i82557.c revision 1.138 1 /* $NetBSD: i82557.c,v 1.138 2011/09/02 03:16:18 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice unmodified, this list of conditions, and the following
43 * disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61 */
62
63 /*
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.138 2011/09/02 03:16:18 msaitoh Exp $");
70
71 #include "rnd.h"
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/callout.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/ioctl.h>
81 #include <sys/errno.h>
82 #include <sys/device.h>
83 #include <sys/syslog.h>
84 #include <sys/proc.h>
85
86 #include <machine/endian.h>
87
88 #if NRND > 0
89 #include <sys/rnd.h>
90 #endif
91
92 #include <net/if.h>
93 #include <net/if_dl.h>
94 #include <net/if_media.h>
95 #include <net/if_ether.h>
96
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/tcp.h>
101 #include <netinet/udp.h>
102
103 #include <net/bpf.h>
104
105 #include <sys/bus.h>
106 #include <sys/intr.h>
107
108 #include <dev/mii/miivar.h>
109
110 #include <dev/ic/i82557reg.h>
111 #include <dev/ic/i82557var.h>
112
113 #include <dev/microcode/i8255x/rcvbundl.h>
114
115 /*
116 * NOTE! On the Alpha, we have an alignment constraint. The
117 * card DMAs the packet immediately following the RFA. However,
118 * the first thing in the packet is a 14-byte Ethernet header.
119 * This means that the packet is misaligned. To compensate,
120 * we actually offset the RFA 2 bytes into the cluster. This
121 * alignes the packet after the Ethernet header at a 32-bit
122 * boundary. HOWEVER! This means that the RFA is misaligned!
123 */
124 #define RFA_ALIGNMENT_FUDGE 2
125
126 /*
127 * The configuration byte map has several undefined fields which
128 * must be one or must be zero. Set up a template for these bits
129 * only (assuming an i82557 chip), leaving the actual configuration
130 * for fxp_init().
131 *
132 * See the definition of struct fxp_cb_config for the bit definitions.
133 */
134 const uint8_t fxp_cb_config_template[] = {
135 0x0, 0x0, /* cb_status */
136 0x0, 0x0, /* cb_command */
137 0x0, 0x0, 0x0, 0x0, /* link_addr */
138 0x0, /* 0 */
139 0x0, /* 1 */
140 0x0, /* 2 */
141 0x0, /* 3 */
142 0x0, /* 4 */
143 0x0, /* 5 */
144 0x32, /* 6 */
145 0x0, /* 7 */
146 0x0, /* 8 */
147 0x0, /* 9 */
148 0x6, /* 10 */
149 0x0, /* 11 */
150 0x0, /* 12 */
151 0x0, /* 13 */
152 0xf2, /* 14 */
153 0x48, /* 15 */
154 0x0, /* 16 */
155 0x40, /* 17 */
156 0xf0, /* 18 */
157 0x0, /* 19 */
158 0x3f, /* 20 */
159 0x5, /* 21 */
160 0x0, /* 22 */
161 0x0, /* 23 */
162 0x0, /* 24 */
163 0x0, /* 25 */
164 0x0, /* 26 */
165 0x0, /* 27 */
166 0x0, /* 28 */
167 0x0, /* 29 */
168 0x0, /* 30 */
169 0x0, /* 31 */
170 };
171
172 void fxp_mii_initmedia(struct fxp_softc *);
173 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
174
175 void fxp_80c24_initmedia(struct fxp_softc *);
176 int fxp_80c24_mediachange(struct ifnet *);
177 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
178
179 void fxp_start(struct ifnet *);
180 int fxp_ioctl(struct ifnet *, u_long, void *);
181 void fxp_watchdog(struct ifnet *);
182 int fxp_init(struct ifnet *);
183 void fxp_stop(struct ifnet *, int);
184
185 void fxp_txintr(struct fxp_softc *);
186 int fxp_rxintr(struct fxp_softc *);
187
188 void fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
189 const struct fxp_rfa *, u_int);
190
191 void fxp_rxdrain(struct fxp_softc *);
192 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
193 int fxp_mdi_read(device_t, int, int);
194 void fxp_statchg(device_t);
195 void fxp_mdi_write(device_t, int, int, int);
196 void fxp_autosize_eeprom(struct fxp_softc*);
197 void fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
198 void fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
199 void fxp_eeprom_update_cksum(struct fxp_softc *);
200 void fxp_get_info(struct fxp_softc *, uint8_t *);
201 void fxp_tick(void *);
202 void fxp_mc_setup(struct fxp_softc *);
203 void fxp_load_ucode(struct fxp_softc *);
204
205 int fxp_copy_small = 0;
206
207 /*
208 * Variables for interrupt mitigating microcode.
209 */
210 int fxp_int_delay = 1000; /* usec */
211 int fxp_bundle_max = 6; /* packets */
212
213 struct fxp_phytype {
214 int fp_phy; /* type of PHY, -1 for MII at the end. */
215 void (*fp_init)(struct fxp_softc *);
216 } fxp_phytype_table[] = {
217 { FXP_PHY_80C24, fxp_80c24_initmedia },
218 { -1, fxp_mii_initmedia },
219 };
220
221 /*
222 * Set initial transmit threshold at 64 (512 bytes). This is
223 * increased by 64 (512 bytes) at a time, to maximum of 192
224 * (1536 bytes), if an underrun occurs.
225 */
226 static int tx_threshold = 64;
227
228 /*
229 * Wait for the previous command to be accepted (but not necessarily
230 * completed).
231 */
232 static inline void
233 fxp_scb_wait(struct fxp_softc *sc)
234 {
235 int i = 10000;
236
237 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
238 delay(2);
239 if (i == 0)
240 log(LOG_WARNING,
241 "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
242 }
243
244 /*
245 * Submit a command to the i82557.
246 */
247 static inline void
248 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
249 {
250
251 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
252 }
253
254 /*
255 * Finish attaching an i82557 interface. Called by bus-specific front-end.
256 */
257 void
258 fxp_attach(struct fxp_softc *sc)
259 {
260 uint8_t enaddr[ETHER_ADDR_LEN];
261 struct ifnet *ifp;
262 bus_dma_segment_t seg;
263 int rseg, i, error;
264 struct fxp_phytype *fp;
265
266 callout_init(&sc->sc_callout, 0);
267
268 /*
269 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
270 * Note: to use IPCB we need extended TXCB support too, and
271 * these feature flags should be set in each bus attachment.
272 */
273 if (sc->sc_flags & FXPF_EXT_RFA) {
274 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
275 sc->sc_rfa_size = RFA_EXT_SIZE;
276 } else {
277 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
278 sc->sc_rfa_size = RFA_SIZE;
279 }
280
281 /*
282 * Allocate the control data structures, and create and load the
283 * DMA map for it.
284 */
285 if ((error = bus_dmamem_alloc(sc->sc_dmat,
286 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
287 0)) != 0) {
288 aprint_error_dev(sc->sc_dev,
289 "unable to allocate control data, error = %d\n",
290 error);
291 goto fail_0;
292 }
293
294 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
295 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
296 BUS_DMA_COHERENT)) != 0) {
297 aprint_error_dev(sc->sc_dev,
298 "unable to map control data, error = %d\n", error);
299 goto fail_1;
300 }
301 sc->sc_cdseg = seg;
302 sc->sc_cdnseg = rseg;
303
304 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
305
306 if ((error = bus_dmamap_create(sc->sc_dmat,
307 sizeof(struct fxp_control_data), 1,
308 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
309 aprint_error_dev(sc->sc_dev,
310 "unable to create control data DMA map, error = %d\n",
311 error);
312 goto fail_2;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
316 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
317 0)) != 0) {
318 aprint_error_dev(sc->sc_dev,
319 "can't load control data DMA map, error = %d\n",
320 error);
321 goto fail_3;
322 }
323
324 /*
325 * Create the transmit buffer DMA maps.
326 */
327 for (i = 0; i < FXP_NTXCB; i++) {
328 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
329 (sc->sc_flags & FXPF_EXT_RFA) ?
330 FXP_IPCB_NTXSEG : FXP_NTXSEG,
331 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
332 aprint_error_dev(sc->sc_dev,
333 "unable to create tx DMA map %d, error = %d\n",
334 i, error);
335 goto fail_4;
336 }
337 }
338
339 /*
340 * Create the receive buffer DMA maps.
341 */
342 for (i = 0; i < FXP_NRFABUFS; i++) {
343 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
344 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
345 aprint_error_dev(sc->sc_dev,
346 "unable to create rx DMA map %d, error = %d\n",
347 i, error);
348 goto fail_5;
349 }
350 }
351
352 /* Initialize MAC address and media structures. */
353 fxp_get_info(sc, enaddr);
354
355 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
356 ether_sprintf(enaddr));
357
358 ifp = &sc->sc_ethercom.ec_if;
359
360 /*
361 * Get info about our media interface, and initialize it. Note
362 * the table terminates itself with a phy of -1, indicating
363 * that we're using MII.
