Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.148
      1 /*	$NetBSD: i82557.c,v 1.148 2017/09/26 07:42:06 knakahara Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1995, David Greenman
     35  * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice unmodified, this list of conditions, and the following
     43  *    disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
     61  */
     62 
     63 /*
     64  * Device driver for the Intel i82557 fast Ethernet controller,
     65  * and its successors, the i82558 and i82559.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.148 2017/09/26 07:42:06 knakahara Exp $");
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/callout.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/malloc.h>
     76 #include <sys/kernel.h>
     77 #include <sys/socket.h>
     78 #include <sys/ioctl.h>
     79 #include <sys/errno.h>
     80 #include <sys/device.h>
     81 #include <sys/syslog.h>
     82 #include <sys/proc.h>
     83 
     84 #include <machine/endian.h>
     85 
     86 #include <sys/rndsource.h>
     87 
     88 #include <net/if.h>
     89 #include <net/if_dl.h>
     90 #include <net/if_media.h>
     91 #include <net/if_ether.h>
     92 
     93 #include <netinet/in.h>
     94 #include <netinet/in_systm.h>
     95 #include <netinet/ip.h>
     96 #include <netinet/tcp.h>
     97 #include <netinet/udp.h>
     98 
     99 #include <net/bpf.h>
    100 
    101 #include <sys/bus.h>
    102 #include <sys/intr.h>
    103 
    104 #include <dev/mii/miivar.h>
    105 
    106 #include <dev/ic/i82557reg.h>
    107 #include <dev/ic/i82557var.h>
    108 
    109 #include <dev/microcode/i8255x/rcvbundl.h>
    110 
    111 /*
    112  * NOTE!  On the Alpha, we have an alignment constraint.  The
    113  * card DMAs the packet immediately following the RFA.  However,
    114  * the first thing in the packet is a 14-byte Ethernet header.
    115  * This means that the packet is misaligned.  To compensate,
    116  * we actually offset the RFA 2 bytes into the cluster.  This
    117  * alignes the packet after the Ethernet header at a 32-bit
    118  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    119  */
    120 #define	RFA_ALIGNMENT_FUDGE	2
    121 
    122 /*
    123  * The configuration byte map has several undefined fields which
    124  * must be one or must be zero.  Set up a template for these bits
    125  * only (assuming an i82557 chip), leaving the actual configuration
    126  * for fxp_init().
    127  *
    128  * See the definition of struct fxp_cb_config for the bit definitions.
    129  */
    130 const uint8_t fxp_cb_config_template[] = {
    131 	0x0, 0x0,		/* cb_status */
    132 	0x0, 0x0,		/* cb_command */
    133 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
    134 	0x0,	/*  0 */
    135 	0x0,	/*  1 */
    136 	0x0,	/*  2 */
    137 	0x0,	/*  3 */
    138 	0x0,	/*  4 */
    139 	0x0,	/*  5 */
    140 	0x32,	/*  6 */
    141 	0x0,	/*  7 */
    142 	0x0,	/*  8 */
    143 	0x0,	/*  9 */
    144 	0x6,	/* 10 */
    145 	0x0,	/* 11 */
    146 	0x0,	/* 12 */
    147 	0x0,	/* 13 */
    148 	0xf2,	/* 14 */
    149 	0x48,	/* 15 */
    150 	0x0,	/* 16 */
    151 	0x40,	/* 17 */
    152 	0xf0,	/* 18 */
    153 	0x0,	/* 19 */
    154 	0x3f,	/* 20 */
    155 	0x5,	/* 21 */
    156 	0x0,	/* 22 */
    157 	0x0,	/* 23 */
    158 	0x0,	/* 24 */
    159 	0x0,	/* 25 */
    160 	0x0,	/* 26 */
    161 	0x0,	/* 27 */
    162 	0x0,	/* 28 */
    163 	0x0,	/* 29 */
    164 	0x0,	/* 30 */
    165 	0x0,	/* 31 */
    166 };
    167 
    168 void	fxp_mii_initmedia(struct fxp_softc *);
    169 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
    170 
    171 void	fxp_80c24_initmedia(struct fxp_softc *);
    172 int	fxp_80c24_mediachange(struct ifnet *);
    173 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
    174 
    175 void	fxp_start(struct ifnet *);
    176 int	fxp_ioctl(struct ifnet *, u_long, void *);
    177 void	fxp_watchdog(struct ifnet *);
    178 int	fxp_init(struct ifnet *);
    179 void	fxp_stop(struct ifnet *, int);
    180 
    181 void	fxp_txintr(struct fxp_softc *);
    182 int	fxp_rxintr(struct fxp_softc *);
    183 
    184 void	fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
    185 	    const struct fxp_rfa *, u_int);
    186 
    187 void	fxp_rxdrain(struct fxp_softc *);
    188 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
    189 int	fxp_mdi_read(device_t, int, int);
    190 void	fxp_statchg(struct ifnet *);
    191 void	fxp_mdi_write(device_t, int, int, int);
    192 void	fxp_autosize_eeprom(struct fxp_softc*);
    193 void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
    194 void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
    195 void	fxp_eeprom_update_cksum(struct fxp_softc *);
    196 void	fxp_get_info(struct fxp_softc *, uint8_t *);
    197 void	fxp_tick(void *);
    198 void	fxp_mc_setup(struct fxp_softc *);
    199 void	fxp_load_ucode(struct fxp_softc *);
    200 
    201 int	fxp_copy_small = 0;
    202 
    203 /*
    204  * Variables for interrupt mitigating microcode.
    205  */
    206 int	fxp_int_delay = 1000;		/* usec */
    207 int	fxp_bundle_max = 6;		/* packets */
    208 
    209 struct fxp_phytype {
    210 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    211 	void	(*fp_init)(struct fxp_softc *);
    212 } fxp_phytype_table[] = {
    213 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    214 	{ -1,				fxp_mii_initmedia },
    215 };
    216 
    217 /*
    218  * Set initial transmit threshold at 64 (512 bytes). This is
    219  * increased by 64 (512 bytes) at a time, to maximum of 192
    220  * (1536 bytes), if an underrun occurs.
    221  */
    222 static int tx_threshold = 64;
    223 
    224 /*
    225  * Wait for the previous command to be accepted (but not necessarily
    226  * completed).
    227  */
    228 static inline void
    229 fxp_scb_wait(struct fxp_softc *sc)
    230 {
    231 	int i = 10000;
    232 
    233 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    234 		delay(2);
    235 	if (i == 0)
    236 		log(LOG_WARNING,
    237 		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
    238 }
    239 
    240 /*
    241  * Submit a command to the i82557.
    242  */
    243 static inline void
    244 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
    245 {
    246 
    247 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
    248 }
    249 
    250 /*
    251  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    252  */
    253 void
    254 fxp_attach(struct fxp_softc *sc)
    255 {
    256 	uint8_t enaddr[ETHER_ADDR_LEN];
    257 	struct ifnet *ifp;
    258 	bus_dma_segment_t seg;
    259 	int rseg, i, error;
    260 	struct fxp_phytype *fp;
    261 
    262 	callout_init(&sc->sc_callout, 0);
    263 
    264         /*
    265 	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
    266 	 * Note: to use IPCB we need extended TXCB support too, and
    267 	 *       these feature flags should be set in each bus attachment.
    268 	 */
    269 	if (sc->sc_flags & FXPF_EXT_RFA) {
    270 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
    271 		sc->sc_rfa_size = RFA_EXT_SIZE;
    272 	} else {
    273 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
    274 		sc->sc_rfa_size = RFA_SIZE;
    275 	}
    276 
    277 	/*
    278 	 * Allocate the control data structures, and create and load the
    279 	 * DMA map for it.
    280 	 */
    281 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    282 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    283 	    0)) != 0) {
    284 		aprint_error_dev(sc->sc_dev,
    285 		    "unable to allocate control data, error = %d\n",
    286 		    error);
    287 		goto fail_0;
    288 	}
    289 
    290 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    291 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
    292 	    BUS_DMA_COHERENT)) != 0) {
    293 		aprint_error_dev(sc->sc_dev,
    294 		    "unable to map control data, error = %d\n", error);
    295 		goto fail_1;
    296 	}
    297 	sc->sc_cdseg = seg;
    298 	sc->sc_cdnseg = rseg;
    299 
    300 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
    301 
    302 	if ((error = bus_dmamap_create(sc->sc_dmat,
    303 	    sizeof(struct fxp_control_data), 1,
    304 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    305 		aprint_error_dev(sc->sc_dev,
    306 		    "unable to create control data DMA map, error = %d\n",
    307 		    error);
    308 		goto fail_2;
    309 	}
    310 
    311 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    312 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    313 	    0)) != 0) {
    314 		aprint_error_dev(sc->sc_dev,
    315 		    "can't load control data DMA map, error = %d\n",
    316 		    error);
    317 		goto fail_3;
    318 	}
    319 
    320 	/*
    321 	 * Create the transmit buffer DMA maps.
    322 	 */
    323 	for (i = 0; i < FXP_NTXCB; i++) {
    324 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    325 		    (sc->sc_flags & FXPF_EXT_RFA) ?
    326 		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
    327 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    328 			aprint_error_dev(sc->sc_dev,
    329 			    "unable to create tx DMA map %d, error = %d\n",
    330 			    i, error);
    331 			goto fail_4;
    332 		}
    333 	}
    334 
    335 	/*
    336 	 * Create the receive buffer DMA maps.
    337 	 */
    338 	for (i = 0; i < FXP_NRFABUFS; i++) {
    339 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    340 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    341 			aprint_error_dev(sc->sc_dev,
    342 			    "unable to create rx DMA map %d, error = %d\n",
    343 			    i, error);
    344 			goto fail_5;
    345 		}
    346 	}
    347 
    348 	/* Initialize MAC address and media structures. */
    349 	fxp_get_info(sc, enaddr);
    350 
    351 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    352 	    ether_sprintf(enaddr));
    353 
    354 	ifp = &sc->sc_ethercom.ec_if;
    355 
    356 	/*
    357 	 * Get info about our media interface, and initialize it.  Note
    358 	 * the table terminates itself with a phy of -1, indicating
    359 	 * that we're using MII.
