Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.140
      1 /*	$NetBSD: i82557.c,v 1.140 2012/07/22 14:32:57 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1995, David Greenman
     35  * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice unmodified, this list of conditions, and the following
     43  *    disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
     61  */
     62 
     63 /*
     64  * Device driver for the Intel i82557 fast Ethernet controller,
     65  * and its successors, the i82558 and i82559.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.140 2012/07/22 14:32:57 matt Exp $");
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/callout.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/malloc.h>
     76 #include <sys/kernel.h>
     77 #include <sys/socket.h>
     78 #include <sys/ioctl.h>
     79 #include <sys/errno.h>
     80 #include <sys/device.h>
     81 #include <sys/syslog.h>
     82 #include <sys/proc.h>
     83 
     84 #include <machine/endian.h>
     85 
     86 #include <sys/rnd.h>
     87 
     88 #include <net/if.h>
     89 #include <net/if_dl.h>
     90 #include <net/if_media.h>
     91 #include <net/if_ether.h>
     92 
     93 #include <netinet/in.h>
     94 #include <netinet/in_systm.h>
     95 #include <netinet/ip.h>
     96 #include <netinet/tcp.h>
     97 #include <netinet/udp.h>
     98 
     99 #include <net/bpf.h>
    100 
    101 #include <sys/bus.h>
    102 #include <sys/intr.h>
    103 
    104 #include <dev/mii/miivar.h>
    105 
    106 #include <dev/ic/i82557reg.h>
    107 #include <dev/ic/i82557var.h>
    108 
    109 #include <dev/microcode/i8255x/rcvbundl.h>
    110 
    111 /*
    112  * NOTE!  On the Alpha, we have an alignment constraint.  The
    113  * card DMAs the packet immediately following the RFA.  However,
    114  * the first thing in the packet is a 14-byte Ethernet header.
    115  * This means that the packet is misaligned.  To compensate,
    116  * we actually offset the RFA 2 bytes into the cluster.  This
    117  * alignes the packet after the Ethernet header at a 32-bit
    118  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    119  */
    120 #define	RFA_ALIGNMENT_FUDGE	2
    121 
    122 /*
    123  * The configuration byte map has several undefined fields which
    124  * must be one or must be zero.  Set up a template for these bits
    125  * only (assuming an i82557 chip), leaving the actual configuration
    126  * for fxp_init().
    127  *
    128  * See the definition of struct fxp_cb_config for the bit definitions.
    129  */
    130 const uint8_t fxp_cb_config_template[] = {
    131 	0x0, 0x0,		/* cb_status */
    132 	0x0, 0x0,		/* cb_command */
    133 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
    134 	0x0,	/*  0 */
    135 	0x0,	/*  1 */
    136 	0x0,	/*  2 */
    137 	0x0,	/*  3 */
    138 	0x0,	/*  4 */
    139 	0x0,	/*  5 */
    140 	0x32,	/*  6 */
    141 	0x0,	/*  7 */
    142 	0x0,	/*  8 */
    143 	0x0,	/*  9 */
    144 	0x6,	/* 10 */
    145 	0x0,	/* 11 */
    146 	0x0,	/* 12 */
    147 	0x0,	/* 13 */
    148 	0xf2,	/* 14 */
    149 	0x48,	/* 15 */
    150 	0x0,	/* 16 */
    151 	0x40,	/* 17 */
    152 	0xf0,	/* 18 */
    153 	0x0,	/* 19 */
    154 	0x3f,	/* 20 */
    155 	0x5,	/* 21 */
    156 	0x0,	/* 22 */
    157 	0x0,	/* 23 */
    158 	0x0,	/* 24 */
    159 	0x0,	/* 25 */
    160 	0x0,	/* 26 */
    161 	0x0,	/* 27 */
    162 	0x0,	/* 28 */
    163 	0x0,	/* 29 */
    164 	0x0,	/* 30 */
    165 	0x0,	/* 31 */
    166 };
    167 
    168 void	fxp_mii_initmedia(struct fxp_softc *);
    169 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
    170 
    171 void	fxp_80c24_initmedia(struct fxp_softc *);
    172 int	fxp_80c24_mediachange(struct ifnet *);
    173 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
    174 
    175 void	fxp_start(struct ifnet *);
    176 int	fxp_ioctl(struct ifnet *, u_long, void *);
    177 void	fxp_watchdog(struct ifnet *);
    178 int	fxp_init(struct ifnet *);
    179 void	fxp_stop(struct ifnet *, int);
    180 
    181 void	fxp_txintr(struct fxp_softc *);
    182 int	fxp_rxintr(struct fxp_softc *);
    183 
    184 void	fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
    185 	    const struct fxp_rfa *, u_int);
    186 
    187 void	fxp_rxdrain(struct fxp_softc *);
    188 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
    189 int	fxp_mdi_read(device_t, int, int);
    190 void	fxp_statchg(struct ifnet *);
    191 void	fxp_mdi_write(device_t, int, int, int);
    192 void	fxp_autosize_eeprom(struct fxp_softc*);
    193 void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
    194 void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
    195 void	fxp_eeprom_update_cksum(struct fxp_softc *);
    196 void	fxp_get_info(struct fxp_softc *, uint8_t *);
    197 void	fxp_tick(void *);
    198 void	fxp_mc_setup(struct fxp_softc *);
    199 void	fxp_load_ucode(struct fxp_softc *);
    200 
    201 int	fxp_copy_small = 0;
    202 
    203 /*
    204  * Variables for interrupt mitigating microcode.
    205  */
    206 int	fxp_int_delay = 1000;		/* usec */
    207 int	fxp_bundle_max = 6;		/* packets */
    208 
    209 struct fxp_phytype {
    210 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    211 	void	(*fp_init)(struct fxp_softc *);
    212 } fxp_phytype_table[] = {
    213 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    214 	{ -1,				fxp_mii_initmedia },
    215 };
    216 
    217 /*
    218  * Set initial transmit threshold at 64 (512 bytes). This is
    219  * increased by 64 (512 bytes) at a time, to maximum of 192
    220  * (1536 bytes), if an underrun occurs.
    221  */
    222 static int tx_threshold = 64;
    223 
    224 /*
    225  * Wait for the previous command to be accepted (but not necessarily
    226  * completed).
    227  */
    228 static inline void
    229 fxp_scb_wait(struct fxp_softc *sc)
    230 {
    231 	int i = 10000;
    232 
    233 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    234 		delay(2);
    235 	if (i == 0)
    236 		log(LOG_WARNING,
    237 		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
    238 }
    239 
    240 /*
    241  * Submit a command to the i82557.
    242  */
    243 static inline void
    244 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
    245 {
    246 
    247 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
    248 }
    249 
    250 /*
    251  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    252  */
    253 void
    254 fxp_attach(struct fxp_softc *sc)
    255 {
    256 	uint8_t enaddr[ETHER_ADDR_LEN];
    257 	struct ifnet *ifp;
    258 	bus_dma_segment_t seg;
    259 	int rseg, i, error;
    260 	struct fxp_phytype *fp;
    261 
    262 	callout_init(&sc->sc_callout, 0);
    263 
    264         /*
    265 	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
    266 	 * Note: to use IPCB we need extended TXCB support too, and
    267 	 *       these feature flags should be set in each bus attachment.
    268 	 */
    269 	if (sc->sc_flags & FXPF_EXT_RFA) {
    270 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
    271 		sc->sc_rfa_size = RFA_EXT_SIZE;
    272 	} else {
    273 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
    274 		sc->sc_rfa_size = RFA_SIZE;
    275 	}
    276 
    277 	/*
    278 	 * Allocate the control data structures, and create and load the
    279 	 * DMA map for it.
    280 	 */
    281 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    282 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    283 	    0)) != 0) {
    284 		aprint_error_dev(sc->sc_dev,
    285 		    "unable to allocate control data, error = %d\n",
    286 		    error);
    287 		goto fail_0;
    288 	}
    289 
    290 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    291 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
    292 	    BUS_DMA_COHERENT)) != 0) {
    293 		aprint_error_dev(sc->sc_dev,
    294 		    "unable to map control data, error = %d\n", error);
    295 		goto fail_1;
    296 	}
    297 	sc->sc_cdseg = seg;
    298 	sc->sc_cdnseg = rseg;
    299 
    300 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
    301 
    302 	if ((error = bus_dmamap_create(sc->sc_dmat,
    303 	    sizeof(struct fxp_control_data), 1,
    304 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    305 		aprint_error_dev(sc->sc_dev,
    306 		    "unable to create control data DMA map, error = %d\n",
    307 		    error);
    308 		goto fail_2;
    309 	}
    310 
    311 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    312 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    313 	    0)) != 0) {
    314 		aprint_error_dev(sc->sc_dev,
    315 		    "can't load control data DMA map, error = %d\n",
    316 		    error);
    317 		goto fail_3;
    318 	}
    319 
    320 	/*
    321 	 * Create the transmit buffer DMA maps.
    322 	 */
    323 	for (i = 0; i < FXP_NTXCB; i++) {
    324 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    325 		    (sc->sc_flags & FXPF_EXT_RFA) ?
    326 		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
    327 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    328 			aprint_error_dev(sc->sc_dev,
    329 			    "unable to create tx DMA map %d, error = %d\n",
    330 			    i, error);
    331 			goto fail_4;
    332 		}
    333 	}
    334 
    335 	/*
    336 	 * Create the receive buffer DMA maps.
    337 	 */
    338 	for (i = 0; i < FXP_NRFABUFS; i++) {
    339 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    340 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    341 			aprint_error_dev(sc->sc_dev,
    342 			    "unable to create rx DMA map %d, error = %d\n",
    343 			    i, error);
    344 			goto fail_5;
    345 		}
    346 	}
    347 
    348 	/* Initialize MAC address and media structures. */
    349 	fxp_get_info(sc, enaddr);
    350 
    351 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    352 	    ether_sprintf(enaddr));
    353 
    354 	ifp = &sc->sc_ethercom.ec_if;
    355 
    356 	/*
    357 	 * Get info about our media interface, and initialize it.  Note
    358 	 * the table terminates itself with a phy of -1, indicating
    359 	 * that we're using MII.
