
1897 break;
1898 DELAY(1);
1899 }
1900 if (i == 0) {
1901 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1902 device_xname(sc->sc_dev), __LINE__);
1903 return (ETIMEDOUT);
1904 }
1905
1906 /*
1907 * Initialize the station address.
1908 */
1909 cb_ias = &sc->sc_control_data->fcd_iascb;
1910 /* BIG_ENDIAN: no need to swap to store 0 */
1911 cb_ias->cb_status = 0;
1912 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1913 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1914 cb_ias->link_addr = 0xffffffff;
1915 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1916
1917 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1918
1919 /*
1920 * Start the IAS (Individual Address Setup) command/DMA.
1921 */
1922 fxp_scb_wait(sc);
1923 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1924 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1925 /* ...and wait for it to complete. */
1926 for (i = 1000; i > 0; i++) {
1927 FXP_CDIASSYNC(sc,
1928 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1929 status = le16toh(cb_ias->cb_status);
1930 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1931 if ((status & FXP_CB_STATUS_C) != 0)
1932 break;
1933 DELAY(1);
1934 }
1935 if (i == 0) {
1936 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1937 device_xname(sc->sc_dev), __LINE__);
1938 return (ETIMEDOUT);
1939 }
1940
1941 /*
1942 * Initialize the transmit descriptor ring. txlast is initialized
1943 * to the end of the list so that it will wrap around to the first
1944 * descriptor when the first packet is transmitted.
1945 */
1946 for (i = 0; i < FXP_NTXCB; i++) {
1947 txd = FXP_CDTX(sc, i);
1948 memset(txd, 0, sizeof(*txd));
1949 txd->txd_txcb.cb_command =
1950 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1951 txd->txd_txcb.link_addr =
1952 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1953 if (sc->sc_flags & FXPF_EXT_TXCB)
1954 txd->txd_txcb.tbd_array_addr =
1955 htole32(FXP_CDTBDADDR(sc, i) +
1956 (2 * sizeof(struct fxp_tbd)));
1957 else
1958 txd->txd_txcb.tbd_array_addr =
1959 htole32(FXP_CDTBDADDR(sc, i));
1960 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1961 }
1962 sc->sc_txpending = 0;
1963 sc->sc_txdirty = 0;
1964 sc->sc_txlast = FXP_NTXCB - 1;
1965
1966 /*
1967 * Initialize the receive buffer list.
1968 */
1969 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1970 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1971 rxmap = FXP_RXMAP_GET(sc);
1972 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1973 log(LOG_ERR, "%s: unable to allocate or map rx "
1974 "buffer %d, error = %d\n",
1975 device_xname(sc->sc_dev),
1976 sc->sc_rxq.ifq_len, error);
1977 /*
1978 * XXX Should attempt to run with fewer receive
1979 * XXX buffers instead of just failing.
1980 */
1981 FXP_RXMAP_PUT(sc, rxmap);
1982 fxp_rxdrain(sc);
1983 goto out;
1984 }
1985 }
1986 sc->sc_rxidle = 0;
1987
1988 /*
1989 * Give the transmit ring to the chip. We do this by pointing
1990 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1991 * issuing a start command. It will execute the NOP and then
1992 * suspend, pointing at the first descriptor.
1993 */
1994 fxp_scb_wait(sc);
1995 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1996 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1997
1998 /*
1999 * Initialize receiver buffer area - RFA.
2000 */
2001 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
2002 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
2003 fxp_scb_wait(sc);
2004 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2005 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
2006 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2007 #endif
2008
2009 if (sc->sc_flags & FXPF_MII) {
2010 /*
2011 * Set current media.
2012 */
2013 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
2014 goto out;
2015 }
2016
2017 /*
2018 * ...all done!
2019 */
2020 ifp->if_flags |= IFF_RUNNING;
2021 ifp->if_flags &= ~IFF_OACTIVE;
2022
2023 /*
2024 * Request a software generated interrupt that will be used to
2025 * (re)start the RU processing. If we direct the chip to start
2026 * receiving from the start of queue now, instead of letting the
2027 * interrupt handler first process all received packets, we run
2028 * the risk of having it overwrite mbuf clusters while they are
2029 * being processed or after they have been returned to the pool.
2030 */
2031 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2032
2033 /*
2034 * Start the one second timer.
2035 */
2036 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
2037
2038 /*
2039 * Attempt to start output on the interface.
