Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.155
      1 /*	$NetBSD: i82557.c,v 1.155 2019/09/20 09:00:50 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1995, David Greenman
     35  * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice unmodified, this list of conditions, and the following
     43  *    disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
     61  */
     62 
     63 /*
     64  * Device driver for the Intel i82557 fast Ethernet controller,
     65  * and its successors, the i82558 and i82559.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.155 2019/09/20 09:00:50 maxv Exp $");
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/callout.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/malloc.h>
     76 #include <sys/kernel.h>
     77 #include <sys/socket.h>
     78 #include <sys/ioctl.h>
     79 #include <sys/errno.h>
     80 #include <sys/device.h>
     81 #include <sys/syslog.h>
     82 #include <sys/proc.h>
     83 
     84 #include <machine/endian.h>
     85 
     86 #include <sys/rndsource.h>
     87 
     88 #include <net/if.h>
     89 #include <net/if_dl.h>
     90 #include <net/if_media.h>
     91 #include <net/if_ether.h>
     92 
     93 #include <netinet/in.h>
     94 #include <netinet/in_systm.h>
     95 #include <netinet/ip.h>
     96 #include <netinet/tcp.h>
     97 #include <netinet/udp.h>
     98 
     99 #include <net/bpf.h>
    100 
    101 #include <sys/bus.h>
    102 #include <sys/intr.h>
    103 
    104 #include <dev/mii/miivar.h>
    105 
    106 #include <dev/ic/i82557reg.h>
    107 #include <dev/ic/i82557var.h>
    108 
    109 #include <dev/microcode/i8255x/rcvbundl.h>
    110 
    111 /*
    112  * NOTE!  On the Alpha, we have an alignment constraint.  The
    113  * card DMAs the packet immediately following the RFA.  However,
    114  * the first thing in the packet is a 14-byte Ethernet header.
    115  * This means that the packet is misaligned.  To compensate,
    116  * we actually offset the RFA 2 bytes into the cluster.  This
    117  * alignes the packet after the Ethernet header at a 32-bit
    118  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    119  */
    120 #define	RFA_ALIGNMENT_FUDGE	2
    121 
    122 /*
    123  * The configuration byte map has several undefined fields which
    124  * must be one or must be zero.  Set up a template for these bits
    125  * only (assuming an i82557 chip), leaving the actual configuration
    126  * for fxp_init().
    127  *
    128  * See the definition of struct fxp_cb_config for the bit definitions.
    129  */
    130 const uint8_t fxp_cb_config_template[] = {
    131 	0x0, 0x0,		/* cb_status */
    132 	0x0, 0x0,		/* cb_command */
    133 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
    134 	0x0,	/*  0 */
    135 	0x0,	/*  1 */
    136 	0x0,	/*  2 */
    137 	0x0,	/*  3 */
    138 	0x0,	/*  4 */
    139 	0x0,	/*  5 */
    140 	0x32,	/*  6 */
    141 	0x0,	/*  7 */
    142 	0x0,	/*  8 */
    143 	0x0,	/*  9 */
    144 	0x6,	/* 10 */
    145 	0x0,	/* 11 */
    146 	0x0,	/* 12 */
    147 	0x0,	/* 13 */
    148 	0xf2,	/* 14 */
    149 	0x48,	/* 15 */
    150 	0x0,	/* 16 */
    151 	0x40,	/* 17 */
    152 	0xf0,	/* 18 */
    153 	0x0,	/* 19 */
    154 	0x3f,	/* 20 */
    155 	0x5,	/* 21 */
    156 	0x0,	/* 22 */
    157 	0x0,	/* 23 */
    158 	0x0,	/* 24 */
    159 	0x0,	/* 25 */
    160 	0x0,	/* 26 */
    161 	0x0,	/* 27 */
    162 	0x0,	/* 28 */
    163 	0x0,	/* 29 */
    164 	0x0,	/* 30 */
    165 	0x0,	/* 31 */
    166 };
    167 
    168 void	fxp_mii_initmedia(struct fxp_softc *);
    169 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
    170 
    171 void	fxp_80c24_initmedia(struct fxp_softc *);
    172 int	fxp_80c24_mediachange(struct ifnet *);
    173 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
    174 
    175 void	fxp_start(struct ifnet *);
    176 int	fxp_ioctl(struct ifnet *, u_long, void *);
    177 void	fxp_watchdog(struct ifnet *);
    178 int	fxp_init(struct ifnet *);
    179 void	fxp_stop(struct ifnet *, int);
    180 
    181 void	fxp_txintr(struct fxp_softc *);
    182 int	fxp_rxintr(struct fxp_softc *);
    183 
    184 void	fxp_rx_hwcksum(struct fxp_softc *, struct mbuf *,
    185 	    const struct fxp_rfa *, u_int);
    186 
    187 void	fxp_rxdrain(struct fxp_softc *);
    188 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
    189 int	fxp_mdi_read(device_t, int, int, uint16_t *);
    190 void	fxp_statchg(struct ifnet *);
    191 int	fxp_mdi_write(device_t, int, int, uint16_t);
    192 void	fxp_autosize_eeprom(struct fxp_softc*);
    193 void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
    194 void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
    195 void	fxp_eeprom_update_cksum(struct fxp_softc *);
    196 void	fxp_get_info(struct fxp_softc *, uint8_t *);
    197 void	fxp_tick(void *);
    198 void	fxp_mc_setup(struct fxp_softc *);
    199 void	fxp_load_ucode(struct fxp_softc *);
    200 
    201 int	fxp_copy_small = 0;
    202 
    203 /*
    204  * Variables for interrupt mitigating microcode.
    205  */
    206 int	fxp_int_delay = 1000;		/* usec */
    207 int	fxp_bundle_max = 6;		/* packets */
    208 
    209 struct fxp_phytype {
    210 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    211 	void	(*fp_init)(struct fxp_softc *);
    212 } fxp_phytype_table[] = {
    213 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    214 	{ -1,				fxp_mii_initmedia },
    215 };
    216 
    217 /*
    218  * Set initial transmit threshold at 64 (512 bytes). This is
    219  * increased by 64 (512 bytes) at a time, to maximum of 192
    220  * (1536 bytes), if an underrun occurs.
    221  */
    222 static int tx_threshold = 64;
    223 
    224 /*
    225  * Wait for the previous command to be accepted (but not necessarily
    226  * completed).
    227  */
    228 static inline void
    229 fxp_scb_wait(struct fxp_softc *sc)
    230 {
    231 	int i = 10000;
    232 
    233 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    234 		delay(2);
    235 	if (i == 0)
    236 		log(LOG_WARNING,
    237 		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
    238 }
    239 
    240 /*
    241  * Submit a command to the i82557.
    242  */
    243 static inline void
    244 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
    245 {
    246 
    247 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
    248 }
    249 
    250 /*
    251  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    252  */
    253 void
    254 fxp_attach(struct fxp_softc *sc)
    255 {
    256 	uint8_t enaddr[ETHER_ADDR_LEN];
    257 	struct ifnet *ifp;
    258 	bus_dma_segment_t seg;
    259 	int rseg, i, error;
    260 	struct fxp_phytype *fp;
    261 
    262 	callout_init(&sc->sc_callout, 0);
    263 
    264         /*
    265 	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
    266 	 * Note: to use IPCB we need extended TXCB support too, and
    267 	 *       these feature flags should be set in each bus attachment.
    268 	 */
    269 	if (sc->sc_flags & FXPF_EXT_RFA) {
    270 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
    271 		sc->sc_rfa_size = RFA_EXT_SIZE;
    272 	} else {
    273 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
    274 		sc->sc_rfa_size = RFA_SIZE;
    275 	}
    276 
    277 	/*
    278 	 * Allocate the control data structures, and create and load the
    279 	 * DMA map for it.
    280 	 */
    281 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    282 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    283 	    0)) != 0) {
    284 		aprint_error_dev(sc->sc_dev,
    285 		    "unable to allocate control data, error = %d\n",
    286 		    error);
    287 		goto fail_0;
    288 	}
    289 
    290 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    291 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
    292 	    BUS_DMA_COHERENT)) != 0) {
    293 		aprint_error_dev(sc->sc_dev,
    294 		    "unable to map control data, error = %d\n", error);
    295 		goto fail_1;
    296 	}
    297 	sc->sc_cdseg = seg;
    298 	sc->sc_cdnseg = rseg;
    299 
    300 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
    301 
    302 	if ((error = bus_dmamap_create(sc->sc_dmat,
    303 	    sizeof(struct fxp_control_data), 1,
    304 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    305 		aprint_error_dev(sc->sc_dev,
    306 		    "unable to create control data DMA map, error = %d\n",
    307 		    error);
    308 		goto fail_2;
    309 	}
    310 
    311 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    312 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    313 	    0)) != 0) {
    314 		aprint_error_dev(sc->sc_dev,
    315 		    "can't load control data DMA map, error = %d\n",
    316 		    error);
    317 		goto fail_3;
    318 	}
    319 
    320 	/*
    321 	 * Create the transmit buffer DMA maps.
    322 	 */
    323 	for (i = 0; i < FXP_NTXCB; i++) {
    324 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    325 		    (sc->sc_flags & FXPF_EXT_RFA) ?
    326 		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
    327 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    328 			aprint_error_dev(sc->sc_dev,
    329 			    "unable to create tx DMA map %d, error = %d\n",
    330 			    i, error);
    331 			goto fail_4;
    332 		}
    333 	}
    334 
    335 	/*
    336 	 * Create the receive buffer DMA maps.
    337 	 */
    338 	for (i = 0; i < FXP_NRFABUFS; i++) {
    339 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    340 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    341 			aprint_error_dev(sc->sc_dev,
    342 			    "unable to create rx DMA map %d, error = %d\n",
    343 			    i, error);
    344 			goto fail_5;
    345 		}
    346 	}
    347 
    348 	/* Initialize MAC address and media structures. */
    349 	fxp_get_info(sc, enaddr);
    350 
    351 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    352 	    ether_sprintf(enaddr));
    353 
    354 	ifp = &sc->sc_ethercom.ec_if;
    355 
    356 	/*
    357 	 * Get info about our media interface, and initialize it.  Note
    358 	 * the table terminates itself with a phy of -1, indicating
    359 	 * that we're using MII.