    360 	 */
    361 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    362 		if (fp->fp_phy == sc->phy_primary_device)
    363 			break;
    364 	(*fp->fp_init)(sc);
    365 
    366 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    367 	ifp->if_softc = sc;
    368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    369 	ifp->if_ioctl = fxp_ioctl;
    370 	ifp->if_start = fxp_start;
    371 	ifp->if_watchdog = fxp_watchdog;
    372 	ifp->if_init = fxp_init;
    373 	ifp->if_stop = fxp_stop;
    374 	IFQ_SET_READY(&ifp->if_snd);
    375 
    376 	if (sc->sc_flags & FXPF_EXT_RFA) {
    377 		/*
    378 		 * Enable hardware cksum support by EXT_RFA and IPCB.
    379 		 *
    380 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
    381 		 * at least, on i82550 rev.12.
    382 		 * specifically, it doesn't set ipv4 checksum properly
    383 		 * when sending UDP (and probably TCP) packets with
    384 		 * 20 byte ipv4 header + 1 or 2 byte data,
    385 		 * though ICMP packets seem working.
    386 		 * FreeBSD driver has related comments.
    387 		 * We've added a workaround to handle the bug by padding
    388 		 * such packets manually.
    389 		 */
    390 		ifp->if_capabilities =
    391 		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
    392 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    393 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    394 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    395 	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
    396 		ifp->if_capabilities =
    397 		    IFCAP_CSUM_TCPv4_Rx |
    398 		    IFCAP_CSUM_UDPv4_Rx;
    399 	}
    400 
    401 	/*
    402 	 * We can support 802.1Q VLAN-sized frames.
    403 	 */
    404 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    405 
    406 	/*
    407 	 * Attach the interface.
    408 	 */
    409 	if_attach(ifp);
    410 	ether_ifattach(ifp, enaddr);
    411 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    412 	    RND_TYPE_NET, 0);
    413 
    414 #ifdef FXP_EVENT_COUNTERS
    415 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    416 	    NULL, device_xname(sc->sc_dev), "txstall");
    417 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    418 	    NULL, device_xname(sc->sc_dev), "txintr");
    419 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    420 	    NULL, device_xname(sc->sc_dev), "rxintr");
    421 	if (sc->sc_flags & FXPF_FC) {
    422 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
    423 		    NULL, device_xname(sc->sc_dev), "txpause");
    424 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
    425 		    NULL, device_xname(sc->sc_dev), "rxpause");
    426 	}
    427 #endif /* FXP_EVENT_COUNTERS */
    428 
    429 	/* The attach is successful. */
    430 	sc->sc_flags |= FXPF_ATTACHED;
    431 
    432 	return;
    433 
    434 	/*
    435 	 * Free any resources we've allocated during the failed attach
    436 	 * attempt.  Do this in reverse order and fall though.
    437 	 */
    438  fail_5:
    439 	for (i = 0; i < FXP_NRFABUFS; i++) {
    440 		if (sc->sc_rxmaps[i] != NULL)
    441 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    442 	}
    443  fail_4:
    444 	for (i = 0; i < FXP_NTXCB; i++) {
    445 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    446 			bus_dmamap_destroy(sc->sc_dmat,
    447 			    FXP_DSTX(sc, i)->txs_dmamap);
    448 	}
    449 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    450  fail_3:
    451 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    452  fail_2:
    453 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    454 	    sizeof(struct fxp_control_data));
    455  fail_1:
    456 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    457  fail_0:
    458 	return;
    459 }
    460 
    461 void
    462 fxp_mii_initmedia(struct fxp_softc *sc)
    463 {
    464 	int flags;
    465 
    466 	sc->sc_flags |= FXPF_MII;
    467 
    468 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    469 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    470 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    471 	sc->sc_mii.mii_statchg = fxp_statchg;
    472 
    473 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    474 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    475 	    fxp_mii_mediastatus);
    476 
    477 	flags = MIIF_NOISOLATE;
    478 	if (sc->sc_flags & FXPF_FC)
    479 		flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
    480 	/*
    481 	 * The i82557 wedges if all of its PHYs are isolated!
    482 	 */
    483 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    484 	    MII_OFFSET_ANY, flags);
    485 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
    486 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    487 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    488 	} else
    489 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    490 }
    491 
    492 void
    493 fxp_80c24_initmedia(struct fxp_softc *sc)
    494 {
    495 
    496 	/*
    497 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    498 	 * doesn't have a programming interface of any sort.  The
    499 	 * media is sensed automatically based on how the link partner
    500 	 * is configured.  This is, in essence, manual configuration.
    501 	 */
    502 	aprint_normal_dev(sc->sc_dev,
    503 	    "Seeq 80c24 AutoDUPLEX media interface present\n");
    504 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    505 	    fxp_80c24_mediastatus);
    506 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    507 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    508 }
    509 
    510 /*
    511  * Initialize the interface media.
    512  */
    513 void
    514 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
    515 {
    516 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
    517 
    518 	/*
    519 	 * Reset to a stable state.
    520 	 */
    521 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    522 	DELAY(100);
    523 
    524 	sc->sc_eeprom_size = 0;
    525 	fxp_autosize_eeprom(sc);
    526 	if (sc->sc_eeprom_size == 0) {
    527 		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
    528 		sc->sc_eeprom_size = 6; /* XXX panic here? */
    529 	}
    530 #ifdef DEBUG
    531 	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
    532 	    1 << sc->sc_eeprom_size);
    533 #endif
    534 
    535 	/*
    536 	 * Get info about the primary PHY
    537 	 */
    538 	fxp_read_eeprom(sc, &data, 6, 1);
    539 	sc->phy_primary_device =
    540 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
    541 
    542 	/*
    543 	 * Read MAC address.
    544 	 */
    545 	fxp_read_eeprom(sc, myea, 0, 3);
    546 	enaddr[0] = myea[0] & 0xff;
    547 	enaddr[1] = myea[0] >> 8;
    548 	enaddr[2] = myea[1] & 0xff;
    549 	enaddr[3] = myea[1] >> 8;
    550 	enaddr[4] = myea[2] & 0xff;
    551 	enaddr[5] = myea[2] >> 8;
    552 
    553 	/*
    554 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
    555 	 * as some i82559 designs, have a defect where the chip can
    556 	 * cause a PCI protocol violation if it receives a CU_RESUME
    557 	 * command when it is entering the IDLE state.
    558 	 *
    559 	 * The work-around is to disable Dynamic Standby Mode, so that
    560 	 * the chip never deasserts #CLKRUN, and always remains in the
    561 	 * active state.
    562 	 *
    563 	 * Unfortunately, the only way to disable Dynamic Standby is
    564 	 * to frob an EEPROM setting and reboot (the EEPROM setting
    565 	 * is only consulted when the PCI bus comes out of reset).
    566 	 *
    567 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
    568 	 */
    569 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
    570 		fxp_read_eeprom(sc, &data, 10, 1);
    571 		if (data & 0x02) {		/* STB enable */
    572 			aprint_error_dev(sc->sc_dev, "WARNING: "
    573 			    "Disabling dynamic standby mode in EEPROM "
    574 			    "to work around a\n");
    575 			aprint_normal_dev(sc->sc_dev,
    576 			    "WARNING: hardware bug.  You must reset "
    577 			    "the system before using this\n");
    578 			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
    579 			data &= ~0x02;
    580 			fxp_write_eeprom(sc, &data, 10, 1);
    581 			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
    582 			    data);
    583 			fxp_eeprom_update_cksum(sc);
    584 		}
    585 	}
    586 
    587 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
    588 	/* Due to false positives we make it conditional on setting link1 */
    589 	fxp_read_eeprom(sc, &data, 3, 1);
    590 	if ((data & 0x03) != 0x03) {
    591 		aprint_verbose_dev(sc->sc_dev,
    592 		    "May need receiver lock-up workaround\n");
    593 	}
    594 }
    595 
    596 static void
    597 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
    598 {
    599 	uint16_t reg;
    600 	int x;
    601 
    602 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
    603 		DELAY(40);
    604 		if (data & x)
    605 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    606 		else
    607 			reg = FXP_EEPROM_EECS;
    608 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    609 		DELAY(40);
    610 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    611 		    reg | FXP_EEPROM_EESK);
    612 		DELAY(40);
    613 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    614 	}
    615 	DELAY(40);
    616 }
    617 
    618 /*
    619  * Figure out EEPROM size.
    620  *
    621  * 559's can have either 64-word or 256-word EEPROMs, the 558
    622  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    623  * talks about the existence of 16 to 256 word EEPROMs.
    624  *
    625  * The only known sizes are 64 and 256, where the 256 version is used
    626  * by CardBus cards to store CIS information.
    627  *
    628  * The address is shifted in msb-to-lsb, and after the last
    629  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    630  * after which follows the actual data. We try to detect this zero, by
    631  * probing the data-out bit in the EEPROM control register just after
    632  * having shifted in a bit. If the bit is zero, we assume we've
    633  * shifted enough address bits. The data-out should be tri-state,
    634  * before this, which should translate to a logical one.
    635  *
    636  * Other ways to do this would be to try to read a register with known
    637  * contents with a varying number of address bits, but no such
    638  * register seem to be available. The high bits of register 10 are 01
    639  * on the 558 and 559, but apparently not on the 557.
    640  *
    641  * The Linux driver computes a checksum on the EEPROM data, but the
    642  * value of this checksum is not very well documented.
    643  */
    644 
    645 void
    646 fxp_autosize_eeprom(struct fxp_softc *sc)
    647 {
    648 	int x;
    649 
    650 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    651 	DELAY(40);
    652 
    653 	/* Shift in read opcode. */
    654 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    655 
    656 	/*
    657 	 * Shift in address, wait for the dummy zero following a correct
    658 	 * address shift.
