i82557.c revision 1.155 1 /* $NetBSD: i82557.c,v 1.155 2019/09/20 09:00:50 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1995, David Greenman
35 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice unmodified, this list of conditions, and the following
43 * disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
61 */
62
63 /*
64 * Device driver for the Intel i82557 fast Ethernet controller,
65 * and its successors, the i82558 and i82559.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.155 2019/09/20 09:00:50 maxv Exp $");
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/mbuf.h>
75 #include <sys/malloc.h>
76 #include <sys/kernel.h>
77 #include <sys/socket.h>
78 #include <sys/ioctl.h>
79 #include <sys/errno.h>
80 #include <sys/device.h>
81 #include <sys/syslog.h>
82 #include <sys/proc.h>
83
84 #include <machine/endian.h>
85
86 #include <sys/rndsource.h>
87
88 #include <net/if.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_ether.h>
92
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/tcp.h>
97 #include <netinet/udp.h>
98
99 #include <net/bpf.h>
100
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103
104 #include <dev/mii/miivar.h>
105
106 #include <dev/ic/i82557reg.h>
107 #include <dev/ic/i82557var.h>
108
109 #include <dev/microcode/i8255x/rcvbundl.h>
110
111 /*
112 * NOTE! On the Alpha, we have an alignment constraint. The
113 * card DMAs the packet immediately following the RFA. However,
114 * the first thing in the packet is a 14-byte Ethernet header.
115 * This means that the packet is misaligned. To compensate,
116 * we actually offset the RFA 2 bytes into the cluster. This
117 * alignes the packet after the Ethernet header at a 32-bit
118 * boundary. HOWEVER! This means that the RFA is misaligned!
119 */
120 #define RFA_ALIGNMENT_FUDGE 2
121
122 /*
123 * The configuration byte map has several undefined fields which
124 * must be one or must be zero. Set up a template for these bits
125 * only (assuming an i82557 chip), leaving the actual configuration
126 * for fxp_init().
127 *
128 * See the definition of struct fxp_cb_config for the bit definitions.
129 */
130 const uint8_t fxp_cb_config_template[] = {
131 0x0, 0x0, /* cb_status */
132 0x0, 0x0, /* cb_command */
133 0x0, 0x0, 0x0, 0x0, /* link_addr */
134 0x0, /* 0 */
135 0x0, /* 1 */
136 0x0, /* 2 */
137 0x0, /* 3 */
138 0x0, /* 4 */
139 0x0, /* 5 */
140 0x32, /* 6 */
141 0x0, /* 7 */
142 0x0, /* 8 */
143 0x0, /* 9 */
144 0x6, /* 10 */
145 0x0, /* 11 */
146 0x0, /* 12 */
147 0x0, /* 13 */
148 0xf2, /* 14 */
149 0x48, /* 15 */
150 0x0, /* 16 */
151 0x40, /* 17 */
152 0xf0, /* 18 */
153 0x0, /* 19 */
154 0x3f, /* 20 */
155 0x5, /* 21 */
156 0x0, /* 22 */
157 0x0, /* 23 */
158 0x0, /* 24 */
159 0x0, /* 25 */
160 0x0, /* 26 */
161 0x0, /* 27 */
162 0x0, /* 28 */
163 0x0, /* 29 */
164 0x0, /* 30 */
165 0x0, /* 31 */
166 };
167
168 void fxp_mii_initmedia(struct fxp_softc *);
169 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
170
171 void fxp_80c24_initmedia(struct fxp_softc *);
172 int fxp_80c24_mediachange(struct ifnet *);
173 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
174
175 void fxp_start(struct ifnet *);
176 int fxp_ioctl(struct ifnet *, u_long, void *);
177 void fxp_watchdog(struct ifnet *);
178 int fxp_init(struct ifnet *);
179 void fxp_stop(struct ifnet *, int);
180
181 void fxp_txintr(struct fxp_softc *);
182 int fxp_rxintr(struct fxp_softc *);
183
184 void fxp_rx_hwcksum(struct fxp_softc *, struct mbuf *,
185 const struct fxp_rfa *, u_int);
186
187 void fxp_rxdrain(struct fxp_softc *);
188 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
189 int fxp_mdi_read(device_t, int, int, uint16_t *);
190 void fxp_statchg(struct ifnet *);
191 int fxp_mdi_write(device_t, int, int, uint16_t);
192 void fxp_autosize_eeprom(struct fxp_softc*);
193 void fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
194 void fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
195 void fxp_eeprom_update_cksum(struct fxp_softc *);
196 void fxp_get_info(struct fxp_softc *, uint8_t *);
197 void fxp_tick(void *);
198 void fxp_mc_setup(struct fxp_softc *);
199 void fxp_load_ucode(struct fxp_softc *);
200
201 int fxp_copy_small = 0;
202
203 /*
204 * Variables for interrupt mitigating microcode.
205 */
206 int fxp_int_delay = 1000; /* usec */
207 int fxp_bundle_max = 6; /* packets */
208
209 struct fxp_phytype {
210 int fp_phy; /* type of PHY, -1 for MII at the end. */
211 void (*fp_init)(struct fxp_softc *);
212 } fxp_phytype_table[] = {
213 { FXP_PHY_80C24, fxp_80c24_initmedia },
214 { -1, fxp_mii_initmedia },
215 };
216
217 /*
218 * Set initial transmit threshold at 64 (512 bytes). This is
219 * increased by 64 (512 bytes) at a time, to maximum of 192
220 * (1536 bytes), if an underrun occurs.