    360 	 */
    361 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    362 		if (fp->fp_phy == sc->phy_primary_device)
    363 			break;
    364 	(*fp->fp_init)(sc);
    365 
    366 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    367 	ifp->if_softc = sc;
    368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    369 	ifp->if_ioctl = fxp_ioctl;
    370 	ifp->if_start = fxp_start;
    371 	ifp->if_watchdog = fxp_watchdog;
    372 	ifp->if_init = fxp_init;
    373 	ifp->if_stop = fxp_stop;
    374 	IFQ_SET_READY(&ifp->if_snd);
    375 
    376 	if (sc->sc_flags & FXPF_EXT_RFA) {
    377 		/*
    378 		 * Enable hardware cksum support by EXT_RFA and IPCB.
    379 		 *
    380 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
    381 		 * at least, on i82550 rev.12.
    382 		 * specifically, it doesn't set ipv4 checksum properly
    383 		 * when sending UDP (and probably TCP) packets with
    384 		 * 20 byte ipv4 header + 1 or 2 byte data,
    385 		 * though ICMP packets seem working.
    386 		 * FreeBSD driver has related comments.
    387 		 * We've added a workaround to handle the bug by padding
    388 		 * such packets manually.
    389 		 */
    390 		ifp->if_capabilities =
    391 		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
    392 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    393 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    394 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    395 	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
    396 		ifp->if_capabilities =
    397 		    IFCAP_CSUM_TCPv4_Rx |
    398 		    IFCAP_CSUM_UDPv4_Rx;
    399 	}
    400 
    401 	/*
    402 	 * We can support 802.1Q VLAN-sized frames.
    403 	 */
    404 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    405 
    406 	/*
    407 	 * Attach the interface.
    408 	 */
    409 	if_attach(ifp);
    410 	if_deferred_start_init(ifp, NULL);
    411 	ether_ifattach(ifp, enaddr);
    412 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    413 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    414 
    415 #ifdef FXP_EVENT_COUNTERS
    416 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    417 	    NULL, device_xname(sc->sc_dev), "txstall");
    418 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    419 	    NULL, device_xname(sc->sc_dev), "txintr");
    420 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    421 	    NULL, device_xname(sc->sc_dev), "rxintr");
    422 	if (sc->sc_flags & FXPF_FC) {
    423 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
    424 		    NULL, device_xname(sc->sc_dev), "txpause");
    425 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
    426 		    NULL, device_xname(sc->sc_dev), "rxpause");
    427 	}
    428 #endif /* FXP_EVENT_COUNTERS */
    429 
    430 	/* The attach is successful. */
    431 	sc->sc_flags |= FXPF_ATTACHED;
    432 
    433 	return;
    434 
    435 	/*
    436 	 * Free any resources we've allocated during the failed attach
    437 	 * attempt.  Do this in reverse order and fall though.
    438 	 */
    439  fail_5:
    440 	for (i = 0; i < FXP_NRFABUFS; i++) {
    441 		if (sc->sc_rxmaps[i] != NULL)
    442 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    443 	}
    444  fail_4:
    445 	for (i = 0; i < FXP_NTXCB; i++) {
    446 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    447 			bus_dmamap_destroy(sc->sc_dmat,
    448 			    FXP_DSTX(sc, i)->txs_dmamap);
    449 	}
    450 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    451  fail_3:
    452 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    453  fail_2:
    454 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    455 	    sizeof(struct fxp_control_data));
    456  fail_1:
    457 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    458  fail_0:
    459 	return;
    460 }
    461 
    462 void
    463 fxp_mii_initmedia(struct fxp_softc *sc)
    464 {
    465 	int flags;
    466 
    467 	sc->sc_flags |= FXPF_MII;
    468 
    469 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    470 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    471 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    472 	sc->sc_mii.mii_statchg = fxp_statchg;
    473 
    474 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    475 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
    476 	    fxp_mii_mediastatus);
    477 
    478 	flags = MIIF_NOISOLATE;
    479 	if (sc->sc_flags & FXPF_FC)
    480 		flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
    481 	/*
    482 	 * The i82557 wedges if all of its PHYs are isolated!
    483 	 */
    484 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    485 	    MII_OFFSET_ANY, flags);
    486 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
    487 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    488 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    489 	} else
    490 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    491 }
    492 
    493 void
    494 fxp_80c24_initmedia(struct fxp_softc *sc)
    495 {
    496 
    497 	/*
    498 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    499 	 * doesn't have a programming interface of any sort.  The
    500 	 * media is sensed automatically based on how the link partner
    501 	 * is configured.  This is, in essence, manual configuration.
    502 	 */
    503 	aprint_normal_dev(sc->sc_dev,
    504 	    "Seeq 80c24 AutoDUPLEX media interface present\n");
    505 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    506 	    fxp_80c24_mediastatus);
    507 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    508 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    509 }
    510 
    511 /*
    512  * Initialize the interface media.
    513  */
    514 void
    515 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
    516 {
    517 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
    518 
    519 	/*
    520 	 * Reset to a stable state.
    521 	 */
    522 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    523 	DELAY(100);
    524 
    525 	sc->sc_eeprom_size = 0;
    526 	fxp_autosize_eeprom(sc);
    527 	if (sc->sc_eeprom_size == 0) {
    528 		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
    529 		sc->sc_eeprom_size = 6; /* XXX panic here? */
    530 	}
    531 #ifdef DEBUG
    532 	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
    533 	    1 << sc->sc_eeprom_size);
    534 #endif
    535 
    536 	/*
    537 	 * Get info about the primary PHY
    538 	 */
    539 	fxp_read_eeprom(sc, &data, 6, 1);
    540 	sc->phy_primary_device =
    541 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
    542 
    543 	/*
    544 	 * Read MAC address.
    545 	 */
    546 	fxp_read_eeprom(sc, myea, 0, 3);
    547 	enaddr[0] = myea[0] & 0xff;
    548 	enaddr[1] = myea[0] >> 8;
    549 	enaddr[2] = myea[1] & 0xff;
    550 	enaddr[3] = myea[1] >> 8;
    551 	enaddr[4] = myea[2] & 0xff;
    552 	enaddr[5] = myea[2] >> 8;
    553 
    554 	/*
    555 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
    556 	 * as some i82559 designs, have a defect where the chip can
    557 	 * cause a PCI protocol violation if it receives a CU_RESUME
    558 	 * command when it is entering the IDLE state.
    559 	 *
    560 	 * The work-around is to disable Dynamic Standby Mode, so that
    561 	 * the chip never deasserts #CLKRUN, and always remains in the
    562 	 * active state.
    563 	 *
    564 	 * Unfortunately, the only way to disable Dynamic Standby is
    565 	 * to frob an EEPROM setting and reboot (the EEPROM setting
    566 	 * is only consulted when the PCI bus comes out of reset).
    567 	 *
    568 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
    569 	 */
    570 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
    571 		fxp_read_eeprom(sc, &data, 10, 1);
    572 		if (data & 0x02) {		/* STB enable */
    573 			aprint_error_dev(sc->sc_dev, "WARNING: "
    574 			    "Disabling dynamic standby mode in EEPROM "
    575 			    "to work around a\n");
    576 			aprint_normal_dev(sc->sc_dev,
    577 			    "WARNING: hardware bug.  You must reset "
    578 			    "the system before using this\n");
    579 			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
    580 			data &= ~0x02;
    581 			fxp_write_eeprom(sc, &data, 10, 1);
    582 			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
    583 			    data);
    584 			fxp_eeprom_update_cksum(sc);
    585 		}
    586 	}
    587 
    588 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
    589 	/* Due to false positives we make it conditional on setting link1 */
    590 	fxp_read_eeprom(sc, &data, 3, 1);
    591 	if ((data & 0x03) != 0x03) {
    592 		aprint_verbose_dev(sc->sc_dev,
    593 		    "May need receiver lock-up workaround\n");
    594 	}
    595 }
    596 
    597 static void
    598 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
    599 {
    600 	uint16_t reg;
    601 	int x;
    602 
    603 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
    604 		DELAY(40);
    605 		if (data & x)
    606 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    607 		else
    608 			reg = FXP_EEPROM_EECS;
    609 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    610 		DELAY(40);
    611 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    612 		    reg | FXP_EEPROM_EESK);
    613 		DELAY(40);
    614 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    615 	}
    616 	DELAY(40);
    617 }
    618 
    619 /*
    620  * Figure out EEPROM size.
    621  *
    622  * 559's can have either 64-word or 256-word EEPROMs, the 558
    623  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    624  * talks about the existence of 16 to 256 word EEPROMs.
    625  *
    626  * The only known sizes are 64 and 256, where the 256 version is used
    627  * by CardBus cards to store CIS information.
    628  *
    629  * The address is shifted in msb-to-lsb, and after the last
    630  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    631  * after which follows the actual data. We try to detect this zero, by
    632  * probing the data-out bit in the EEPROM control register just after
    633  * having shifted in a bit. If the bit is zero, we assume we've
    634  * shifted enough address bits. The data-out should be tri-state,
    635  * before this, which should translate to a logical one.
    636  *
    637  * Other ways to do this would be to try to read a register with known
    638  * contents with a varying number of address bits, but no such
    639  * register seem to be available. The high bits of register 10 are 01
    640  * on the 558 and 559, but apparently not on the 557.
    641  *
    642  * The Linux driver computes a checksum on the EEPROM data, but the
    643  * value of this checksum is not very well documented.