    360 	 */
    361 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    362 		if (fp->fp_phy == sc->phy_primary_device)
    363 			break;
    364 	(*fp->fp_init)(sc);
    365 
    366 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    367 	ifp->if_softc = sc;
    368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    369 	ifp->if_ioctl = fxp_ioctl;
    370 	ifp->if_start = fxp_start;
    371 	ifp->if_watchdog = fxp_watchdog;
    372 	ifp->if_init = fxp_init;
    373 	ifp->if_stop = fxp_stop;
    374 	IFQ_SET_READY(&ifp->if_snd);
    375 
    376 	if (sc->sc_flags & FXPF_EXT_RFA) {
    377 		/*
    378 		 * Enable hardware cksum support by EXT_RFA and IPCB.
    379 		 *
    380 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
    381 		 * at least, on i82550 rev.12.
    382 		 * specifically, it doesn't set ipv4 checksum properly
    383 		 * when sending UDP (and probably TCP) packets with
    384 		 * 20 byte ipv4 header + 1 or 2 byte data,
    385 		 * though ICMP packets seem working.
    386 		 * FreeBSD driver has related comments.
    387 		 * We've added a workaround to handle the bug by padding
    388 		 * such packets manually.
    389 		 */
    390 		ifp->if_capabilities =
    391 		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
    392 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    393 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    394 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    395 		sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    396 	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
    397 		ifp->if_capabilities =
    398 		    IFCAP_CSUM_TCPv4_Rx |
    399 		    IFCAP_CSUM_UDPv4_Rx;
    400 	}
    401 
    402 	/*
    403 	 * We can support 802.1Q VLAN-sized frames.
    404 	 */
    405 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    406 
    407 	/*
    408 	 * Attach the interface.
    409 	 */
    410 	if_attach(ifp);
    411 	if_deferred_start_init(ifp, NULL);
    412 	ether_ifattach(ifp, enaddr);
    413 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    414 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    415 
    416 #ifdef FXP_EVENT_COUNTERS
    417 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    418 	    NULL, device_xname(sc->sc_dev), "txstall");
    419 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    420 	    NULL, device_xname(sc->sc_dev), "txintr");
    421 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    422 	    NULL, device_xname(sc->sc_dev), "rxintr");
    423 	if (sc->sc_flags & FXPF_FC) {
    424 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
    425 		    NULL, device_xname(sc->sc_dev), "txpause");
    426 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
    427 		    NULL, device_xname(sc->sc_dev), "rxpause");
    428 	}
    429 #endif /* FXP_EVENT_COUNTERS */
    430 
    431 	/* The attach is successful. */
    432 	sc->sc_flags |= FXPF_ATTACHED;
    433 
    434 	return;
    435 
    436 	/*
    437 	 * Free any resources we've allocated during the failed attach
    438 	 * attempt.  Do this in reverse order and fall though.
    439 	 */
    440  fail_5:
    441 	for (i = 0; i < FXP_NRFABUFS; i++) {
    442 		if (sc->sc_rxmaps[i] != NULL)
    443 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    444 	}
    445  fail_4:
    446 	for (i = 0; i < FXP_NTXCB; i++) {
    447 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    448 			bus_dmamap_destroy(sc->sc_dmat,
    449 			    FXP_DSTX(sc, i)->txs_dmamap);
    450 	}
    451 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    452  fail_3:
    453 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    454  fail_2:
    455 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    456 	    sizeof(struct fxp_control_data));
    457  fail_1:
    458 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    459  fail_0:
    460 	return;
    461 }
    462 
    463 void
    464 fxp_mii_initmedia(struct fxp_softc *sc)
    465 {
    466 	struct mii_data * const mii = &sc->sc_mii;
    467 	int flags;
    468 
    469 	sc->sc_flags |= FXPF_MII;
    470 
    471 	mii->mii_ifp = &sc->sc_ethercom.ec_if;
    472 	mii->mii_readreg = fxp_mdi_read;
    473 	mii->mii_writereg = fxp_mdi_write;
    474 	mii->mii_statchg = fxp_statchg;
    475 
    476 	sc->sc_ethercom.ec_mii = mii;
    477 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    478 	    fxp_mii_mediastatus);
    479 
    480 	flags = MIIF_NOISOLATE;
    481 	if (sc->sc_flags & FXPF_FC)
    482 		flags |= MIIF_FORCEANEG | MIIF_DOPAUSE;
    483 	/*
    484 	 * The i82557 wedges if all of its PHYs are isolated!
    485 	 */
    486 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    487 	    MII_OFFSET_ANY, flags);
    488 	if (LIST_EMPTY(&mii->mii_phys)) {
    489 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    490 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    491 	} else
    492 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    493 }
    494 
    495 void
    496 fxp_80c24_initmedia(struct fxp_softc *sc)
    497 {
    498 	struct mii_data * const mii = &sc->sc_mii;
    499 
    500 	/*
    501 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    502 	 * doesn't have a programming interface of any sort.  The
    503 	 * media is sensed automatically based on how the link partner
    504 	 * is configured.  This is, in essence, manual configuration.
    505 	 */
    506 	aprint_normal_dev(sc->sc_dev,
    507 	    "Seeq 80c24 AutoDUPLEX media interface present\n");
    508 	ifmedia_init(&mii->mii_media, 0, fxp_80c24_mediachange,
    509 	    fxp_80c24_mediastatus);
    510 	ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    511 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    512 }
    513 
    514 /*
    515  * Initialize the interface media.
    516  */
    517 void
    518 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
    519 {
    520 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
    521 
    522 	/*
    523 	 * Reset to a stable state.
    524 	 */
    525 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    526 	DELAY(100);
    527 
    528 	sc->sc_eeprom_size = 0;
    529 	fxp_autosize_eeprom(sc);
    530 	if (sc->sc_eeprom_size == 0) {
    531 		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
    532 		sc->sc_eeprom_size = 6; /* XXX panic here? */
    533 	}
    534 #ifdef DEBUG
    535 	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
    536 	    1 << sc->sc_eeprom_size);
    537 #endif
    538 
    539 	/*
    540 	 * Get info about the primary PHY
    541 	 */
    542 	fxp_read_eeprom(sc, &data, 6, 1);
    543 	sc->phy_primary_device =
    544 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
    545 
    546 	/*
    547 	 * Read MAC address.
    548 	 */
    549 	fxp_read_eeprom(sc, myea, 0, 3);
    550 	enaddr[0] = myea[0] & 0xff;
    551 	enaddr[1] = myea[0] >> 8;
    552 	enaddr[2] = myea[1] & 0xff;
    553 	enaddr[3] = myea[1] >> 8;
    554 	enaddr[4] = myea[2] & 0xff;
    555 	enaddr[5] = myea[2] >> 8;
    556 
    557 	/*
    558 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
    559 	 * as some i82559 designs, have a defect where the chip can
    560 	 * cause a PCI protocol violation if it receives a CU_RESUME
    561 	 * command when it is entering the IDLE state.
    562 	 *
    563 	 * The work-around is to disable Dynamic Standby Mode, so that
    564 	 * the chip never deasserts #CLKRUN, and always remains in the
    565 	 * active state.
    566 	 *
    567 	 * Unfortunately, the only way to disable Dynamic Standby is
    568 	 * to frob an EEPROM setting and reboot (the EEPROM setting
    569 	 * is only consulted when the PCI bus comes out of reset).
    570 	 *
    571 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
    572 	 */
    573 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
    574 		fxp_read_eeprom(sc, &data, 10, 1);
    575 		if (data & 0x02) {		/* STB enable */
    576 			aprint_error_dev(sc->sc_dev, "WARNING: "
    577 			    "Disabling dynamic standby mode in EEPROM "
    578 			    "to work around a\n");
    579 			aprint_normal_dev(sc->sc_dev,
    580 			    "WARNING: hardware bug.  You must reset "
    581 			    "the system before using this\n");
    582 			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
    583 			data &= ~0x02;
    584 			fxp_write_eeprom(sc, &data, 10, 1);
    585 			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
    586 			    data);
    587 			fxp_eeprom_update_cksum(sc);
    588 		}
    589 	}
    590 
    591 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
    592 	/* Due to false positives we make it conditional on setting link1 */
    593 	fxp_read_eeprom(sc, &data, 3, 1);
    594 	if ((data & 0x03) != 0x03) {
    595 		aprint_verbose_dev(sc->sc_dev,
    596 		    "May need receiver lock-up workaround\n");
    597 	}
    598 }
    599 
    600 static void
    601 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
    602 {
    603 	uint16_t reg;
    604 	int x;
    605 
    606 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
    607 		DELAY(40);
    608 		if (data & x)
    609 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    610 		else
    611 			reg = FXP_EEPROM_EECS;
    612 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    613 		DELAY(40);
    614 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    615 		    reg | FXP_EEPROM_EESK);
    616 		DELAY(40);
    617 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    618 	}
    619 	DELAY(40);
    620 }
    621 
    622 /*
    623  * Figure out EEPROM size.
    624  *
    625  * 559's can have either 64-word or 256-word EEPROMs, the 558
    626  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    627  * talks about the existence of 16 to 256 word EEPROMs.
    628  *
    629  * The only known sizes are 64 and 256, where the 256 version is used
    630  * by CardBus cards to store CIS information.
    631  *
    632  * The address is shifted in msb-to-lsb, and after the last
    633  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    634  * after which follows the actual data. We try to detect this zero, by
    635  * probing the data-out bit in the EEPROM control register just after
    636  * having shifted in a bit. If the bit is zero, we assume we've
    637  * shifted enough address bits. The data-out should be tri-state,
    638  * before this, which should translate to a logical one.