221 */
222 static int tx_threshold = 64;
223
224 /*
225 * Wait for the previous command to be accepted (but not necessarily
226 * completed).
227 */
228 static inline void
229 fxp_scb_wait(struct fxp_softc *sc)
230 {
231 int i = 10000;
232
233 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
234 delay(2);
235 if (i == 0)
236 log(LOG_WARNING,
237 "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
238 }
239
240 /*
241 * Submit a command to the i82557.
242 */
243 static inline void
244 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
245 {
246
247 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
248 }
249
250 /*
251 * Finish attaching an i82557 interface. Called by bus-specific front-end.
252 */
253 void
254 fxp_attach(struct fxp_softc *sc)
255 {
256 uint8_t enaddr[ETHER_ADDR_LEN];
257 struct ifnet *ifp;
258 bus_dma_segment_t seg;
259 int rseg, i, error;
260 struct fxp_phytype *fp;
261
262 callout_init(&sc->sc_callout, 0);
263
264 /*
265 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
266 * Note: to use IPCB we need extended TXCB support too, and
267 * these feature flags should be set in each bus attachment.
268 */
269 if (sc->sc_flags & FXPF_EXT_RFA) {
270 sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
271 sc->sc_rfa_size = RFA_EXT_SIZE;
272 } else {
273 sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
274 sc->sc_rfa_size = RFA_SIZE;
275 }
276
277 /*
278 * Allocate the control data structures, and create and load the
279 * DMA map for it.
280 */
281 if ((error = bus_dmamem_alloc(sc->sc_dmat,
282 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
283 0)) != 0) {
284 aprint_error_dev(sc->sc_dev,
285 "unable to allocate control data, error = %d\n",
286 error);
287 goto fail_0;
288 }
289
290 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
291 sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
292 BUS_DMA_COHERENT)) != 0) {
293 aprint_error_dev(sc->sc_dev,
294 "unable to map control data, error = %d\n", error);
295 goto fail_1;
296 }
297 sc->sc_cdseg = seg;
298 sc->sc_cdnseg = rseg;
299
300 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
301
302 if ((error = bus_dmamap_create(sc->sc_dmat,
303 sizeof(struct fxp_control_data), 1,
304 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
305 aprint_error_dev(sc->sc_dev,
306 "unable to create control data DMA map, error = %d\n",
307 error);
308 goto fail_2;
309 }
310
311 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
312 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
313 0)) != 0) {
314 aprint_error_dev(sc->sc_dev,
315 "can't load control data DMA map, error = %d\n",
316 error);
317 goto fail_3;
318 }
319
320 /*
321 * Create the transmit buffer DMA maps.
322 */
323 for (i = 0; i < FXP_NTXCB; i++) {
324 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
325 (sc->sc_flags & FXPF_EXT_RFA) ?
326 FXP_IPCB_NTXSEG : FXP_NTXSEG,
327 MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
328 aprint_error_dev(sc->sc_dev,
329 "unable to create tx DMA map %d, error = %d\n",
330 i, error);
331 goto fail_4;
332 }
333 }
334
335 /*
336 * Create the receive buffer DMA maps.
337 */
338 for (i = 0; i < FXP_NRFABUFS; i++) {
339 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
340 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
341 aprint_error_dev(sc->sc_dev,
342 "unable to create rx DMA map %d, error = %d\n",
343 i, error);
344 goto fail_5;
345 }
346 }
347
348 /* Initialize MAC address and media structures. */
349 fxp_get_info(sc, enaddr);
350
351 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
352 ether_sprintf(enaddr));
353
354 ifp = &sc->sc_ethercom.ec_if;
355
356 /*
357 * Get info about our media interface, and initialize it. Note
358 * the table terminates itself with a phy of -1, indicating
359 * that we're using MII.
360 */
361 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362 if (fp->fp_phy == sc->phy_primary_device)
363 break;
364 (*fp->fp_init)(sc);
365
366 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 ifp->if_ioctl = fxp_ioctl;
370 ifp->if_start = fxp_start;
371 ifp->if_watchdog = fxp_watchdog;
372 ifp->if_init = fxp_init;
373 ifp->if_stop = fxp_stop;
374 IFQ_SET_READY(&ifp->if_snd);
375
376 if (sc->sc_flags & FXPF_EXT_RFA) {
377 /*
378 * Enable hardware cksum support by EXT_RFA and IPCB.
379 *
380 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
381 * at least, on i82550 rev.12.
382 * specifically, it doesn't set ipv4 checksum properly
383 * when sending UDP (and probably TCP) packets with
384 * 20 byte ipv4 header + 1 or 2 byte data,
385 * though ICMP packets seem working.
386 * FreeBSD driver has related comments.
387 * We've added a workaround to handle the bug by padding
388 * such packets manually.
389 */
390 ifp->if_capabilities =
391 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
392 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
393 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
394 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
395 sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
396 } else if (sc->sc_flags & FXPF_82559_RXCSUM) {
397 ifp->if_capabilities =
398 IFCAP_CSUM_TCPv4_Rx |
399 IFCAP_CSUM_UDPv4_Rx;
400 }
401
402 /*
403 * We can support 802.1Q VLAN-sized frames.