    659 	 */
    660 	for (x = 1; x <= 8; x++) {
    661 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    662 		DELAY(40);
    663 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    664 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    665 		DELAY(40);
    666 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    667 		    FXP_EEPROM_EEDO) == 0)
    668 			break;
    669 		DELAY(40);
    670 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    671 		DELAY(40);
    672 	}
    673 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    674 	DELAY(40);
    675 	if (x != 6 && x != 8) {
    676 #ifdef DEBUG
    677 		printf("%s: strange EEPROM size (%d)\n",
    678 		    device_xname(sc->sc_dev), 1 << x);
    679 #endif
    680 	} else
    681 		sc->sc_eeprom_size = x;
    682 }
    683 
    684 /*
    685  * Read from the serial EEPROM. Basically, you manually shift in
    686  * the read opcode (one bit at a time) and then shift in the address,
    687  * and then you shift out the data (all of this one bit at a time).
    688  * The word size is 16 bits, so you have to provide the address for
    689  * every 16 bits of data.
    690  */
    691 void
    692 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
    693 {
    694 	uint16_t reg;
    695 	int i, x;
    696 
    697 	for (i = 0; i < words; i++) {
    698 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    699 
    700 		/* Shift in read opcode. */
    701 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    702 
    703 		/* Shift in address. */
    704 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    705 
    706 		reg = FXP_EEPROM_EECS;
    707 		data[i] = 0;
    708 
    709 		/* Shift out data. */
    710 		for (x = 16; x > 0; x--) {
    711 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    712 			    reg | FXP_EEPROM_EESK);
    713 			DELAY(40);
    714 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    715 			    FXP_EEPROM_EEDO)
    716 				data[i] |= (1 << (x - 1));
    717 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    718 			DELAY(40);
    719 		}
    720 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    721 		DELAY(40);
    722 	}
    723 }
    724 
    725 /*
    726  * Write data to the serial EEPROM.
    727  */
    728 void
    729 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
    730 {
    731 	int i, j;
    732 
    733 	for (i = 0; i < words; i++) {
    734 		/* Erase/write enable. */
    735 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    736 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    737 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
    738 		    sc->sc_eeprom_size);
    739 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    740 		DELAY(4);
    741 
    742 		/* Shift in write opcode, address, data. */
    743 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    744 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
    745 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    746 		fxp_eeprom_shiftin(sc, data[i], 16);
    747 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    748 		DELAY(4);
    749 
    750 		/* Wait for the EEPROM to finish up. */
    751 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    752 		DELAY(4);
    753 		for (j = 0; j < 1000; j++) {
    754 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    755 			    FXP_EEPROM_EEDO)
    756 				break;
    757 			DELAY(50);
    758 		}
    759 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    760 		DELAY(4);
    761 
    762 		/* Erase/write disable. */
    763 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    764 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    765 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
    766 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    767 		DELAY(4);
    768 	}
    769 }
    770 
    771 /*
    772  * Update the checksum of the EEPROM.
    773  */
    774 void
    775 fxp_eeprom_update_cksum(struct fxp_softc *sc)
    776 {
    777 	int i;
    778 	uint16_t data, cksum;
    779 
    780 	cksum = 0;
    781 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
    782 		fxp_read_eeprom(sc, &data, i, 1);
    783 		cksum += data;
    784 	}
    785 	i = (1 << sc->sc_eeprom_size) - 1;
    786 	cksum = 0xbaba - cksum;
    787 	fxp_read_eeprom(sc, &data, i, 1);
    788 	fxp_write_eeprom(sc, &cksum, i, 1);
    789 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
    790 	    device_xname(sc->sc_dev), i, data, cksum);
    791 }
    792 
    793 /*
    794  * Start packet transmission on the interface.
    795  */
    796 void
    797 fxp_start(struct ifnet *ifp)
    798 {
    799 	struct fxp_softc *sc = ifp->if_softc;
    800 	struct mbuf *m0, *m;
    801 	struct fxp_txdesc *txd;
    802 	struct fxp_txsoft *txs;
    803 	bus_dmamap_t dmamap;
    804 	int error, lasttx, nexttx, opending, seg, nsegs, len;
    805 
    806 	/*
    807 	 * If we want a re-init, bail out now.
    808 	 */
    809 	if (sc->sc_flags & FXPF_WANTINIT) {
    810 		ifp->if_flags |= IFF_OACTIVE;
    811 		return;
    812 	}
    813 
    814 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    815 		return;
    816 
    817 	/*
    818 	 * Remember the previous txpending and the current lasttx.
    819 	 */
    820 	opending = sc->sc_txpending;
    821 	lasttx = sc->sc_txlast;
    822 
    823 	/*
    824 	 * Loop through the send queue, setting up transmit descriptors
    825 	 * until we drain the queue, or use up all available transmit
    826 	 * descriptors.
    827 	 */
    828 	for (;;) {
    829 		struct fxp_tbd *tbdp;
    830 		int csum_flags;
    831 
    832 		/*
    833 		 * Grab a packet off the queue.
    834 		 */
    835 		IFQ_POLL(&ifp->if_snd, m0);
    836 		if (m0 == NULL)
    837 			break;
    838 		m = NULL;
    839 
    840 		if (sc->sc_txpending == FXP_NTXCB - 1) {
    841 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
    842 			break;
    843 		}
    844 
    845 		/*
    846 		 * Get the next available transmit descriptor.
    847 		 */
    848 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    849 		txd = FXP_CDTX(sc, nexttx);
    850 		txs = FXP_DSTX(sc, nexttx);
    851 		dmamap = txs->txs_dmamap;
    852 
    853 		/*
    854 		 * Load the DMA map.  If this fails, the packet either
    855 		 * didn't fit in the allotted number of frags, or we were
    856 		 * short on resources.  In this case, we'll copy and try
    857 		 * again.
    858 		 */
    859 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    860 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    861 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    862 			if (m == NULL) {
    863 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
    864 				    device_xname(sc->sc_dev));
    865 				break;
    866 			}
    867 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    868 			if (m0->m_pkthdr.len > MHLEN) {
    869 				MCLGET(m, M_DONTWAIT);
    870 				if ((m->m_flags & M_EXT) == 0) {
    871 					log(LOG_ERR, "%s: unable to allocate "
    872 					    "Tx cluster\n",
    873 					    device_xname(sc->sc_dev));
    874 					m_freem(m);
    875 					break;
    876 				}
    877 			}
    878 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    879 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    880 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    881 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    882 			if (error) {
    883 				log(LOG_ERR, "%s: unable to load Tx buffer, "
    884 				    "error = %d\n",
    885 				    device_xname(sc->sc_dev), error);
    886 				break;
    887 			}
    888 		}
    889 
    890 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    891 		csum_flags = m0->m_pkthdr.csum_flags;
    892 		if (m != NULL) {
    893 			m_freem(m0);
    894 			m0 = m;
    895 		}
    896 
    897 		/* Initialize the fraglist. */
    898 		tbdp = txd->txd_tbd;
    899 		len = m0->m_pkthdr.len;
    900 		nsegs = dmamap->dm_nsegs;
    901 		if (sc->sc_flags & FXPF_EXT_RFA)
    902 			tbdp++;
    903 		for (seg = 0; seg < nsegs; seg++) {
    904 			tbdp[seg].tb_addr =
    905 			    htole32(dmamap->dm_segs[seg].ds_addr);
    906 			tbdp[seg].tb_size =
    907 			    htole32(dmamap->dm_segs[seg].ds_len);
    908 		}
    909 		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
    910 		    (csum_flags & M_CSUM_IPv4) != 0)) {
    911 			/*
    912 			 * Pad short packets to avoid ip4csum-tx bug.
    913 			 *
    914 			 * XXX Should we still consider if such short
    915 			 *     (36 bytes or less) packets might already
    916 			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
    917 			 */
    918 			KASSERT(nsegs < FXP_IPCB_NTXSEG);
    919 			nsegs++;
    920 			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
    921 			tbdp[seg].tb_size =
    922 			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
    923 		}
    924 
    925 		/* Sync the DMA map. */
    926 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    927 		    BUS_DMASYNC_PREWRITE);
    928 
    929 		/*
    930 		 * Store a pointer to the packet so we can free it later.
    931 		 */
    932 		txs->txs_mbuf = m0;
    933 
    934 		/*
    935 		 * Initialize the transmit descriptor.
    936 		 */
    937 		/* BIG_ENDIAN: no need to swap to store 0 */
    938 		txd->txd_txcb.cb_status = 0;
    939 		txd->txd_txcb.cb_command =
    940 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
    941 		txd->txd_txcb.tx_threshold = tx_threshold;
    942 		txd->txd_txcb.tbd_number = nsegs;
    943 
    944 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
    945 		if (sc->sc_flags & FXPF_EXT_RFA) {
    946 			struct m_tag *vtag;
    947 			struct fxp_ipcb *ipcb;
    948 			/*
    949 			 * Deal with TCP/IP checksum offload. Note that
    950 			 * in order for TCP checksum offload to work,
    951 			 * the pseudo header checksum must have already
    952 			 * been computed and stored in the checksum field
    953 			 * in the TCP header. The stack should have
    954 			 * already done this for us.
    955 			 */
    956 			ipcb = &txd->txd_u.txdu_ipcb;
    957 			memset(ipcb, 0, sizeof(*ipcb));
    958 			/*
    959 			 * always do hardware parsing.
    960 			 */
    961 			ipcb->ipcb_ip_activation_high =
    962 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
    963 			/*
    964 			 * ip checksum offloading.
    965 			 */
    966 			if (csum_flags & M_CSUM_IPv4) {
    967 				ipcb->ipcb_ip_schedule |=
    968 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
    969 			}
    970 			/*
    971 			 * TCP/UDP checksum offloading.