364 */
365 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
366 if (fp->fp_phy == sc->phy_primary_device)
367 break;
368 (*fp->fp_init)(sc);
369
370 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
371 ifp->if_softc = sc;
372 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 ifp->if_ioctl = fxp_ioctl;
374 ifp->if_start = fxp_start;
375 ifp->if_watchdog = fxp_watchdog;
376 ifp->if_init = fxp_init;
377 ifp->if_stop = fxp_stop;
378 IFQ_SET_READY(&ifp->if_snd);
379
380 if (sc->sc_flags & FXPF_EXT_RFA) {
381 /*
382 * Enable hardware cksum support by EXT_RFA and IPCB.
383 *
384 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
385 * at least, on i82550 rev.12.
386 * specifically, it doesn't set ipv4 checksum properly
387 * when sending UDP (and probably TCP) packets with
388 * 20 byte ipv4 header + 1 or 2 byte data,
389 * though ICMP packets seem working.
390 * FreeBSD driver has related comments.
391 * We've added a workaround to handle the bug by padding
392 * such packets manually.
393 */
394 ifp->if_capabilities =
395 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
396 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
397 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
398 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
399 } else if (sc->sc_flags & FXPF_82559_RXCSUM) {
400 ifp->if_capabilities =
401 IFCAP_CSUM_TCPv4_Rx |
402 IFCAP_CSUM_UDPv4_Rx;
403 }
404
405 /*
406 * We can support 802.1Q VLAN-sized frames.
407 */
408 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
409
410 /*
411 * Attach the interface.
412 */
413 if_attach(ifp);
414 ether_ifattach(ifp, enaddr);
415 #if NRND > 0
416 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
417 RND_TYPE_NET, 0);
418 #endif
419
420 #ifdef FXP_EVENT_COUNTERS
421 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
422 NULL, device_xname(sc->sc_dev), "txstall");
423 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
424 NULL, device_xname(sc->sc_dev), "txintr");
425 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
426 NULL, device_xname(sc->sc_dev), "rxintr");
427 if (sc->sc_flags & FXPF_FC) {
428 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
429 NULL, device_xname(sc->sc_dev), "txpause");
430 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
431 NULL, device_xname(sc->sc_dev), "rxpause");
432 }
433 #endif /* FXP_EVENT_COUNTERS */
434
435 /* The attach is successful. */
436 sc->sc_flags |= FXPF_ATTACHED;
437
438 return;
439
440 /*
441 * Free any resources we've allocated during the failed attach
442 * attempt. Do this in reverse order and fall though.
443 */
444 fail_5:
445 for (i = 0; i < FXP_NRFABUFS; i++) {
446 if (sc->sc_rxmaps[i] != NULL)
447 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
448 }
449 fail_4:
450 for (i = 0; i < FXP_NTXCB; i++) {
451 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
452 bus_dmamap_destroy(sc->sc_dmat,
453 FXP_DSTX(sc, i)->txs_dmamap);
454 }
455 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
456 fail_3:
457 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
458 fail_2:
459 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
460 sizeof(struct fxp_control_data));
461 fail_1:
462 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
463 fail_0:
464 return;
465 }
466
467 void
468 fxp_mii_initmedia(struct fxp_softc *sc)
469 {
470 int flags;
471
472 sc->sc_flags |= FXPF_MII;
473
474 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
475 sc->sc_mii.mii_readreg = fxp_mdi_read;
476 sc->sc_mii.mii_writereg = fxp_mdi_write;
477 sc->sc_mii.mii_statchg = fxp_statchg;
478
479 sc->sc_ethercom.ec_mii = &sc->sc_mii;
480 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
481 fxp_mii_mediastatus);
482
483 flags = MIIF_NOISOLATE;
484 if (sc->sc_flags & FXPF_FC)
485 flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
486 /*
487 * The i82557 wedges if all of its PHYs are isolated!
488 */
489 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
490 MII_OFFSET_ANY, flags);
491 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
492 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
493 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
494 } else
495 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
496 }
497
498 void
499 fxp_80c24_initmedia(struct fxp_softc *sc)
500 {
501
502 /*
503 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
504 * doesn't have a programming interface of any sort. The
505 * media is sensed automatically based on how the link partner
506 * is configured. This is, in essence, manual configuration.
507 */
508 aprint_normal_dev(sc->sc_dev,
509 "Seeq 80c24 AutoDUPLEX media interface present\n");
510 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
511 fxp_80c24_mediastatus);
512 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
513 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
514 }
515
516 /*
517 * Initialize the interface media.
518 */
519 void
520 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
521 {
522 uint16_t data, myea[ETHER_ADDR_LEN / 2];
523
524 /*
525 * Reset to a stable state.
526 */
527 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
528 DELAY(100);
529
530 sc->sc_eeprom_size = 0;
531 fxp_autosize_eeprom(sc);
532 if (sc->sc_eeprom_size == 0) {
533 aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
534 sc->sc_eeprom_size = 6; /* XXX panic here? */
535 }
536 #ifdef DEBUG
537 aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
538 1 << sc->sc_eeprom_size);
539 #endif
540
541 /*
542 * Get info about the primary PHY
543 */
544 fxp_read_eeprom(sc, &data, 6, 1);
545 sc->phy_primary_device =
546 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
547
548 /*
549 * Read MAC address.
550 */
551 fxp_read_eeprom(sc, myea, 0, 3);
552 enaddr[0] = myea[0] & 0xff;
553 enaddr[1] = myea[0] >> 8;
554 enaddr[2] = myea[1] & 0xff;
555 enaddr[3] = myea[1] >> 8;
556 enaddr[4] = myea[2] & 0xff;
557 enaddr[5] = myea[2] >> 8;
558
559 /*
560 * Systems based on the ICH2/ICH2-M chip from Intel, as well
561 * as some i82559 designs, have a defect where the chip can
562 * cause a PCI protocol violation if it receives a CU_RESUME
563 * command when it is entering the IDLE state.
564 *
565 * The work-around is to disable Dynamic Standby Mode, so that
566 * the chip never deasserts #CLKRUN, and always remains in the
567 * active state.
568 *
569 * Unfortunately, the only way to disable Dynamic Standby is
570 * to frob an EEPROM setting and reboot (the EEPROM setting
571 * is only consulted when the PCI bus comes out of reset).
572 *
573 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
574 */
575 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
576 fxp_read_eeprom(sc, &data, 10, 1);
577 if (data & 0x02) { /* STB enable */
578 aprint_error_dev(sc->sc_dev, "WARNING: "
579 "Disabling dynamic standby mode in EEPROM "
580 "to work around a\n");
581 aprint_normal_dev(sc->sc_dev,
582 "WARNING: hardware bug. You must reset "
583 "the system before using this\n");
584 aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
585 data &= ~0x02;
586 fxp_write_eeprom(sc, &data, 10, 1);
587 aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
588 data);
589 fxp_eeprom_update_cksum(sc);
590 }
591 }
592
593 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
594 /* Due to false positives we make it conditional on setting link1 */
595 fxp_read_eeprom(sc, &data, 3, 1);
596 if ((data & 0x03) != 0x03) {
597 aprint_verbose_dev(sc->sc_dev,
598 "May need receiver lock-up workaround\n");
599 }
600 }
601
602 static void
603 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
604 {
605 uint16_t reg;
606 int x;
607
608 for (x = 1 << (len - 1); x != 0; x >>= 1) {
609 DELAY(40);
610 if (data & x)
611 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
612 else
613 reg = FXP_EEPROM_EECS;
614 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
615 DELAY(40);
616 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
617 reg | FXP_EEPROM_EESK);
618 DELAY(40);
619 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
620 }
621 DELAY(40);
622 }
623
624 /*
625 * Figure out EEPROM size.
626 *
627 * 559's can have either 64-word or 256-word EEPROMs, the 558
628 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
629 * talks about the existence of 16 to 256 word EEPROMs.
630 *
631 * The only known sizes are 64 and 256, where the 256 version is used
632 * by CardBus cards to store CIS information.
633 *
634 * The address is shifted in msb-to-lsb, and after the last
635 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
636 * after which follows the actual data. We try to detect this zero, by
637 * probing the data-out bit in the EEPROM control register just after
638 * having shifted in a bit. If the bit is zero, we assume we've
639 * shifted enough address bits. The data-out should be tri-state,
640 * before this, which should translate to a logical one.
641 *
642 * Other ways to do this would be to try to read a register with known
643 * contents with a varying number of address bits, but no such
644 * register seem to be available. The high bits of register 10 are 01
645 * on the 558 and 559, but apparently not on the 557.
646 *
647 * The Linux driver computes a checksum on the EEPROM data, but the
648 * value of this checksum is not very well documented.