404 */
405 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
406
407 /*
408 * Attach the interface.
409 */
410 if_attach(ifp);
411 if_deferred_start_init(ifp, NULL);
412 ether_ifattach(ifp, enaddr);
413 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
414 RND_TYPE_NET, RND_FLAG_DEFAULT);
415
416 #ifdef FXP_EVENT_COUNTERS
417 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
418 NULL, device_xname(sc->sc_dev), "txstall");
419 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
420 NULL, device_xname(sc->sc_dev), "txintr");
421 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
422 NULL, device_xname(sc->sc_dev), "rxintr");
423 if (sc->sc_flags & FXPF_FC) {
424 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
425 NULL, device_xname(sc->sc_dev), "txpause");
426 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
427 NULL, device_xname(sc->sc_dev), "rxpause");
428 }
429 #endif /* FXP_EVENT_COUNTERS */
430
431 /* The attach is successful. */
432 sc->sc_flags |= FXPF_ATTACHED;
433
434 return;
435
436 /*
437 * Free any resources we've allocated during the failed attach
438 * attempt. Do this in reverse order and fall though.
439 */
440 fail_5:
441 for (i = 0; i < FXP_NRFABUFS; i++) {
442 if (sc->sc_rxmaps[i] != NULL)
443 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
444 }
445 fail_4:
446 for (i = 0; i < FXP_NTXCB; i++) {
447 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
448 bus_dmamap_destroy(sc->sc_dmat,
449 FXP_DSTX(sc, i)->txs_dmamap);
450 }
451 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
452 fail_3:
453 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
454 fail_2:
455 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
456 sizeof(struct fxp_control_data));
457 fail_1:
458 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
459 fail_0:
460 return;
461 }
462
463 void
464 fxp_mii_initmedia(struct fxp_softc *sc)
465 {
466 struct mii_data * const mii = &sc->sc_mii;
467 int flags;
468
469 sc->sc_flags |= FXPF_MII;
470
471 mii->mii_ifp = &sc->sc_ethercom.ec_if;
472 mii->mii_readreg = fxp_mdi_read;
473 mii->mii_writereg = fxp_mdi_write;
474 mii->mii_statchg = fxp_statchg;
475
476 sc->sc_ethercom.ec_mii = mii;
477 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
478 fxp_mii_mediastatus);
479
480 flags = MIIF_NOISOLATE;
481 if (sc->sc_flags & FXPF_FC)
482 flags |= MIIF_FORCEANEG | MIIF_DOPAUSE;
483 /*
484 * The i82557 wedges if all of its PHYs are isolated!
485 */
486 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
487 MII_OFFSET_ANY, flags);
488 if (LIST_EMPTY(&mii->mii_phys)) {
489 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
490 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
491 } else
492 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
493 }
494
495 void
496 fxp_80c24_initmedia(struct fxp_softc *sc)
497 {
498 struct mii_data * const mii = &sc->sc_mii;
499
500 /*
501 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
502 * doesn't have a programming interface of any sort. The
503 * media is sensed automatically based on how the link partner
504 * is configured. This is, in essence, manual configuration.
505 */
506 aprint_normal_dev(sc->sc_dev,
507 "Seeq 80c24 AutoDUPLEX media interface present\n");
508 ifmedia_init(&mii->mii_media, 0, fxp_80c24_mediachange,
509 fxp_80c24_mediastatus);
510 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
511 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
512 }
513
514 /*
515 * Initialize the interface media.
516 */
517 void
518 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
519 {
520 uint16_t data, myea[ETHER_ADDR_LEN / 2];
521
522 /*
523 * Reset to a stable state.
524 */
525 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
526 DELAY(100);
527
528 sc->sc_eeprom_size = 0;
529 fxp_autosize_eeprom(sc);
530 if (sc->sc_eeprom_size == 0) {
531 aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
532 sc->sc_eeprom_size = 6; /* XXX panic here? */
533 }
534 #ifdef DEBUG
535 aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
536 1 << sc->sc_eeprom_size);
537 #endif
538
539 /*
540 * Get info about the primary PHY
541 */
542 fxp_read_eeprom(sc, &data, 6, 1);
543 sc->phy_primary_device =
544 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
545
546 /*
547 * Read MAC address.
548 */
549 fxp_read_eeprom(sc, myea, 0, 3);
550 enaddr[0] = myea[0] & 0xff;
551 enaddr[1] = myea[0] >> 8;
552 enaddr[2] = myea[1] & 0xff;
553 enaddr[3] = myea[1] >> 8;
554 enaddr[4] = myea[2] & 0xff;
555 enaddr[5] = myea[2] >> 8;
556
557 /*
558 * Systems based on the ICH2/ICH2-M chip from Intel, as well
559 * as some i82559 designs, have a defect where the chip can
560 * cause a PCI protocol violation if it receives a CU_RESUME
561 * command when it is entering the IDLE state.
562 *
563 * The work-around is to disable Dynamic Standby Mode, so that
564 * the chip never deasserts #CLKRUN, and always remains in the
565 * active state.
566 *
567 * Unfortunately, the only way to disable Dynamic Standby is
568 * to frob an EEPROM setting and reboot (the EEPROM setting
569 * is only consulted when the PCI bus comes out of reset).