    972 			 */
    973 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    974 				ipcb->ipcb_ip_schedule |=
    975 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
    976 			}
    977 
    978 			/*
    979 			 * request VLAN tag insertion if needed.
    980 			 */
    981 			vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
    982 			if (vtag) {
    983 				ipcb->ipcb_vlan_id =
    984 				    htobe16(*(u_int *)(vtag + 1));
    985 				ipcb->ipcb_ip_activation_high |=
    986 				    FXP_IPCB_INSERTVLAN_ENABLE;
    987 			}
    988 		} else {
    989 			KASSERT((csum_flags &
    990 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
    991 		}
    992 
    993 		FXP_CDTXSYNC(sc, nexttx,
    994 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    995 
    996 		/* Advance the tx pointer. */
    997 		sc->sc_txpending++;
    998 		sc->sc_txlast = nexttx;
    999 
   1000 		/*
   1001 		 * Pass packet to bpf if there is a listener.
   1002 		 */
   1003 		bpf_mtap(ifp, m0);
   1004 	}
   1005 
   1006 	if (sc->sc_txpending == FXP_NTXCB - 1) {
   1007 		/* No more slots; notify upper layer. */
   1008 		ifp->if_flags |= IFF_OACTIVE;
   1009 	}
   1010 
   1011 	if (sc->sc_txpending != opending) {
   1012 		/*
   1013 		 * We enqueued packets.  If the transmitter was idle,
   1014 		 * reset the txdirty pointer.
   1015 		 */
   1016 		if (opending == 0)
   1017 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
   1018 
   1019 		/*
   1020 		 * Cause the chip to interrupt and suspend command
   1021 		 * processing once the last packet we've enqueued
   1022 		 * has been transmitted.
   1023 		 *
   1024 		 * To avoid a race between updating status bits
   1025 		 * by the fxp chip and clearing command bits
   1026 		 * by this function on machines which don't have
   1027 		 * atomic methods to clear/set bits in memory
   1028 		 * smaller than 32bits (both cb_status and cb_command
   1029 		 * members are uint16_t and in the same 32bit word),
   1030 		 * we have to prepare a dummy TX descriptor which has
   1031 		 * NOP command and just causes a TX completion interrupt.
   1032 		 */
   1033 		sc->sc_txpending++;
   1034 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
   1035 		txd = FXP_CDTX(sc, sc->sc_txlast);
   1036 		/* BIG_ENDIAN: no need to swap to store 0 */
   1037 		txd->txd_txcb.cb_status = 0;
   1038 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
   1039 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
   1040 		FXP_CDTXSYNC(sc, sc->sc_txlast,
   1041 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1042 
   1043 		/*
   1044 		 * The entire packet chain is set up.  Clear the suspend bit
   1045 		 * on the command prior to the first packet we set up.
   1046 		 */
   1047 		FXP_CDTXSYNC(sc, lasttx,
   1048 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1049 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
   1050 		    htole16(~FXP_CB_COMMAND_S);
   1051 		FXP_CDTXSYNC(sc, lasttx,
   1052 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1053 
   1054 		/*
   1055 		 * Issue a Resume command in case the chip was suspended.
   1056 		 */
   1057 		fxp_scb_wait(sc);
   1058 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
   1059 
   1060 		/* Set a watchdog timer in case the chip flakes out. */
   1061 		ifp->if_timer = 5;
   1062 	}
   1063 }
   1064 
   1065 /*
   1066  * Process interface interrupts.
   1067  */
   1068 int
   1069 fxp_intr(void *arg)
   1070 {
   1071 	struct fxp_softc *sc = arg;
   1072 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1073 	bus_dmamap_t rxmap;
   1074 	int claimed = 0, rnr;
   1075 	uint8_t statack;
   1076 
   1077 	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
   1078 		return (0);
   1079 	/*
   1080 	 * If the interface isn't running, don't try to
   1081 	 * service the interrupt.. just ack it and bail.
   1082 	 */
   1083 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1084 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
   1085 		if (statack) {
   1086 			claimed = 1;
   1087 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1088 		}
   1089 		return (claimed);
   1090 	}
   1091 
   1092 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
   1093 		claimed = 1;
   1094 
   1095 		/*
   1096 		 * First ACK all the interrupts in this pass.
   1097 		 */
   1098 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1099 
   1100 		/*
   1101 		 * Process receiver interrupts. If a no-resource (RNR)
   1102 		 * condition exists, get whatever packets we can and
   1103 		 * re-start the receiver.
   1104 		 */
   1105 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
   1106 		    1 : 0;
   1107 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
   1108 		    FXP_SCB_STATACK_SWI)) {
   1109 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1110 			rnr |= fxp_rxintr(sc);
   1111 		}
   1112 
   1113 		/*
   1114 		 * Free any finished transmit mbuf chains.
   1115 		 */
   1116 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1117 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
   1118 			fxp_txintr(sc);
   1119 
   1120 			/*
   1121 			 * Try to get more packets going.
   1122 			 */
   1123 			fxp_start(ifp);
   1124 
   1125 			if (sc->sc_txpending == 0) {
   1126 				/*
   1127 				 * Tell them that they can re-init now.
   1128 				 */
   1129 				if (sc->sc_flags & FXPF_WANTINIT)
   1130 					wakeup(sc);
   1131 			}
   1132 		}
   1133 
   1134 		if (rnr) {
   1135 			fxp_scb_wait(sc);
   1136 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
   1137 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1138 			fxp_scb_wait(sc);
   1139 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1140 			    rxmap->dm_segs[0].ds_addr +
   1141 			    RFA_ALIGNMENT_FUDGE);
   1142 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1143 		}
   1144 	}
   1145 
   1146 	if (claimed)
   1147 		rnd_add_uint32(&sc->rnd_source, statack);
   1148 	return (claimed);
   1149 }
   1150 
   1151 /*
   1152  * Handle transmit completion interrupts.
   1153  */
   1154 void
   1155 fxp_txintr(struct fxp_softc *sc)
   1156 {
   1157 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1158 	struct fxp_txdesc *txd;
   1159 	struct fxp_txsoft *txs;
   1160 	int i;
   1161 	uint16_t txstat;
   1162 
   1163 	ifp->if_flags &= ~IFF_OACTIVE;
   1164 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1165 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1166 		txd = FXP_CDTX(sc, i);
   1167 		txs = FXP_DSTX(sc, i);
   1168 
   1169 		FXP_CDTXSYNC(sc, i,
   1170 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1171 
   1172 		/* skip dummy NOP TX descriptor */
   1173 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
   1174 		    == FXP_CB_COMMAND_NOP)
   1175 			continue;
   1176 
   1177 		txstat = le16toh(txd->txd_txcb.cb_status);
   1178 
   1179 		if ((txstat & FXP_CB_STATUS_C) == 0)
   1180 			break;
   1181 
   1182 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1183 		    0, txs->txs_dmamap->dm_mapsize,
   1184 		    BUS_DMASYNC_POSTWRITE);
   1185 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1186 		m_freem(txs->txs_mbuf);
   1187 		txs->txs_mbuf = NULL;
   1188 	}
   1189 
   1190 	/* Update the dirty transmit buffer pointer. */
   1191 	sc->sc_txdirty = i;
   1192 
   1193 	/*
   1194 	 * Cancel the watchdog timer if there are no pending
   1195 	 * transmissions.
   1196 	 */
   1197 	if (sc->sc_txpending == 0)
   1198 		ifp->if_timer = 0;
   1199 }
   1200 
   1201 /*
   1202  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
   1203  */
   1204 
   1205 void
   1206 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
   1207     u_int len)
   1208 {
   1209 	uint32_t csum_data;
   1210 	int csum_flags;
   1211 
   1212 	/*
   1213 	 * check H/W Checksumming.
   1214 	 */
   1215 
   1216 	csum_flags = 0;
   1217 	csum_data = 0;
   1218 
   1219 	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
   1220 		uint8_t rxparsestat;
   1221 		uint8_t csum_stat;
   1222 
   1223 		csum_stat = rfa->cksum_stat;
   1224 		rxparsestat = rfa->rx_parse_stat;
   1225 		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
   1226 			goto out;
   1227 
   1228 		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
   1229 			csum_flags = M_CSUM_IPv4;
   1230 			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
   1231 				csum_flags |= M_CSUM_IPv4_BAD;
   1232 		}
   1233 
   1234 		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
   1235 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
   1236 			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
   1237 				csum_flags |= M_CSUM_TCP_UDP_BAD;
   1238 		}
   1239 
   1240 	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
   1241 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1242 		struct ether_header *eh;
   1243 		struct ip *ip;
   1244 		struct udphdr *uh;
   1245 		u_int hlen, pktlen;
   1246 
   1247 		if (len < ETHER_HDR_LEN + sizeof(struct ip))
   1248 			goto out;
   1249 		pktlen = len - ETHER_HDR_LEN;
   1250 		eh = mtod(m, struct ether_header *);
   1251 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1252 			goto out;
   1253 		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
   1254 		if (ip->ip_v != IPVERSION)
   1255 			goto out;
   1256 
   1257 		hlen = ip->ip_hl << 2;
   1258 		if (hlen < sizeof(struct ip))
   1259 			goto out;
   1260 
   1261 		/*
   1262 		 * Bail if too short, has random trailing garbage, truncated,
   1263 		 * fragment, or has ethernet pad.
   1264 		 */
   1265 		if (ntohs(ip->ip_len) < hlen ||
   1266 		    ntohs(ip->ip_len) != pktlen ||
   1267 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
   1268 			goto out;
   1269 
   1270 		switch (ip->ip_p) {
   1271 		case IPPROTO_TCP:
   1272 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
   1273 			    pktlen < (hlen + sizeof(struct tcphdr)))
   1274 				goto out;
   1275 			csum_flags =
   1276 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
   1277 			break;
   1278 		case IPPROTO_UDP:
   1279 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
   1280 			    pktlen < (hlen + sizeof(struct udphdr)))
   1281 				goto out;
   1282 			uh = (struct udphdr *)((uint8_t *)ip + hlen);
   1283 			if (uh->uh_sum == 0)
   1284 				goto out;	/* no checksum */
   1285 			csum_flags =
   1286 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
   1287 			break;
   1288 		default:
   1289 			goto out;
   1290 		}
   1291 
   1292 		/* Extract computed checksum. */
   1293 		csum_data = be16dec(mtod(m, uint8_t *) + len);
   1294 
   1295 		/*
   1296 		 * The computed checksum includes IP headers,
   1297 		 * so we have to deduct them.