    644  */
    645 
    646 void
    647 fxp_autosize_eeprom(struct fxp_softc *sc)
    648 {
    649 	int x;
    650 
    651 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    652 	DELAY(40);
    653 
    654 	/* Shift in read opcode. */
    655 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    656 
    657 	/*
    658 	 * Shift in address, wait for the dummy zero following a correct
    659 	 * address shift.
    660 	 */
    661 	for (x = 1; x <= 8; x++) {
    662 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    663 		DELAY(40);
    664 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    665 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    666 		DELAY(40);
    667 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    668 		    FXP_EEPROM_EEDO) == 0)
    669 			break;
    670 		DELAY(40);
    671 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    672 		DELAY(40);
    673 	}
    674 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    675 	DELAY(40);
    676 	if (x != 6 && x != 8) {
    677 #ifdef DEBUG
    678 		printf("%s: strange EEPROM size (%d)\n",
    679 		    device_xname(sc->sc_dev), 1 << x);
    680 #endif
    681 	} else
    682 		sc->sc_eeprom_size = x;
    683 }
    684 
    685 /*
    686  * Read from the serial EEPROM. Basically, you manually shift in
    687  * the read opcode (one bit at a time) and then shift in the address,
    688  * and then you shift out the data (all of this one bit at a time).
    689  * The word size is 16 bits, so you have to provide the address for
    690  * every 16 bits of data.
    691  */
    692 void
    693 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
    694 {
    695 	uint16_t reg;
    696 	int i, x;
    697 
    698 	for (i = 0; i < words; i++) {
    699 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    700 
    701 		/* Shift in read opcode. */
    702 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    703 
    704 		/* Shift in address. */
    705 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    706 
    707 		reg = FXP_EEPROM_EECS;
    708 		data[i] = 0;
    709 
    710 		/* Shift out data. */
    711 		for (x = 16; x > 0; x--) {
    712 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    713 			    reg | FXP_EEPROM_EESK);
    714 			DELAY(40);
    715 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    716 			    FXP_EEPROM_EEDO)
    717 				data[i] |= (1 << (x - 1));
    718 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    719 			DELAY(40);
    720 		}
    721 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    722 		DELAY(40);
    723 	}
    724 }
    725 
    726 /*
    727  * Write data to the serial EEPROM.
    728  */
    729 void
    730 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
    731 {
    732 	int i, j;
    733 
    734 	for (i = 0; i < words; i++) {
    735 		/* Erase/write enable. */
    736 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    737 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    738 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
    739 		    sc->sc_eeprom_size);
    740 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    741 		DELAY(4);
    742 
    743 		/* Shift in write opcode, address, data. */
    744 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    745 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
    746 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    747 		fxp_eeprom_shiftin(sc, data[i], 16);
    748 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    749 		DELAY(4);
    750 
    751 		/* Wait for the EEPROM to finish up. */
    752 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    753 		DELAY(4);
    754 		for (j = 0; j < 1000; j++) {
    755 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    756 			    FXP_EEPROM_EEDO)
    757 				break;
    758 			DELAY(50);
    759 		}
    760 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    761 		DELAY(4);
    762 
    763 		/* Erase/write disable. */
    764 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    765 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    766 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
    767 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    768 		DELAY(4);
    769 	}
    770 }
    771 
    772 /*
    773  * Update the checksum of the EEPROM.
    774  */
    775 void
    776 fxp_eeprom_update_cksum(struct fxp_softc *sc)
    777 {
    778 	int i;
    779 	uint16_t data, cksum;
    780 
    781 	cksum = 0;
    782 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
    783 		fxp_read_eeprom(sc, &data, i, 1);
    784 		cksum += data;
    785 	}
    786 	i = (1 << sc->sc_eeprom_size) - 1;
    787 	cksum = 0xbaba - cksum;
    788 	fxp_read_eeprom(sc, &data, i, 1);
    789 	fxp_write_eeprom(sc, &cksum, i, 1);
    790 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
    791 	    device_xname(sc->sc_dev), i, data, cksum);
    792 }
    793 
    794 /*
    795  * Start packet transmission on the interface.
    796  */
    797 void
    798 fxp_start(struct ifnet *ifp)
    799 {
    800 	struct fxp_softc *sc = ifp->if_softc;
    801 	struct mbuf *m0, *m;
    802 	struct fxp_txdesc *txd;
    803 	struct fxp_txsoft *txs;
    804 	bus_dmamap_t dmamap;
    805 	int error, lasttx, nexttx, opending, seg, nsegs, len;
    806 
    807 	/*
    808 	 * If we want a re-init, bail out now.
    809 	 */
    810 	if (sc->sc_flags & FXPF_WANTINIT) {
    811 		ifp->if_flags |= IFF_OACTIVE;
    812 		return;
    813 	}
    814 
    815 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    816 		return;
    817 
    818 	/*
    819 	 * Remember the previous txpending and the current lasttx.
    820 	 */
    821 	opending = sc->sc_txpending;
    822 	lasttx = sc->sc_txlast;
    823 
    824 	/*
    825 	 * Loop through the send queue, setting up transmit descriptors
    826 	 * until we drain the queue, or use up all available transmit
    827 	 * descriptors.
    828 	 */
    829 	for (;;) {
    830 		struct fxp_tbd *tbdp;
    831 		int csum_flags;
    832 
    833 		/*
    834 		 * Grab a packet off the queue.
    835 		 */
    836 		IFQ_POLL(&ifp->if_snd, m0);
    837 		if (m0 == NULL)
    838 			break;
    839 		m = NULL;
    840 
    841 		if (sc->sc_txpending == FXP_NTXCB - 1) {
    842 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
    843 			break;
    844 		}
    845 
    846 		/*
    847 		 * Get the next available transmit descriptor.
    848 		 */
    849 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    850 		txd = FXP_CDTX(sc, nexttx);
    851 		txs = FXP_DSTX(sc, nexttx);
    852 		dmamap = txs->txs_dmamap;
    853 
    854 		/*
    855 		 * Load the DMA map.  If this fails, the packet either
    856 		 * didn't fit in the allotted number of frags, or we were
    857 		 * short on resources.  In this case, we'll copy and try
    858 		 * again.
    859 		 */
    860 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    861 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
    862 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    863 			if (m == NULL) {
    864 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
    865 				    device_xname(sc->sc_dev));
    866 				break;
    867 			}
    868 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    869 			if (m0->m_pkthdr.len > MHLEN) {
    870 				MCLGET(m, M_DONTWAIT);
    871 				if ((m->m_flags & M_EXT) == 0) {
    872 					log(LOG_ERR, "%s: unable to allocate "
    873 					    "Tx cluster\n",
    874 					    device_xname(sc->sc_dev));
    875 					m_freem(m);
    876 					break;
    877 				}
    878 			}
    879 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    880 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    881 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    882 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
    883 			if (error) {
    884 				log(LOG_ERR, "%s: unable to load Tx buffer, "
    885 				    "error = %d\n",
    886 				    device_xname(sc->sc_dev), error);
    887 				break;
    888 			}
    889 		}
    890 
    891 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    892 		csum_flags = m0->m_pkthdr.csum_flags;
    893 		if (m != NULL) {
    894 			m_freem(m0);
    895 			m0 = m;
    896 		}
    897 
    898 		/* Initialize the fraglist. */
    899 		tbdp = txd->txd_tbd;
    900 		len = m0->m_pkthdr.len;
    901 		nsegs = dmamap->dm_nsegs;
    902 		if (sc->sc_flags & FXPF_EXT_RFA)
    903 			tbdp++;
    904 		for (seg = 0; seg < nsegs; seg++) {
    905 			tbdp[seg].tb_addr =
    906 			    htole32(dmamap->dm_segs[seg].ds_addr);
    907 			tbdp[seg].tb_size =
    908 			    htole32(dmamap->dm_segs[seg].ds_len);
    909 		}
    910 		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
    911 		    (csum_flags & M_CSUM_IPv4) != 0)) {
    912 			/*
    913 			 * Pad short packets to avoid ip4csum-tx bug.
    914 			 *
    915 			 * XXX Should we still consider if such short
    916 			 *     (36 bytes or less) packets might already
    917 			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
    918 			 */
    919 			KASSERT(nsegs < FXP_IPCB_NTXSEG);
    920 			nsegs++;
    921 			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
    922 			tbdp[seg].tb_size =
    923 			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
    924 		}
    925 
    926 		/* Sync the DMA map. */
    927 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    928 		    BUS_DMASYNC_PREWRITE);
    929 
    930 		/*
    931 		 * Store a pointer to the packet so we can free it later.
    932 		 */
    933 		txs->txs_mbuf = m0;
    934 
    935 		/*
    936 		 * Initialize the transmit descriptor.
    937 		 */
    938 		/* BIG_ENDIAN: no need to swap to store 0 */
    939 		txd->txd_txcb.cb_status = 0;
    940 		txd->txd_txcb.cb_command =
    941 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
    942 		txd->txd_txcb.tx_threshold = tx_threshold;
    943 		txd->txd_txcb.tbd_number = nsegs;
    944 
    945 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
    946 		if (sc->sc_flags & FXPF_EXT_RFA) {
    947 			struct fxp_ipcb *ipcb;
    948 			/*
    949 			 * Deal with TCP/IP checksum offload. Note that
    950 			 * in order for TCP checksum offload to work,
    951 			 * the pseudo header checksum must have already
    952 			 * been computed and stored in the checksum field
    953 			 * in the TCP header. The stack should have
    954 			 * already done this for us.
    955 			 */
    956 			ipcb = &txd->txd_u.txdu_ipcb;
    957 			memset(ipcb, 0, sizeof(*ipcb));
    958 			/*
    959 			 * always do hardware parsing.
    960 			 */
    961 			ipcb->ipcb_ip_activation_high =
    962 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
    963 			/*
    964 			 * ip checksum offloading.
    965 			 */
    966 			if (csum_flags & M_CSUM_IPv4) {
    967 				ipcb->ipcb_ip_schedule |=
    968 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
    969 			}
    970 			/*
    971 			 * TCP/UDP checksum offloading.