570 *
571 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
572 */
573 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
574 fxp_read_eeprom(sc, &data, 10, 1);
575 if (data & 0x02) { /* STB enable */
576 aprint_error_dev(sc->sc_dev, "WARNING: "
577 "Disabling dynamic standby mode in EEPROM "
578 "to work around a\n");
579 aprint_normal_dev(sc->sc_dev,
580 "WARNING: hardware bug. You must reset "
581 "the system before using this\n");
582 aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
583 data &= ~0x02;
584 fxp_write_eeprom(sc, &data, 10, 1);
585 aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
586 data);
587 fxp_eeprom_update_cksum(sc);
588 }
589 }
590
591 /* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
592 /* Due to false positives we make it conditional on setting link1 */
593 fxp_read_eeprom(sc, &data, 3, 1);
594 if ((data & 0x03) != 0x03) {
595 aprint_verbose_dev(sc->sc_dev,
596 "May need receiver lock-up workaround\n");
597 }
598 }
599
600 static void
601 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
602 {
603 uint16_t reg;
604 int x;
605
606 for (x = 1 << (len - 1); x != 0; x >>= 1) {
607 DELAY(40);
608 if (data & x)
609 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
610 else
611 reg = FXP_EEPROM_EECS;
612 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
613 DELAY(40);
614 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
615 reg | FXP_EEPROM_EESK);
616 DELAY(40);
617 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
618 }
619 DELAY(40);
620 }
621
622 /*
623 * Figure out EEPROM size.
624 *
625 * 559's can have either 64-word or 256-word EEPROMs, the 558
626 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
627 * talks about the existence of 16 to 256 word EEPROMs.
628 *
629 * The only known sizes are 64 and 256, where the 256 version is used
630 * by CardBus cards to store CIS information.
631 *
632 * The address is shifted in msb-to-lsb, and after the last
633 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
634 * after which follows the actual data. We try to detect this zero, by
635 * probing the data-out bit in the EEPROM control register just after
636 * having shifted in a bit. If the bit is zero, we assume we've
637 * shifted enough address bits. The data-out should be tri-state,
638 * before this, which should translate to a logical one.
639 *
640 * Other ways to do this would be to try to read a register with known
641 * contents with a varying number of address bits, but no such
642 * register seem to be available. The high bits of register 10 are 01
643 * on the 558 and 559, but apparently not on the 557.
644 *
645 * The Linux driver computes a checksum on the EEPROM data, but the
646 * value of this checksum is not very well documented.
647 */
648
649 void
650 fxp_autosize_eeprom(struct fxp_softc *sc)
651 {
652 int x;
653
654 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
655 DELAY(40);
656
657 /* Shift in read opcode. */
658 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
659
660 /*
661 * Shift in address, wait for the dummy zero following a correct
662 * address shift.
663 */
664 for (x = 1; x <= 8; x++) {
665 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
666 DELAY(40);
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
668 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
669 DELAY(40);
670 if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
671 FXP_EEPROM_EEDO) == 0)
672 break;
673 DELAY(40);
674 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
675 DELAY(40);
676 }
677 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
678 DELAY(40);
679 if (x != 6 && x != 8) {
680 #ifdef DEBUG
681 printf("%s: strange EEPROM size (%d)\n",
682 device_xname(sc->sc_dev), 1 << x);
683 #endif
684 } else
685 sc->sc_eeprom_size = x;
686 }
687
688 /*
689 * Read from the serial EEPROM. Basically, you manually shift in
690 * the read opcode (one bit at a time) and then shift in the address,
691 * and then you shift out the data (all of this one bit at a time).
692 * The word size is 16 bits, so you have to provide the address for
693 * every 16 bits of data.
694 */
695 void
696 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
697 {
698 uint16_t reg;
699 int i, x;
700
701 for (i = 0; i < words; i++) {
702 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
703
704 /* Shift in read opcode. */
705 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
706
707 /* Shift in address. */
708 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
709
710 reg = FXP_EEPROM_EECS;
711 data[i] = 0;
712
713 /* Shift out data. */
714 for (x = 16; x > 0; x--) {
715 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
716 reg | FXP_EEPROM_EESK);
717 DELAY(40);
718 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
719 FXP_EEPROM_EEDO)
720 data[i] |= (1 << (x - 1));
721 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
722 DELAY(40);
723 }
724 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
725 DELAY(40);
726 }
727 }
728
729 /*
730 * Write data to the serial EEPROM.
731 */
732 void
733 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
734 {
735 int i, j;
736
737 for (i = 0; i < words; i++) {
738 /* Erase/write enable. */
739 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
740 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
741 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
742 sc->sc_eeprom_size);
743 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
744 DELAY(4);
745
746 /* Shift in write opcode, address, data. */
747 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
748 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
749 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
750 fxp_eeprom_shiftin(sc, data[i], 16);
751 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
752 DELAY(4);
753
754 /* Wait for the EEPROM to finish up. */
755 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
756 DELAY(4);
757 for (j = 0; j < 1000; j++) {
758 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
759 FXP_EEPROM_EEDO)
760 break;
761 DELAY(50);
762 }
763 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
764 DELAY(4);
765
766 /* Erase/write disable. */
767 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
768 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
769 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
770 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
771 DELAY(4);
772 }
773 }
774
775 /*
776 * Update the checksum of the EEPROM.