649 */
650
651 void
652 fxp_autosize_eeprom(struct fxp_softc *sc)
653 {
654 int x;
655
656 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
657 DELAY(40);
658
659 /* Shift in read opcode. */
660 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
661
662 /*
663 * Shift in address, wait for the dummy zero following a correct
664 * address shift.
665 */
666 for (x = 1; x <= 8; x++) {
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
668 DELAY(40);
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
670 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
671 DELAY(40);
672 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
673 FXP_EEPROM_EEDO) == 0)
674 break;
675 DELAY(40);
676 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
677 DELAY(40);
678 }
679 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
680 DELAY(40);
681 if (x != 6 && x != 8) {
682 #ifdef DEBUG
683 printf("%s: strange EEPROM size (%d)\n",
684 device_xname(sc->sc_dev), 1 << x);
685 #endif
686 } else
687 sc->sc_eeprom_size = x;
688 }
689
690 /*
691 * Read from the serial EEPROM. Basically, you manually shift in
692 * the read opcode (one bit at a time) and then shift in the address,
693 * and then you shift out the data (all of this one bit at a time).
694 * The word size is 16 bits, so you have to provide the address for
695 * every 16 bits of data.
696 */
697 void
698 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
699 {
700 uint16_t reg;
701 int i, x;
702
703 for (i = 0; i < words; i++) {
704 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
705
706 /* Shift in read opcode. */
707 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
708
709 /* Shift in address. */
710 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
711
712 reg = FXP_EEPROM_EECS;
713 data[i] = 0;
714
715 /* Shift out data. */
716 for (x = 16; x > 0; x--) {
717 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
718 reg | FXP_EEPROM_EESK);
719 DELAY(40);
720 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
721 FXP_EEPROM_EEDO)
722 data[i] |= (1 << (x - 1));
723 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
724 DELAY(40);
725 }
726 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
727 DELAY(40);
728 }
729 }
730
731 /*
732 * Write data to the serial EEPROM.
733 */
734 void
735 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
736 {
737 int i, j;
738
739 for (i = 0; i < words; i++) {
740 /* Erase/write enable. */
741 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
742 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
743 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
744 sc->sc_eeprom_size);
745 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
746 DELAY(4);
747
748 /* Shift in write opcode, address, data. */
749 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
750 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
751 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
752 fxp_eeprom_shiftin(sc, data[i], 16);
753 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
754 DELAY(4);
755
756 /* Wait for the EEPROM to finish up. */
757 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
758 DELAY(4);
759 for (j = 0; j < 1000; j++) {
760 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
761 FXP_EEPROM_EEDO)
762 break;
763 DELAY(50);
764 }
765 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
766 DELAY(4);
767
768 /* Erase/write disable. */
769 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
770 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
771 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
772 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
773 DELAY(4);
774 }
775 }
776
777 /*
778 * Update the checksum of the EEPROM.
779 */
780 void
781 fxp_eeprom_update_cksum(struct fxp_softc *sc)
782 {
783 int i;
784 uint16_t data, cksum;
785
786 cksum = 0;
787 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
788 fxp_read_eeprom(sc, &data, i, 1);
789 cksum += data;
790 }
791 i = (1 << sc->sc_eeprom_size) - 1;
792 cksum = 0xbaba - cksum;
793 fxp_read_eeprom(sc, &data, i, 1);
794 fxp_write_eeprom(sc, &cksum, i, 1);
795 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
796 device_xname(sc->sc_dev), i, data, cksum);
797 }
798
799 /*
800 * Start packet transmission on the interface.
801 */
802 void
803 fxp_start(struct ifnet *ifp)
804 {
805 struct fxp_softc *sc = ifp->if_softc;
806 struct mbuf *m0, *m;
807 struct fxp_txdesc *txd;
808 struct fxp_txsoft *txs;
809 bus_dmamap_t dmamap;
810 int error, lasttx, nexttx, opending, seg, nsegs, len;
811
812 /*
813 * If we want a re-init, bail out now.
814 */
815 if (sc->sc_flags & FXPF_WANTINIT) {
816 ifp->if_flags |= IFF_OACTIVE;
817 return;
818 }
819
820 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
821 return;
822
823 /*
824 * Remember the previous txpending and the current lasttx.
825 */
826 opending = sc->sc_txpending;
827 lasttx = sc->sc_txlast;
828
829 /*
830 * Loop through the send queue, setting up transmit descriptors
831 * until we drain the queue, or use up all available transmit
832 * descriptors.
833 */
834 for (;;) {
835 struct fxp_tbd *tbdp;
836 int csum_flags;
837
838 /*
839 * Grab a packet off the queue.
840 */
841 IFQ_POLL(&ifp->if_snd, m0);
842 if (m0 == NULL)
843 break;
844 m = NULL;
845
846 if (sc->sc_txpending == FXP_NTXCB - 1) {
847 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
848 break;
849 }
850
851 /*
852 * Get the next available transmit descriptor.
853 */
854 nexttx = FXP_NEXTTX(sc->sc_txlast);
855 txd = FXP_CDTX(sc, nexttx);
856 txs = FXP_DSTX(sc, nexttx);
857 dmamap = txs->txs_dmamap;
858
859 /*
860 * Load the DMA map. If this fails, the packet either
861 * didn't fit in the allotted number of frags, or we were
862 * short on resources. In this case, we'll copy and try
863 * again.
864 */
865 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
866 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
867 MGETHDR(m, M_DONTWAIT, MT_DATA);
868 if (m == NULL) {
869 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
870 device_xname(sc->sc_dev));
871 break;
872 }
873 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
874 if (m0->m_pkthdr.len > MHLEN) {
875 MCLGET(m, M_DONTWAIT);
876 if ((m->m_flags & M_EXT) == 0) {
877 log(LOG_ERR, "%s: unable to allocate "
878 "Tx cluster\n",
879 device_xname(sc->sc_dev));
880 m_freem(m);
881 break;
882 }
883 }
884 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
885 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
886 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
887 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
888 if (error) {
889 log(LOG_ERR, "%s: unable to load Tx buffer, "
890 "error = %d\n",
891 device_xname(sc->sc_dev), error);
892 break;
893 }
894 }
895
896 IFQ_DEQUEUE(&ifp->if_snd, m0);
897 csum_flags = m0->m_pkthdr.csum_flags;
898 if (m != NULL) {
899 m_freem(m0);
900 m0 = m;
901 }
902
903 /* Initialize the fraglist. */
904 tbdp = txd->txd_tbd;
905 len = m0->m_pkthdr.len;
906 nsegs = dmamap->dm_nsegs;
907 if (sc->sc_flags & FXPF_EXT_RFA)
908 tbdp++;
909 for (seg = 0; seg < nsegs; seg++) {
910 tbdp[seg].tb_addr =
911 htole32(dmamap->dm_segs[seg].ds_addr);
912 tbdp[seg].tb_size =
913 htole32(dmamap->dm_segs[seg].ds_len);
914 }
915 if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
916 (csum_flags & M_CSUM_IPv4) != 0)) {
917 /*
918 * Pad short packets to avoid ip4csum-tx bug.
919 *
920 * XXX Should we still consider if such short
921 * (36 bytes or less) packets might already
922 * occupy FXP_IPCB_NTXSEG (15) fragments here?
923 */
924 KASSERT(nsegs < FXP_IPCB_NTXSEG);
925 nsegs++;
926 tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
927 tbdp[seg].tb_size =
928 htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
929 }
930
931 /* Sync the DMA map. */
932 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
933 BUS_DMASYNC_PREWRITE);
934
935 /*
936 * Store a pointer to the packet so we can free it later.
937 */
938 txs->txs_mbuf = m0;
939
940 /*
941 * Initialize the transmit descriptor.
942 */
943 /* BIG_ENDIAN: no need to swap to store 0 */
944 txd->txd_txcb.cb_status = 0;
945 txd->txd_txcb.cb_command =
946 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
947 txd->txd_txcb.tx_threshold = tx_threshold;
948 txd->txd_txcb.tbd_number = nsegs;
949
950 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
951 if (sc->sc_flags & FXPF_EXT_RFA) {
952 struct m_tag *vtag;
953 struct fxp_ipcb *ipcb;
954 /*
955 * Deal with TCP/IP checksum offload. Note that
956 * in order for TCP checksum offload to work,
957 * the pseudo header checksum must have already
958 * been computed and stored in the checksum field
959 * in the TCP header. The stack should have
960 * already done this for us.
961 */
962 ipcb = &txd->txd_u.txdu_ipcb;
963 memset(ipcb, 0, sizeof(*ipcb));
964 /*
965 * always do hardware parsing.
966 */
967 ipcb->ipcb_ip_activation_high =
968 FXP_IPCB_HARDWAREPARSING_ENABLE;
969 /*
970 * ip checksum offloading.
971 */
972 if (csum_flags & M_CSUM_IPv4) {
973 ipcb->ipcb_ip_schedule |=
974 FXP_IPCB_IP_CHECKSUM_ENABLE;
975 }
976 /*
977 * TCP/UDP checksum offloading.