   1298 		 */
   1299 #if 0
   1300 		/*
   1301 		 * But in TCP/UDP layer we can assume the IP header is valid,
   1302 		 * i.e. a sum of the whole IP header should be 0xffff,
   1303 		 * so we don't have to bother to deduct it.
   1304 		 */
   1305 		if (hlen > 0) {
   1306 			uint32_t hsum;
   1307 			const uint16_t *iphdr;
   1308 			hsum = 0;
   1309 			iphdr = (uint16_t *)ip;
   1310 
   1311 			while (hlen > 1) {
   1312 				hsum += ntohs(*iphdr++);
   1313 				hlen -= sizeof(uint16_t);
   1314 			}
   1315 			while (hsum >> 16)
   1316 				hsum = (hsum >> 16) + (hsum & 0xffff);
   1317 
   1318 			csum_data += (uint16_t)~hsum;
   1319 
   1320 			while (csum_data >> 16)
   1321 				csum_data =
   1322 				    (csum_data >> 16) + (csum_data & 0xffff);
   1323 		}
   1324 #endif
   1325 	}
   1326  out:
   1327 	m->m_pkthdr.csum_flags = csum_flags;
   1328 	m->m_pkthdr.csum_data = csum_data;
   1329 }
   1330 
   1331 /*
   1332  * Handle receive interrupts.
   1333  */
   1334 int
   1335 fxp_rxintr(struct fxp_softc *sc)
   1336 {
   1337 	struct ethercom *ec = &sc->sc_ethercom;
   1338 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1339 	struct mbuf *m, *m0;
   1340 	bus_dmamap_t rxmap;
   1341 	struct fxp_rfa *rfa;
   1342 	int rnr;
   1343 	uint16_t len, rxstat;
   1344 
   1345 	rnr = 0;
   1346 
   1347 	for (;;) {
   1348 		m = sc->sc_rxq.ifq_head;
   1349 		rfa = FXP_MTORFA(m);
   1350 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1351 
   1352 		FXP_RFASYNC(sc, m,
   1353 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1354 
   1355 		rxstat = le16toh(rfa->rfa_status);
   1356 
   1357 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
   1358 			rnr = 1;
   1359 
   1360 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
   1361 			/*
   1362 			 * We have processed all of the
   1363 			 * receive buffers.
   1364 			 */
   1365 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
   1366 			return rnr;
   1367 		}
   1368 
   1369 		IF_DEQUEUE(&sc->sc_rxq, m);
   1370 
   1371 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
   1372 
   1373 		len = le16toh(rfa->actual_size) &
   1374 		    (m->m_ext.ext_size - 1);
   1375 		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
   1376 			/* Adjust for appended checksum bytes. */
   1377 			len -= sizeof(uint16_t);
   1378 		}
   1379 
   1380 		if (len < sizeof(struct ether_header)) {
   1381 			/*
   1382 			 * Runt packet; drop it now.
   1383 			 */
   1384 			FXP_INIT_RFABUF(sc, m);
   1385 			continue;
   1386 		}
   1387 
   1388 		/*
   1389 		 * If support for 802.1Q VLAN sized frames is
   1390 		 * enabled, we need to do some additional error
   1391 		 * checking (as we are saving bad frames, in
   1392 		 * order to receive the larger ones).
   1393 		 */
   1394 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
   1395 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
   1396 			       FXP_RFA_STATUS_RNR|
   1397 			       FXP_RFA_STATUS_ALIGN|
   1398 			       FXP_RFA_STATUS_CRC)) != 0) {
   1399 			FXP_INIT_RFABUF(sc, m);
   1400 			continue;
   1401 		}
   1402 
   1403 		/*
   1404 		 * check VLAN tag stripping.
   1405 		 */
   1406 		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
   1407 		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
   1408 			struct m_tag *vtag;
   1409 
   1410 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   1411 			    M_NOWAIT);
   1412 			if (vtag == NULL)
   1413 				goto dropit;
   1414 			*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
   1415 			m_tag_prepend(m, vtag);
   1416 		}
   1417 
   1418 		/* Do checksum checking. */
   1419 		if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
   1420 			fxp_rx_hwcksum(sc, m, rfa, len);
   1421 
   1422 		/*
   1423 		 * If the packet is small enough to fit in a
   1424 		 * single header mbuf, allocate one and copy
   1425 		 * the data into it.  This greatly reduces
   1426 		 * memory consumption when we receive lots
   1427 		 * of small packets.
   1428 		 *
   1429 		 * Otherwise, we add a new buffer to the receive
   1430 		 * chain.  If this fails, we drop the packet and
   1431 		 * recycle the old buffer.
   1432 		 */
   1433 		if (fxp_copy_small != 0 && len <= MHLEN) {
   1434 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
   1435 			if (m0 == NULL)
   1436 				goto dropit;
   1437 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
   1438 			memcpy(mtod(m0, void *),
   1439 			    mtod(m, void *), len);
   1440 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
   1441 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
   1442 			FXP_INIT_RFABUF(sc, m);
   1443 			m = m0;
   1444 		} else {
   1445 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
   1446  dropit:
   1447 				ifp->if_ierrors++;
   1448 				FXP_INIT_RFABUF(sc, m);
   1449 				continue;
   1450 			}
   1451 		}
   1452 
   1453 		m->m_pkthdr.rcvif = ifp;
   1454 		m->m_pkthdr.len = m->m_len = len;
   1455 
   1456 		/*
   1457 		 * Pass this up to any BPF listeners, but only
   1458 		 * pass it up the stack if it's for us.
   1459 		 */
   1460 		bpf_mtap(ifp, m);
   1461 
   1462 		/* Pass it on. */
   1463 		(*ifp->if_input)(ifp, m);
   1464 	}
   1465 }
   1466 
   1467 /*
   1468  * Update packet in/out/collision statistics. The i82557 doesn't
   1469  * allow you to access these counters without doing a fairly
   1470  * expensive DMA to get _all_ of the statistics it maintains, so
   1471  * we do this operation here only once per second. The statistics
   1472  * counters in the kernel are updated from the previous dump-stats
   1473  * DMA and then a new dump-stats DMA is started. The on-chip
   1474  * counters are zeroed when the DMA completes. If we can't start
   1475  * the DMA immediately, we don't wait - we just prepare to read
   1476  * them again next time.
   1477  */
   1478 void
   1479 fxp_tick(void *arg)
   1480 {
   1481 	struct fxp_softc *sc = arg;
   1482 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1483 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1484 	int s;
   1485 
   1486 	if (!device_is_active(sc->sc_dev))
   1487 		return;
   1488 
   1489 	s = splnet();
   1490 
   1491 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1492 
   1493 	ifp->if_opackets += le32toh(sp->tx_good);
   1494 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1495 	if (sp->rx_good) {
   1496 		ifp->if_ipackets += le32toh(sp->rx_good);
   1497 		sc->sc_rxidle = 0;
   1498 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
   1499 		sc->sc_rxidle++;
   1500 	}
   1501 	ifp->if_ierrors +=
   1502 	    le32toh(sp->rx_crc_errors) +
   1503 	    le32toh(sp->rx_alignment_errors) +
   1504 	    le32toh(sp->rx_rnr_errors) +
   1505 	    le32toh(sp->rx_overrun_errors);
   1506 	/*
   1507 	 * If any transmit underruns occurred, bump up the transmit
   1508 	 * threshold by another 512 bytes (64 * 8).
   1509 	 */
   1510 	if (sp->tx_underruns) {
   1511 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1512 		if (tx_threshold < 192)
   1513 			tx_threshold += 64;
   1514 	}
   1515 #ifdef FXP_EVENT_COUNTERS
   1516 	if (sc->sc_flags & FXPF_FC) {
   1517 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
   1518 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
   1519 	}
   1520 #endif
   1521 
   1522 	/*
   1523 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
   1524 	 * then assume the receiver has locked up and attempt to clear
   1525 	 * the condition by reprogramming the multicast filter (actually,
   1526 	 * resetting the interface). This is a work-around for a bug in
   1527 	 * the 82557 where the receiver locks up if it gets certain types
   1528 	 * of garbage in the synchronization bits prior to the packet header.
   1529 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1530 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1531 	 * speed transition).
   1532 	 */
   1533 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1534 		(void) fxp_init(ifp);
   1535 		splx(s);
   1536 		return;
   1537 	}
   1538 	/*
   1539 	 * If there is no pending command, start another stats
   1540 	 * dump. Otherwise punt for now.
   1541 	 */
   1542 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1543 		/*
   1544 		 * Start another stats dump.
   1545 		 */
   1546 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1547 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
   1548 	} else {
   1549 		/*
   1550 		 * A previous command is still waiting to be accepted.
   1551 		 * Just zero our copy of the stats and wait for the
   1552 		 * next timer event to update them.
   1553 		 */
   1554 		/* BIG_ENDIAN: no swap required to store 0 */
   1555 		sp->tx_good = 0;
   1556 		sp->tx_underruns = 0;
   1557 		sp->tx_total_collisions = 0;
   1558 
   1559 		sp->rx_good = 0;
   1560 		sp->rx_crc_errors = 0;
   1561 		sp->rx_alignment_errors = 0;
   1562 		sp->rx_rnr_errors = 0;
   1563 		sp->rx_overrun_errors = 0;
   1564 		if (sc->sc_flags & FXPF_FC) {
   1565 			sp->tx_pauseframes = 0;
   1566 			sp->rx_pauseframes = 0;
   1567 		}
   1568 	}
   1569 
   1570 	if (sc->sc_flags & FXPF_MII) {
   1571 		/* Tick the MII clock. */
   1572 		mii_tick(&sc->sc_mii);
   1573 	}
   1574 
   1575 	splx(s);
   1576 
   1577 	/*
   1578 	 * Schedule another timeout one second from now.