777 */
778 void
779 fxp_eeprom_update_cksum(struct fxp_softc *sc)
780 {
781 int i;
782 uint16_t data, cksum;
783
784 cksum = 0;
785 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
786 fxp_read_eeprom(sc, &data, i, 1);
787 cksum += data;
788 }
789 i = (1 << sc->sc_eeprom_size) - 1;
790 cksum = 0xbaba - cksum;
791 fxp_read_eeprom(sc, &data, i, 1);
792 fxp_write_eeprom(sc, &cksum, i, 1);
793 log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
794 device_xname(sc->sc_dev), i, data, cksum);
795 }
796
797 /*
798 * Start packet transmission on the interface.
799 */
800 void
801 fxp_start(struct ifnet *ifp)
802 {
803 struct fxp_softc *sc = ifp->if_softc;
804 struct mbuf *m0, *m;
805 struct fxp_txdesc *txd;
806 struct fxp_txsoft *txs;
807 bus_dmamap_t dmamap;
808 int error, lasttx, nexttx, opending, seg, nsegs, len;
809
810 /*
811 * If we want a re-init, bail out now.
812 */
813 if (sc->sc_flags & FXPF_WANTINIT) {
814 ifp->if_flags |= IFF_OACTIVE;
815 return;
816 }
817
818 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
819 return;
820
821 /*
822 * Remember the previous txpending and the current lasttx.
823 */
824 opending = sc->sc_txpending;
825 lasttx = sc->sc_txlast;
826
827 /*
828 * Loop through the send queue, setting up transmit descriptors
829 * until we drain the queue, or use up all available transmit
830 * descriptors.
831 */
832 for (;;) {
833 struct fxp_tbd *tbdp;
834 int csum_flags;
835
836 /*
837 * Grab a packet off the queue.
838 */
839 IFQ_POLL(&ifp->if_snd, m0);
840 if (m0 == NULL)
841 break;
842 m = NULL;
843
844 if (sc->sc_txpending == FXP_NTXCB - 1) {
845 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
846 break;
847 }
848
849 /*
850 * Get the next available transmit descriptor.
851 */
852 nexttx = FXP_NEXTTX(sc->sc_txlast);
853 txd = FXP_CDTX(sc, nexttx);
854 txs = FXP_DSTX(sc, nexttx);
855 dmamap = txs->txs_dmamap;
856
857 /*
858 * Load the DMA map. If this fails, the packet either
859 * didn't fit in the allotted number of frags, or we were
860 * short on resources. In this case, we'll copy and try
861 * again.
862 */
863 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
864 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
865 MGETHDR(m, M_DONTWAIT, MT_DATA);
866 if (m == NULL) {
867 log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
868 device_xname(sc->sc_dev));
869 break;
870 }
871 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
872 if (m0->m_pkthdr.len > MHLEN) {
873 MCLGET(m, M_DONTWAIT);
874 if ((m->m_flags & M_EXT) == 0) {
875 log(LOG_ERR, "%s: unable to allocate "
876 "Tx cluster\n",
877 device_xname(sc->sc_dev));
878 m_freem(m);
879 break;
880 }
881 }
882 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
883 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
884 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
885 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
886 if (error) {
887 log(LOG_ERR, "%s: unable to load Tx buffer, "
888 "error = %d\n",
889 device_xname(sc->sc_dev), error);
890 break;
891 }
892 }
893
894 IFQ_DEQUEUE(&ifp->if_snd, m0);
895 csum_flags = m0->m_pkthdr.csum_flags;
896 if (m != NULL) {
897 m_freem(m0);
898 m0 = m;
899 }
900
901 /* Initialize the fraglist. */
902 tbdp = txd->txd_tbd;
903 len = m0->m_pkthdr.len;
904 nsegs = dmamap->dm_nsegs;
905 if (sc->sc_flags & FXPF_EXT_RFA)
906 tbdp++;
907 for (seg = 0; seg < nsegs; seg++) {
908 tbdp[seg].tb_addr =
909 htole32(dmamap->dm_segs[seg].ds_addr);
910 tbdp[seg].tb_size =
911 htole32(dmamap->dm_segs[seg].ds_len);
912 }
913 if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
914 (csum_flags & M_CSUM_IPv4) != 0)) {
915 /*
916 * Pad short packets to avoid ip4csum-tx bug.
917 *
918 * XXX Should we still consider if such short
919 * (36 bytes or less) packets might already
920 * occupy FXP_IPCB_NTXSEG (15) fragments here?
921 */
922 KASSERT(nsegs < FXP_IPCB_NTXSEG);
923 nsegs++;
924 tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
925 tbdp[seg].tb_size =
926 htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
927 }
928
929 /* Sync the DMA map. */
930 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
931 BUS_DMASYNC_PREWRITE);
932
933 /*
934 * Store a pointer to the packet so we can free it later.
935 */
936 txs->txs_mbuf = m0;
937
938 /*
939 * Initialize the transmit descriptor.
940 */
941 /* BIG_ENDIAN: no need to swap to store 0 */
942 txd->txd_txcb.cb_status = 0;
943 txd->txd_txcb.cb_command =
944 sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
945 txd->txd_txcb.tx_threshold = tx_threshold;
946 txd->txd_txcb.tbd_number = nsegs;
947
948 KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
949 if (sc->sc_flags & FXPF_EXT_RFA) {
950 struct fxp_ipcb *ipcb;
951 /*
952 * Deal with TCP/IP checksum offload. Note that
953 * in order for TCP checksum offload to work,
954 * the pseudo header checksum must have already
955 * been computed and stored in the checksum field
956 * in the TCP header. The stack should have
957 * already done this for us.