2040 */
2041 fxp_start(ifp);
2042
2043 out:
2044 if (error) {
2045 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2046 ifp->if_timer = 0;
2047 log(LOG_ERR, "%s: interface not running\n",
2048 device_xname(sc->sc_dev));
2049 }
2050 return (error);
2051 }
2052
2053 /*
2054 * Notify the world which media we're using.
2055 */
2056 void
2057 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2058 {
2059 struct fxp_softc *sc = ifp->if_softc;
2060
2061 if (sc->sc_enabled == 0) {
2062 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2063 ifmr->ifm_status = 0;
2064 return;
2065 }
2066
2067 ether_mediastatus(ifp, ifmr);
2068 }
2069
2070 int
2071 fxp_80c24_mediachange(struct ifnet *ifp)
2072 {
2073
2074 /* Nothing to do here. */
2075 return (0);
2076 }
2077
2078 void
2079 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2080 {
2081 struct fxp_softc *sc = ifp->if_softc;
2082
2083 /*
2084 * Media is currently-selected media. We cannot determine
2085 * the link status.
2086 */
2087 ifmr->ifm_status = 0;
2088 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2089 }
2090
2091 /*
2092 * Add a buffer to the end of the RFA buffer list.
2093 * Return 0 if successful, error code on failure.
2094 *
2095 * The RFA struct is stuck at the beginning of mbuf cluster and the
2096 * data pointer is fixed up to point just past it.
2097 */
2098 int
2099 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2100 {
2101 struct mbuf *m;
2102 int error;
2103
2104 MGETHDR(m, M_DONTWAIT, MT_DATA);
2105 if (m == NULL)
2106 return (ENOBUFS);
2107
2108 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2109 MCLGET(m, M_DONTWAIT);
2110 if ((m->m_flags & M_EXT) == 0) {
2111 m_freem(m);
2112 return (ENOBUFS);
2113 }
2114
2115 if (unload)
2116 bus_dmamap_unload(sc->sc_dmat, rxmap);
2117
2118 M_SETCTX(m, rxmap);
2119
2120 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2121 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2122 BUS_DMA_READ|BUS_DMA_NOWAIT);
2123 if (error) {
2124 /* XXX XXX XXX */
2125 aprint_error_dev(sc->sc_dev,
2126 "can't load rx DMA map %d, error = %d\n",
2127 sc->sc_rxq.ifq_len, error);
2128 panic("fxp_add_rfabuf");
2129 }
2130
2131 FXP_INIT_RFABUF(sc, m);
2132
2133 return (0);
2134 }
2135
2136 int
2137 fxp_mdi_read(device_t self, int phy, int reg)
2138 {
2139 struct fxp_softc *sc = device_private(self);
2140 int count = 10000;
2141 int value;
2142
2143 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2144 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2145
2146 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2147 0x10000000) == 0 && count--)
2148 DELAY(10);
2149
2150 if (count <= 0)
2151 log(LOG_WARNING,
2152 "%s: fxp_mdi_read: timed out\n", device_xname(self));
2153
2154 return (value & 0xffff);
2155 }
2156
2157 void
2158 fxp_statchg(device_t self)
2159 {
2160
2161 /* Nothing to do. */
2162 }
2163
2164 void
2165 fxp_mdi_write(device_t self, int phy, int reg, int value)
2166 {
2167 struct fxp_softc *sc = device_private(self);
2168 int count = 10000;
2169
2170 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2171 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2172 (value & 0xffff));
2173
2174 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2175 count--)
2176 DELAY(10);
2177
2178 if (count <= 0)
2179 log(LOG_WARNING,
2180 "%s: fxp_mdi_write: timed out\n", device_xname(self));
2181 }
2182
2183 int
2184 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2185 {
2186 struct fxp_softc *sc = ifp->if_softc;
2187 struct ifreq *ifr = (struct ifreq *)data;
2188 int s, error;
2189
2190 s = splnet();
2191
2192 switch (cmd) {
2193 case SIOCSIFMEDIA:
2194 case SIOCGIFMEDIA:
2195 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2196 break;
2197
2198 default:
2199 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2200 break;
2201
2202 error = 0;
2203
2204 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2205 ;
2206 else if (ifp->if_flags & IFF_RUNNING) {
2207 /*
2208 * Multicast list has changed; set the
2209 * hardware filter accordingly.