   1579 	 */
   1580 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1581 }
   1582 
   1583 /*
   1584  * Drain the receive queue.
   1585  */
   1586 void
   1587 fxp_rxdrain(struct fxp_softc *sc)
   1588 {
   1589 	bus_dmamap_t rxmap;
   1590 	struct mbuf *m;
   1591 
   1592 	for (;;) {
   1593 		IF_DEQUEUE(&sc->sc_rxq, m);
   1594 		if (m == NULL)
   1595 			break;
   1596 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1597 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1598 		FXP_RXMAP_PUT(sc, rxmap);
   1599 		m_freem(m);
   1600 	}
   1601 }
   1602 
   1603 /*
   1604  * Stop the interface. Cancels the statistics updater and resets
   1605  * the interface.
   1606  */
   1607 void
   1608 fxp_stop(struct ifnet *ifp, int disable)
   1609 {
   1610 	struct fxp_softc *sc = ifp->if_softc;
   1611 	struct fxp_txsoft *txs;
   1612 	int i;
   1613 
   1614 	/*
   1615 	 * Turn down interface (done early to avoid bad interactions
   1616 	 * between panics, shutdown hooks, and the watchdog timer)
   1617 	 */
   1618 	ifp->if_timer = 0;
   1619 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1620 
   1621 	/*
   1622 	 * Cancel stats updater.
   1623 	 */
   1624 	callout_stop(&sc->sc_callout);
   1625 	if (sc->sc_flags & FXPF_MII) {
   1626 		/* Down the MII. */
   1627 		mii_down(&sc->sc_mii);
   1628 	}
   1629 
   1630 	/*
   1631 	 * Issue software reset.  This unloads any microcode that
   1632 	 * might already be loaded.
   1633 	 */
   1634 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
   1635 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
   1636 	DELAY(50);
   1637 
   1638 	/*
   1639 	 * Release any xmit buffers.
   1640 	 */
   1641 	for (i = 0; i < FXP_NTXCB; i++) {
   1642 		txs = FXP_DSTX(sc, i);
   1643 		if (txs->txs_mbuf != NULL) {
   1644 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1645 			m_freem(txs->txs_mbuf);
   1646 			txs->txs_mbuf = NULL;
   1647 		}
   1648 	}
   1649 	sc->sc_txpending = 0;
   1650 
   1651 	if (disable) {
   1652 		fxp_rxdrain(sc);
   1653 		fxp_disable(sc);
   1654 	}
   1655 
   1656 }
   1657 
   1658 /*
   1659  * Watchdog/transmission transmit timeout handler. Called when a
   1660  * transmission is started on the interface, but no interrupt is
   1661  * received before the timeout. This usually indicates that the
   1662  * card has wedged for some reason.
   1663  */
   1664 void
   1665 fxp_watchdog(struct ifnet *ifp)
   1666 {
   1667 	struct fxp_softc *sc = ifp->if_softc;
   1668 
   1669 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1670 	ifp->if_oerrors++;
   1671 
   1672 	(void) fxp_init(ifp);
   1673 }
   1674 
   1675 /*
   1676  * Initialize the interface.  Must be called at splnet().
   1677  */
   1678 int
   1679 fxp_init(struct ifnet *ifp)
   1680 {
   1681 	struct fxp_softc *sc = ifp->if_softc;
   1682 	struct fxp_cb_config *cbp;
   1683 	struct fxp_cb_ias *cb_ias;
   1684 	struct fxp_txdesc *txd;
   1685 	bus_dmamap_t rxmap;
   1686 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
   1687 	uint16_t status;
   1688 
   1689 	if ((error = fxp_enable(sc)) != 0)
   1690 		goto out;
   1691 
   1692 	/*
   1693 	 * Cancel any pending I/O
   1694 	 */
   1695 	fxp_stop(ifp, 0);
   1696 
   1697 	/*
   1698 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1699 	 * flag, and this prevents the MII from detaching resulting in
   1700 	 * a panic. The flags field should perhaps be split in runtime
   1701 	 * flags and more static information. For now, just clear the
   1702 	 * only other flag set.
   1703 	 */
   1704 
   1705 	sc->sc_flags &= ~FXPF_WANTINIT;
   1706 
   1707 	/*
   1708 	 * Initialize base of CBL and RFA memory. Loading with zero
   1709 	 * sets it up for regular linear addressing.
   1710 	 */
   1711 	fxp_scb_wait(sc);
   1712 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1713 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
   1714 
   1715 	fxp_scb_wait(sc);
   1716 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
   1717 
   1718 	/*
   1719 	 * Initialize the multicast filter.  Do this now, since we might
   1720 	 * have to setup the config block differently.
   1721 	 */
   1722 	fxp_mc_setup(sc);
   1723 
   1724 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1725 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1726 
   1727 	/*
   1728 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1729 	 * enable "save bad frames", since they are 4 bytes larger than
   1730 	 * the normal Ethernet maximum frame length.  On i82558 and later,
   1731 	 * we have a better mechanism for this.
   1732 	 */
   1733 	save_bf = 0;
   1734 	lrxen = 0;
   1735 	vlan_drop = 0;
   1736 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1737 		if (sc->sc_rev < FXP_REV_82558_A4)
   1738 			save_bf = 1;
   1739 		else
   1740 			lrxen = 1;
   1741 		if (sc->sc_rev >= FXP_REV_82550)
   1742 			vlan_drop = 1;
   1743 	}
   1744 
   1745 	/*
   1746 	 * Initialize base of dump-stats buffer.
   1747 	 */
   1748 	fxp_scb_wait(sc);
   1749 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1750 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1751 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1752 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1753 
   1754 	cbp = &sc->sc_control_data->fcd_configcb;
   1755 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1756 
   1757 	/*
   1758 	 * Load microcode for this controller.
   1759 	 */
   1760 	fxp_load_ucode(sc);
   1761 
   1762 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
   1763 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
   1764 	else
   1765 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
   1766 
   1767 	/*
   1768 	 * This copy is kind of disgusting, but there are a bunch of must be
   1769 	 * zero and must be one bits in this structure and this is the easiest
   1770 	 * way to initialize them all to proper values.
   1771 	 */
   1772 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1773 
   1774 	/* BIG_ENDIAN: no need to swap to store 0 */
   1775 	cbp->cb_status =	0;
   1776 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1777 				    FXP_CB_COMMAND_EL);
   1778 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1779 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1780 					/* bytes in config block */
   1781 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
   1782 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
   1783 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1784 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1785 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1786 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
   1787 	cbp->type_enable =	0;	/* actually reserved */
   1788 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
   1789 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
   1790 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1791 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1792 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
   1793 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1794 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
   1795 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1796 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
   1797 	cbp->ext_stats_dis =	1;	/* disable extended counters */
   1798 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
   1799 	cbp->save_bf =		save_bf;/* save bad frames */
   1800 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1801 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1802 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1803 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
   1804 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
   1805 					/* interface mode */
   1806 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
   1807 	cbp->csma_dis =		0;	/* (don't) disable link */
   1808 	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
   1809 					/* (don't) enable RX checksum */
   1810 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
   1811 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
   1812 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
   1813 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
   1814 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1815 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1816 	cbp->loopback =		0;	/* (don't) loopback */
   1817 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1818 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1819 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1820 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1821 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1822 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
   1823 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
   1824 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
   1825 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
   1826 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1827 	cbp->padding =		1;	/* (do) pad short tx packets */
   1828 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1829 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
   1830 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
   1831 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
   1832 					/* must set wake_en in PMCSR also */
   1833 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1834 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1835 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1836 	cbp->mc_all =		allm;	/* accept all multicasts */
   1837 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1838 	cbp->vlan_drop_en =	vlan_drop;
   1839 
   1840 	if (!(sc->sc_flags & FXPF_FC)) {
   1841 		/*
   1842 		 * The i82557 has no hardware flow control, the values
   1843 		 * here are the defaults for the chip.
   1844 		 */
   1845 		cbp->fc_delay_lsb =	0;
   1846 		cbp->fc_delay_msb =	0x40;
   1847 		cbp->pri_fc_thresh =	3;
   1848 		cbp->tx_fc_dis =	0;
   1849 		cbp->rx_fc_restop =	0;
   1850 		cbp->rx_fc_restart =	0;
   1851 		cbp->fc_filter =	0;
   1852 		cbp->pri_fc_loc =	1;
   1853 	} else {
   1854 		cbp->fc_delay_lsb =	0x1f;
   1855 		cbp->fc_delay_msb =	0x01;
   1856 		cbp->pri_fc_thresh =	3;
   1857 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
   1858 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
   1859 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
   1860 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
   1861 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
   1862 		cbp->ext_stats_dis =	0;	/* enable extended stats */
   1863 	}
   1864 
   1865 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1866 
   1867 	/*
   1868 	 * Start the config command/DMA.
   1869 	 */
   1870 	fxp_scb_wait(sc);
   1871 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1872 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1873 	/* ...and wait for it to complete. */
   1874 	for (i = 1000; i > 0; i--) {
   1875 		FXP_CDCONFIGSYNC(sc,
   1876 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1877 		status = le16toh(cbp->cb_status);
   1878 		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
   1879 		if ((status & FXP_CB_STATUS_C) != 0)
   1880 			break;
   1881 		DELAY(1);
   1882 	}
   1883 	if (i == 0) {
   1884 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1885 		    device_xname(sc->sc_dev), __LINE__);
   1886 		return (ETIMEDOUT);
   1887 	}
   1888 
   1889 	/*
   1890 	 * Initialize the station address.