    639  *
    640  * Other ways to do this would be to try to read a register with known
    641  * contents with a varying number of address bits, but no such
    642  * register seem to be available. The high bits of register 10 are 01
    643  * on the 558 and 559, but apparently not on the 557.
    644  *
    645  * The Linux driver computes a checksum on the EEPROM data, but the
    646  * value of this checksum is not very well documented.
    647  */
    648 
    649 void
    650 fxp_autosize_eeprom(struct fxp_softc *sc)
    651 {
    652 	int x;
    653 
    654 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    655 	DELAY(40);
    656 
    657 	/* Shift in read opcode. */
    658 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    659 
    660 	/*
    661 	 * Shift in address, wait for the dummy zero following a correct
    662 	 * address shift.
    663 	 */
    664 	for (x = 1; x <= 8; x++) {
    665 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    666 		DELAY(40);
    667 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    668 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    669 		DELAY(40);
    670 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    671 		    FXP_EEPROM_EEDO) == 0)
    672 			break;
    673 		DELAY(40);
    674 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    675 		DELAY(40);
    676 	}
    677 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    678 	DELAY(40);
    679 	if (x != 6 && x != 8) {
    680 #ifdef DEBUG
    681 		printf("%s: strange EEPROM size (%d)\n",
    682 		    device_xname(sc->sc_dev), 1 << x);
    683 #endif
    684 	} else
    685 		sc->sc_eeprom_size = x;
    686 }
    687 
    688 /*
    689  * Read from the serial EEPROM. Basically, you manually shift in
    690  * the read opcode (one bit at a time) and then shift in the address,
    691  * and then you shift out the data (all of this one bit at a time).
    692  * The word size is 16 bits, so you have to provide the address for
    693  * every 16 bits of data.
    694  */
    695 void
    696 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
    697 {
    698 	uint16_t reg;
    699 	int i, x;
    700 
    701 	for (i = 0; i < words; i++) {
    702 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    703 
    704 		/* Shift in read opcode. */
    705 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    706 
    707 		/* Shift in address. */
    708 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    709 
    710 		reg = FXP_EEPROM_EECS;
    711 		data[i] = 0;
    712 
    713 		/* Shift out data. */
    714 		for (x = 16; x > 0; x--) {
    715 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    716 			    reg | FXP_EEPROM_EESK);
    717 			DELAY(40);
    718 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    719 			    FXP_EEPROM_EEDO)
    720 				data[i] |= (1 << (x - 1));
    721 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    722 			DELAY(40);
    723 		}
    724 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    725 		DELAY(40);
    726 	}
    727 }
    728 
    729 /*
    730  * Write data to the serial EEPROM.
    731  */
    732 void
    733 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
    734 {
    735 	int i, j;
    736 
    737 	for (i = 0; i < words; i++) {
    738 		/* Erase/write enable. */
    739 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    740 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    741 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
    742 		    sc->sc_eeprom_size);
    743 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    744 		DELAY(4);
    745 
    746 		/* Shift in write opcode, address, data. */
    747 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    748 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
    749 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    750 		fxp_eeprom_shiftin(sc, data[i], 16);
    751 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    752 		DELAY(4);
    753 
    754 		/* Wait for the EEPROM to finish up. */
    755 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    756 		DELAY(4);
    757 		for (j = 0; j < 1000; j++) {
    758 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    759 			    FXP_EEPROM_EEDO)
    760 				break;
    761 			DELAY(50);
    762 		}
    763 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    764 		DELAY(4);
    765 
    766 		/* Erase/write disable. */
    767 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    768 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    769 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
    770 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    771 		DELAY(4);
    772 	}
    773 }
    774 
    775 /*
    776  * Update the checksum of the EEPROM.
    777  */
    778 void
    779 fxp_eeprom_update_cksum(struct fxp_softc *sc)
    780 {
    781 	int i;
    782 	uint16_t data, cksum;
    783 
    784 	cksum = 0;
    785 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
    786 		fxp_read_eeprom(sc, &data, i, 1);
    787 		cksum += data;
    788 	}
    789 	i = (1 << sc->sc_eeprom_size) - 1;
    790 	cksum = 0xbaba - cksum;
    791 	fxp_read_eeprom(sc, &data, i, 1);
    792 	fxp_write_eeprom(sc, &cksum, i, 1);
    793 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
    794 	    device_xname(sc->sc_dev), i, data, cksum);
    795 }
    796 
    797 /*
    798  * Start packet transmission on the interface.
    799  */
    800 void
    801 fxp_start(struct ifnet *ifp)
    802 {
    803 	struct fxp_softc *sc = ifp->if_softc;
    804 	struct mbuf *m0, *m;
    805 	struct fxp_txdesc *txd;
    806 	struct fxp_txsoft *txs;
    807 	bus_dmamap_t dmamap;
    808 	int error, lasttx, nexttx, opending, seg, nsegs, len;
    809 
    810 	/*
    811 	 * If we want a re-init, bail out now.
    812 	 */
    813 	if (sc->sc_flags & FXPF_WANTINIT) {
    814 		ifp->if_flags |= IFF_OACTIVE;
    815 		return;
    816 	}
    817 
    818 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    819 		return;
    820 
    821 	/*
    822 	 * Remember the previous txpending and the current lasttx.
    823 	 */
    824 	opending = sc->sc_txpending;
    825 	lasttx = sc->sc_txlast;
    826 
    827 	/*
    828 	 * Loop through the send queue, setting up transmit descriptors
    829 	 * until we drain the queue, or use up all available transmit
    830 	 * descriptors.
    831 	 */
    832 	for (;;) {
    833 		struct fxp_tbd *tbdp;
    834 		int csum_flags;
    835 
    836 		/*
    837 		 * Grab a packet off the queue.
    838 		 */
    839 		IFQ_POLL(&ifp->if_snd, m0);
    840 		if (m0 == NULL)
    841 			break;
    842 		m = NULL;
    843 
    844 		if (sc->sc_txpending == FXP_NTXCB - 1) {
    845 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
    846 			break;
    847 		}
    848 
    849 		/*
    850 		 * Get the next available transmit descriptor.
    851 		 */
    852 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    853 		txd = FXP_CDTX(sc, nexttx);
    854 		txs = FXP_DSTX(sc, nexttx);
    855 		dmamap = txs->txs_dmamap;
    856 
    857 		/*
    858 		 * Load the DMA map.  If this fails, the packet either
    859 		 * didn't fit in the allotted number of frags, or we were
    860 		 * short on resources.  In this case, we'll copy and try
    861 		 * again.
    862 		 */
    863 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    864 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
    865 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    866 			if (m == NULL) {
    867 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
    868 				    device_xname(sc->sc_dev));
    869 				break;
    870 			}
    871 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    872 			if (m0->m_pkthdr.len > MHLEN) {
    873 				MCLGET(m, M_DONTWAIT);
    874 				if ((m->m_flags & M_EXT) == 0) {
    875 					log(LOG_ERR, "%s: unable to allocate "
    876 					    "Tx cluster\n",
    877 					    device_xname(sc->sc_dev));
    878 					m_freem(m);
    879 					break;
    880 				}
    881 			}
    882 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    883 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    884 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    885 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    886 			if (error) {
    887 				log(LOG_ERR, "%s: unable to load Tx buffer, "
    888 				    "error = %d\n",
    889 				    device_xname(sc->sc_dev), error);
    890 				break;
    891 			}
    892 		}
    893 
    894 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    895 		csum_flags = m0->m_pkthdr.csum_flags;
    896 		if (m != NULL) {
    897 			m_freem(m0);
    898 			m0 = m;
    899 		}
    900 
    901 		/* Initialize the fraglist. */
    902 		tbdp = txd->txd_tbd;
    903 		len = m0->m_pkthdr.len;
    904 		nsegs = dmamap->dm_nsegs;
    905 		if (sc->sc_flags & FXPF_EXT_RFA)
    906 			tbdp++;
    907 		for (seg = 0; seg < nsegs; seg++) {
    908 			tbdp[seg].tb_addr =
    909 			    htole32(dmamap->dm_segs[seg].ds_addr);
    910 			tbdp[seg].tb_size =
    911 			    htole32(dmamap->dm_segs[seg].ds_len);
    912 		}
    913 		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
    914 		    (csum_flags & M_CSUM_IPv4) != 0)) {
    915 			/*
    916 			 * Pad short packets to avoid ip4csum-tx bug.
    917 			 *
    918 			 * XXX Should we still consider if such short
    919 			 *     (36 bytes or less) packets might already
    920 			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
    921 			 */
    922 			KASSERT(nsegs < FXP_IPCB_NTXSEG);
    923 			nsegs++;
    924 			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
    925 			tbdp[seg].tb_size =
    926 			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
    927 		}
    928 
    929 		/* Sync the DMA map. */
    930 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    931 		    BUS_DMASYNC_PREWRITE);
    932 
    933 		/*
    934 		 * Store a pointer to the packet so we can free it later.
    935 		 */
    936 		txs->txs_mbuf = m0;
    937 
    938 		/*
    939 		 * Initialize the transmit descriptor.
    940 		 */
    941 		/* BIG_ENDIAN: no need to swap to store 0 */
    942 		txd->txd_txcb.cb_status = 0;
    943 		txd->txd_txcb.cb_command =
    944 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
    945 		txd->txd_txcb.tx_threshold = tx_threshold;
    946 		txd->txd_txcb.tbd_number = nsegs;
    947 
    948 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
    949 		if (sc->sc_flags & FXPF_EXT_RFA) {
    950 			struct fxp_ipcb *ipcb;
    951 			/*
    952 			 * Deal with TCP/IP checksum offload. Note that
    953 			 * in order for TCP checksum offload to work,
    954 			 * the pseudo header checksum must have already
    955 			 * been computed and stored in the checksum field
    956 			 * in the TCP header. The stack should have
    957 			 * already done this for us.
    958 			 */
    959 			ipcb = &txd->txd_u.txdu_ipcb;
    960 			memset(ipcb, 0, sizeof(*ipcb));
    961 			/*
    962 			 * always do hardware parsing.