    972 			 */
    973 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    974 				ipcb->ipcb_ip_schedule |=
    975 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
    976 			}
    977 
    978 			/*
    979 			 * request VLAN tag insertion if needed.
    980 			 */
    981 			if (vlan_has_tag(m0)) {
    982 				ipcb->ipcb_vlan_id = htobe16(vlan_get_tag(m0));
    983 				ipcb->ipcb_ip_activation_high |=
    984 				    FXP_IPCB_INSERTVLAN_ENABLE;
    985 			}
    986 		} else {
    987 			KASSERT((csum_flags &
    988 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
    989 		}
    990 
    991 		FXP_CDTXSYNC(sc, nexttx,
    992 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    993 
    994 		/* Advance the tx pointer. */
    995 		sc->sc_txpending++;
    996 		sc->sc_txlast = nexttx;
    997 
    998 		/*
    999 		 * Pass packet to bpf if there is a listener.
   1000 		 */
   1001 		bpf_mtap(ifp, m0);
   1002 	}
   1003 
   1004 	if (sc->sc_txpending == FXP_NTXCB - 1) {
   1005 		/* No more slots; notify upper layer. */
   1006 		ifp->if_flags |= IFF_OACTIVE;
   1007 	}
   1008 
   1009 	if (sc->sc_txpending != opending) {
   1010 		/*
   1011 		 * We enqueued packets.  If the transmitter was idle,
   1012 		 * reset the txdirty pointer.
   1013 		 */
   1014 		if (opending == 0)
   1015 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
   1016 
   1017 		/*
   1018 		 * Cause the chip to interrupt and suspend command
   1019 		 * processing once the last packet we've enqueued
   1020 		 * has been transmitted.
   1021 		 *
   1022 		 * To avoid a race between updating status bits
   1023 		 * by the fxp chip and clearing command bits
   1024 		 * by this function on machines which don't have
   1025 		 * atomic methods to clear/set bits in memory
   1026 		 * smaller than 32bits (both cb_status and cb_command
   1027 		 * members are uint16_t and in the same 32bit word),
   1028 		 * we have to prepare a dummy TX descriptor which has
   1029 		 * NOP command and just causes a TX completion interrupt.
   1030 		 */
   1031 		sc->sc_txpending++;
   1032 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
   1033 		txd = FXP_CDTX(sc, sc->sc_txlast);
   1034 		/* BIG_ENDIAN: no need to swap to store 0 */
   1035 		txd->txd_txcb.cb_status = 0;
   1036 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
   1037 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
   1038 		FXP_CDTXSYNC(sc, sc->sc_txlast,
   1039 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1040 
   1041 		/*
   1042 		 * The entire packet chain is set up.  Clear the suspend bit
   1043 		 * on the command prior to the first packet we set up.
   1044 		 */
   1045 		FXP_CDTXSYNC(sc, lasttx,
   1046 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1047 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
   1048 		    htole16(~FXP_CB_COMMAND_S);
   1049 		FXP_CDTXSYNC(sc, lasttx,
   1050 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1051 
   1052 		/*
   1053 		 * Issue a Resume command in case the chip was suspended.
   1054 		 */
   1055 		fxp_scb_wait(sc);
   1056 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
   1057 
   1058 		/* Set a watchdog timer in case the chip flakes out. */
   1059 		ifp->if_timer = 5;
   1060 	}
   1061 }
   1062 
   1063 /*
   1064  * Process interface interrupts.
   1065  */
   1066 int
   1067 fxp_intr(void *arg)
   1068 {
   1069 	struct fxp_softc *sc = arg;
   1070 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1071 	bus_dmamap_t rxmap;
   1072 	int claimed = 0, rnr;
   1073 	uint8_t statack;
   1074 
   1075 	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
   1076 		return (0);
   1077 	/*
   1078 	 * If the interface isn't running, don't try to
   1079 	 * service the interrupt.. just ack it and bail.
   1080 	 */
   1081 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1082 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
   1083 		if (statack) {
   1084 			claimed = 1;
   1085 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1086 		}
   1087 		return (claimed);
   1088 	}
   1089 
   1090 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
   1091 		claimed = 1;
   1092 
   1093 		/*
   1094 		 * First ACK all the interrupts in this pass.
   1095 		 */
   1096 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1097 
   1098 		/*
   1099 		 * Process receiver interrupts. If a no-resource (RNR)
   1100 		 * condition exists, get whatever packets we can and
   1101 		 * re-start the receiver.
   1102 		 */
   1103 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
   1104 		    1 : 0;
   1105 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
   1106 		    FXP_SCB_STATACK_SWI)) {
   1107 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1108 			rnr |= fxp_rxintr(sc);
   1109 		}
   1110 
   1111 		/*
   1112 		 * Free any finished transmit mbuf chains.
   1113 		 */
   1114 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1115 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
   1116 			fxp_txintr(sc);
   1117 
   1118 			/*
   1119 			 * Try to get more packets going.
   1120 			 */
   1121 			if_schedule_deferred_start(ifp);
   1122 
   1123 			if (sc->sc_txpending == 0) {
   1124 				/*
   1125 				 * Tell them that they can re-init now.
   1126 				 */
   1127 				if (sc->sc_flags & FXPF_WANTINIT)
   1128 					wakeup(sc);
   1129 			}
   1130 		}
   1131 
   1132 		if (rnr) {
   1133 			fxp_scb_wait(sc);
   1134 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
   1135 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1136 			fxp_scb_wait(sc);
   1137 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1138 			    rxmap->dm_segs[0].ds_addr +
   1139 			    RFA_ALIGNMENT_FUDGE);
   1140 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1141 		}
   1142 	}
   1143 
   1144 	if (claimed)
   1145 		rnd_add_uint32(&sc->rnd_source, statack);
   1146 	return (claimed);
   1147 }
   1148 
   1149 /*
   1150  * Handle transmit completion interrupts.
   1151  */
   1152 void
   1153 fxp_txintr(struct fxp_softc *sc)
   1154 {
   1155 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1156 	struct fxp_txdesc *txd;
   1157 	struct fxp_txsoft *txs;
   1158 	int i;
   1159 	uint16_t txstat;
   1160 
   1161 	ifp->if_flags &= ~IFF_OACTIVE;
   1162 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1163 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1164 		txd = FXP_CDTX(sc, i);
   1165 		txs = FXP_DSTX(sc, i);
   1166 
   1167 		FXP_CDTXSYNC(sc, i,
   1168 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1169 
   1170 		/* skip dummy NOP TX descriptor */
   1171 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
   1172 		    == FXP_CB_COMMAND_NOP)
   1173 			continue;
   1174 
   1175 		txstat = le16toh(txd->txd_txcb.cb_status);
   1176 
   1177 		if ((txstat & FXP_CB_STATUS_C) == 0)
   1178 			break;
   1179 
   1180 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1181 		    0, txs->txs_dmamap->dm_mapsize,
   1182 		    BUS_DMASYNC_POSTWRITE);
   1183 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1184 		m_freem(txs->txs_mbuf);
   1185 		txs->txs_mbuf = NULL;
   1186 	}
   1187 
   1188 	/* Update the dirty transmit buffer pointer. */
   1189 	sc->sc_txdirty = i;
   1190 
   1191 	/*
   1192 	 * Cancel the watchdog timer if there are no pending
   1193 	 * transmissions.
   1194 	 */
   1195 	if (sc->sc_txpending == 0)
   1196 		ifp->if_timer = 0;
   1197 }
   1198 
   1199 /*
   1200  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
   1201  */
   1202 
   1203 void
   1204 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
   1205     u_int len)
   1206 {
   1207 	uint32_t csum_data;
   1208 	int csum_flags;
   1209 
   1210 	/*
   1211 	 * check H/W Checksumming.
   1212 	 */
   1213 
   1214 	csum_flags = 0;
   1215 	csum_data = 0;
   1216 
   1217 	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
   1218 		uint8_t csum_stat;
   1219 
   1220 		csum_stat = rfa->cksum_stat;
   1221 		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
   1222 			goto out;
   1223 
   1224 		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
   1225 			csum_flags = M_CSUM_IPv4;
   1226 			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
   1227 				csum_flags |= M_CSUM_IPv4_BAD;
   1228 		}
   1229 
   1230 		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
   1231 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
   1232 			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
   1233 				csum_flags |= M_CSUM_TCP_UDP_BAD;
   1234 		}
   1235 
   1236 	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
   1237 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1238 		struct ether_header *eh;
   1239 		struct ip *ip;
   1240 		struct udphdr *uh;
   1241 		u_int hlen, pktlen;
   1242 
   1243 		if (len < ETHER_HDR_LEN + sizeof(struct ip))
   1244 			goto out;
   1245 		pktlen = len - ETHER_HDR_LEN;
   1246 		eh = mtod(m, struct ether_header *);
   1247 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1248 			goto out;
   1249 		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
   1250 		if (ip->ip_v != IPVERSION)
   1251 			goto out;
   1252 
   1253 		hlen = ip->ip_hl << 2;
   1254 		if (hlen < sizeof(struct ip))
   1255 			goto out;
   1256 
   1257 		/*
   1258 		 * Bail if too short, has random trailing garbage, truncated,
   1259 		 * fragment, or has ethernet pad.