978 */
979 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
980 ipcb->ipcb_ip_schedule |=
981 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
982 }
983
984 /*
985 * request VLAN tag insertion if needed.
986 */
987 vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
988 if (vtag) {
989 ipcb->ipcb_vlan_id =
990 htobe16(*(u_int *)(vtag + 1));
991 ipcb->ipcb_ip_activation_high |=
992 FXP_IPCB_INSERTVLAN_ENABLE;
993 }
994 } else {
995 KASSERT((csum_flags &
996 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
997 }
998
999 FXP_CDTXSYNC(sc, nexttx,
1000 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1001
1002 /* Advance the tx pointer. */
1003 sc->sc_txpending++;
1004 sc->sc_txlast = nexttx;
1005
1006 /*
1007 * Pass packet to bpf if there is a listener.
1008 */
1009 bpf_mtap(ifp, m0);
1010 }
1011
1012 if (sc->sc_txpending == FXP_NTXCB - 1) {
1013 /* No more slots; notify upper layer. */
1014 ifp->if_flags |= IFF_OACTIVE;
1015 }
1016
1017 if (sc->sc_txpending != opending) {
1018 /*
1019 * We enqueued packets. If the transmitter was idle,
1020 * reset the txdirty pointer.
1021 */
1022 if (opending == 0)
1023 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1024
1025 /*
1026 * Cause the chip to interrupt and suspend command
1027 * processing once the last packet we've enqueued
1028 * has been transmitted.
1029 *
1030 * To avoid a race between updating status bits
1031 * by the fxp chip and clearing command bits
1032 * by this function on machines which don't have
1033 * atomic methods to clear/set bits in memory
1034 * smaller than 32bits (both cb_status and cb_command
1035 * members are uint16_t and in the same 32bit word),
1036 * we have to prepare a dummy TX descriptor which has
1037 * NOP command and just causes a TX completion interrupt.
1038 */
1039 sc->sc_txpending++;
1040 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1041 txd = FXP_CDTX(sc, sc->sc_txlast);
1042 /* BIG_ENDIAN: no need to swap to store 0 */
1043 txd->txd_txcb.cb_status = 0;
1044 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1045 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1046 FXP_CDTXSYNC(sc, sc->sc_txlast,
1047 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1048
1049 /*
1050 * The entire packet chain is set up. Clear the suspend bit
1051 * on the command prior to the first packet we set up.
1052 */
1053 FXP_CDTXSYNC(sc, lasttx,
1054 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1055 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1056 htole16(~FXP_CB_COMMAND_S);
1057 FXP_CDTXSYNC(sc, lasttx,
1058 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1059
1060 /*
1061 * Issue a Resume command in case the chip was suspended.
1062 */
1063 fxp_scb_wait(sc);
1064 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1065
1066 /* Set a watchdog timer in case the chip flakes out. */
1067 ifp->if_timer = 5;
1068 }
1069 }
1070
1071 /*
1072 * Process interface interrupts.
1073 */
1074 int
1075 fxp_intr(void *arg)
1076 {
1077 struct fxp_softc *sc = arg;
1078 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1079 bus_dmamap_t rxmap;
1080 int claimed = 0, rnr;
1081 uint8_t statack;
1082
1083 if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1084 return (0);
1085 /*
1086 * If the interface isn't running, don't try to
1087 * service the interrupt.. just ack it and bail.
1088 */
1089 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1090 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1091 if (statack) {
1092 claimed = 1;
1093 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1094 }
1095 return (claimed);
1096 }
1097
1098 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1099 claimed = 1;
1100
1101 /*
1102 * First ACK all the interrupts in this pass.
1103 */
1104 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1105
1106 /*
1107 * Process receiver interrupts. If a no-resource (RNR)
1108 * condition exists, get whatever packets we can and
1109 * re-start the receiver.
1110 */
1111 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1112 1 : 0;
1113 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1114 FXP_SCB_STATACK_SWI)) {
1115 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1116 rnr |= fxp_rxintr(sc);
1117 }
1118
1119 /*
1120 * Free any finished transmit mbuf chains.
1121 */
1122 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1123 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1124 fxp_txintr(sc);
1125
1126 /*
1127 * Try to get more packets going.
1128 */
1129 fxp_start(ifp);
1130
1131 if (sc->sc_txpending == 0) {
1132 /*
1133 * Tell them that they can re-init now.
1134 */
1135 if (sc->sc_flags & FXPF_WANTINIT)
1136 wakeup(sc);
1137 }
1138 }
1139
1140 if (rnr) {
1141 fxp_scb_wait(sc);
1142 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1143 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1144 fxp_scb_wait(sc);
1145 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1146 rxmap->dm_segs[0].ds_addr +
1147 RFA_ALIGNMENT_FUDGE);
1148 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1149 }
1150 }
1151
1152 #if NRND > 0
1153 if (claimed)
1154 rnd_add_uint32(&sc->rnd_source, statack);
1155 #endif
1156 return (claimed);
1157 }
1158
1159 /*
1160 * Handle transmit completion interrupts.
1161 */
1162 void
1163 fxp_txintr(struct fxp_softc *sc)
1164 {
1165 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1166 struct fxp_txdesc *txd;
1167 struct fxp_txsoft *txs;
1168 int i;
1169 uint16_t txstat;
1170
1171 ifp->if_flags &= ~IFF_OACTIVE;
1172 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1173 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1174 txd = FXP_CDTX(sc, i);
1175 txs = FXP_DSTX(sc, i);
1176
1177 FXP_CDTXSYNC(sc, i,
1178 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1179
1180 /* skip dummy NOP TX descriptor */
1181 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1182 == FXP_CB_COMMAND_NOP)
1183 continue;
1184
1185 txstat = le16toh(txd->txd_txcb.cb_status);
1186
1187 if ((txstat & FXP_CB_STATUS_C) == 0)
1188 break;
1189
1190 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1191 0, txs->txs_dmamap->dm_mapsize,
1192 BUS_DMASYNC_POSTWRITE);
1193 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1194 m_freem(txs->txs_mbuf);
1195 txs->txs_mbuf = NULL;
1196 }
1197
1198 /* Update the dirty transmit buffer pointer. */
1199 sc->sc_txdirty = i;
1200
1201 /*
1202 * Cancel the watchdog timer if there are no pending
1203 * transmissions.
1204 */
1205 if (sc->sc_txpending == 0)
1206 ifp->if_timer = 0;
1207 }
1208
1209 /*
1210 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1211 */
1212
1213 void
1214 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1215 u_int len)
1216 {
1217 uint32_t csum_data;
1218 int csum_flags;
1219
1220 /*
1221 * check H/W Checksumming.
1222 */
1223
1224 csum_flags = 0;
1225 csum_data = 0;
1226
1227 if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1228 uint8_t rxparsestat;
1229 uint8_t csum_stat;
1230
1231 csum_stat = rfa->cksum_stat;
1232 rxparsestat = rfa->rx_parse_stat;
1233 if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1234 goto out;
1235
1236 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1237 csum_flags = M_CSUM_IPv4;
1238 if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1239 csum_flags |= M_CSUM_IPv4_BAD;
1240 }
1241
1242 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1243 csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
1244 if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1245 csum_flags |= M_CSUM_TCP_UDP_BAD;
1246 }
1247
1248 } else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1249 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1250 struct ether_header *eh;
1251 struct ip *ip;
1252 struct udphdr *uh;
1253 u_int hlen, pktlen;
1254
1255 if (len < ETHER_HDR_LEN + sizeof(struct ip))
1256 goto out;
1257 pktlen = len - ETHER_HDR_LEN;
1258 eh = mtod(m, struct ether_header *);
1259 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1260 goto out;
1261 ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1262 if (ip->ip_v != IPVERSION)
1263 goto out;
1264
1265 hlen = ip->ip_hl << 2;
1266 if (hlen < sizeof(struct ip))
1267 goto out;
1268
1269 /*
1270 * Bail if too short, has random trailing garbage, truncated,
1271 * fragment, or has ethernet pad.
1272 */
1273 if (ntohs(ip->ip_len) < hlen ||
1274 ntohs(ip->ip_len) != pktlen ||
1275 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1276 goto out;
1277
1278 switch (ip->ip_p) {
1279 case IPPROTO_TCP:
1280 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1281 pktlen < (hlen + sizeof(struct tcphdr)))
1282 goto out;
1283 csum_flags =
1284 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1285 break;
1286 case IPPROTO_UDP:
1287 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1288 pktlen < (hlen + sizeof(struct udphdr)))
1289 goto out;
1290 uh = (struct udphdr *)((uint8_t *)ip + hlen);
1291 if (uh->uh_sum == 0)
1292 goto out; /* no checksum */
1293 csum_flags =
1294 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1295 break;
1296 default:
1297 goto out;
1298 }
1299
1300 /* Extract computed checksum. */
1301 csum_data = be16dec(mtod(m, uint8_t *) + len);
1302
1303 /*
1304 * The computed checksum includes IP headers,
1305 * so we have to deduct them.