958 */
959 ipcb = &txd->txd_u.txdu_ipcb;
960 memset(ipcb, 0, sizeof(*ipcb));
961 /*
962 * always do hardware parsing.
963 */
964 ipcb->ipcb_ip_activation_high =
965 FXP_IPCB_HARDWAREPARSING_ENABLE;
966 /*
967 * ip checksum offloading.
968 */
969 if (csum_flags & M_CSUM_IPv4) {
970 ipcb->ipcb_ip_schedule |=
971 FXP_IPCB_IP_CHECKSUM_ENABLE;
972 }
973 /*
974 * TCP/UDP checksum offloading.
975 */
976 if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
977 ipcb->ipcb_ip_schedule |=
978 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
979 }
980
981 /*
982 * request VLAN tag insertion if needed.
983 */
984 if (vlan_has_tag(m0)) {
985 ipcb->ipcb_vlan_id = htobe16(vlan_get_tag(m0));
986 ipcb->ipcb_ip_activation_high |=
987 FXP_IPCB_INSERTVLAN_ENABLE;
988 }
989 } else {
990 KASSERT((csum_flags &
991 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
992 }
993
994 FXP_CDTXSYNC(sc, nexttx,
995 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
996
997 /* Advance the tx pointer. */
998 sc->sc_txpending++;
999 sc->sc_txlast = nexttx;
1000
1001 /*
1002 * Pass packet to bpf if there is a listener.
1003 */
1004 bpf_mtap(ifp, m0, BPF_D_OUT);
1005 }
1006
1007 if (sc->sc_txpending == FXP_NTXCB - 1) {
1008 /* No more slots; notify upper layer. */
1009 ifp->if_flags |= IFF_OACTIVE;
1010 }
1011
1012 if (sc->sc_txpending != opending) {
1013 /*
1014 * We enqueued packets. If the transmitter was idle,
1015 * reset the txdirty pointer.
1016 */
1017 if (opending == 0)
1018 sc->sc_txdirty = FXP_NEXTTX(lasttx);
1019
1020 /*
1021 * Cause the chip to interrupt and suspend command
1022 * processing once the last packet we've enqueued
1023 * has been transmitted.
1024 *
1025 * To avoid a race between updating status bits
1026 * by the fxp chip and clearing command bits
1027 * by this function on machines which don't have
1028 * atomic methods to clear/set bits in memory
1029 * smaller than 32bits (both cb_status and cb_command
1030 * members are uint16_t and in the same 32bit word),
1031 * we have to prepare a dummy TX descriptor which has
1032 * NOP command and just causes a TX completion interrupt.
1033 */
1034 sc->sc_txpending++;
1035 sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
1036 txd = FXP_CDTX(sc, sc->sc_txlast);
1037 /* BIG_ENDIAN: no need to swap to store 0 */
1038 txd->txd_txcb.cb_status = 0;
1039 txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
1040 FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
1041 FXP_CDTXSYNC(sc, sc->sc_txlast,
1042 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1043
1044 /*
1045 * The entire packet chain is set up. Clear the suspend bit
1046 * on the command prior to the first packet we set up.
1047 */
1048 FXP_CDTXSYNC(sc, lasttx,
1049 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1050 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
1051 htole16(~FXP_CB_COMMAND_S);
1052 FXP_CDTXSYNC(sc, lasttx,
1053 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1054
1055 /*
1056 * Issue a Resume command in case the chip was suspended.
1057 */
1058 fxp_scb_wait(sc);
1059 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1060
1061 /* Set a watchdog timer in case the chip flakes out. */
1062 ifp->if_timer = 5;
1063 }
1064 }
1065
1066 /*
1067 * Process interface interrupts.
1068 */
1069 int
1070 fxp_intr(void *arg)
1071 {
1072 struct fxp_softc *sc = arg;
1073 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1074 bus_dmamap_t rxmap;
1075 int claimed = 0, rnr;
1076 uint8_t statack;
1077
1078 if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
1079 return (0);
1080 /*
1081 * If the interface isn't running, don't try to
1082 * service the interrupt.. just ack it and bail.
1083 */
1084 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1085 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1086 if (statack) {
1087 claimed = 1;
1088 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1089 }
1090 return (claimed);
1091 }
1092
1093 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1094 claimed = 1;
1095
1096 /*
1097 * First ACK all the interrupts in this pass.
1098 */
1099 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1100
1101 /*
1102 * Process receiver interrupts. If a no-resource (RNR)
1103 * condition exists, get whatever packets we can and
1104 * re-start the receiver.
1105 */
1106 rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1107 1 : 0;
1108 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
1109 FXP_SCB_STATACK_SWI)) {
1110 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1111 rnr |= fxp_rxintr(sc);
1112 }
1113
1114 /*
1115 * Free any finished transmit mbuf chains.
1116 */
1117 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1118 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1119 fxp_txintr(sc);
1120
1121 /*
1122 * Try to get more packets going.
1123 */
1124 if_schedule_deferred_start(ifp);
1125
1126 if (sc->sc_txpending == 0) {
1127 /*
1128 * Tell them that they can re-init now.