    963 			 */
    964 			ipcb->ipcb_ip_activation_high =
    965 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
    966 			/*
    967 			 * ip checksum offloading.
    968 			 */
    969 			if (csum_flags & M_CSUM_IPv4) {
    970 				ipcb->ipcb_ip_schedule |=
    971 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
    972 			}
    973 			/*
    974 			 * TCP/UDP checksum offloading.
    975 			 */
    976 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    977 				ipcb->ipcb_ip_schedule |=
    978 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
    979 			}
    980 
    981 			/*
    982 			 * request VLAN tag insertion if needed.
    983 			 */
    984 			if (vlan_has_tag(m0)) {
    985 				ipcb->ipcb_vlan_id = htobe16(vlan_get_tag(m0));
    986 				ipcb->ipcb_ip_activation_high |=
    987 				    FXP_IPCB_INSERTVLAN_ENABLE;
    988 			}
    989 		} else {
    990 			KASSERT((csum_flags &
    991 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
    992 		}
    993 
    994 		FXP_CDTXSYNC(sc, nexttx,
    995 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    996 
    997 		/* Advance the tx pointer. */
    998 		sc->sc_txpending++;
    999 		sc->sc_txlast = nexttx;
   1000 
   1001 		/*
   1002 		 * Pass packet to bpf if there is a listener.
   1003 		 */
   1004 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1005 	}
   1006 
   1007 	if (sc->sc_txpending == FXP_NTXCB - 1) {
   1008 		/* No more slots; notify upper layer. */
   1009 		ifp->if_flags |= IFF_OACTIVE;
   1010 	}
   1011 
   1012 	if (sc->sc_txpending != opending) {
   1013 		/*
   1014 		 * We enqueued packets.  If the transmitter was idle,
   1015 		 * reset the txdirty pointer.
   1016 		 */
   1017 		if (opending == 0)
   1018 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
   1019 
   1020 		/*
   1021 		 * Cause the chip to interrupt and suspend command
   1022 		 * processing once the last packet we've enqueued
   1023 		 * has been transmitted.
   1024 		 *
   1025 		 * To avoid a race between updating status bits
   1026 		 * by the fxp chip and clearing command bits
   1027 		 * by this function on machines which don't have
   1028 		 * atomic methods to clear/set bits in memory
   1029 		 * smaller than 32bits (both cb_status and cb_command
   1030 		 * members are uint16_t and in the same 32bit word),
   1031 		 * we have to prepare a dummy TX descriptor which has
   1032 		 * NOP command and just causes a TX completion interrupt.
   1033 		 */
   1034 		sc->sc_txpending++;
   1035 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
   1036 		txd = FXP_CDTX(sc, sc->sc_txlast);
   1037 		/* BIG_ENDIAN: no need to swap to store 0 */
   1038 		txd->txd_txcb.cb_status = 0;
   1039 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
   1040 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
   1041 		FXP_CDTXSYNC(sc, sc->sc_txlast,
   1042 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1043 
   1044 		/*
   1045 		 * The entire packet chain is set up.  Clear the suspend bit
   1046 		 * on the command prior to the first packet we set up.
   1047 		 */
   1048 		FXP_CDTXSYNC(sc, lasttx,
   1049 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1050 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
   1051 		    htole16(~FXP_CB_COMMAND_S);
   1052 		FXP_CDTXSYNC(sc, lasttx,
   1053 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1054 
   1055 		/*
   1056 		 * Issue a Resume command in case the chip was suspended.
   1057 		 */
   1058 		fxp_scb_wait(sc);
   1059 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
   1060 
   1061 		/* Set a watchdog timer in case the chip flakes out. */
   1062 		ifp->if_timer = 5;
   1063 	}
   1064 }
   1065 
   1066 /*
   1067  * Process interface interrupts.
   1068  */
   1069 int
   1070 fxp_intr(void *arg)
   1071 {
   1072 	struct fxp_softc *sc = arg;
   1073 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1074 	bus_dmamap_t rxmap;
   1075 	int claimed = 0, rnr;
   1076 	uint8_t statack;
   1077 
   1078 	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
   1079 		return (0);
   1080 	/*
   1081 	 * If the interface isn't running, don't try to
   1082 	 * service the interrupt.. just ack it and bail.
   1083 	 */
   1084 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1085 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
   1086 		if (statack) {
   1087 			claimed = 1;
   1088 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1089 		}
   1090 		return (claimed);
   1091 	}
   1092 
   1093 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
   1094 		claimed = 1;
   1095 
   1096 		/*
   1097 		 * First ACK all the interrupts in this pass.
   1098 		 */
   1099 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1100 
   1101 		/*
   1102 		 * Process receiver interrupts. If a no-resource (RNR)
   1103 		 * condition exists, get whatever packets we can and
   1104 		 * re-start the receiver.
   1105 		 */
   1106 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
   1107 		    1 : 0;
   1108 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
   1109 		    FXP_SCB_STATACK_SWI)) {
   1110 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1111 			rnr |= fxp_rxintr(sc);
   1112 		}
   1113 
   1114 		/*
   1115 		 * Free any finished transmit mbuf chains.
   1116 		 */
   1117 		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
   1118 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
   1119 			fxp_txintr(sc);
   1120 
   1121 			/*
   1122 			 * Try to get more packets going.
   1123 			 */
   1124 			if_schedule_deferred_start(ifp);
   1125 
   1126 			if (sc->sc_txpending == 0) {
   1127 				/*
   1128 				 * Tell them that they can re-init now.
   1129 				 */
   1130 				if (sc->sc_flags & FXPF_WANTINIT)
   1131 					wakeup(sc);
   1132 			}
   1133 		}
   1134 
   1135 		if (rnr) {
   1136 			fxp_scb_wait(sc);
   1137 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
   1138 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1139 			fxp_scb_wait(sc);
   1140 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1141 			    rxmap->dm_segs[0].ds_addr +
   1142 			    RFA_ALIGNMENT_FUDGE);
   1143 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1144 		}
   1145 	}
   1146 
   1147 	if (claimed)
   1148 		rnd_add_uint32(&sc->rnd_source, statack);
   1149 	return (claimed);
   1150 }
   1151 
   1152 /*
   1153  * Handle transmit completion interrupts.
   1154  */
   1155 void
   1156 fxp_txintr(struct fxp_softc *sc)
   1157 {
   1158 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1159 	struct fxp_txdesc *txd;
   1160 	struct fxp_txsoft *txs;
   1161 	int i;
   1162 	uint16_t txstat;
   1163 
   1164 	ifp->if_flags &= ~IFF_OACTIVE;
   1165 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1166 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1167 		txd = FXP_CDTX(sc, i);
   1168 		txs = FXP_DSTX(sc, i);
   1169 
   1170 		FXP_CDTXSYNC(sc, i,
   1171 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1172 
   1173 		/* skip dummy NOP TX descriptor */
   1174 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
   1175 		    == FXP_CB_COMMAND_NOP)
   1176 			continue;
   1177 
   1178 		txstat = le16toh(txd->txd_txcb.cb_status);
   1179 
   1180 		if ((txstat & FXP_CB_STATUS_C) == 0)
   1181 			break;
   1182 
   1183 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1184 		    0, txs->txs_dmamap->dm_mapsize,
   1185 		    BUS_DMASYNC_POSTWRITE);
   1186 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1187 		m_freem(txs->txs_mbuf);
   1188 		txs->txs_mbuf = NULL;
   1189 	}
   1190 
   1191 	/* Update the dirty transmit buffer pointer. */
   1192 	sc->sc_txdirty = i;
   1193 
   1194 	/*
   1195 	 * Cancel the watchdog timer if there are no pending
   1196 	 * transmissions.
   1197 	 */
   1198 	if (sc->sc_txpending == 0)
   1199 		ifp->if_timer = 0;
   1200 }
   1201 
   1202 /*
   1203  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
   1204  */
   1205 
   1206 void
   1207 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
   1208     u_int len)
   1209 {
   1210 	uint32_t csum_data;
   1211 	int csum_flags;
   1212 
   1213 	/*
   1214 	 * check H/W Checksumming.
   1215 	 */
   1216 
   1217 	csum_flags = 0;
   1218 	csum_data = 0;
   1219 
   1220 	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
   1221 		uint8_t csum_stat;
   1222 
   1223 		csum_stat = rfa->cksum_stat;
   1224 		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
   1225 			goto out;
   1226 
   1227 		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
   1228 			csum_flags = M_CSUM_IPv4;
   1229 			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
   1230 				csum_flags |= M_CSUM_IPv4_BAD;
   1231 		}
   1232 
   1233 		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
   1234 			csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4); /* XXX */
   1235 			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
   1236 				csum_flags |= M_CSUM_TCP_UDP_BAD;
   1237 		}
   1238 
   1239 	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
   1240 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1241 		struct ether_header *eh;
   1242 		struct ip *ip;
   1243 		struct udphdr *uh;
   1244 		u_int hlen, pktlen;
   1245 
   1246 		if (len < ETHER_HDR_LEN + sizeof(struct ip))
   1247 			goto out;
   1248 		pktlen = len - ETHER_HDR_LEN;
   1249 		eh = mtod(m, struct ether_header *);
   1250 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1251 			goto out;
   1252 		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
   1253 		if (ip->ip_v != IPVERSION)
   1254 			goto out;
   1255 
   1256 		hlen = ip->ip_hl << 2;
   1257 		if (hlen < sizeof(struct ip))
   1258 			goto out;
   1259 
   1260 		/*
   1261 		 * Bail if too short, has random trailing garbage, truncated,
   1262 		 * fragment, or has ethernet pad.