1306 */
1307 #if 0
1308 /*
1309 * But in TCP/UDP layer we can assume the IP header is valid,
1310 * i.e. a sum of the whole IP header should be 0xffff,
1311 * so we don't have to bother to deduct it.
1312 */
1313 if (hlen > 0) {
1314 uint32_t hsum;
1315 const uint16_t *iphdr;
1316 hsum = 0;
1317 iphdr = (uint16_t *)ip;
1318
1319 while (hlen > 1) {
1320 hsum += ntohs(*iphdr++);
1321 hlen -= sizeof(uint16_t);
1322 }
1323 while (hsum >> 16)
1324 hsum = (hsum >> 16) + (hsum & 0xffff);
1325
1326 csum_data += (uint16_t)~hsum;
1327
1328 while (csum_data >> 16)
1329 csum_data =
1330 (csum_data >> 16) + (csum_data & 0xffff);
1331 }
1332 #endif
1333 }
1334 out:
1335 m->m_pkthdr.csum_flags = csum_flags;
1336 m->m_pkthdr.csum_data = csum_data;
1337 }
1338
1339 /*
1340 * Handle receive interrupts.
1341 */
1342 int
1343 fxp_rxintr(struct fxp_softc *sc)
1344 {
1345 struct ethercom *ec = &sc->sc_ethercom;
1346 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1347 struct mbuf *m, *m0;
1348 bus_dmamap_t rxmap;
1349 struct fxp_rfa *rfa;
1350 int rnr;
1351 uint16_t len, rxstat;
1352
1353 rnr = 0;
1354
1355 for (;;) {
1356 m = sc->sc_rxq.ifq_head;
1357 rfa = FXP_MTORFA(m);
1358 rxmap = M_GETCTX(m, bus_dmamap_t);
1359
1360 FXP_RFASYNC(sc, m,
1361 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1362
1363 rxstat = le16toh(rfa->rfa_status);
1364
1365 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1366 rnr = 1;
1367
1368 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1369 /*
1370 * We have processed all of the
1371 * receive buffers.
1372 */
1373 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1374 return rnr;
1375 }
1376
1377 IF_DEQUEUE(&sc->sc_rxq, m);
1378
1379 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1380
1381 len = le16toh(rfa->actual_size) &
1382 (m->m_ext.ext_size - 1);
1383 if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1384 /* Adjust for appended checksum bytes. */
1385 len -= sizeof(uint16_t);
1386 }
1387
1388 if (len < sizeof(struct ether_header)) {
1389 /*
1390 * Runt packet; drop it now.
1391 */
1392 FXP_INIT_RFABUF(sc, m);
1393 continue;
1394 }
1395
1396 /*
1397 * If support for 802.1Q VLAN sized frames is
1398 * enabled, we need to do some additional error
1399 * checking (as we are saving bad frames, in
1400 * order to receive the larger ones).
1401 */
1402 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1403 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1404 FXP_RFA_STATUS_RNR|
1405 FXP_RFA_STATUS_ALIGN|
1406 FXP_RFA_STATUS_CRC)) != 0) {
1407 FXP_INIT_RFABUF(sc, m);
1408 continue;
1409 }
1410
1411 /*
1412 * check VLAN tag stripping.
1413 */
1414 if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1415 (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
1416 struct m_tag *vtag;
1417
1418 vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1419 M_NOWAIT);
1420 if (vtag == NULL)
1421 goto dropit;
1422 *(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
1423 m_tag_prepend(m, vtag);
1424 }
1425
1426 /* Do checksum checking. */
1427 if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
1428 fxp_rx_hwcksum(sc, m, rfa, len);
1429
1430 /*
1431 * If the packet is small enough to fit in a
1432 * single header mbuf, allocate one and copy
1433 * the data into it. This greatly reduces
1434 * memory consumption when we receive lots
1435 * of small packets.
1436 *
1437 * Otherwise, we add a new buffer to the receive
1438 * chain. If this fails, we drop the packet and
1439 * recycle the old buffer.
1440 */
1441 if (fxp_copy_small != 0 && len <= MHLEN) {
1442 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1443 if (m0 == NULL)
1444 goto dropit;
1445 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1446 memcpy(mtod(m0, void *),
1447 mtod(m, void *), len);
1448 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1449 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1450 FXP_INIT_RFABUF(sc, m);
1451 m = m0;
1452 } else {
1453 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1454 dropit:
1455 ifp->if_ierrors++;
1456 FXP_INIT_RFABUF(sc, m);
1457 continue;
1458 }
1459 }
1460
1461 m->m_pkthdr.rcvif = ifp;
1462 m->m_pkthdr.len = m->m_len = len;
1463
1464 /*
1465 * Pass this up to any BPF listeners, but only
1466 * pass it up the stack if it's for us.
1467 */
1468 bpf_mtap(ifp, m);
1469
1470 /* Pass it on. */
1471 (*ifp->if_input)(ifp, m);
1472 }
1473 }
1474
1475 /*
1476 * Update packet in/out/collision statistics. The i82557 doesn't
1477 * allow you to access these counters without doing a fairly
1478 * expensive DMA to get _all_ of the statistics it maintains, so
1479 * we do this operation here only once per second. The statistics
1480 * counters in the kernel are updated from the previous dump-stats
1481 * DMA and then a new dump-stats DMA is started. The on-chip
1482 * counters are zeroed when the DMA completes. If we can't start
1483 * the DMA immediately, we don't wait - we just prepare to read
1484 * them again next time.
1485 */
1486 void
1487 fxp_tick(void *arg)
1488 {
1489 struct fxp_softc *sc = arg;
1490 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1491 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1492 int s;
1493
1494 if (!device_is_active(sc->sc_dev))
1495 return;
1496
1497 s = splnet();
1498
1499 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1500
1501 ifp->if_opackets += le32toh(sp->tx_good);
1502 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1503 if (sp->rx_good) {
1504 ifp->if_ipackets += le32toh(sp->rx_good);
1505 sc->sc_rxidle = 0;
1506 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1507 sc->sc_rxidle++;
1508 }
1509 ifp->if_ierrors +=
1510 le32toh(sp->rx_crc_errors) +
1511 le32toh(sp->rx_alignment_errors) +
1512 le32toh(sp->rx_rnr_errors) +
1513 le32toh(sp->rx_overrun_errors);
1514 /*
1515 * If any transmit underruns occurred, bump up the transmit
1516 * threshold by another 512 bytes (64 * 8).
1517 */
1518 if (sp->tx_underruns) {
1519 ifp->if_oerrors += le32toh(sp->tx_underruns);
1520 if (tx_threshold < 192)
1521 tx_threshold += 64;
1522 }
1523 #ifdef FXP_EVENT_COUNTERS
1524 if (sc->sc_flags & FXPF_FC) {
1525 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1526 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1527 }
1528 #endif
1529
1530 /*
1531 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1532 * then assume the receiver has locked up and attempt to clear
1533 * the condition by reprogramming the multicast filter (actually,
1534 * resetting the interface). This is a work-around for a bug in
1535 * the 82557 where the receiver locks up if it gets certain types
1536 * of garbage in the synchronization bits prior to the packet header.
1537 * This bug is supposed to only occur in 10Mbps mode, but has been
1538 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1539 * speed transition).
1540 */
1541 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1542 (void) fxp_init(ifp);
1543 splx(s);
1544 return;
1545 }
1546 /*
1547 * If there is no pending command, start another stats
1548 * dump. Otherwise punt for now.
1549 */
1550 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1551 /*
1552 * Start another stats dump.
1553 */
1554 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1555 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1556 } else {
1557 /*
1558 * A previous command is still waiting to be accepted.
1559 * Just zero our copy of the stats and wait for the
1560 * next timer event to update them.
1561 */
1562 /* BIG_ENDIAN: no swap required to store 0 */
1563 sp->tx_good = 0;
1564 sp->tx_underruns = 0;
1565 sp->tx_total_collisions = 0;
1566
1567 sp->rx_good = 0;
1568 sp->rx_crc_errors = 0;
1569 sp->rx_alignment_errors = 0;
1570 sp->rx_rnr_errors = 0;
1571 sp->rx_overrun_errors = 0;
1572 if (sc->sc_flags & FXPF_FC) {
1573 sp->tx_pauseframes = 0;
1574 sp->rx_pauseframes = 0;
1575 }
1576 }
1577
1578 if (sc->sc_flags & FXPF_MII) {
1579 /* Tick the MII clock. */
1580 mii_tick(&sc->sc_mii);
1581 }
1582
1583 splx(s);
1584
1585 /*
1586 * Schedule another timeout one second from now.
1587 */
1588 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1589 }
1590
1591 /*
1592 * Drain the receive queue.