1129 */
1130 if (sc->sc_flags & FXPF_WANTINIT)
1131 wakeup(sc);
1132 }
1133 }
1134
1135 if (rnr) {
1136 fxp_scb_wait(sc);
1137 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
1138 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1139 fxp_scb_wait(sc);
1140 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1141 rxmap->dm_segs[0].ds_addr +
1142 RFA_ALIGNMENT_FUDGE);
1143 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1144 }
1145 }
1146
1147 if (claimed)
1148 rnd_add_uint32(&sc->rnd_source, statack);
1149 return (claimed);
1150 }
1151
1152 /*
1153 * Handle transmit completion interrupts.
1154 */
1155 void
1156 fxp_txintr(struct fxp_softc *sc)
1157 {
1158 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1159 struct fxp_txdesc *txd;
1160 struct fxp_txsoft *txs;
1161 int i;
1162 uint16_t txstat;
1163
1164 ifp->if_flags &= ~IFF_OACTIVE;
1165 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1166 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1167 txd = FXP_CDTX(sc, i);
1168 txs = FXP_DSTX(sc, i);
1169
1170 FXP_CDTXSYNC(sc, i,
1171 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1172
1173 /* skip dummy NOP TX descriptor */
1174 if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
1175 == FXP_CB_COMMAND_NOP)
1176 continue;
1177
1178 txstat = le16toh(txd->txd_txcb.cb_status);
1179
1180 if ((txstat & FXP_CB_STATUS_C) == 0)
1181 break;
1182
1183 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1184 0, txs->txs_dmamap->dm_mapsize,
1185 BUS_DMASYNC_POSTWRITE);
1186 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1187 m_freem(txs->txs_mbuf);
1188 txs->txs_mbuf = NULL;
1189 }
1190
1191 /* Update the dirty transmit buffer pointer. */
1192 sc->sc_txdirty = i;
1193
1194 /*
1195 * Cancel the watchdog timer if there are no pending
1196 * transmissions.
1197 */
1198 if (sc->sc_txpending == 0)
1199 ifp->if_timer = 0;
1200 }
1201
1202 /*
1203 * fxp_rx_hwcksum: check status of H/W offloading for received packets.
1204 */
1205
1206 void
1207 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
1208 u_int len)
1209 {
1210 uint32_t csum_data;
1211 int csum_flags;
1212
1213 /*
1214 * check H/W Checksumming.
1215 */
1216
1217 csum_flags = 0;
1218 csum_data = 0;
1219
1220 if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
1221 uint8_t csum_stat;
1222
1223 csum_stat = rfa->cksum_stat;
1224 if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
1225 goto out;
1226
1227 if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
1228 csum_flags = M_CSUM_IPv4;
1229 if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
1230 csum_flags |= M_CSUM_IPv4_BAD;
1231 }
1232
1233 if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
1234 csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4); /* XXX */
1235 if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
1236 csum_flags |= M_CSUM_TCP_UDP_BAD;
1237 }
1238
1239 } else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1241 struct ether_header *eh;
1242 struct ip *ip;
1243 struct udphdr *uh;
1244 u_int hlen, pktlen;
1245
1246 if (len < ETHER_HDR_LEN + sizeof(struct ip))
1247 goto out;
1248 pktlen = len - ETHER_HDR_LEN;
1249 eh = mtod(m, struct ether_header *);
1250 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1251 goto out;
1252 ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
1253 if (ip->ip_v != IPVERSION)
1254 goto out;
1255
1256 hlen = ip->ip_hl << 2;
1257 if (hlen < sizeof(struct ip))
1258 goto out;
1259
1260 /*
1261 * Bail if too short, has random trailing garbage, truncated,
1262 * fragment, or has ethernet pad.
1263 */
1264 if (ntohs(ip->ip_len) < hlen ||
1265 ntohs(ip->ip_len) != pktlen ||
1266 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
1267 goto out;
1268
1269 switch (ip->ip_p) {
1270 case IPPROTO_TCP:
1271 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
1272 pktlen < (hlen + sizeof(struct tcphdr)))
1273 goto out;
1274 csum_flags =
1275 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1276 break;
1277 case IPPROTO_UDP:
1278 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
1279 pktlen < (hlen + sizeof(struct udphdr)))
1280 goto out;
1281 uh = (struct udphdr *)((uint8_t *)ip + hlen);
1282 if (uh->uh_sum == 0)
1283 goto out; /* no checksum */
1284 csum_flags =
1285 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
1286 break;
1287 default:
1288 goto out;
1289 }
1290
1291 /* Extract computed checksum. */
1292 csum_data = be16dec(mtod(m, uint8_t *) + len);
1293
1294 /*
1295 * The computed checksum includes IP headers,
1296 * so we have to deduct them.
1297 */
1298 #if 0
1299 /*
1300 * But in TCP/UDP layer we can assume the IP header is valid,
1301 * i.e. a sum of the whole IP header should be 0xffff,
1302 * so we don't have to bother to deduct it.
1303 */
1304 if (hlen > 0) {
1305 uint32_t hsum;
1306 const uint16_t *iphdr;
1307 hsum = 0;
1308 iphdr = (uint16_t *)ip;
1309
1310 while (hlen > 1) {
1311 hsum += ntohs(*iphdr++);
1312 hlen -= sizeof(uint16_t);
1313 }
1314 while (hsum >> 16)
1315 hsum = (hsum >> 16) + (hsum & 0xffff);
1316
1317 csum_data += (uint16_t)~hsum;
1318
1319 while (csum_data >> 16)
1320 csum_data =
1321 (csum_data >> 16) + (csum_data & 0xffff);
1322 }
1323 #endif
1324 }
1325 out:
1326 m->m_pkthdr.csum_flags = csum_flags;
1327 m->m_pkthdr.csum_data = csum_data;
1328 }
1329
1330 /*
1331 * Handle receive interrupts.