2210 */
2211 while (sc->sc_txpending) {
2212 sc->sc_flags |= FXPF_WANTINIT;
2213 tsleep(sc, PSOCK, "fxp_init", 0);
2214 }
2215 error = fxp_init(ifp);
2216 }
2217 break;
2218 }
2219
2220 /* Try to get more packets going. */
2221 if (sc->sc_enabled)
2222 fxp_start(ifp);
2223
2224 splx(s);
2225 return (error);
2226 }
2227
2228 /*
2229 * Program the multicast filter.
2230 *
2231 * This function must be called at splnet().
2232 */
2233 void
2234 fxp_mc_setup(struct fxp_softc *sc)
2235 {
2236 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2237 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2238 struct ethercom *ec = &sc->sc_ethercom;
2239 struct ether_multi *enm;
2240 struct ether_multistep step;
2241 int count, nmcasts;
2242 uint16_t status;
2243
2244 #ifdef DIAGNOSTIC
2245 if (sc->sc_txpending)
2246 panic("fxp_mc_setup: pending transmissions");
2247 #endif
2248
2249 ifp->if_flags &= ~IFF_ALLMULTI;
2250
2251 /*
2252 * Initialize multicast setup descriptor.
2253 */
2254 nmcasts = 0;
2255 ETHER_FIRST_MULTI(step, ec, enm);
2256 while (enm != NULL) {
2257 /*
2258 * Check for too many multicast addresses or if we're
2259 * listening to a range. Either way, we simply have
2260 * to accept all multicasts.
2261 */
2262 if (nmcasts >= MAXMCADDR ||
2263 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2264 ETHER_ADDR_LEN) != 0) {
2265 /*
2266 * Callers of this function must do the
2267 * right thing with this. If we're called
2268 * from outside fxp_init(), the caller must
2269 * detect if the state if IFF_ALLMULTI changes.
2270 * If it does, the caller must then call
2271 * fxp_init(), since allmulti is handled by
2272 * the config block.
2273 */
2274 ifp->if_flags |= IFF_ALLMULTI;
2275 return;
2276 }
2277 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2278 ETHER_ADDR_LEN);
2279 nmcasts++;
2280 ETHER_NEXT_MULTI(step, enm);
2281 }
2282
2283 /* BIG_ENDIAN: no need to swap to store 0 */
2284 mcsp->cb_status = 0;
2285 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2286 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2287 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2288
2289 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2290
2291 /*
2292 * Wait until the command unit is not active. This should never
2293 * happen since nothing is queued, but make sure anyway.
2294 */
2295 count = 100;
2296 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2297 FXP_SCB_CUS_ACTIVE && --count)
2298 DELAY(1);
2299 if (count == 0) {
2300 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2301 device_xname(sc->sc_dev), __LINE__);
2302 return;
2303 }
2304
2305 /*
2306 * Start the multicast setup command/DMA.
2307 */
2308 fxp_scb_wait(sc);
2309 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2310 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2311
2312 /* ...and wait for it to complete. */
2313 for (count = 1000; count > 0; count--) {
2314 FXP_CDMCSSYNC(sc,
2315 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2316 status = le16toh(mcsp->cb_status);
2317 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2318 if ((status & FXP_CB_STATUS_C) != 0)
2319 break;
2320 DELAY(1);
2321 }
2322 if (count == 0) {
2323 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2324 device_xname(sc->sc_dev), __LINE__);
2325 return;
2326 }
2327 }
2328
2329 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2330 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2331 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2332 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2333 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2334 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2335
2336 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2337
2338 static const struct ucode {
2339 int32_t revision;
2340 const uint32_t *ucode;
2341 size_t length;
2342 uint16_t int_delay_offset;
2343 uint16_t bundle_max_offset;
2344 } ucode_table[] = {
2345 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2346 D101_CPUSAVER_DWORD, 0 },
2347
2348 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2349 D101_CPUSAVER_DWORD, 0 },
2350
2351 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2352 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2353
2354 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2355 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2356
2357 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2358 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2359
2360 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2361 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2362
2363 { 0, NULL, 0, 0, 0 }
2364 };
2365
2366 void
2367 fxp_load_ucode(struct fxp_softc *sc)
2368 {
2369 const struct ucode *uc;
2370 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2371 int count, i;
2372 uint16_t status;
2373
2374 if (sc->sc_flags & FXPF_UCODE_LOADED)
2375 return;
2376
2377 /*
2378 * Only load the uCode if the user has requested that
2379 * we do so.