   1263 		 */
   1264 		if (ntohs(ip->ip_len) < hlen ||
   1265 		    ntohs(ip->ip_len) != pktlen ||
   1266 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
   1267 			goto out;
   1268 
   1269 		switch (ip->ip_p) {
   1270 		case IPPROTO_TCP:
   1271 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
   1272 			    pktlen < (hlen + sizeof(struct tcphdr)))
   1273 				goto out;
   1274 			csum_flags =
   1275 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
   1276 			break;
   1277 		case IPPROTO_UDP:
   1278 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
   1279 			    pktlen < (hlen + sizeof(struct udphdr)))
   1280 				goto out;
   1281 			uh = (struct udphdr *)((uint8_t *)ip + hlen);
   1282 			if (uh->uh_sum == 0)
   1283 				goto out;	/* no checksum */
   1284 			csum_flags =
   1285 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
   1286 			break;
   1287 		default:
   1288 			goto out;
   1289 		}
   1290 
   1291 		/* Extract computed checksum. */
   1292 		csum_data = be16dec(mtod(m, uint8_t *) + len);
   1293 
   1294 		/*
   1295 		 * The computed checksum includes IP headers,
   1296 		 * so we have to deduct them.
   1297 		 */
   1298 #if 0
   1299 		/*
   1300 		 * But in TCP/UDP layer we can assume the IP header is valid,
   1301 		 * i.e. a sum of the whole IP header should be 0xffff,
   1302 		 * so we don't have to bother to deduct it.
   1303 		 */
   1304 		if (hlen > 0) {
   1305 			uint32_t hsum;
   1306 			const uint16_t *iphdr;
   1307 			hsum = 0;
   1308 			iphdr = (uint16_t *)ip;
   1309 
   1310 			while (hlen > 1) {
   1311 				hsum += ntohs(*iphdr++);
   1312 				hlen -= sizeof(uint16_t);
   1313 			}
   1314 			while (hsum >> 16)
   1315 				hsum = (hsum >> 16) + (hsum & 0xffff);
   1316 
   1317 			csum_data += (uint16_t)~hsum;
   1318 
   1319 			while (csum_data >> 16)
   1320 				csum_data =
   1321 				    (csum_data >> 16) + (csum_data & 0xffff);
   1322 		}
   1323 #endif
   1324 	}
   1325  out:
   1326 	m->m_pkthdr.csum_flags = csum_flags;
   1327 	m->m_pkthdr.csum_data = csum_data;
   1328 }
   1329 
   1330 /*
   1331  * Handle receive interrupts.
   1332  */
   1333 int
   1334 fxp_rxintr(struct fxp_softc *sc)
   1335 {
   1336 	struct ethercom *ec = &sc->sc_ethercom;
   1337 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1338 	struct mbuf *m, *m0;
   1339 	bus_dmamap_t rxmap;
   1340 	struct fxp_rfa *rfa;
   1341 	int rnr;
   1342 	uint16_t len, rxstat;
   1343 
   1344 	rnr = 0;
   1345 
   1346 	for (;;) {
   1347 		m = sc->sc_rxq.ifq_head;
   1348 		rfa = FXP_MTORFA(m);
   1349 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1350 
   1351 		FXP_RFASYNC(sc, m,
   1352 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1353 
   1354 		rxstat = le16toh(rfa->rfa_status);
   1355 
   1356 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
   1357 			rnr = 1;
   1358 
   1359 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
   1360 			/*
   1361 			 * We have processed all of the
   1362 			 * receive buffers.
   1363 			 */
   1364 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
   1365 			return rnr;
   1366 		}
   1367 
   1368 		IF_DEQUEUE(&sc->sc_rxq, m);
   1369 
   1370 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
   1371 
   1372 		len = le16toh(rfa->actual_size) &
   1373 		    (m->m_ext.ext_size - 1);
   1374 		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
   1375 			/* Adjust for appended checksum bytes. */
   1376 			len -= sizeof(uint16_t);
   1377 		}
   1378 
   1379 		if (len < sizeof(struct ether_header)) {
   1380 			/*
   1381 			 * Runt packet; drop it now.
   1382 			 */
   1383 			FXP_INIT_RFABUF(sc, m);
   1384 			continue;
   1385 		}
   1386 
   1387 		/*
   1388 		 * If support for 802.1Q VLAN sized frames is
   1389 		 * enabled, we need to do some additional error
   1390 		 * checking (as we are saving bad frames, in
   1391 		 * order to receive the larger ones).
   1392 		 */
   1393 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
   1394 		    (rxstat & (FXP_RFA_STATUS_OVERRUN |
   1395 			       FXP_RFA_STATUS_RNR |
   1396 			       FXP_RFA_STATUS_ALIGN |
   1397 			       FXP_RFA_STATUS_CRC)) != 0) {
   1398 			FXP_INIT_RFABUF(sc, m);
   1399 			continue;
   1400 		}
   1401 
   1402 		/*
   1403 		 * check VLAN tag stripping.
   1404 		 */
   1405 		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
   1406 		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0)
   1407 			vlan_set_tag(m, be16toh(rfa->vlan_id));
   1408 
   1409 		/* Do checksum checking. */
   1410 		if ((ifp->if_csum_flags_rx &
   1411 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0)
   1412 			fxp_rx_hwcksum(sc, m, rfa, len);
   1413 
   1414 		/*
   1415 		 * If the packet is small enough to fit in a
   1416 		 * single header mbuf, allocate one and copy
   1417 		 * the data into it.  This greatly reduces
   1418 		 * memory consumption when we receive lots
   1419 		 * of small packets.
   1420 		 *
   1421 		 * Otherwise, we add a new buffer to the receive
   1422 		 * chain.  If this fails, we drop the packet and
   1423 		 * recycle the old buffer.
   1424 		 */
   1425 		if (fxp_copy_small != 0 && len <= MHLEN) {
   1426 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
   1427 			if (m0 == NULL)
   1428 				goto dropit;
   1429 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
   1430 			memcpy(mtod(m0, void *),
   1431 			    mtod(m, void *), len);
   1432 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
   1433 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
   1434 			FXP_INIT_RFABUF(sc, m);
   1435 			m = m0;
   1436 		} else {
   1437 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
   1438  dropit:
   1439 				ifp->if_ierrors++;
   1440 				FXP_INIT_RFABUF(sc, m);
   1441 				continue;
   1442 			}
   1443 		}
   1444 
   1445 		m_set_rcvif(m, ifp);
   1446 		m->m_pkthdr.len = m->m_len = len;
   1447 
   1448 		/* Pass it on. */
   1449 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1450 	}
   1451 }
   1452 
   1453 /*
   1454  * Update packet in/out/collision statistics. The i82557 doesn't
   1455  * allow you to access these counters without doing a fairly
   1456  * expensive DMA to get _all_ of the statistics it maintains, so
   1457  * we do this operation here only once per second. The statistics
   1458  * counters in the kernel are updated from the previous dump-stats
   1459  * DMA and then a new dump-stats DMA is started. The on-chip
   1460  * counters are zeroed when the DMA completes. If we can't start
   1461  * the DMA immediately, we don't wait - we just prepare to read
   1462  * them again next time.
   1463  */
   1464 void
   1465 fxp_tick(void *arg)
   1466 {
   1467 	struct fxp_softc *sc = arg;
   1468 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1469 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1470 	int s;
   1471 
   1472 	if (!device_is_active(sc->sc_dev))
   1473 		return;
   1474 
   1475 	s = splnet();
   1476 
   1477 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1478 
   1479 	ifp->if_opackets += le32toh(sp->tx_good);
   1480 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1481 	if (sp->rx_good) {
   1482 		ifp->if_ipackets += le32toh(sp->rx_good);
   1483 		sc->sc_rxidle = 0;
   1484 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
   1485 		sc->sc_rxidle++;
   1486 	}
   1487 	ifp->if_ierrors +=
   1488 	    le32toh(sp->rx_crc_errors) +
   1489 	    le32toh(sp->rx_alignment_errors) +
   1490 	    le32toh(sp->rx_rnr_errors) +
   1491 	    le32toh(sp->rx_overrun_errors);
   1492 	/*
   1493 	 * If any transmit underruns occurred, bump up the transmit
   1494 	 * threshold by another 512 bytes (64 * 8).
   1495 	 */
   1496 	if (sp->tx_underruns) {
   1497 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1498 		if (tx_threshold < 192)
   1499 			tx_threshold += 64;
   1500 	}
   1501 #ifdef FXP_EVENT_COUNTERS
   1502 	if (sc->sc_flags & FXPF_FC) {
   1503 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
   1504 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
   1505 	}
   1506 #endif
   1507 
   1508 	/*
   1509 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
   1510 	 * then assume the receiver has locked up and attempt to clear
   1511 	 * the condition by reprogramming the multicast filter (actually,
   1512 	 * resetting the interface). This is a work-around for a bug in
   1513 	 * the 82557 where the receiver locks up if it gets certain types
   1514 	 * of garbage in the synchronization bits prior to the packet header.
   1515 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1516 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1517 	 * speed transition).
   1518 	 */
   1519 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1520 		(void) fxp_init(ifp);
   1521 		splx(s);
   1522 		return;
   1523 	}
   1524 	/*
   1525 	 * If there is no pending command, start another stats
   1526 	 * dump. Otherwise punt for now.
   1527 	 */
   1528 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1529 		/*
   1530 		 * Start another stats dump.
   1531 		 */
   1532 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1533 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
   1534 	} else {
   1535 		/*
   1536 		 * A previous command is still waiting to be accepted.
   1537 		 * Just zero our copy of the stats and wait for the
   1538 		 * next timer event to update them.
   1539 		 */
   1540 		/* BIG_ENDIAN: no swap required to store 0 */
   1541 		sp->tx_good = 0;
   1542 		sp->tx_underruns = 0;
   1543 		sp->tx_total_collisions = 0;
   1544 
   1545 		sp->rx_good = 0;
   1546 		sp->rx_crc_errors = 0;
   1547 		sp->rx_alignment_errors = 0;
   1548 		sp->rx_rnr_errors = 0;
   1549 		sp->rx_overrun_errors = 0;
   1550 		if (sc->sc_flags & FXPF_FC) {
   1551 			sp->tx_pauseframes = 0;
   1552 			sp->rx_pauseframes = 0;
   1553 		}
   1554 	}
   1555 
   1556 	if (sc->sc_flags & FXPF_MII) {
   1557 		/* Tick the MII clock. */
   1558 		mii_tick(&sc->sc_mii);
   1559 	}
   1560 
   1561 	splx(s);
   1562 
   1563 	/*
   1564 	 * Schedule another timeout one second from now.