   1260 		 */
   1261 		if (ntohs(ip->ip_len) < hlen ||
   1262 		    ntohs(ip->ip_len) != pktlen ||
   1263 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
   1264 			goto out;
   1265 
   1266 		switch (ip->ip_p) {
   1267 		case IPPROTO_TCP:
   1268 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
   1269 			    pktlen < (hlen + sizeof(struct tcphdr)))
   1270 				goto out;
   1271 			csum_flags =
   1272 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
   1273 			break;
   1274 		case IPPROTO_UDP:
   1275 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
   1276 			    pktlen < (hlen + sizeof(struct udphdr)))
   1277 				goto out;
   1278 			uh = (struct udphdr *)((uint8_t *)ip + hlen);
   1279 			if (uh->uh_sum == 0)
   1280 				goto out;	/* no checksum */
   1281 			csum_flags =
   1282 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
   1283 			break;
   1284 		default:
   1285 			goto out;
   1286 		}
   1287 
   1288 		/* Extract computed checksum. */
   1289 		csum_data = be16dec(mtod(m, uint8_t *) + len);
   1290 
   1291 		/*
   1292 		 * The computed checksum includes IP headers,
   1293 		 * so we have to deduct them.
   1294 		 */
   1295 #if 0
   1296 		/*
   1297 		 * But in TCP/UDP layer we can assume the IP header is valid,
   1298 		 * i.e. a sum of the whole IP header should be 0xffff,
   1299 		 * so we don't have to bother to deduct it.
   1300 		 */
   1301 		if (hlen > 0) {
   1302 			uint32_t hsum;
   1303 			const uint16_t *iphdr;
   1304 			hsum = 0;
   1305 			iphdr = (uint16_t *)ip;
   1306 
   1307 			while (hlen > 1) {
   1308 				hsum += ntohs(*iphdr++);
   1309 				hlen -= sizeof(uint16_t);
   1310 			}
   1311 			while (hsum >> 16)
   1312 				hsum = (hsum >> 16) + (hsum & 0xffff);
   1313 
   1314 			csum_data += (uint16_t)~hsum;
   1315 
   1316 			while (csum_data >> 16)
   1317 				csum_data =
   1318 				    (csum_data >> 16) + (csum_data & 0xffff);
   1319 		}
   1320 #endif
   1321 	}
   1322  out:
   1323 	m->m_pkthdr.csum_flags = csum_flags;
   1324 	m->m_pkthdr.csum_data = csum_data;
   1325 }
   1326 
   1327 /*
   1328  * Handle receive interrupts.
   1329  */
   1330 int
   1331 fxp_rxintr(struct fxp_softc *sc)
   1332 {
   1333 	struct ethercom *ec = &sc->sc_ethercom;
   1334 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1335 	struct mbuf *m, *m0;
   1336 	bus_dmamap_t rxmap;
   1337 	struct fxp_rfa *rfa;
   1338 	int rnr;
   1339 	uint16_t len, rxstat;
   1340 
   1341 	rnr = 0;
   1342 
   1343 	for (;;) {
   1344 		m = sc->sc_rxq.ifq_head;
   1345 		rfa = FXP_MTORFA(m);
   1346 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1347 
   1348 		FXP_RFASYNC(sc, m,
   1349 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1350 
   1351 		rxstat = le16toh(rfa->rfa_status);
   1352 
   1353 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
   1354 			rnr = 1;
   1355 
   1356 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
   1357 			/*
   1358 			 * We have processed all of the
   1359 			 * receive buffers.
   1360 			 */
   1361 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
   1362 			return rnr;
   1363 		}
   1364 
   1365 		IF_DEQUEUE(&sc->sc_rxq, m);
   1366 
   1367 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
   1368 
   1369 		len = le16toh(rfa->actual_size) &
   1370 		    (m->m_ext.ext_size - 1);
   1371 		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
   1372 			/* Adjust for appended checksum bytes. */
   1373 			len -= sizeof(uint16_t);
   1374 		}
   1375 
   1376 		if (len < sizeof(struct ether_header)) {
   1377 			/*
   1378 			 * Runt packet; drop it now.
   1379 			 */
   1380 			FXP_INIT_RFABUF(sc, m);
   1381 			continue;
   1382 		}
   1383 
   1384 		/*
   1385 		 * If support for 802.1Q VLAN sized frames is
   1386 		 * enabled, we need to do some additional error
   1387 		 * checking (as we are saving bad frames, in
   1388 		 * order to receive the larger ones).
   1389 		 */
   1390 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
   1391 		    (rxstat & (FXP_RFA_STATUS_OVERRUN|
   1392 			       FXP_RFA_STATUS_RNR|
   1393 			       FXP_RFA_STATUS_ALIGN|
   1394 			       FXP_RFA_STATUS_CRC)) != 0) {
   1395 			FXP_INIT_RFABUF(sc, m);
   1396 			continue;
   1397 		}
   1398 
   1399 		/*
   1400 		 * check VLAN tag stripping.
   1401 		 */
   1402 		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
   1403 		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0)
   1404 			vlan_set_tag(m, be16toh(rfa->vlan_id));
   1405 
   1406 		/* Do checksum checking. */
   1407 		if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
   1408 			fxp_rx_hwcksum(sc, m, rfa, len);
   1409 
   1410 		/*
   1411 		 * If the packet is small enough to fit in a
   1412 		 * single header mbuf, allocate one and copy
   1413 		 * the data into it.  This greatly reduces
   1414 		 * memory consumption when we receive lots
   1415 		 * of small packets.
   1416 		 *
   1417 		 * Otherwise, we add a new buffer to the receive
   1418 		 * chain.  If this fails, we drop the packet and
   1419 		 * recycle the old buffer.
   1420 		 */
   1421 		if (fxp_copy_small != 0 && len <= MHLEN) {
   1422 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
   1423 			if (m0 == NULL)
   1424 				goto dropit;
   1425 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
   1426 			memcpy(mtod(m0, void *),
   1427 			    mtod(m, void *), len);
   1428 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
   1429 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
   1430 			FXP_INIT_RFABUF(sc, m);
   1431 			m = m0;
   1432 		} else {
   1433 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
   1434  dropit:
   1435 				ifp->if_ierrors++;
   1436 				FXP_INIT_RFABUF(sc, m);
   1437 				continue;
   1438 			}
   1439 		}
   1440 
   1441 		m_set_rcvif(m, ifp);
   1442 		m->m_pkthdr.len = m->m_len = len;
   1443 
   1444 		/* Pass it on. */
   1445 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1446 	}
   1447 }
   1448 
   1449 /*
   1450  * Update packet in/out/collision statistics. The i82557 doesn't
   1451  * allow you to access these counters without doing a fairly
   1452  * expensive DMA to get _all_ of the statistics it maintains, so
   1453  * we do this operation here only once per second. The statistics
   1454  * counters in the kernel are updated from the previous dump-stats
   1455  * DMA and then a new dump-stats DMA is started. The on-chip
   1456  * counters are zeroed when the DMA completes. If we can't start
   1457  * the DMA immediately, we don't wait - we just prepare to read
   1458  * them again next time.
   1459  */
   1460 void
   1461 fxp_tick(void *arg)
   1462 {
   1463 	struct fxp_softc *sc = arg;
   1464 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1465 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1466 	int s;
   1467 
   1468 	if (!device_is_active(sc->sc_dev))
   1469 		return;
   1470 
   1471 	s = splnet();
   1472 
   1473 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1474 
   1475 	ifp->if_opackets += le32toh(sp->tx_good);
   1476 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1477 	if (sp->rx_good) {
   1478 		ifp->if_ipackets += le32toh(sp->rx_good);
   1479 		sc->sc_rxidle = 0;
   1480 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
   1481 		sc->sc_rxidle++;
   1482 	}
   1483 	ifp->if_ierrors +=
   1484 	    le32toh(sp->rx_crc_errors) +
   1485 	    le32toh(sp->rx_alignment_errors) +
   1486 	    le32toh(sp->rx_rnr_errors) +
   1487 	    le32toh(sp->rx_overrun_errors);
   1488 	/*
   1489 	 * If any transmit underruns occurred, bump up the transmit
   1490 	 * threshold by another 512 bytes (64 * 8).
   1491 	 */
   1492 	if (sp->tx_underruns) {
   1493 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1494 		if (tx_threshold < 192)
   1495 			tx_threshold += 64;
   1496 	}
   1497 #ifdef FXP_EVENT_COUNTERS
   1498 	if (sc->sc_flags & FXPF_FC) {
   1499 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
   1500 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
   1501 	}
   1502 #endif
   1503 
   1504 	/*
   1505 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
   1506 	 * then assume the receiver has locked up and attempt to clear
   1507 	 * the condition by reprogramming the multicast filter (actually,
   1508 	 * resetting the interface). This is a work-around for a bug in
   1509 	 * the 82557 where the receiver locks up if it gets certain types
   1510 	 * of garbage in the synchronization bits prior to the packet header.
   1511 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1512 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1513 	 * speed transition).
   1514 	 */
   1515 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1516 		(void) fxp_init(ifp);
   1517 		splx(s);
   1518 		return;
   1519 	}
   1520 	/*
   1521 	 * If there is no pending command, start another stats
   1522 	 * dump. Otherwise punt for now.
   1523 	 */
   1524 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1525 		/*
   1526 		 * Start another stats dump.
   1527 		 */
   1528 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1529 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
   1530 	} else {
   1531 		/*
   1532 		 * A previous command is still waiting to be accepted.
   1533 		 * Just zero our copy of the stats and wait for the
   1534 		 * next timer event to update them.
   1535 		 */
   1536 		/* BIG_ENDIAN: no swap required to store 0 */
   1537 		sp->tx_good = 0;
   1538 		sp->tx_underruns = 0;
   1539 		sp->tx_total_collisions = 0;
   1540 
   1541 		sp->rx_good = 0;
   1542 		sp->rx_crc_errors = 0;
   1543 		sp->rx_alignment_errors = 0;
   1544 		sp->rx_rnr_errors = 0;
   1545 		sp->rx_overrun_errors = 0;
   1546 		if (sc->sc_flags & FXPF_FC) {
   1547 			sp->tx_pauseframes = 0;
   1548 			sp->rx_pauseframes = 0;
   1549 		}
   1550 	}
   1551 
   1552 	if (sc->sc_flags & FXPF_MII) {
   1553 		/* Tick the MII clock. */
   1554 		mii_tick(&sc->sc_mii);
   1555 	}
   1556 
   1557 	splx(s);
   1558 
   1559 	/*
   1560 	 * Schedule another timeout one second from now.