2380 */
2381 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2382 sc->sc_int_delay = 0;
2383 sc->sc_bundle_max = 0;
2384 return;
2385 }
2386
2387 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2388 if (sc->sc_rev == uc->revision)
2389 break;
2390 }
2391 if (uc->ucode == NULL)
2392 return;
2393
2394 /* BIG ENDIAN: no need to swap to store 0 */
2395 cbp->cb_status = 0;
2396 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2397 cbp->link_addr = 0xffffffff; /* (no) next command */
2398 for (i = 0; i < uc->length; i++)
2399 cbp->ucode[i] = htole32(uc->ucode[i]);
2400
2401 if (uc->int_delay_offset)
2402 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2403 htole16(fxp_int_delay + (fxp_int_delay / 2));
2404
2405 if (uc->bundle_max_offset)
2406 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2407 htole16(fxp_bundle_max);
2408
2409 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2410
2411 /*
2412 * Download the uCode to the chip.
2413 */
2414 fxp_scb_wait(sc);
2415 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2416 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2417
2418 /* ...and wait for it to complete. */
2419 for (count = 10000; count > 0; count--) {
2420 FXP_CDUCODESYNC(sc,
2421 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2422 status = le16toh(cbp->cb_status);
2423 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2424 if ((status & FXP_CB_STATUS_C) != 0)
2425 break;
2426 DELAY(2);
2427 }
2428 if (count == 0) {
2429 sc->sc_int_delay = 0;
2430 sc->sc_bundle_max = 0;
2431 log(LOG_WARNING, "%s: timeout loading microcode\n",
2432 device_xname(sc->sc_dev));
2433 return;
2434 }
2435
2436 if (sc->sc_int_delay != fxp_int_delay ||
2437 sc->sc_bundle_max != fxp_bundle_max) {
2438 sc->sc_int_delay = fxp_int_delay;
2439 sc->sc_bundle_max = fxp_bundle_max;
2440 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2441 "max bundle: %d\n", device_xname(sc->sc_dev),
2442 sc->sc_int_delay,
2443 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2444 }
2445
2446 sc->sc_flags |= FXPF_UCODE_LOADED;
2447 }
2448
2449 int
2450 fxp_enable(struct fxp_softc *sc)
2451 {
2452
2453 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2454 if ((*sc->sc_enable)(sc) != 0) {
2455 log(LOG_ERR, "%s: device enable failed\n",
2456 device_xname(sc->sc_dev));
2457 return (EIO);
2458 }
2459 }
2460
2461 sc->sc_enabled = 1;
2462 return (0);
2463 }
2464
2465 void
2466 fxp_disable(struct fxp_softc *sc)
2467 {
2468
2469 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2470 (*sc->sc_disable)(sc);
2471 sc->sc_enabled = 0;
2472 }
2473 }
2474
2475 /*
2476 * fxp_activate:
2477 *
2478 * Handle device activation/deactivation requests.
2479 */
2480 int
2481 fxp_activate(device_t self, enum devact act)
2482 {
2483 struct fxp_softc *sc = device_private(self);
2484 int s, error = 0;
2485
2486 s = splnet();
2487 switch (act) {
2488 case DVACT_ACTIVATE:
2489 error = EOPNOTSUPP;
2490 break;
2491
2492 case DVACT_DEACTIVATE:
2493 if (sc->sc_flags & FXPF_MII)
2494 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2495 MII_OFFSET_ANY);
2496 if_deactivate(&sc->sc_ethercom.ec_if);
2497 break;
2498 }
2499 splx(s);
2500
2501 return (error);
2502 }
2503
2504 /*
2505 * fxp_detach:
2506 *
2507 * Detach an i82557 interface.
2508 */
2509 int
2510 fxp_detach(struct fxp_softc *sc)
2511 {
2512 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2513 int i;
2514
2515 /* Succeed now if there's no work to do. */
2516 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2517 return (0);
2518
2519 /* Unhook our tick handler. */
2520 callout_stop(&sc->sc_callout);
2521
2522 if (sc->sc_flags & FXPF_MII) {
2523 /* Detach all PHYs */
2524 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2525 }
2526
2527 /* Delete all remaining media. */
2528 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2529
2530 #if NRND > 0
2531 rnd_detach_source(&sc->rnd_source);
2532 #endif
2533 ether_ifdetach(ifp);
2534 if_detach(ifp);
2535
2536 for (i = 0; i < FXP_NRFABUFS; i++) {
2537 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2538 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2539 }
2540
2541 for (i = 0; i < FXP_NTXCB; i++) {
2542 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2543 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2544 }
2545
2546 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2547 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2548 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2549 sizeof(struct fxp_control_data));
2550 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2551
2552 return (0);
2553 }
2554