   1565 	 */
   1566 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1567 }
   1568 
   1569 /*
   1570  * Drain the receive queue.
   1571  */
   1572 void
   1573 fxp_rxdrain(struct fxp_softc *sc)
   1574 {
   1575 	bus_dmamap_t rxmap;
   1576 	struct mbuf *m;
   1577 
   1578 	for (;;) {
   1579 		IF_DEQUEUE(&sc->sc_rxq, m);
   1580 		if (m == NULL)
   1581 			break;
   1582 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1583 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1584 		FXP_RXMAP_PUT(sc, rxmap);
   1585 		m_freem(m);
   1586 	}
   1587 }
   1588 
   1589 /*
   1590  * Stop the interface. Cancels the statistics updater and resets
   1591  * the interface.
   1592  */
   1593 void
   1594 fxp_stop(struct ifnet *ifp, int disable)
   1595 {
   1596 	struct fxp_softc *sc = ifp->if_softc;
   1597 	struct fxp_txsoft *txs;
   1598 	int i;
   1599 
   1600 	/*
   1601 	 * Turn down interface (done early to avoid bad interactions
   1602 	 * between panics, shutdown hooks, and the watchdog timer)
   1603 	 */
   1604 	ifp->if_timer = 0;
   1605 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1606 
   1607 	/*
   1608 	 * Cancel stats updater.
   1609 	 */
   1610 	callout_stop(&sc->sc_callout);
   1611 	if (sc->sc_flags & FXPF_MII) {
   1612 		/* Down the MII. */
   1613 		mii_down(&sc->sc_mii);
   1614 	}
   1615 
   1616 	/*
   1617 	 * Issue software reset.  This unloads any microcode that
   1618 	 * might already be loaded.
   1619 	 */
   1620 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
   1621 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
   1622 	DELAY(50);
   1623 
   1624 	/*
   1625 	 * Release any xmit buffers.
   1626 	 */
   1627 	for (i = 0; i < FXP_NTXCB; i++) {
   1628 		txs = FXP_DSTX(sc, i);
   1629 		if (txs->txs_mbuf != NULL) {
   1630 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1631 			m_freem(txs->txs_mbuf);
   1632 			txs->txs_mbuf = NULL;
   1633 		}
   1634 	}
   1635 	sc->sc_txpending = 0;
   1636 
   1637 	if (disable) {
   1638 		fxp_rxdrain(sc);
   1639 		fxp_disable(sc);
   1640 	}
   1641 
   1642 }
   1643 
   1644 /*
   1645  * Watchdog/transmission transmit timeout handler. Called when a
   1646  * transmission is started on the interface, but no interrupt is
   1647  * received before the timeout. This usually indicates that the
   1648  * card has wedged for some reason.
   1649  */
   1650 void
   1651 fxp_watchdog(struct ifnet *ifp)
   1652 {
   1653 	struct fxp_softc *sc = ifp->if_softc;
   1654 
   1655 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1656 	ifp->if_oerrors++;
   1657 
   1658 	(void) fxp_init(ifp);
   1659 }
   1660 
   1661 /*
   1662  * Initialize the interface.  Must be called at splnet().
   1663  */
   1664 int
   1665 fxp_init(struct ifnet *ifp)
   1666 {
   1667 	struct fxp_softc *sc = ifp->if_softc;
   1668 	struct fxp_cb_config *cbp;
   1669 	struct fxp_cb_ias *cb_ias;
   1670 	struct fxp_txdesc *txd;
   1671 	bus_dmamap_t rxmap;
   1672 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
   1673 	uint16_t status;
   1674 
   1675 	if ((error = fxp_enable(sc)) != 0)
   1676 		goto out;
   1677 
   1678 	/*
   1679 	 * Cancel any pending I/O
   1680 	 */
   1681 	fxp_stop(ifp, 0);
   1682 
   1683 	/*
   1684 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1685 	 * flag, and this prevents the MII from detaching resulting in
   1686 	 * a panic. The flags field should perhaps be split in runtime
   1687 	 * flags and more static information. For now, just clear the
   1688 	 * only other flag set.
   1689 	 */
   1690 
   1691 	sc->sc_flags &= ~FXPF_WANTINIT;
   1692 
   1693 	/*
   1694 	 * Initialize base of CBL and RFA memory. Loading with zero
   1695 	 * sets it up for regular linear addressing.
   1696 	 */
   1697 	fxp_scb_wait(sc);
   1698 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1699 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
   1700 
   1701 	fxp_scb_wait(sc);
   1702 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
   1703 
   1704 	/*
   1705 	 * Initialize the multicast filter.  Do this now, since we might
   1706 	 * have to setup the config block differently.
   1707 	 */
   1708 	fxp_mc_setup(sc);
   1709 
   1710 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1711 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1712 
   1713 	/*
   1714 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1715 	 * enable "save bad frames", since they are 4 bytes larger than
   1716 	 * the normal Ethernet maximum frame length.  On i82558 and later,
   1717 	 * we have a better mechanism for this.
   1718 	 */
   1719 	save_bf = 0;
   1720 	lrxen = 0;
   1721 	vlan_drop = 0;
   1722 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1723 		if (sc->sc_rev < FXP_REV_82558_A4)
   1724 			save_bf = 1;
   1725 		else
   1726 			lrxen = 1;
   1727 		if (sc->sc_rev >= FXP_REV_82550)
   1728 			vlan_drop = 1;
   1729 	}
   1730 
   1731 	/*
   1732 	 * Initialize base of dump-stats buffer.
   1733 	 */
   1734 	fxp_scb_wait(sc);
   1735 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1736 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1737 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1738 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1739 
   1740 	cbp = &sc->sc_control_data->fcd_configcb;
   1741 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1742 
   1743 	/*
   1744 	 * Load microcode for this controller.
   1745 	 */
   1746 	fxp_load_ucode(sc);
   1747 
   1748 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
   1749 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
   1750 	else
   1751 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
   1752 
   1753 	/*
   1754 	 * This copy is kind of disgusting, but there are a bunch of must be
   1755 	 * zero and must be one bits in this structure and this is the easiest
   1756 	 * way to initialize them all to proper values.
   1757 	 */
   1758 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1759 
   1760 	/* BIG_ENDIAN: no need to swap to store 0 */
   1761 	cbp->cb_status =	0;
   1762 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1763 				    FXP_CB_COMMAND_EL);
   1764 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1765 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1766 					/* bytes in config block */
   1767 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
   1768 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
   1769 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1770 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1771 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1772 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
   1773 	cbp->type_enable =	0;	/* actually reserved */
   1774 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
   1775 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
   1776 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1777 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1778 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
   1779 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1780 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
   1781 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1782 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
   1783 	cbp->ext_stats_dis =	1;	/* disable extended counters */
   1784 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
   1785 	cbp->save_bf =		save_bf;/* save bad frames */
   1786 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1787 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1788 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1789 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
   1790 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
   1791 					/* interface mode */
   1792 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
   1793 	cbp->csma_dis =		0;	/* (don't) disable link */
   1794 	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
   1795 					/* (don't) enable RX checksum */
   1796 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
   1797 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
   1798 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
   1799 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
   1800 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1801 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1802 	cbp->loopback =		0;	/* (don't) loopback */
   1803 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1804 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1805 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1806 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1807 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1808 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
   1809 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
   1810 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
   1811 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
   1812 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1813 	cbp->padding =		1;	/* (do) pad short tx packets */
   1814 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1815 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
   1816 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
   1817 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
   1818 					/* must set wake_en in PMCSR also */
   1819 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1820 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1821 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1822 	cbp->mc_all =		allm;	/* accept all multicasts */
   1823 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1824 	cbp->vlan_drop_en =	vlan_drop;
   1825 
   1826 	if (!(sc->sc_flags & FXPF_FC)) {
   1827 		/*
   1828 		 * The i82557 has no hardware flow control, the values
   1829 		 * here are the defaults for the chip.
   1830 		 */
   1831 		cbp->fc_delay_lsb =	0;
   1832 		cbp->fc_delay_msb =	0x40;
   1833 		cbp->pri_fc_thresh =	3;
   1834 		cbp->tx_fc_dis =	0;
   1835 		cbp->rx_fc_restop =	0;
   1836 		cbp->rx_fc_restart =	0;
   1837 		cbp->fc_filter =	0;
   1838 		cbp->pri_fc_loc =	1;
   1839 	} else {
   1840 		cbp->fc_delay_lsb =	0x1f;
   1841 		cbp->fc_delay_msb =	0x01;
   1842 		cbp->pri_fc_thresh =	3;
   1843 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
   1844 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
   1845 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
   1846 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
   1847 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
   1848 		cbp->ext_stats_dis =	0;	/* enable extended stats */
   1849 	}
   1850 
   1851 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1852 
   1853 	/*
   1854 	 * Start the config command/DMA.
   1855 	 */
   1856 	fxp_scb_wait(sc);
   1857 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1858 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1859 	/* ...and wait for it to complete. */
   1860 	for (i = 1000; i > 0; i--) {
   1861 		FXP_CDCONFIGSYNC(sc,
   1862 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1863 		status = le16toh(cbp->cb_status);
   1864 		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
   1865 		if ((status & FXP_CB_STATUS_C) != 0)
   1866 			break;
   1867 		DELAY(1);
   1868 	}
   1869 	if (i == 0) {
   1870 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1871 		    device_xname(sc->sc_dev), __LINE__);
   1872 		return (ETIMEDOUT);
   1873 	}
   1874 
   1875 	/*
   1876 	 * Initialize the station address.