   1561 	 */
   1562 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1563 }
   1564 
   1565 /*
   1566  * Drain the receive queue.
   1567  */
   1568 void
   1569 fxp_rxdrain(struct fxp_softc *sc)
   1570 {
   1571 	bus_dmamap_t rxmap;
   1572 	struct mbuf *m;
   1573 
   1574 	for (;;) {
   1575 		IF_DEQUEUE(&sc->sc_rxq, m);
   1576 		if (m == NULL)
   1577 			break;
   1578 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1579 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1580 		FXP_RXMAP_PUT(sc, rxmap);
   1581 		m_freem(m);
   1582 	}
   1583 }
   1584 
   1585 /*
   1586  * Stop the interface. Cancels the statistics updater and resets
   1587  * the interface.
   1588  */
   1589 void
   1590 fxp_stop(struct ifnet *ifp, int disable)
   1591 {
   1592 	struct fxp_softc *sc = ifp->if_softc;
   1593 	struct fxp_txsoft *txs;
   1594 	int i;
   1595 
   1596 	/*
   1597 	 * Turn down interface (done early to avoid bad interactions
   1598 	 * between panics, shutdown hooks, and the watchdog timer)
   1599 	 */
   1600 	ifp->if_timer = 0;
   1601 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1602 
   1603 	/*
   1604 	 * Cancel stats updater.
   1605 	 */
   1606 	callout_stop(&sc->sc_callout);
   1607 	if (sc->sc_flags & FXPF_MII) {
   1608 		/* Down the MII. */
   1609 		mii_down(&sc->sc_mii);
   1610 	}
   1611 
   1612 	/*
   1613 	 * Issue software reset.  This unloads any microcode that
   1614 	 * might already be loaded.
   1615 	 */
   1616 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
   1617 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
   1618 	DELAY(50);
   1619 
   1620 	/*
   1621 	 * Release any xmit buffers.
   1622 	 */
   1623 	for (i = 0; i < FXP_NTXCB; i++) {
   1624 		txs = FXP_DSTX(sc, i);
   1625 		if (txs->txs_mbuf != NULL) {
   1626 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1627 			m_freem(txs->txs_mbuf);
   1628 			txs->txs_mbuf = NULL;
   1629 		}
   1630 	}
   1631 	sc->sc_txpending = 0;
   1632 
   1633 	if (disable) {
   1634 		fxp_rxdrain(sc);
   1635 		fxp_disable(sc);
   1636 	}
   1637 
   1638 }
   1639 
   1640 /*
   1641  * Watchdog/transmission transmit timeout handler. Called when a
   1642  * transmission is started on the interface, but no interrupt is
   1643  * received before the timeout. This usually indicates that the
   1644  * card has wedged for some reason.
   1645  */
   1646 void
   1647 fxp_watchdog(struct ifnet *ifp)
   1648 {
   1649 	struct fxp_softc *sc = ifp->if_softc;
   1650 
   1651 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1652 	ifp->if_oerrors++;
   1653 
   1654 	(void) fxp_init(ifp);
   1655 }
   1656 
   1657 /*
   1658  * Initialize the interface.  Must be called at splnet().
   1659  */
   1660 int
   1661 fxp_init(struct ifnet *ifp)
   1662 {
   1663 	struct fxp_softc *sc = ifp->if_softc;
   1664 	struct fxp_cb_config *cbp;
   1665 	struct fxp_cb_ias *cb_ias;
   1666 	struct fxp_txdesc *txd;
   1667 	bus_dmamap_t rxmap;
   1668 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
   1669 	uint16_t status;
   1670 
   1671 	if ((error = fxp_enable(sc)) != 0)
   1672 		goto out;
   1673 
   1674 	/*
   1675 	 * Cancel any pending I/O
   1676 	 */
   1677 	fxp_stop(ifp, 0);
   1678 
   1679 	/*
   1680 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1681 	 * flag, and this prevents the MII from detaching resulting in
   1682 	 * a panic. The flags field should perhaps be split in runtime
   1683 	 * flags and more static information. For now, just clear the
   1684 	 * only other flag set.
   1685 	 */
   1686 
   1687 	sc->sc_flags &= ~FXPF_WANTINIT;
   1688 
   1689 	/*
   1690 	 * Initialize base of CBL and RFA memory. Loading with zero
   1691 	 * sets it up for regular linear addressing.
   1692 	 */
   1693 	fxp_scb_wait(sc);
   1694 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1695 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
   1696 
   1697 	fxp_scb_wait(sc);
   1698 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
   1699 
   1700 	/*
   1701 	 * Initialize the multicast filter.  Do this now, since we might
   1702 	 * have to setup the config block differently.
   1703 	 */
   1704 	fxp_mc_setup(sc);
   1705 
   1706 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1707 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1708 
   1709 	/*
   1710 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1711 	 * enable "save bad frames", since they are 4 bytes larger than
   1712 	 * the normal Ethernet maximum frame length.  On i82558 and later,
   1713 	 * we have a better mechanism for this.
   1714 	 */
   1715 	save_bf = 0;
   1716 	lrxen = 0;
   1717 	vlan_drop = 0;
   1718 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1719 		if (sc->sc_rev < FXP_REV_82558_A4)
   1720 			save_bf = 1;
   1721 		else
   1722 			lrxen = 1;
   1723 		if (sc->sc_rev >= FXP_REV_82550)
   1724 			vlan_drop = 1;
   1725 	}
   1726 
   1727 	/*
   1728 	 * Initialize base of dump-stats buffer.
   1729 	 */
   1730 	fxp_scb_wait(sc);
   1731 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1732 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1733 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1734 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1735 
   1736 	cbp = &sc->sc_control_data->fcd_configcb;
   1737 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1738 
   1739 	/*
   1740 	 * Load microcode for this controller.
   1741 	 */
   1742 	fxp_load_ucode(sc);
   1743 
   1744 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
   1745 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
   1746 	else
   1747 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
   1748 
   1749 	/*
   1750 	 * This copy is kind of disgusting, but there are a bunch of must be
   1751 	 * zero and must be one bits in this structure and this is the easiest
   1752 	 * way to initialize them all to proper values.
   1753 	 */
   1754 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1755 
   1756 	/* BIG_ENDIAN: no need to swap to store 0 */
   1757 	cbp->cb_status =	0;
   1758 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1759 				    FXP_CB_COMMAND_EL);
   1760 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1761 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1762 					/* bytes in config block */
   1763 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
   1764 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
   1765 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1766 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1767 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1768 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
   1769 	cbp->type_enable =	0;	/* actually reserved */
   1770 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
   1771 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
   1772 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1773 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1774 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
   1775 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1776 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
   1777 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1778 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
   1779 	cbp->ext_stats_dis =	1;	/* disable extended counters */
   1780 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
   1781 	cbp->save_bf =		save_bf;/* save bad frames */
   1782 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1783 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1784 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1785 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
   1786 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
   1787 					/* interface mode */
   1788 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
   1789 	cbp->csma_dis =		0;	/* (don't) disable link */
   1790 	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
   1791 					/* (don't) enable RX checksum */
   1792 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
   1793 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
   1794 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
   1795 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
   1796 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1797 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1798 	cbp->loopback =		0;	/* (don't) loopback */
   1799 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1800 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1801 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1802 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1803 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1804 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
   1805 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
   1806 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
   1807 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
   1808 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1809 	cbp->padding =		1;	/* (do) pad short tx packets */
   1810 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1811 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
   1812 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
   1813 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
   1814 					/* must set wake_en in PMCSR also */
   1815 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1816 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1817 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1818 	cbp->mc_all =		allm;	/* accept all multicasts */
   1819 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1820 	cbp->vlan_drop_en =	vlan_drop;
   1821 
   1822 	if (!(sc->sc_flags & FXPF_FC)) {
   1823 		/*
   1824 		 * The i82557 has no hardware flow control, the values
   1825 		 * here are the defaults for the chip.
   1826 		 */
   1827 		cbp->fc_delay_lsb =	0;
   1828 		cbp->fc_delay_msb =	0x40;
   1829 		cbp->pri_fc_thresh =	3;
   1830 		cbp->tx_fc_dis =	0;
   1831 		cbp->rx_fc_restop =	0;
   1832 		cbp->rx_fc_restart =	0;
   1833 		cbp->fc_filter =	0;
   1834 		cbp->pri_fc_loc =	1;
   1835 	} else {
   1836 		cbp->fc_delay_lsb =	0x1f;
   1837 		cbp->fc_delay_msb =	0x01;
   1838 		cbp->pri_fc_thresh =	3;
   1839 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
   1840 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
   1841 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
   1842 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
   1843 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
   1844 		cbp->ext_stats_dis =	0;	/* enable extended stats */
   1845 	}
   1846 
   1847 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1848 
   1849 	/*
   1850 	 * Start the config command/DMA.
   1851 	 */
   1852 	fxp_scb_wait(sc);
   1853 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1854 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1855 	/* ...and wait for it to complete. */
   1856 	for (i = 1000; i > 0; i--) {
   1857 		FXP_CDCONFIGSYNC(sc,
   1858 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1859 		status = le16toh(cbp->cb_status);
   1860 		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
   1861 		if ((status & FXP_CB_STATUS_C) != 0)
   1862 			break;
   1863 		DELAY(1);
   1864 	}
   1865 	if (i == 0) {
   1866 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1867 		    device_xname(sc->sc_dev), __LINE__);
   1868 		return (ETIMEDOUT);
   1869 	}
   1870 
   1871 	/*
   1872 	 * Initialize the station address.