1593 */
1594 void
1595 fxp_rxdrain(struct fxp_softc *sc)
1596 {
1597 bus_dmamap_t rxmap;
1598 struct mbuf *m;
1599
1600 for (;;) {
1601 IF_DEQUEUE(&sc->sc_rxq, m);
1602 if (m == NULL)
1603 break;
1604 rxmap = M_GETCTX(m, bus_dmamap_t);
1605 bus_dmamap_unload(sc->sc_dmat, rxmap);
1606 FXP_RXMAP_PUT(sc, rxmap);
1607 m_freem(m);
1608 }
1609 }
1610
1611 /*
1612 * Stop the interface. Cancels the statistics updater and resets
1613 * the interface.
1614 */
1615 void
1616 fxp_stop(struct ifnet *ifp, int disable)
1617 {
1618 struct fxp_softc *sc = ifp->if_softc;
1619 struct fxp_txsoft *txs;
1620 int i;
1621
1622 /*
1623 * Turn down interface (done early to avoid bad interactions
1624 * between panics, shutdown hooks, and the watchdog timer)
1625 */
1626 ifp->if_timer = 0;
1627 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1628
1629 /*
1630 * Cancel stats updater.
1631 */
1632 callout_stop(&sc->sc_callout);
1633 if (sc->sc_flags & FXPF_MII) {
1634 /* Down the MII. */
1635 mii_down(&sc->sc_mii);
1636 }
1637
1638 /*
1639 * Issue software reset. This unloads any microcode that
1640 * might already be loaded.
1641 */
1642 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1643 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1644 DELAY(50);
1645
1646 /*
1647 * Release any xmit buffers.
1648 */
1649 for (i = 0; i < FXP_NTXCB; i++) {
1650 txs = FXP_DSTX(sc, i);
1651 if (txs->txs_mbuf != NULL) {
1652 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1653 m_freem(txs->txs_mbuf);
1654 txs->txs_mbuf = NULL;
1655 }
1656 }
1657 sc->sc_txpending = 0;
1658
1659 if (disable) {
1660 fxp_rxdrain(sc);
1661 fxp_disable(sc);
1662 }
1663
1664 }
1665
1666 /*
1667 * Watchdog/transmission transmit timeout handler. Called when a
1668 * transmission is started on the interface, but no interrupt is
1669 * received before the timeout. This usually indicates that the
1670 * card has wedged for some reason.
1671 */
1672 void
1673 fxp_watchdog(struct ifnet *ifp)
1674 {
1675 struct fxp_softc *sc = ifp->if_softc;
1676
1677 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1678 ifp->if_oerrors++;
1679
1680 (void) fxp_init(ifp);
1681 }
1682
1683 /*
1684 * Initialize the interface. Must be called at splnet().
1685 */
1686 int
1687 fxp_init(struct ifnet *ifp)
1688 {
1689 struct fxp_softc *sc = ifp->if_softc;
1690 struct fxp_cb_config *cbp;
1691 struct fxp_cb_ias *cb_ias;
1692 struct fxp_txdesc *txd;
1693 bus_dmamap_t rxmap;
1694 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1695 uint16_t status;
1696
1697 if ((error = fxp_enable(sc)) != 0)
1698 goto out;
1699
1700 /*
1701 * Cancel any pending I/O
1702 */
1703 fxp_stop(ifp, 0);
1704
1705 /*
1706 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1707 * flag, and this prevents the MII from detaching resulting in
1708 * a panic. The flags field should perhaps be split in runtime
1709 * flags and more static information. For now, just clear the
1710 * only other flag set.
1711 */
1712
1713 sc->sc_flags &= ~FXPF_WANTINIT;
1714
1715 /*
1716 * Initialize base of CBL and RFA memory. Loading with zero
1717 * sets it up for regular linear addressing.
1718 */
1719 fxp_scb_wait(sc);
1720 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1721 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1722
1723 fxp_scb_wait(sc);
1724 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1725
1726 /*
1727 * Initialize the multicast filter. Do this now, since we might
1728 * have to setup the config block differently.
1729 */
1730 fxp_mc_setup(sc);
1731
1732 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1733 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1734
1735 /*
1736 * In order to support receiving 802.1Q VLAN frames, we have to
1737 * enable "save bad frames", since they are 4 bytes larger than
1738 * the normal Ethernet maximum frame length. On i82558 and later,
1739 * we have a better mechanism for this.
1740 */
1741 save_bf = 0;
1742 lrxen = 0;
1743 vlan_drop = 0;
1744 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1745 if (sc->sc_rev < FXP_REV_82558_A4)
1746 save_bf = 1;
1747 else
1748 lrxen = 1;
1749 if (sc->sc_rev >= FXP_REV_82550)
1750 vlan_drop = 1;
1751 }
1752
1753 /*
1754 * Initialize base of dump-stats buffer.
1755 */
1756 fxp_scb_wait(sc);
1757 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1758 sc->sc_cddma + FXP_CDSTATSOFF);
1759 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1760 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1761
1762 cbp = &sc->sc_control_data->fcd_configcb;
1763 memset(cbp, 0, sizeof(struct fxp_cb_config));
1764
1765 /*
1766 * Load microcode for this controller.
1767 */
1768 fxp_load_ucode(sc);
1769
1770 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1771 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1772 else
1773 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1774
1775 /*
1776 * This copy is kind of disgusting, but there are a bunch of must be
1777 * zero and must be one bits in this structure and this is the easiest
1778 * way to initialize them all to proper values.
1779 */
1780 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1781
1782 /* BIG_ENDIAN: no need to swap to store 0 */
1783 cbp->cb_status = 0;
1784 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1785 FXP_CB_COMMAND_EL);
1786 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1787 cbp->link_addr = 0xffffffff; /* (no) next command */
1788 /* bytes in config block */
1789 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1790 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1791 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1792 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1793 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1794 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1795 cbp->type_enable = 0; /* actually reserved */
1796 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1797 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1798 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1799 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1800 cbp->dma_mbce = 0; /* (disable) dma max counters */
1801 cbp->late_scb = 0; /* (don't) defer SCB update */
1802 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1803 cbp->ci_int = 1; /* interrupt on CU idle */
1804 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1805 cbp->ext_stats_dis = 1; /* disable extended counters */
1806 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1807 cbp->save_bf = save_bf;/* save bad frames */
1808 cbp->disc_short_rx = !prm; /* discard short packets */
1809 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1810 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1811 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1812 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1813 /* interface mode */
1814 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1815 cbp->csma_dis = 0; /* (don't) disable link */
1816 cbp->tcp_udp_cksum = (sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1817 /* (don't) enable RX checksum */
1818 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1819 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1820 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1821 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1822 cbp->nsai = 1; /* (don't) disable source addr insert */
1823 cbp->preamble_length = 2; /* (7 byte) preamble */
1824 cbp->loopback = 0; /* (don't) loopback */
1825 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1826 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1827 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1828 cbp->promiscuous = prm; /* promiscuous mode */
1829 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1830 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1831 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1832 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1833 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1834 cbp->stripping = !prm; /* truncate rx packet to byte count */
1835 cbp->padding = 1; /* (do) pad short tx packets */
1836 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1837 cbp->long_rx_en = lrxen; /* long packet receive enable */
1838 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1839 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1840 /* must set wake_en in PMCSR also */
1841 cbp->force_fdx = 0; /* (don't) force full duplex */
1842 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1843 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1844 cbp->mc_all = allm; /* accept all multicasts */
1845 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1846 cbp->vlan_drop_en = vlan_drop;
1847
1848 if (!(sc->sc_flags & FXPF_FC)) {
1849 /*
1850 * The i82557 has no hardware flow control, the values
1851 * here are the defaults for the chip.
1852 */
1853 cbp->fc_delay_lsb = 0;
1854 cbp->fc_delay_msb = 0x40;
1855 cbp->pri_fc_thresh = 3;
1856 cbp->tx_fc_dis = 0;
1857 cbp->rx_fc_restop = 0;
1858 cbp->rx_fc_restart = 0;
1859 cbp->fc_filter = 0;
1860 cbp->pri_fc_loc = 1;
1861 } else {
1862 cbp->fc_delay_lsb = 0x1f;
1863 cbp->fc_delay_msb = 0x01;
1864 cbp->pri_fc_thresh = 3;
1865 cbp->tx_fc_dis = 0; /* enable transmit FC */
1866 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1867 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1868 cbp->fc_filter = !prm; /* drop FC frames to host */
1869 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1870 cbp->ext_stats_dis = 0; /* enable extended stats */
1871 }
1872
1873 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1874
1875 /*
1876 * Start the config command/DMA.
1877 */
1878 fxp_scb_wait(sc);
1879 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1880 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1881 /* ...and wait for it to complete. */
1882 for (i = 1000; i > 0; i--) {
1883 FXP_CDCONFIGSYNC(sc,
1884 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1885 status = le16toh(cbp->cb_status);
1886 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1887 if ((status & FXP_CB_STATUS_C) != 0)
1888 break;
1889 DELAY(1);
1890 }
1891 if (i == 0) {
1892 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1893 device_xname(sc->sc_dev), __LINE__);
1894 return (ETIMEDOUT);
1895 }
1896
1897 /*
1898 * Initialize the station address.