   1877 	 */
   1878 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1879 	/* BIG_ENDIAN: no need to swap to store 0 */
   1880 	cb_ias->cb_status = 0;
   1881 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1882 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1883 	cb_ias->link_addr = 0xffffffff;
   1884 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1885 
   1886 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1887 
   1888 	/*
   1889 	 * Start the IAS (Individual Address Setup) command/DMA.
   1890 	 */
   1891 	fxp_scb_wait(sc);
   1892 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1893 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1894 	/* ...and wait for it to complete. */
   1895 	for (i = 1000; i > 0; i--) {
   1896 		FXP_CDIASSYNC(sc,
   1897 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1898 		status = le16toh(cb_ias->cb_status);
   1899 		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
   1900 		if ((status & FXP_CB_STATUS_C) != 0)
   1901 			break;
   1902 		DELAY(1);
   1903 	}
   1904 	if (i == 0) {
   1905 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1906 		    device_xname(sc->sc_dev), __LINE__);
   1907 		return (ETIMEDOUT);
   1908 	}
   1909 
   1910 	/*
   1911 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1912 	 * to the end of the list so that it will wrap around to the first
   1913 	 * descriptor when the first packet is transmitted.
   1914 	 */
   1915 	for (i = 0; i < FXP_NTXCB; i++) {
   1916 		txd = FXP_CDTX(sc, i);
   1917 		memset(txd, 0, sizeof(*txd));
   1918 		txd->txd_txcb.cb_command =
   1919 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1920 		txd->txd_txcb.link_addr =
   1921 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1922 		if (sc->sc_flags & FXPF_EXT_TXCB)
   1923 			txd->txd_txcb.tbd_array_addr =
   1924 			    htole32(FXP_CDTBDADDR(sc, i) +
   1925 				    (2 * sizeof(struct fxp_tbd)));
   1926 		else
   1927 			txd->txd_txcb.tbd_array_addr =
   1928 			    htole32(FXP_CDTBDADDR(sc, i));
   1929 		FXP_CDTXSYNC(sc, i,
   1930 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1931 	}
   1932 	sc->sc_txpending = 0;
   1933 	sc->sc_txdirty = 0;
   1934 	sc->sc_txlast = FXP_NTXCB - 1;
   1935 
   1936 	/*
   1937 	 * Initialize the receive buffer list.
   1938 	 */
   1939 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1940 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1941 		rxmap = FXP_RXMAP_GET(sc);
   1942 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1943 			log(LOG_ERR, "%s: unable to allocate or map rx "
   1944 			    "buffer %d, error = %d\n",
   1945 			    device_xname(sc->sc_dev),
   1946 			    sc->sc_rxq.ifq_len, error);
   1947 			/*
   1948 			 * XXX Should attempt to run with fewer receive
   1949 			 * XXX buffers instead of just failing.
   1950 			 */
   1951 			FXP_RXMAP_PUT(sc, rxmap);
   1952 			fxp_rxdrain(sc);
   1953 			goto out;
   1954 		}
   1955 	}
   1956 	sc->sc_rxidle = 0;
   1957 
   1958 	/*
   1959 	 * Give the transmit ring to the chip.  We do this by pointing
   1960 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1961 	 * issuing a start command.  It will execute the NOP and then
   1962 	 * suspend, pointing at the first descriptor.
   1963 	 */
   1964 	fxp_scb_wait(sc);
   1965 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1966 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1967 
   1968 	/*
   1969 	 * Initialize receiver buffer area - RFA.
   1970 	 */
   1971 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
   1972 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1973 	fxp_scb_wait(sc);
   1974 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1975 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1976 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1977 #endif
   1978 
   1979 	if (sc->sc_flags & FXPF_MII) {
   1980 		/*
   1981 		 * Set current media.
   1982 		 */
   1983 		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1984 			goto out;
   1985 	}
   1986 
   1987 	/*
   1988 	 * ...all done!
   1989 	 */
   1990 	ifp->if_flags |= IFF_RUNNING;
   1991 	ifp->if_flags &= ~IFF_OACTIVE;
   1992 
   1993 	/*
   1994 	 * Request a software generated interrupt that will be used to
   1995 	 * (re)start the RU processing.  If we direct the chip to start
   1996 	 * receiving from the start of queue now, instead of letting the
   1997 	 * interrupt handler first process all received packets, we run
   1998 	 * the risk of having it overwrite mbuf clusters while they are
   1999 	 * being processed or after they have been returned to the pool.
   2000 	 */
   2001 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
   2002 
   2003 	/*
   2004 	 * Start the one second timer.
   2005 	 */
   2006 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   2007 
   2008 	/*
   2009 	 * Attempt to start output on the interface.
   2010 	 */
   2011 	fxp_start(ifp);
   2012 
   2013  out:
   2014 	if (error) {
   2015 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2016 		ifp->if_timer = 0;
   2017 		log(LOG_ERR, "%s: interface not running\n",
   2018 		    device_xname(sc->sc_dev));
   2019 	}
   2020 	return (error);
   2021 }
   2022 
   2023 /*
   2024  * Notify the world which media we're using.
   2025  */
   2026 void
   2027 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2028 {
   2029 	struct fxp_softc *sc = ifp->if_softc;
   2030 
   2031 	if (sc->sc_enabled == 0) {
   2032 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   2033 		ifmr->ifm_status = 0;
   2034 		return;
   2035 	}
   2036 
   2037 	ether_mediastatus(ifp, ifmr);
   2038 }
   2039 
   2040 int
   2041 fxp_80c24_mediachange(struct ifnet *ifp)
   2042 {
   2043 
   2044 	/* Nothing to do here. */
   2045 	return (0);
   2046 }
   2047 
   2048 void
   2049 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2050 {
   2051 	struct fxp_softc *sc = ifp->if_softc;
   2052 
   2053 	/*
   2054 	 * Media is currently-selected media.  We cannot determine
   2055 	 * the link status.
   2056 	 */
   2057 	ifmr->ifm_status = 0;
   2058 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   2059 }
   2060 
   2061 /*
   2062  * Add a buffer to the end of the RFA buffer list.
   2063  * Return 0 if successful, error code on failure.
   2064  *
   2065  * The RFA struct is stuck at the beginning of mbuf cluster and the
   2066  * data pointer is fixed up to point just past it.
   2067  */
   2068 int
   2069 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
   2070 {
   2071 	struct mbuf *m;
   2072 	int error;
   2073 
   2074 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2075 	if (m == NULL)
   2076 		return (ENOBUFS);
   2077 
   2078 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2079 	MCLGET(m, M_DONTWAIT);
   2080 	if ((m->m_flags & M_EXT) == 0) {
   2081 		m_freem(m);
   2082 		return (ENOBUFS);
   2083 	}
   2084 
   2085 	if (unload)
   2086 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   2087 
   2088 	M_SETCTX(m, rxmap);
   2089 
   2090 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2091 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
   2092 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2093 	if (error) {
   2094 		/* XXX XXX XXX */
   2095 		aprint_error_dev(sc->sc_dev,
   2096 		    "can't load rx DMA map %d, error = %d\n",
   2097 		    sc->sc_rxq.ifq_len, error);
   2098 		panic("fxp_add_rfabuf");
   2099 	}
   2100 
   2101 	FXP_INIT_RFABUF(sc, m);
   2102 
   2103 	return (0);
   2104 }
   2105 
   2106 int
   2107 fxp_mdi_read(device_t self, int phy, int reg, uint16_t *value)
   2108 {
   2109 	struct fxp_softc *sc = device_private(self);
   2110 	int count = 10000;
   2111 	uint32_t data;
   2112 
   2113 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2114 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   2115 
   2116 	while (((data = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
   2117 	    0x10000000) == 0 && count--)
   2118 		DELAY(10);
   2119 
   2120 	if (count <= 0) {
   2121 		log(LOG_WARNING,
   2122 		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
   2123 		return ETIMEDOUT;
   2124 	}
   2125 
   2126 	*value = data & 0xffff;
   2127 	return 0;
   2128 }
   2129 
   2130 void
   2131 fxp_statchg(struct ifnet *ifp)
   2132 {
   2133 
   2134 	/* Nothing to do. */
   2135 }
   2136 
   2137 int
   2138 fxp_mdi_write(device_t self, int phy, int reg, uint16_t value)
   2139 {
   2140 	struct fxp_softc *sc = device_private(self);
   2141 	int count = 10000;
   2142 
   2143 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2144 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | value);
   2145 
   2146 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   2147 	    count--)
   2148 		DELAY(10);
   2149 
   2150 	if (count <= 0) {
   2151 		log(LOG_WARNING,
   2152 		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
   2153 		return ETIMEDOUT;
   2154 	}
   2155 
   2156 	return 0;
   2157 }
   2158 
   2159 int
   2160 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2161 {
   2162 	struct fxp_softc *sc = ifp->if_softc;
   2163 	int s, error;
   2164 
   2165 	s = splnet();
   2166 
   2167 	switch (cmd) {
   2168 	default:
   2169 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   2170 			break;
   2171 
   2172 		error = 0;
   2173 
   2174 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2175 			;
   2176 		else if (ifp->if_flags & IFF_RUNNING) {
   2177 			/*
   2178 			 * Multicast list has changed; set the
   2179 			 * hardware filter accordingly.
   2180 			 */
   2181 			while (sc->sc_txpending) {
   2182 				sc->sc_flags |= FXPF_WANTINIT;
   2183 				tsleep(sc, PSOCK, "fxp_init", 0);
   2184 			}
   2185 			error = fxp_init(ifp);
   2186 		}
   2187 		break;
   2188 	}
   2189 
   2190 	/* Try to get more packets going. */
   2191 	if (sc->sc_enabled)
   2192 		fxp_start(ifp);
   2193 
   2194 	splx(s);
   2195 	return (error);
   2196 }
   2197 
   2198 /*
   2199  * Program the multicast filter.
   2200  *
   2201  * This function must be called at splnet().