   1891 	 */
   1892 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1893 	/* BIG_ENDIAN: no need to swap to store 0 */
   1894 	cb_ias->cb_status = 0;
   1895 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1896 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1897 	cb_ias->link_addr = 0xffffffff;
   1898 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1899 
   1900 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1901 
   1902 	/*
   1903 	 * Start the IAS (Individual Address Setup) command/DMA.
   1904 	 */
   1905 	fxp_scb_wait(sc);
   1906 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1907 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1908 	/* ...and wait for it to complete. */
   1909 	for (i = 1000; i > 0; i++) {
   1910 		FXP_CDIASSYNC(sc,
   1911 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1912 		status = le16toh(cb_ias->cb_status);
   1913 		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
   1914 		if ((status & FXP_CB_STATUS_C) != 0)
   1915 			break;
   1916 		DELAY(1);
   1917 	}
   1918 	if (i == 0) {
   1919 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1920 		    device_xname(sc->sc_dev), __LINE__);
   1921 		return (ETIMEDOUT);
   1922 	}
   1923 
   1924 	/*
   1925 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1926 	 * to the end of the list so that it will wrap around to the first
   1927 	 * descriptor when the first packet is transmitted.
   1928 	 */
   1929 	for (i = 0; i < FXP_NTXCB; i++) {
   1930 		txd = FXP_CDTX(sc, i);
   1931 		memset(txd, 0, sizeof(*txd));
   1932 		txd->txd_txcb.cb_command =
   1933 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1934 		txd->txd_txcb.link_addr =
   1935 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1936 		if (sc->sc_flags & FXPF_EXT_TXCB)
   1937 			txd->txd_txcb.tbd_array_addr =
   1938 			    htole32(FXP_CDTBDADDR(sc, i) +
   1939 				    (2 * sizeof(struct fxp_tbd)));
   1940 		else
   1941 			txd->txd_txcb.tbd_array_addr =
   1942 			    htole32(FXP_CDTBDADDR(sc, i));
   1943 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1944 	}
   1945 	sc->sc_txpending = 0;
   1946 	sc->sc_txdirty = 0;
   1947 	sc->sc_txlast = FXP_NTXCB - 1;
   1948 
   1949 	/*
   1950 	 * Initialize the receive buffer list.
   1951 	 */
   1952 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1953 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1954 		rxmap = FXP_RXMAP_GET(sc);
   1955 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1956 			log(LOG_ERR, "%s: unable to allocate or map rx "
   1957 			    "buffer %d, error = %d\n",
   1958 			    device_xname(sc->sc_dev),
   1959 			    sc->sc_rxq.ifq_len, error);
   1960 			/*
   1961 			 * XXX Should attempt to run with fewer receive
   1962 			 * XXX buffers instead of just failing.
   1963 			 */
   1964 			FXP_RXMAP_PUT(sc, rxmap);
   1965 			fxp_rxdrain(sc);
   1966 			goto out;
   1967 		}
   1968 	}
   1969 	sc->sc_rxidle = 0;
   1970 
   1971 	/*
   1972 	 * Give the transmit ring to the chip.  We do this by pointing
   1973 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1974 	 * issuing a start command.  It will execute the NOP and then
   1975 	 * suspend, pointing at the first descriptor.
   1976 	 */
   1977 	fxp_scb_wait(sc);
   1978 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1979 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1980 
   1981 	/*
   1982 	 * Initialize receiver buffer area - RFA.
   1983 	 */
   1984 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
   1985 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1986 	fxp_scb_wait(sc);
   1987 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1988 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1989 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1990 #endif
   1991 
   1992 	if (sc->sc_flags & FXPF_MII) {
   1993 		/*
   1994 		 * Set current media.
   1995 		 */
   1996 		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1997 			goto out;
   1998 	}
   1999 
   2000 	/*
   2001 	 * ...all done!
   2002 	 */
   2003 	ifp->if_flags |= IFF_RUNNING;
   2004 	ifp->if_flags &= ~IFF_OACTIVE;
   2005 
   2006 	/*
   2007 	 * Request a software generated interrupt that will be used to
   2008 	 * (re)start the RU processing.  If we direct the chip to start
   2009 	 * receiving from the start of queue now, instead of letting the
   2010 	 * interrupt handler first process all received packets, we run
   2011 	 * the risk of having it overwrite mbuf clusters while they are
   2012 	 * being processed or after they have been returned to the pool.
   2013 	 */
   2014 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
   2015 
   2016 	/*
   2017 	 * Start the one second timer.
   2018 	 */
   2019 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   2020 
   2021 	/*
   2022 	 * Attempt to start output on the interface.
   2023 	 */
   2024 	fxp_start(ifp);
   2025 
   2026  out:
   2027 	if (error) {
   2028 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2029 		ifp->if_timer = 0;
   2030 		log(LOG_ERR, "%s: interface not running\n",
   2031 		    device_xname(sc->sc_dev));
   2032 	}
   2033 	return (error);
   2034 }
   2035 
   2036 /*
   2037  * Notify the world which media we're using.
   2038  */
   2039 void
   2040 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2041 {
   2042 	struct fxp_softc *sc = ifp->if_softc;
   2043 
   2044 	if (sc->sc_enabled == 0) {
   2045 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   2046 		ifmr->ifm_status = 0;
   2047 		return;
   2048 	}
   2049 
   2050 	ether_mediastatus(ifp, ifmr);
   2051 }
   2052 
   2053 int
   2054 fxp_80c24_mediachange(struct ifnet *ifp)
   2055 {
   2056 
   2057 	/* Nothing to do here. */
   2058 	return (0);
   2059 }
   2060 
   2061 void
   2062 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2063 {
   2064 	struct fxp_softc *sc = ifp->if_softc;
   2065 
   2066 	/*
   2067 	 * Media is currently-selected media.  We cannot determine
   2068 	 * the link status.
   2069 	 */
   2070 	ifmr->ifm_status = 0;
   2071 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   2072 }
   2073 
   2074 /*
   2075  * Add a buffer to the end of the RFA buffer list.
   2076  * Return 0 if successful, error code on failure.
   2077  *
   2078  * The RFA struct is stuck at the beginning of mbuf cluster and the
   2079  * data pointer is fixed up to point just past it.
   2080  */
   2081 int
   2082 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
   2083 {
   2084 	struct mbuf *m;
   2085 	int error;
   2086 
   2087 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2088 	if (m == NULL)
   2089 		return (ENOBUFS);
   2090 
   2091 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2092 	MCLGET(m, M_DONTWAIT);
   2093 	if ((m->m_flags & M_EXT) == 0) {
   2094 		m_freem(m);
   2095 		return (ENOBUFS);
   2096 	}
   2097 
   2098 	if (unload)
   2099 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   2100 
   2101 	M_SETCTX(m, rxmap);
   2102 
   2103 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2104 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
   2105 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2106 	if (error) {
   2107 		/* XXX XXX XXX */
   2108 		aprint_error_dev(sc->sc_dev,
   2109 		    "can't load rx DMA map %d, error = %d\n",
   2110 		    sc->sc_rxq.ifq_len, error);
   2111 		panic("fxp_add_rfabuf");
   2112 	}
   2113 
   2114 	FXP_INIT_RFABUF(sc, m);
   2115 
   2116 	return (0);
   2117 }
   2118 
   2119 int
   2120 fxp_mdi_read(device_t self, int phy, int reg)
   2121 {
   2122 	struct fxp_softc *sc = device_private(self);
   2123 	int count = 10000;
   2124 	int value;
   2125 
   2126 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2127 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   2128 
   2129 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
   2130 	    0x10000000) == 0 && count--)
   2131 		DELAY(10);
   2132 
   2133 	if (count <= 0)
   2134 		log(LOG_WARNING,
   2135 		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
   2136 
   2137 	return (value & 0xffff);
   2138 }
   2139 
   2140 void
   2141 fxp_statchg(struct ifnet *ifp)
   2142 {
   2143 
   2144 	/* Nothing to do. */
   2145 }
   2146 
   2147 void
   2148 fxp_mdi_write(device_t self, int phy, int reg, int value)
   2149 {
   2150 	struct fxp_softc *sc = device_private(self);
   2151 	int count = 10000;
   2152 
   2153 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2154 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   2155 	    (value & 0xffff));
   2156 
   2157 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   2158 	    count--)
   2159 		DELAY(10);
   2160 
   2161 	if (count <= 0)
   2162 		log(LOG_WARNING,
   2163 		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
   2164 }
   2165 
   2166 int
   2167 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2168 {
   2169 	struct fxp_softc *sc = ifp->if_softc;
   2170 	struct ifreq *ifr = (struct ifreq *)data;
   2171 	int s, error;
   2172 
   2173 	s = splnet();
   2174 
   2175 	switch (cmd) {
   2176 	case SIOCSIFMEDIA:
   2177 	case SIOCGIFMEDIA:
   2178 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2179 		break;
   2180 
   2181 	default:
   2182 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   2183 			break;
   2184 
   2185 		error = 0;
   2186 
   2187 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2188 			;
   2189 		else if (ifp->if_flags & IFF_RUNNING) {
   2190 			/*
   2191 			 * Multicast list has changed; set the
   2192 			 * hardware filter accordingly.
   2193 			 */
   2194 			while (sc->sc_txpending) {
   2195 				sc->sc_flags |= FXPF_WANTINIT;
   2196 				tsleep(sc, PSOCK, "fxp_init", 0);
   2197 			}
   2198 			error = fxp_init(ifp);
   2199 		}
   2200 		break;
   2201 	}
   2202 
   2203 	/* Try to get more packets going. */
   2204 	if (sc->sc_enabled)
   2205 		fxp_start(ifp);
   2206 
   2207 	splx(s);
   2208 	return (error);
   2209 }
   2210 
   2211 /*
   2212  * Program the multicast filter.
   2213  *
   2214  * This function must be called at splnet().