   1873 	 */
   1874 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1875 	/* BIG_ENDIAN: no need to swap to store 0 */
   1876 	cb_ias->cb_status = 0;
   1877 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1878 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1879 	cb_ias->link_addr = 0xffffffff;
   1880 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1881 
   1882 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1883 
   1884 	/*
   1885 	 * Start the IAS (Individual Address Setup) command/DMA.
   1886 	 */
   1887 	fxp_scb_wait(sc);
   1888 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1889 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1890 	/* ...and wait for it to complete. */
   1891 	for (i = 1000; i > 0; i++) {
   1892 		FXP_CDIASSYNC(sc,
   1893 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1894 		status = le16toh(cb_ias->cb_status);
   1895 		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
   1896 		if ((status & FXP_CB_STATUS_C) != 0)
   1897 			break;
   1898 		DELAY(1);
   1899 	}
   1900 	if (i == 0) {
   1901 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1902 		    device_xname(sc->sc_dev), __LINE__);
   1903 		return (ETIMEDOUT);
   1904 	}
   1905 
   1906 	/*
   1907 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1908 	 * to the end of the list so that it will wrap around to the first
   1909 	 * descriptor when the first packet is transmitted.
   1910 	 */
   1911 	for (i = 0; i < FXP_NTXCB; i++) {
   1912 		txd = FXP_CDTX(sc, i);
   1913 		memset(txd, 0, sizeof(*txd));
   1914 		txd->txd_txcb.cb_command =
   1915 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1916 		txd->txd_txcb.link_addr =
   1917 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1918 		if (sc->sc_flags & FXPF_EXT_TXCB)
   1919 			txd->txd_txcb.tbd_array_addr =
   1920 			    htole32(FXP_CDTBDADDR(sc, i) +
   1921 				    (2 * sizeof(struct fxp_tbd)));
   1922 		else
   1923 			txd->txd_txcb.tbd_array_addr =
   1924 			    htole32(FXP_CDTBDADDR(sc, i));
   1925 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1926 	}
   1927 	sc->sc_txpending = 0;
   1928 	sc->sc_txdirty = 0;
   1929 	sc->sc_txlast = FXP_NTXCB - 1;
   1930 
   1931 	/*
   1932 	 * Initialize the receive buffer list.
   1933 	 */
   1934 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1935 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1936 		rxmap = FXP_RXMAP_GET(sc);
   1937 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1938 			log(LOG_ERR, "%s: unable to allocate or map rx "
   1939 			    "buffer %d, error = %d\n",
   1940 			    device_xname(sc->sc_dev),
   1941 			    sc->sc_rxq.ifq_len, error);
   1942 			/*
   1943 			 * XXX Should attempt to run with fewer receive
   1944 			 * XXX buffers instead of just failing.
   1945 			 */
   1946 			FXP_RXMAP_PUT(sc, rxmap);
   1947 			fxp_rxdrain(sc);
   1948 			goto out;
   1949 		}
   1950 	}
   1951 	sc->sc_rxidle = 0;
   1952 
   1953 	/*
   1954 	 * Give the transmit ring to the chip.  We do this by pointing
   1955 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1956 	 * issuing a start command.  It will execute the NOP and then
   1957 	 * suspend, pointing at the first descriptor.
   1958 	 */
   1959 	fxp_scb_wait(sc);
   1960 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1961 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1962 
   1963 	/*
   1964 	 * Initialize receiver buffer area - RFA.
   1965 	 */
   1966 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
   1967 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1968 	fxp_scb_wait(sc);
   1969 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1970 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1971 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1972 #endif
   1973 
   1974 	if (sc->sc_flags & FXPF_MII) {
   1975 		/*
   1976 		 * Set current media.
   1977 		 */
   1978 		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1979 			goto out;
   1980 	}
   1981 
   1982 	/*
   1983 	 * ...all done!
   1984 	 */
   1985 	ifp->if_flags |= IFF_RUNNING;
   1986 	ifp->if_flags &= ~IFF_OACTIVE;
   1987 
   1988 	/*
   1989 	 * Request a software generated interrupt that will be used to
   1990 	 * (re)start the RU processing.  If we direct the chip to start
   1991 	 * receiving from the start of queue now, instead of letting the
   1992 	 * interrupt handler first process all received packets, we run
   1993 	 * the risk of having it overwrite mbuf clusters while they are
   1994 	 * being processed or after they have been returned to the pool.
   1995 	 */
   1996 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
   1997 
   1998 	/*
   1999 	 * Start the one second timer.
   2000 	 */
   2001 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   2002 
   2003 	/*
   2004 	 * Attempt to start output on the interface.
   2005 	 */
   2006 	fxp_start(ifp);
   2007 
   2008  out:
   2009 	if (error) {
   2010 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2011 		ifp->if_timer = 0;
   2012 		log(LOG_ERR, "%s: interface not running\n",
   2013 		    device_xname(sc->sc_dev));
   2014 	}
   2015 	return (error);
   2016 }
   2017 
   2018 /*
   2019  * Notify the world which media we're using.
   2020  */
   2021 void
   2022 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2023 {
   2024 	struct fxp_softc *sc = ifp->if_softc;
   2025 
   2026 	if (sc->sc_enabled == 0) {
   2027 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   2028 		ifmr->ifm_status = 0;
   2029 		return;
   2030 	}
   2031 
   2032 	ether_mediastatus(ifp, ifmr);
   2033 }
   2034 
   2035 int
   2036 fxp_80c24_mediachange(struct ifnet *ifp)
   2037 {
   2038 
   2039 	/* Nothing to do here. */
   2040 	return (0);
   2041 }
   2042 
   2043 void
   2044 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2045 {
   2046 	struct fxp_softc *sc = ifp->if_softc;
   2047 
   2048 	/*
   2049 	 * Media is currently-selected media.  We cannot determine
   2050 	 * the link status.
   2051 	 */
   2052 	ifmr->ifm_status = 0;
   2053 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   2054 }
   2055 
   2056 /*
   2057  * Add a buffer to the end of the RFA buffer list.
   2058  * Return 0 if successful, error code on failure.
   2059  *
   2060  * The RFA struct is stuck at the beginning of mbuf cluster and the
   2061  * data pointer is fixed up to point just past it.
   2062  */
   2063 int
   2064 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
   2065 {
   2066 	struct mbuf *m;
   2067 	int error;
   2068 
   2069 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2070 	if (m == NULL)
   2071 		return (ENOBUFS);
   2072 
   2073 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2074 	MCLGET(m, M_DONTWAIT);
   2075 	if ((m->m_flags & M_EXT) == 0) {
   2076 		m_freem(m);
   2077 		return (ENOBUFS);
   2078 	}
   2079 
   2080 	if (unload)
   2081 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   2082 
   2083 	M_SETCTX(m, rxmap);
   2084 
   2085 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2086 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
   2087 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2088 	if (error) {
   2089 		/* XXX XXX XXX */
   2090 		aprint_error_dev(sc->sc_dev,
   2091 		    "can't load rx DMA map %d, error = %d\n",
   2092 		    sc->sc_rxq.ifq_len, error);
   2093 		panic("fxp_add_rfabuf");
   2094 	}
   2095 
   2096 	FXP_INIT_RFABUF(sc, m);
   2097 
   2098 	return (0);
   2099 }
   2100 
   2101 int
   2102 fxp_mdi_read(device_t self, int phy, int reg)
   2103 {
   2104 	struct fxp_softc *sc = device_private(self);
   2105 	int count = 10000;
   2106 	int value;
   2107 
   2108 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2109 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   2110 
   2111 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
   2112 	    0x10000000) == 0 && count--)
   2113 		DELAY(10);
   2114 
   2115 	if (count <= 0)
   2116 		log(LOG_WARNING,
   2117 		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
   2118 
   2119 	return (value & 0xffff);
   2120 }
   2121 
   2122 void
   2123 fxp_statchg(struct ifnet *ifp)
   2124 {
   2125 
   2126 	/* Nothing to do. */
   2127 }
   2128 
   2129 void
   2130 fxp_mdi_write(device_t self, int phy, int reg, int value)
   2131 {
   2132 	struct fxp_softc *sc = device_private(self);
   2133 	int count = 10000;
   2134 
   2135 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2136 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   2137 	    (value & 0xffff));
   2138 
   2139 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   2140 	    count--)
   2141 		DELAY(10);
   2142 
   2143 	if (count <= 0)
   2144 		log(LOG_WARNING,
   2145 		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
   2146 }
   2147 
   2148 int
   2149 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2150 {
   2151 	struct fxp_softc *sc = ifp->if_softc;
   2152 	struct ifreq *ifr = (struct ifreq *)data;
   2153 	int s, error;
   2154 
   2155 	s = splnet();
   2156 
   2157 	switch (cmd) {
   2158 	case SIOCSIFMEDIA:
   2159 	case SIOCGIFMEDIA:
   2160 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   2161 		break;
   2162 
   2163 	default:
   2164 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   2165 			break;
   2166 
   2167 		error = 0;
   2168 
   2169 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2170 			;
   2171 		else if (ifp->if_flags & IFF_RUNNING) {
   2172 			/*
   2173 			 * Multicast list has changed; set the
   2174 			 * hardware filter accordingly.
   2175 			 */
   2176 			while (sc->sc_txpending) {
   2177 				sc->sc_flags |= FXPF_WANTINIT;
   2178 				tsleep(sc, PSOCK, "fxp_init", 0);
   2179 			}
   2180 			error = fxp_init(ifp);
   2181 		}
   2182 		break;
   2183 	}
   2184 
   2185 	/* Try to get more packets going. */
   2186 	if (sc->sc_enabled)
   2187 		fxp_start(ifp);
   2188 
   2189 	splx(s);
   2190 	return (error);
   2191 }
   2192 
   2193 /*
   2194  * Program the multicast filter.
   2195  *
   2196  * This function must be called at splnet().