1899 */
1900 cb_ias = &sc->sc_control_data->fcd_iascb;
1901 /* BIG_ENDIAN: no need to swap to store 0 */
1902 cb_ias->cb_status = 0;
1903 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1904 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1905 cb_ias->link_addr = 0xffffffff;
1906 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1907
1908 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1909
1910 /*
1911 * Start the IAS (Individual Address Setup) command/DMA.
1912 */
1913 fxp_scb_wait(sc);
1914 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1915 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1916 /* ...and wait for it to complete. */
1917 for (i = 1000; i > 0; i++) {
1918 FXP_CDIASSYNC(sc,
1919 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1920 status = le16toh(cb_ias->cb_status);
1921 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1922 if ((status & FXP_CB_STATUS_C) != 0)
1923 break;
1924 DELAY(1);
1925 }
1926 if (i == 0) {
1927 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1928 device_xname(sc->sc_dev), __LINE__);
1929 return (ETIMEDOUT);
1930 }
1931
1932 /*
1933 * Initialize the transmit descriptor ring. txlast is initialized
1934 * to the end of the list so that it will wrap around to the first
1935 * descriptor when the first packet is transmitted.
1936 */
1937 for (i = 0; i < FXP_NTXCB; i++) {
1938 txd = FXP_CDTX(sc, i);
1939 memset(txd, 0, sizeof(*txd));
1940 txd->txd_txcb.cb_command =
1941 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1942 txd->txd_txcb.link_addr =
1943 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1944 if (sc->sc_flags & FXPF_EXT_TXCB)
1945 txd->txd_txcb.tbd_array_addr =
1946 htole32(FXP_CDTBDADDR(sc, i) +
1947 (2 * sizeof(struct fxp_tbd)));
1948 else
1949 txd->txd_txcb.tbd_array_addr =
1950 htole32(FXP_CDTBDADDR(sc, i));
1951 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1952 }
1953 sc->sc_txpending = 0;
1954 sc->sc_txdirty = 0;
1955 sc->sc_txlast = FXP_NTXCB - 1;
1956
1957 /*
1958 * Initialize the receive buffer list.
1959 */
1960 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1961 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1962 rxmap = FXP_RXMAP_GET(sc);
1963 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1964 log(LOG_ERR, "%s: unable to allocate or map rx "
1965 "buffer %d, error = %d\n",
1966 device_xname(sc->sc_dev),
1967 sc->sc_rxq.ifq_len, error);
1968 /*
1969 * XXX Should attempt to run with fewer receive
1970 * XXX buffers instead of just failing.
1971 */
1972 FXP_RXMAP_PUT(sc, rxmap);
1973 fxp_rxdrain(sc);
1974 goto out;
1975 }
1976 }
1977 sc->sc_rxidle = 0;
1978
1979 /*
1980 * Give the transmit ring to the chip. We do this by pointing
1981 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1982 * issuing a start command. It will execute the NOP and then
1983 * suspend, pointing at the first descriptor.
1984 */
1985 fxp_scb_wait(sc);
1986 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1987 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1988
1989 /*
1990 * Initialize receiver buffer area - RFA.
1991 */
1992 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1993 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1994 fxp_scb_wait(sc);
1995 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1996 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1997 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1998 #endif
1999
2000 if (sc->sc_flags & FXPF_MII) {
2001 /*
2002 * Set current media.
2003 */
2004 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
2005 goto out;
2006 }
2007
2008 /*
2009 * ...all done!
2010 */
2011 ifp->if_flags |= IFF_RUNNING;
2012 ifp->if_flags &= ~IFF_OACTIVE;
2013
2014 /*
2015 * Request a software generated interrupt that will be used to
2016 * (re)start the RU processing. If we direct the chip to start
2017 * receiving from the start of queue now, instead of letting the
2018 * interrupt handler first process all received packets, we run
2019 * the risk of having it overwrite mbuf clusters while they are
2020 * being processed or after they have been returned to the pool.
2021 */
2022 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2023
2024 /*
2025 * Start the one second timer.
2026 */
2027 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
2028
2029 /*
2030 * Attempt to start output on the interface.
2031 */
2032 fxp_start(ifp);
2033
2034 out:
2035 if (error) {
2036 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2037 ifp->if_timer = 0;
2038 log(LOG_ERR, "%s: interface not running\n",
2039 device_xname(sc->sc_dev));
2040 }
2041 return (error);
2042 }
2043
2044 /*
2045 * Notify the world which media we're using.
2046 */
2047 void
2048 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2049 {
2050 struct fxp_softc *sc = ifp->if_softc;
2051
2052 if (sc->sc_enabled == 0) {
2053 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2054 ifmr->ifm_status = 0;
2055 return;
2056 }
2057
2058 ether_mediastatus(ifp, ifmr);
2059 }
2060
2061 int
2062 fxp_80c24_mediachange(struct ifnet *ifp)
2063 {
2064
2065 /* Nothing to do here. */
2066 return (0);
2067 }
2068
2069 void
2070 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2071 {
2072 struct fxp_softc *sc = ifp->if_softc;
2073
2074 /*
2075 * Media is currently-selected media. We cannot determine
2076 * the link status.
2077 */
2078 ifmr->ifm_status = 0;
2079 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2080 }
2081
2082 /*
2083 * Add a buffer to the end of the RFA buffer list.
2084 * Return 0 if successful, error code on failure.
2085 *
2086 * The RFA struct is stuck at the beginning of mbuf cluster and the
2087 * data pointer is fixed up to point just past it.
2088 */
2089 int
2090 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2091 {
2092 struct mbuf *m;
2093 int error;
2094
2095 MGETHDR(m, M_DONTWAIT, MT_DATA);
2096 if (m == NULL)
2097 return (ENOBUFS);
2098
2099 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2100 MCLGET(m, M_DONTWAIT);
2101 if ((m->m_flags & M_EXT) == 0) {
2102 m_freem(m);
2103 return (ENOBUFS);
2104 }
2105
2106 if (unload)
2107 bus_dmamap_unload(sc->sc_dmat, rxmap);
2108
2109 M_SETCTX(m, rxmap);
2110
2111 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2112 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2113 BUS_DMA_READ|BUS_DMA_NOWAIT);
2114 if (error) {
2115 /* XXX XXX XXX */
2116 aprint_error_dev(sc->sc_dev,
2117 "can't load rx DMA map %d, error = %d\n",
2118 sc->sc_rxq.ifq_len, error);
2119 panic("fxp_add_rfabuf");
2120 }
2121
2122 FXP_INIT_RFABUF(sc, m);
2123
2124 return (0);
2125 }
2126
2127 int
2128 fxp_mdi_read(device_t self, int phy, int reg)
2129 {
2130 struct fxp_softc *sc = device_private(self);
2131 int count = 10000;
2132 int value;
2133
2134 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2135 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2136
2137 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2138 0x10000000) == 0 && count--)
2139 DELAY(10);
2140
2141 if (count <= 0)
2142 log(LOG_WARNING,
2143 "%s: fxp_mdi_read: timed out\n", device_xname(self));
2144
2145 return (value & 0xffff);
2146 }
2147
2148 void
2149 fxp_statchg(device_t self)
2150 {
2151
2152 /* Nothing to do. */
2153 }
2154
2155 void
2156 fxp_mdi_write(device_t self, int phy, int reg, int value)
2157 {
2158 struct fxp_softc *sc = device_private(self);
2159 int count = 10000;
2160
2161 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2162 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2163 (value & 0xffff));
2164
2165 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2166 count--)
2167 DELAY(10);
2168
2169 if (count <= 0)
2170 log(LOG_WARNING,
2171 "%s: fxp_mdi_write: timed out\n", device_xname(self));
2172 }
2173
2174 int
2175 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2176 {
2177 struct fxp_softc *sc = ifp->if_softc;
2178 struct ifreq *ifr = (struct ifreq *)data;
2179 int s, error;
2180
2181 s = splnet();
2182
2183 switch (cmd) {
2184 case SIOCSIFMEDIA:
2185 case SIOCGIFMEDIA:
2186 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
2187 break;
2188
2189 default:
2190 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2191 break;
2192
2193 error = 0;
2194
2195 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2196 ;
2197 else if (ifp->if_flags & IFF_RUNNING) {
2198 /*
2199 * Multicast list has changed; set the
2200 * hardware filter accordingly.
2201 */
2202 while (sc->sc_txpending) {
2203 sc->sc_flags |= FXPF_WANTINIT;
2204 tsleep(sc, PSOCK, "fxp_init", 0);
2205 }
2206 error = fxp_init(ifp);
2207 }
2208 break;
2209 }
2210
2211 /* Try to get more packets going. */
2212 if (sc->sc_enabled)
2213 fxp_start(ifp);
2214
2215 splx(s);
2216 return (error);
2217 }
2218
2219 /*
2220 * Program the multicast filter.