   2215  */
   2216 void
   2217 fxp_mc_setup(struct fxp_softc *sc)
   2218 {
   2219 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   2220 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2221 	struct ethercom *ec = &sc->sc_ethercom;
   2222 	struct ether_multi *enm;
   2223 	struct ether_multistep step;
   2224 	int count, nmcasts;
   2225 	uint16_t status;
   2226 
   2227 #ifdef DIAGNOSTIC
   2228 	if (sc->sc_txpending)
   2229 		panic("fxp_mc_setup: pending transmissions");
   2230 #endif
   2231 
   2232 
   2233 	if (ifp->if_flags & IFF_PROMISC) {
   2234 		ifp->if_flags |= IFF_ALLMULTI;
   2235 		return;
   2236 	} else {
   2237 		ifp->if_flags &= ~IFF_ALLMULTI;
   2238 	}
   2239 
   2240 	/*
   2241 	 * Initialize multicast setup descriptor.
   2242 	 */
   2243 	nmcasts = 0;
   2244 	ETHER_FIRST_MULTI(step, ec, enm);
   2245 	while (enm != NULL) {
   2246 		/*
   2247 		 * Check for too many multicast addresses or if we're
   2248 		 * listening to a range.  Either way, we simply have
   2249 		 * to accept all multicasts.
   2250 		 */
   2251 		if (nmcasts >= MAXMCADDR ||
   2252 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2253 		    ETHER_ADDR_LEN) != 0) {
   2254 			/*
   2255 			 * Callers of this function must do the
   2256 			 * right thing with this.  If we're called
   2257 			 * from outside fxp_init(), the caller must
   2258 			 * detect if the state if IFF_ALLMULTI changes.
   2259 			 * If it does, the caller must then call
   2260 			 * fxp_init(), since allmulti is handled by
   2261 			 * the config block.
   2262 			 */
   2263 			ifp->if_flags |= IFF_ALLMULTI;
   2264 			return;
   2265 		}
   2266 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   2267 		    ETHER_ADDR_LEN);
   2268 		nmcasts++;
   2269 		ETHER_NEXT_MULTI(step, enm);
   2270 	}
   2271 
   2272 	/* BIG_ENDIAN: no need to swap to store 0 */
   2273 	mcsp->cb_status = 0;
   2274 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   2275 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   2276 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   2277 
   2278 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2279 
   2280 	/*
   2281 	 * Wait until the command unit is not active.  This should never
   2282 	 * happen since nothing is queued, but make sure anyway.
   2283 	 */
   2284 	count = 100;
   2285 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   2286 	    FXP_SCB_CUS_ACTIVE && --count)
   2287 		DELAY(1);
   2288 	if (count == 0) {
   2289 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
   2290 		    device_xname(sc->sc_dev), __LINE__);
   2291 		return;
   2292 	}
   2293 
   2294 	/*
   2295 	 * Start the multicast setup command/DMA.
   2296 	 */
   2297 	fxp_scb_wait(sc);
   2298 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   2299 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2300 
   2301 	/* ...and wait for it to complete. */
   2302 	for (count = 1000; count > 0; count--) {
   2303 		FXP_CDMCSSYNC(sc,
   2304 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2305 		status = le16toh(mcsp->cb_status);
   2306 		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
   2307 		if ((status & FXP_CB_STATUS_C) != 0)
   2308 			break;
   2309 		DELAY(1);
   2310 	}
   2311 	if (count == 0) {
   2312 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   2313 		    device_xname(sc->sc_dev), __LINE__);
   2314 		return;
   2315 	}
   2316 }
   2317 
   2318 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
   2319 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
   2320 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
   2321 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
   2322 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
   2323 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
   2324 static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
   2325 
   2326 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
   2327 
   2328 static const struct ucode {
   2329 	int32_t		revision;
   2330 	const uint32_t	*ucode;
   2331 	size_t		length;
   2332 	uint16_t	int_delay_offset;
   2333 	uint16_t	bundle_max_offset;
   2334 } ucode_table[] = {
   2335 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
   2336 	  D101_CPUSAVER_DWORD, 0 },
   2337 
   2338 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
   2339 	  D101_CPUSAVER_DWORD, 0 },
   2340 
   2341 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
   2342 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
   2343 
   2344 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
   2345 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
   2346 
   2347 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
   2348 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
   2349 
   2350 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
   2351 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
   2352 
   2353 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
   2354 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
   2355 
   2356 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
   2357 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
   2358 
   2359 	{ 0, NULL, 0, 0, 0 }
   2360 };
   2361 
   2362 void
   2363 fxp_load_ucode(struct fxp_softc *sc)
   2364 {
   2365 	const struct ucode *uc;
   2366 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
   2367 	int count, i;
   2368 	uint16_t status;
   2369 
   2370 	if (sc->sc_flags & FXPF_UCODE_LOADED)
   2371 		return;
   2372 
   2373 	/*
   2374 	 * Only load the uCode if the user has requested that
   2375 	 * we do so.
   2376 	 */
   2377 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
   2378 		sc->sc_int_delay = 0;
   2379 		sc->sc_bundle_max = 0;
   2380 		return;
   2381 	}
   2382 
   2383 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
   2384 		if (sc->sc_rev == uc->revision)
   2385 			break;
   2386 	}
   2387 	if (uc->ucode == NULL)
   2388 		return;
   2389 
   2390 	/* BIG ENDIAN: no need to swap to store 0 */
   2391 	cbp->cb_status = 0;
   2392 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
   2393 	cbp->link_addr = 0xffffffff;		/* (no) next command */
   2394 	for (i = 0; i < uc->length; i++)
   2395 		cbp->ucode[i] = htole32(uc->ucode[i]);
   2396 
   2397 	if (uc->int_delay_offset)
   2398 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
   2399 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
   2400 
   2401 	if (uc->bundle_max_offset)
   2402 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
   2403 		    htole16(fxp_bundle_max);
   2404 
   2405 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2406 
   2407 	/*
   2408 	 * Download the uCode to the chip.
   2409 	 */
   2410 	fxp_scb_wait(sc);
   2411 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
   2412 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2413 
   2414 	/* ...and wait for it to complete. */
   2415 	for (count = 10000; count > 0; count--) {
   2416 		FXP_CDUCODESYNC(sc,
   2417 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2418 		status = le16toh(cbp->cb_status);
   2419 		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
   2420 		if ((status & FXP_CB_STATUS_C) != 0)
   2421 			break;
   2422 		DELAY(2);
   2423 	}
   2424 	if (count == 0) {
   2425 		sc->sc_int_delay = 0;
   2426 		sc->sc_bundle_max = 0;
   2427 		log(LOG_WARNING, "%s: timeout loading microcode\n",
   2428 		    device_xname(sc->sc_dev));
   2429 		return;
   2430 	}
   2431 
   2432 	if (sc->sc_int_delay != fxp_int_delay ||
   2433 	    sc->sc_bundle_max != fxp_bundle_max) {
   2434 		sc->sc_int_delay = fxp_int_delay;
   2435 		sc->sc_bundle_max = fxp_bundle_max;
   2436 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
   2437 		    "max bundle: %d\n", device_xname(sc->sc_dev),
   2438 		    sc->sc_int_delay,
   2439 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
   2440 	}
   2441 
   2442 	sc->sc_flags |= FXPF_UCODE_LOADED;
   2443 }
   2444 
   2445 int
   2446 fxp_enable(struct fxp_softc *sc)
   2447 {
   2448 
   2449 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   2450 		if ((*sc->sc_enable)(sc) != 0) {
   2451 			log(LOG_ERR, "%s: device enable failed\n",
   2452 			    device_xname(sc->sc_dev));
   2453 			return (EIO);
   2454 		}
   2455 	}
   2456 
   2457 	sc->sc_enabled = 1;
   2458 	return (0);
   2459 }
   2460 
   2461 void
   2462 fxp_disable(struct fxp_softc *sc)
   2463 {
   2464 
   2465 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   2466 		(*sc->sc_disable)(sc);
   2467 		sc->sc_enabled = 0;
   2468 	}
   2469 }
   2470 
   2471 /*
   2472  * fxp_activate:
   2473  *
   2474  *	Handle device activation/deactivation requests.
   2475  */
   2476 int
   2477 fxp_activate(device_t self, enum devact act)
   2478 {
   2479 	struct fxp_softc *sc = device_private(self);
   2480 
   2481 	switch (act) {
   2482 	case DVACT_DEACTIVATE:
   2483 		if_deactivate(&sc->sc_ethercom.ec_if);
   2484 		return 0;
   2485 	default:
   2486 		return EOPNOTSUPP;
   2487 	}
   2488 }
   2489 
   2490 /*
   2491  * fxp_detach:
   2492  *
   2493  *	Detach an i82557 interface.
   2494  */
   2495 int
   2496 fxp_detach(struct fxp_softc *sc, int flags)
   2497 {
   2498 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2499 	int i, s;
   2500 
   2501 	/* Succeed now if there's no work to do. */
   2502 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2503 		return (0);
   2504 
   2505 	s = splnet();
   2506 	/* Stop the interface. Callouts are stopped in it. */
   2507 	fxp_stop(ifp, 1);
   2508 	splx(s);
   2509 
   2510 	/* Destroy our callout. */
   2511 	callout_destroy(&sc->sc_callout);
   2512 
   2513 	if (sc->sc_flags & FXPF_MII) {
   2514 		/* Detach all PHYs */
   2515 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2516 	}
   2517 
   2518 	/* Delete all remaining media. */
   2519 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2520 
   2521 	rnd_detach_source(&sc->rnd_source);
   2522 	ether_ifdetach(ifp);
   2523 	if_detach(ifp);
   2524 
   2525 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2526 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2527 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2528 	}
   2529 
   2530 	for (i = 0; i < FXP_NTXCB; i++) {
   2531 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2532 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2533 	}
   2534 
   2535 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2536 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2537 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   2538 	    sizeof(struct fxp_control_data));
   2539 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2540 
   2541 	return (0);
   2542 }
   2543