   2202  */
   2203 void
   2204 fxp_mc_setup(struct fxp_softc *sc)
   2205 {
   2206 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   2207 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2208 	struct ethercom *ec = &sc->sc_ethercom;
   2209 	struct ether_multi *enm;
   2210 	struct ether_multistep step;
   2211 	int count, nmcasts;
   2212 	uint16_t status;
   2213 
   2214 #ifdef DIAGNOSTIC
   2215 	if (sc->sc_txpending)
   2216 		panic("fxp_mc_setup: pending transmissions");
   2217 #endif
   2218 
   2219 
   2220 	if (ifp->if_flags & IFF_PROMISC) {
   2221 		ifp->if_flags |= IFF_ALLMULTI;
   2222 		return;
   2223 	} else {
   2224 		ifp->if_flags &= ~IFF_ALLMULTI;
   2225 	}
   2226 
   2227 	/*
   2228 	 * Initialize multicast setup descriptor.
   2229 	 */
   2230 	nmcasts = 0;
   2231 	ETHER_LOCK(ec);
   2232 	ETHER_FIRST_MULTI(step, ec, enm);
   2233 	while (enm != NULL) {
   2234 		/*
   2235 		 * Check for too many multicast addresses or if we're
   2236 		 * listening to a range.  Either way, we simply have
   2237 		 * to accept all multicasts.
   2238 		 */
   2239 		if (nmcasts >= MAXMCADDR ||
   2240 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2241 		    ETHER_ADDR_LEN) != 0) {
   2242 			/*
   2243 			 * Callers of this function must do the
   2244 			 * right thing with this.  If we're called
   2245 			 * from outside fxp_init(), the caller must
   2246 			 * detect if the state if IFF_ALLMULTI changes.
   2247 			 * If it does, the caller must then call
   2248 			 * fxp_init(), since allmulti is handled by
   2249 			 * the config block.
   2250 			 */
   2251 			ifp->if_flags |= IFF_ALLMULTI;
   2252 			ETHER_UNLOCK(ec);
   2253 			return;
   2254 		}
   2255 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   2256 		    ETHER_ADDR_LEN);
   2257 		nmcasts++;
   2258 		ETHER_NEXT_MULTI(step, enm);
   2259 	}
   2260 	ETHER_UNLOCK(ec);
   2261 
   2262 	/* BIG_ENDIAN: no need to swap to store 0 */
   2263 	mcsp->cb_status = 0;
   2264 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   2265 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   2266 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   2267 
   2268 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2269 
   2270 	/*
   2271 	 * Wait until the command unit is not active.  This should never
   2272 	 * happen since nothing is queued, but make sure anyway.
   2273 	 */
   2274 	count = 100;
   2275 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   2276 	    FXP_SCB_CUS_ACTIVE && --count)
   2277 		DELAY(1);
   2278 	if (count == 0) {
   2279 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
   2280 		    device_xname(sc->sc_dev), __LINE__);
   2281 		return;
   2282 	}
   2283 
   2284 	/*
   2285 	 * Start the multicast setup command/DMA.
   2286 	 */
   2287 	fxp_scb_wait(sc);
   2288 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   2289 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2290 
   2291 	/* ...and wait for it to complete. */
   2292 	for (count = 1000; count > 0; count--) {
   2293 		FXP_CDMCSSYNC(sc,
   2294 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2295 		status = le16toh(mcsp->cb_status);
   2296 		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
   2297 		if ((status & FXP_CB_STATUS_C) != 0)
   2298 			break;
   2299 		DELAY(1);
   2300 	}
   2301 	if (count == 0) {
   2302 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   2303 		    device_xname(sc->sc_dev), __LINE__);
   2304 		return;
   2305 	}
   2306 }
   2307 
   2308 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
   2309 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
   2310 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
   2311 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
   2312 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
   2313 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
   2314 static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
   2315 
   2316 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
   2317 
   2318 static const struct ucode {
   2319 	int32_t		revision;
   2320 	const uint32_t	*ucode;
   2321 	size_t		length;
   2322 	uint16_t	int_delay_offset;
   2323 	uint16_t	bundle_max_offset;
   2324 } ucode_table[] = {
   2325 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
   2326 	  D101_CPUSAVER_DWORD, 0 },
   2327 
   2328 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
   2329 	  D101_CPUSAVER_DWORD, 0 },
   2330 
   2331 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
   2332 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
   2333 
   2334 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
   2335 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
   2336 
   2337 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
   2338 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
   2339 
   2340 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
   2341 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
   2342 
   2343 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
   2344 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
   2345 
   2346 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
   2347 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
   2348 
   2349 	{ 0, NULL, 0, 0, 0 }
   2350 };
   2351 
   2352 void
   2353 fxp_load_ucode(struct fxp_softc *sc)
   2354 {
   2355 	const struct ucode *uc;
   2356 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
   2357 	int count, i;
   2358 	uint16_t status;
   2359 
   2360 	if (sc->sc_flags & FXPF_UCODE_LOADED)
   2361 		return;
   2362 
   2363 	/*
   2364 	 * Only load the uCode if the user has requested that
   2365 	 * we do so.
   2366 	 */
   2367 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
   2368 		sc->sc_int_delay = 0;
   2369 		sc->sc_bundle_max = 0;
   2370 		return;
   2371 	}
   2372 
   2373 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
   2374 		if (sc->sc_rev == uc->revision)
   2375 			break;
   2376 	}
   2377 	if (uc->ucode == NULL)
   2378 		return;
   2379 
   2380 	/* BIG ENDIAN: no need to swap to store 0 */
   2381 	cbp->cb_status = 0;
   2382 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
   2383 	cbp->link_addr = 0xffffffff;		/* (no) next command */
   2384 	for (i = 0; i < uc->length; i++)
   2385 		cbp->ucode[i] = htole32(uc->ucode[i]);
   2386 
   2387 	if (uc->int_delay_offset)
   2388 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
   2389 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
   2390 
   2391 	if (uc->bundle_max_offset)
   2392 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
   2393 		    htole16(fxp_bundle_max);
   2394 
   2395 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2396 
   2397 	/*
   2398 	 * Download the uCode to the chip.
   2399 	 */
   2400 	fxp_scb_wait(sc);
   2401 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
   2402 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2403 
   2404 	/* ...and wait for it to complete. */
   2405 	for (count = 10000; count > 0; count--) {
   2406 		FXP_CDUCODESYNC(sc,
   2407 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2408 		status = le16toh(cbp->cb_status);
   2409 		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
   2410 		if ((status & FXP_CB_STATUS_C) != 0)
   2411 			break;
   2412 		DELAY(2);
   2413 	}
   2414 	if (count == 0) {
   2415 		sc->sc_int_delay = 0;
   2416 		sc->sc_bundle_max = 0;
   2417 		log(LOG_WARNING, "%s: timeout loading microcode\n",
   2418 		    device_xname(sc->sc_dev));
   2419 		return;
   2420 	}
   2421 
   2422 	if (sc->sc_int_delay != fxp_int_delay ||
   2423 	    sc->sc_bundle_max != fxp_bundle_max) {
   2424 		sc->sc_int_delay = fxp_int_delay;
   2425 		sc->sc_bundle_max = fxp_bundle_max;
   2426 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
   2427 		    "max bundle: %d\n", device_xname(sc->sc_dev),
   2428 		    sc->sc_int_delay,
   2429 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
   2430 	}
   2431 
   2432 	sc->sc_flags |= FXPF_UCODE_LOADED;
   2433 }
   2434 
   2435 int
   2436 fxp_enable(struct fxp_softc *sc)
   2437 {
   2438 
   2439 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   2440 		if ((*sc->sc_enable)(sc) != 0) {
   2441 			log(LOG_ERR, "%s: device enable failed\n",
   2442 			    device_xname(sc->sc_dev));
   2443 			return (EIO);
   2444 		}
   2445 	}
   2446 
   2447 	sc->sc_enabled = 1;
   2448 	return (0);
   2449 }
   2450 
   2451 void
   2452 fxp_disable(struct fxp_softc *sc)
   2453 {
   2454 
   2455 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   2456 		(*sc->sc_disable)(sc);
   2457 		sc->sc_enabled = 0;
   2458 	}
   2459 }
   2460 
   2461 /*
   2462  * fxp_activate:
   2463  *
   2464  *	Handle device activation/deactivation requests.
   2465  */
   2466 int
   2467 fxp_activate(device_t self, enum devact act)
   2468 {
   2469 	struct fxp_softc *sc = device_private(self);
   2470 
   2471 	switch (act) {
   2472 	case DVACT_DEACTIVATE:
   2473 		if_deactivate(&sc->sc_ethercom.ec_if);
   2474 		return 0;
   2475 	default:
   2476 		return EOPNOTSUPP;
   2477 	}
   2478 }
   2479 
   2480 /*
   2481  * fxp_detach:
   2482  *
   2483  *	Detach an i82557 interface.
   2484  */
   2485 int
   2486 fxp_detach(struct fxp_softc *sc, int flags)
   2487 {
   2488 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2489 	int i, s;
   2490 
   2491 	/* Succeed now if there's no work to do. */
   2492 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2493 		return (0);
   2494 
   2495 	s = splnet();
   2496 	/* Stop the interface. Callouts are stopped in it. */
   2497 	fxp_stop(ifp, 1);
   2498 	splx(s);
   2499 
   2500 	/* Destroy our callout. */
   2501 	callout_destroy(&sc->sc_callout);
   2502 
   2503 	if (sc->sc_flags & FXPF_MII) {
   2504 		/* Detach all PHYs */
   2505 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2506 	}
   2507 
   2508 	/* Delete all remaining media. */
   2509 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2510 
   2511 	rnd_detach_source(&sc->rnd_source);
   2512 	ether_ifdetach(ifp);
   2513 	if_detach(ifp);
   2514 
   2515 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2516 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2517 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2518 	}
   2519 
   2520 	for (i = 0; i < FXP_NTXCB; i++) {
   2521 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2522 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2523 	}
   2524 
   2525 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2526 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2527 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   2528 	    sizeof(struct fxp_control_data));
   2529 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2530 
   2531 	return (0);
   2532 }
   2533