2221 *
2222 * This function must be called at splnet().
2223 */
2224 void
2225 fxp_mc_setup(struct fxp_softc *sc)
2226 {
2227 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2228 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2229 struct ethercom *ec = &sc->sc_ethercom;
2230 struct ether_multi *enm;
2231 struct ether_multistep step;
2232 int count, nmcasts;
2233 uint16_t status;
2234
2235 #ifdef DIAGNOSTIC
2236 if (sc->sc_txpending)
2237 panic("fxp_mc_setup: pending transmissions");
2238 #endif
2239
2240
2241 if (ifp->if_flags & IFF_PROMISC) {
2242 ifp->if_flags |= IFF_ALLMULTI;
2243 return;
2244 } else {
2245 ifp->if_flags &= ~IFF_ALLMULTI;
2246 }
2247
2248 /*
2249 * Initialize multicast setup descriptor.
2250 */
2251 nmcasts = 0;
2252 ETHER_FIRST_MULTI(step, ec, enm);
2253 while (enm != NULL) {
2254 /*
2255 * Check for too many multicast addresses or if we're
2256 * listening to a range. Either way, we simply have
2257 * to accept all multicasts.
2258 */
2259 if (nmcasts >= MAXMCADDR ||
2260 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2261 ETHER_ADDR_LEN) != 0) {
2262 /*
2263 * Callers of this function must do the
2264 * right thing with this. If we're called
2265 * from outside fxp_init(), the caller must
2266 * detect if the state if IFF_ALLMULTI changes.
2267 * If it does, the caller must then call
2268 * fxp_init(), since allmulti is handled by
2269 * the config block.
2270 */
2271 ifp->if_flags |= IFF_ALLMULTI;
2272 return;
2273 }
2274 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2275 ETHER_ADDR_LEN);
2276 nmcasts++;
2277 ETHER_NEXT_MULTI(step, enm);
2278 }
2279
2280 /* BIG_ENDIAN: no need to swap to store 0 */
2281 mcsp->cb_status = 0;
2282 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2283 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2284 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2285
2286 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2287
2288 /*
2289 * Wait until the command unit is not active. This should never
2290 * happen since nothing is queued, but make sure anyway.
2291 */
2292 count = 100;
2293 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2294 FXP_SCB_CUS_ACTIVE && --count)
2295 DELAY(1);
2296 if (count == 0) {
2297 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2298 device_xname(sc->sc_dev), __LINE__);
2299 return;
2300 }
2301
2302 /*
2303 * Start the multicast setup command/DMA.
2304 */
2305 fxp_scb_wait(sc);
2306 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2307 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2308
2309 /* ...and wait for it to complete. */
2310 for (count = 1000; count > 0; count--) {
2311 FXP_CDMCSSYNC(sc,
2312 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2313 status = le16toh(mcsp->cb_status);
2314 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2315 if ((status & FXP_CB_STATUS_C) != 0)
2316 break;
2317 DELAY(1);
2318 }
2319 if (count == 0) {
2320 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2321 device_xname(sc->sc_dev), __LINE__);
2322 return;
2323 }
2324 }
2325
2326 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2327 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2328 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2329 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2330 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2331 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2332 static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2333
2334 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2335
2336 static const struct ucode {
2337 int32_t revision;
2338 const uint32_t *ucode;
2339 size_t length;
2340 uint16_t int_delay_offset;
2341 uint16_t bundle_max_offset;
2342 } ucode_table[] = {
2343 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2344 D101_CPUSAVER_DWORD, 0 },
2345
2346 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2347 D101_CPUSAVER_DWORD, 0 },
2348
2349 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2350 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2351
2352 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2353 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2354
2355 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2356 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2357
2358 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2359 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2360
2361 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2362 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2363
2364 { FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
2365 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2366
2367 { 0, NULL, 0, 0, 0 }
2368 };
2369
2370 void
2371 fxp_load_ucode(struct fxp_softc *sc)
2372 {
2373 const struct ucode *uc;
2374 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2375 int count, i;
2376 uint16_t status;
2377
2378 if (sc->sc_flags & FXPF_UCODE_LOADED)
2379 return;
2380
2381 /*
2382 * Only load the uCode if the user has requested that
2383 * we do so.
2384 */
2385 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2386 sc->sc_int_delay = 0;
2387 sc->sc_bundle_max = 0;
2388 return;
2389 }
2390
2391 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2392 if (sc->sc_rev == uc->revision)
2393 break;
2394 }
2395 if (uc->ucode == NULL)
2396 return;
2397
2398 /* BIG ENDIAN: no need to swap to store 0 */
2399 cbp->cb_status = 0;
2400 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2401 cbp->link_addr = 0xffffffff; /* (no) next command */
2402 for (i = 0; i < uc->length; i++)
2403 cbp->ucode[i] = htole32(uc->ucode[i]);
2404
2405 if (uc->int_delay_offset)
2406 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2407 htole16(fxp_int_delay + (fxp_int_delay / 2));
2408
2409 if (uc->bundle_max_offset)
2410 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2411 htole16(fxp_bundle_max);
2412
2413 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2414
2415 /*
2416 * Download the uCode to the chip.
2417 */
2418 fxp_scb_wait(sc);
2419 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2420 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2421
2422 /* ...and wait for it to complete. */
2423 for (count = 10000; count > 0; count--) {
2424 FXP_CDUCODESYNC(sc,
2425 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2426 status = le16toh(cbp->cb_status);
2427 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2428 if ((status & FXP_CB_STATUS_C) != 0)
2429 break;
2430 DELAY(2);
2431 }
2432 if (count == 0) {
2433 sc->sc_int_delay = 0;
2434 sc->sc_bundle_max = 0;
2435 log(LOG_WARNING, "%s: timeout loading microcode\n",
2436 device_xname(sc->sc_dev));
2437 return;
2438 }
2439
2440 if (sc->sc_int_delay != fxp_int_delay ||
2441 sc->sc_bundle_max != fxp_bundle_max) {
2442 sc->sc_int_delay = fxp_int_delay;
2443 sc->sc_bundle_max = fxp_bundle_max;
2444 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2445 "max bundle: %d\n", device_xname(sc->sc_dev),
2446 sc->sc_int_delay,
2447 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2448 }
2449
2450 sc->sc_flags |= FXPF_UCODE_LOADED;
2451 }
2452
2453 int
2454 fxp_enable(struct fxp_softc *sc)
2455 {
2456
2457 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2458 if ((*sc->sc_enable)(sc) != 0) {
2459 log(LOG_ERR, "%s: device enable failed\n",
2460 device_xname(sc->sc_dev));
2461 return (EIO);
2462 }
2463 }
2464
2465 sc->sc_enabled = 1;
2466 return (0);
2467 }
2468
2469 void
2470 fxp_disable(struct fxp_softc *sc)
2471 {
2472
2473 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2474 (*sc->sc_disable)(sc);
2475 sc->sc_enabled = 0;
2476 }
2477 }
2478
2479 /*
2480 * fxp_activate:
2481 *
2482 * Handle device activation/deactivation requests.
2483 */
2484 int
2485 fxp_activate(device_t self, enum devact act)
2486 {
2487 struct fxp_softc *sc = device_private(self);
2488
2489 switch (act) {
2490 case DVACT_DEACTIVATE:
2491 if_deactivate(&sc->sc_ethercom.ec_if);
2492 return 0;
2493 default:
2494 return EOPNOTSUPP;
2495 }
2496 }
2497
2498 /*
2499 * fxp_detach:
2500 *
2501 * Detach an i82557 interface.
2502 */
2503 int
2504 fxp_detach(struct fxp_softc *sc, int flags)
2505 {
2506 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2507 int i, s;
2508
2509 /* Succeed now if there's no work to do. */
2510 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2511 return (0);
2512
2513 s = splnet();
2514 /* Stop the interface. Callouts are stopped in it. */
2515 fxp_stop(ifp, 1);
2516 splx(s);
2517
2518 /* Destroy our callout. */
2519 callout_destroy(&sc->sc_callout);
2520
2521 if (sc->sc_flags & FXPF_MII) {
2522 /* Detach all PHYs */
2523 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2524 }
2525
2526 /* Delete all remaining media. */
2527 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2528
2529 #if NRND > 0
2530 rnd_detach_source(&sc->rnd_source);
2531 #endif
2532 ether_ifdetach(ifp);
2533 if_detach(ifp);
2534
2535 for (i = 0; i < FXP_NRFABUFS; i++) {
2536 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2537 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2538 }
2539
2540 for (i = 0; i < FXP_NTXCB; i++) {
2541 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2542 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2543 }
2544
2545 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2546 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2547 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2548 sizeof(struct fxp_control_data));
2549 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2550
2551 return (0);
2552 }
2553