   2197  */
   2198 void
   2199 fxp_mc_setup(struct fxp_softc *sc)
   2200 {
   2201 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   2202 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2203 	struct ethercom *ec = &sc->sc_ethercom;
   2204 	struct ether_multi *enm;
   2205 	struct ether_multistep step;
   2206 	int count, nmcasts;
   2207 	uint16_t status;
   2208 
   2209 #ifdef DIAGNOSTIC
   2210 	if (sc->sc_txpending)
   2211 		panic("fxp_mc_setup: pending transmissions");
   2212 #endif
   2213 
   2214 
   2215 	if (ifp->if_flags & IFF_PROMISC) {
   2216 		ifp->if_flags |= IFF_ALLMULTI;
   2217 		return;
   2218 	} else {
   2219 		ifp->if_flags &= ~IFF_ALLMULTI;
   2220 	}
   2221 
   2222 	/*
   2223 	 * Initialize multicast setup descriptor.
   2224 	 */
   2225 	nmcasts = 0;
   2226 	ETHER_FIRST_MULTI(step, ec, enm);
   2227 	while (enm != NULL) {
   2228 		/*
   2229 		 * Check for too many multicast addresses or if we're
   2230 		 * listening to a range.  Either way, we simply have
   2231 		 * to accept all multicasts.
   2232 		 */
   2233 		if (nmcasts >= MAXMCADDR ||
   2234 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2235 		    ETHER_ADDR_LEN) != 0) {
   2236 			/*
   2237 			 * Callers of this function must do the
   2238 			 * right thing with this.  If we're called
   2239 			 * from outside fxp_init(), the caller must
   2240 			 * detect if the state if IFF_ALLMULTI changes.
   2241 			 * If it does, the caller must then call
   2242 			 * fxp_init(), since allmulti is handled by
   2243 			 * the config block.
   2244 			 */
   2245 			ifp->if_flags |= IFF_ALLMULTI;
   2246 			return;
   2247 		}
   2248 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   2249 		    ETHER_ADDR_LEN);
   2250 		nmcasts++;
   2251 		ETHER_NEXT_MULTI(step, enm);
   2252 	}
   2253 
   2254 	/* BIG_ENDIAN: no need to swap to store 0 */
   2255 	mcsp->cb_status = 0;
   2256 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   2257 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   2258 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   2259 
   2260 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2261 
   2262 	/*
   2263 	 * Wait until the command unit is not active.  This should never
   2264 	 * happen since nothing is queued, but make sure anyway.
   2265 	 */
   2266 	count = 100;
   2267 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   2268 	    FXP_SCB_CUS_ACTIVE && --count)
   2269 		DELAY(1);
   2270 	if (count == 0) {
   2271 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
   2272 		    device_xname(sc->sc_dev), __LINE__);
   2273 		return;
   2274 	}
   2275 
   2276 	/*
   2277 	 * Start the multicast setup command/DMA.
   2278 	 */
   2279 	fxp_scb_wait(sc);
   2280 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   2281 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2282 
   2283 	/* ...and wait for it to complete. */
   2284 	for (count = 1000; count > 0; count--) {
   2285 		FXP_CDMCSSYNC(sc,
   2286 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2287 		status = le16toh(mcsp->cb_status);
   2288 		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
   2289 		if ((status & FXP_CB_STATUS_C) != 0)
   2290 			break;
   2291 		DELAY(1);
   2292 	}
   2293 	if (count == 0) {
   2294 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   2295 		    device_xname(sc->sc_dev), __LINE__);
   2296 		return;
   2297 	}
   2298 }
   2299 
   2300 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
   2301 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
   2302 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
   2303 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
   2304 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
   2305 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
   2306 static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
   2307 
   2308 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
   2309 
   2310 static const struct ucode {
   2311 	int32_t		revision;
   2312 	const uint32_t	*ucode;
   2313 	size_t		length;
   2314 	uint16_t	int_delay_offset;
   2315 	uint16_t	bundle_max_offset;
   2316 } ucode_table[] = {
   2317 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
   2318 	  D101_CPUSAVER_DWORD, 0 },
   2319 
   2320 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
   2321 	  D101_CPUSAVER_DWORD, 0 },
   2322 
   2323 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
   2324 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
   2325 
   2326 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
   2327 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
   2328 
   2329 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
   2330 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
   2331 
   2332 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
   2333 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
   2334 
   2335 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
   2336 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
   2337 
   2338 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
   2339 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
   2340 
   2341 	{ 0, NULL, 0, 0, 0 }
   2342 };
   2343 
   2344 void
   2345 fxp_load_ucode(struct fxp_softc *sc)
   2346 {
   2347 	const struct ucode *uc;
   2348 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
   2349 	int count, i;
   2350 	uint16_t status;
   2351 
   2352 	if (sc->sc_flags & FXPF_UCODE_LOADED)
   2353 		return;
   2354 
   2355 	/*
   2356 	 * Only load the uCode if the user has requested that
   2357 	 * we do so.
   2358 	 */
   2359 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
   2360 		sc->sc_int_delay = 0;
   2361 		sc->sc_bundle_max = 0;
   2362 		return;
   2363 	}
   2364 
   2365 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
   2366 		if (sc->sc_rev == uc->revision)
   2367 			break;
   2368 	}
   2369 	if (uc->ucode == NULL)
   2370 		return;
   2371 
   2372 	/* BIG ENDIAN: no need to swap to store 0 */
   2373 	cbp->cb_status = 0;
   2374 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
   2375 	cbp->link_addr = 0xffffffff;		/* (no) next command */
   2376 	for (i = 0; i < uc->length; i++)
   2377 		cbp->ucode[i] = htole32(uc->ucode[i]);
   2378 
   2379 	if (uc->int_delay_offset)
   2380 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
   2381 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
   2382 
   2383 	if (uc->bundle_max_offset)
   2384 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
   2385 		    htole16(fxp_bundle_max);
   2386 
   2387 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2388 
   2389 	/*
   2390 	 * Download the uCode to the chip.
   2391 	 */
   2392 	fxp_scb_wait(sc);
   2393 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
   2394 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2395 
   2396 	/* ...and wait for it to complete. */
   2397 	for (count = 10000; count > 0; count--) {
   2398 		FXP_CDUCODESYNC(sc,
   2399 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2400 		status = le16toh(cbp->cb_status);
   2401 		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
   2402 		if ((status & FXP_CB_STATUS_C) != 0)
   2403 			break;
   2404 		DELAY(2);
   2405 	}
   2406 	if (count == 0) {
   2407 		sc->sc_int_delay = 0;
   2408 		sc->sc_bundle_max = 0;
   2409 		log(LOG_WARNING, "%s: timeout loading microcode\n",
   2410 		    device_xname(sc->sc_dev));
   2411 		return;
   2412 	}
   2413 
   2414 	if (sc->sc_int_delay != fxp_int_delay ||
   2415 	    sc->sc_bundle_max != fxp_bundle_max) {
   2416 		sc->sc_int_delay = fxp_int_delay;
   2417 		sc->sc_bundle_max = fxp_bundle_max;
   2418 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
   2419 		    "max bundle: %d\n", device_xname(sc->sc_dev),
   2420 		    sc->sc_int_delay,
   2421 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
   2422 	}
   2423 
   2424 	sc->sc_flags |= FXPF_UCODE_LOADED;
   2425 }
   2426 
   2427 int
   2428 fxp_enable(struct fxp_softc *sc)
   2429 {
   2430 
   2431 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   2432 		if ((*sc->sc_enable)(sc) != 0) {
   2433 			log(LOG_ERR, "%s: device enable failed\n",
   2434 			    device_xname(sc->sc_dev));
   2435 			return (EIO);
   2436 		}
   2437 	}
   2438 
   2439 	sc->sc_enabled = 1;
   2440 	return (0);
   2441 }
   2442 
   2443 void
   2444 fxp_disable(struct fxp_softc *sc)
   2445 {
   2446 
   2447 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   2448 		(*sc->sc_disable)(sc);
   2449 		sc->sc_enabled = 0;
   2450 	}
   2451 }
   2452 
   2453 /*
   2454  * fxp_activate:
   2455  *
   2456  *	Handle device activation/deactivation requests.
   2457  */
   2458 int
   2459 fxp_activate(device_t self, enum devact act)
   2460 {
   2461 	struct fxp_softc *sc = device_private(self);
   2462 
   2463 	switch (act) {
   2464 	case DVACT_DEACTIVATE:
   2465 		if_deactivate(&sc->sc_ethercom.ec_if);
   2466 		return 0;
   2467 	default:
   2468 		return EOPNOTSUPP;
   2469 	}
   2470 }
   2471 
   2472 /*
   2473  * fxp_detach:
   2474  *
   2475  *	Detach an i82557 interface.
   2476  */
   2477 int
   2478 fxp_detach(struct fxp_softc *sc, int flags)
   2479 {
   2480 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2481 	int i, s;
   2482 
   2483 	/* Succeed now if there's no work to do. */
   2484 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2485 		return (0);
   2486 
   2487 	s = splnet();
   2488 	/* Stop the interface. Callouts are stopped in it. */
   2489 	fxp_stop(ifp, 1);
   2490 	splx(s);
   2491 
   2492 	/* Destroy our callout. */
   2493 	callout_destroy(&sc->sc_callout);
   2494 
   2495 	if (sc->sc_flags & FXPF_MII) {
   2496 		/* Detach all PHYs */
   2497 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2498 	}
   2499 
   2500 	/* Delete all remaining media. */
   2501 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2502 
   2503 	rnd_detach_source(&sc->rnd_source);
   2504 	ether_ifdetach(ifp);
   2505 	if_detach(ifp);
   2506 
   2507 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2508 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2509 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2510 	}
   2511 
   2512 	for (i = 0; i < FXP_NTXCB; i++) {
   2513 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2514 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2515 	}
   2516 
   2517 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2518 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2519 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   2520 	    sizeof(struct fxp_control_data));
   2521 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2522 
   2523 	return (0);
   2524 }
   2525