1332 */
1333 int
1334 fxp_rxintr(struct fxp_softc *sc)
1335 {
1336 struct ethercom *ec = &sc->sc_ethercom;
1337 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1338 struct mbuf *m, *m0;
1339 bus_dmamap_t rxmap;
1340 struct fxp_rfa *rfa;
1341 int rnr;
1342 uint16_t len, rxstat;
1343
1344 rnr = 0;
1345
1346 for (;;) {
1347 m = sc->sc_rxq.ifq_head;
1348 rfa = FXP_MTORFA(m);
1349 rxmap = M_GETCTX(m, bus_dmamap_t);
1350
1351 FXP_RFASYNC(sc, m,
1352 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1353
1354 rxstat = le16toh(rfa->rfa_status);
1355
1356 if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
1357 rnr = 1;
1358
1359 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1360 /*
1361 * We have processed all of the
1362 * receive buffers.
1363 */
1364 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1365 return rnr;
1366 }
1367
1368 IF_DEQUEUE(&sc->sc_rxq, m);
1369
1370 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1371
1372 len = le16toh(rfa->actual_size) &
1373 (m->m_ext.ext_size - 1);
1374 if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
1375 /* Adjust for appended checksum bytes. */
1376 len -= sizeof(uint16_t);
1377 }
1378
1379 if (len < sizeof(struct ether_header)) {
1380 /*
1381 * Runt packet; drop it now.
1382 */
1383 FXP_INIT_RFABUF(sc, m);
1384 continue;
1385 }
1386
1387 /*
1388 * If support for 802.1Q VLAN sized frames is
1389 * enabled, we need to do some additional error
1390 * checking (as we are saving bad frames, in
1391 * order to receive the larger ones).
1392 */
1393 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1394 (rxstat & (FXP_RFA_STATUS_OVERRUN |
1395 FXP_RFA_STATUS_RNR |
1396 FXP_RFA_STATUS_ALIGN |
1397 FXP_RFA_STATUS_CRC)) != 0) {
1398 FXP_INIT_RFABUF(sc, m);
1399 continue;
1400 }
1401
1402 /*
1403 * check VLAN tag stripping.
1404 */
1405 if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
1406 (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0)
1407 vlan_set_tag(m, be16toh(rfa->vlan_id));
1408
1409 /* Do checksum checking. */
1410 if ((ifp->if_csum_flags_rx &
1411 (M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0)
1412 fxp_rx_hwcksum(sc, m, rfa, len);
1413
1414 /*
1415 * If the packet is small enough to fit in a
1416 * single header mbuf, allocate one and copy
1417 * the data into it. This greatly reduces
1418 * memory consumption when we receive lots
1419 * of small packets.
1420 *
1421 * Otherwise, we add a new buffer to the receive
1422 * chain. If this fails, we drop the packet and
1423 * recycle the old buffer.
1424 */
1425 if (fxp_copy_small != 0 && len <= MHLEN) {
1426 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1427 if (m0 == NULL)
1428 goto dropit;
1429 MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
1430 memcpy(mtod(m0, void *),
1431 mtod(m, void *), len);
1432 m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
1433 m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
1434 FXP_INIT_RFABUF(sc, m);
1435 m = m0;
1436 } else {
1437 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1438 dropit:
1439 ifp->if_ierrors++;
1440 FXP_INIT_RFABUF(sc, m);
1441 continue;
1442 }
1443 }
1444
1445 m_set_rcvif(m, ifp);
1446 m->m_pkthdr.len = m->m_len = len;
1447
1448 /* Pass it on. */
1449 if_percpuq_enqueue(ifp->if_percpuq, m);
1450 }
1451 }
1452
1453 /*
1454 * Update packet in/out/collision statistics. The i82557 doesn't
1455 * allow you to access these counters without doing a fairly
1456 * expensive DMA to get _all_ of the statistics it maintains, so
1457 * we do this operation here only once per second. The statistics
1458 * counters in the kernel are updated from the previous dump-stats
1459 * DMA and then a new dump-stats DMA is started. The on-chip
1460 * counters are zeroed when the DMA completes. If we can't start
1461 * the DMA immediately, we don't wait - we just prepare to read
1462 * them again next time.
1463 */
1464 void
1465 fxp_tick(void *arg)
1466 {
1467 struct fxp_softc *sc = arg;
1468 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1469 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1470 int s;
1471
1472 if (!device_is_active(sc->sc_dev))
1473 return;
1474
1475 s = splnet();
1476
1477 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1478
1479 ifp->if_opackets += le32toh(sp->tx_good);
1480 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1481 if (sp->rx_good) {
1482 ifp->if_ipackets += le32toh(sp->rx_good);
1483 sc->sc_rxidle = 0;
1484 } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
1485 sc->sc_rxidle++;
1486 }
1487 ifp->if_ierrors +=
1488 le32toh(sp->rx_crc_errors) +
1489 le32toh(sp->rx_alignment_errors) +
1490 le32toh(sp->rx_rnr_errors) +
1491 le32toh(sp->rx_overrun_errors);
1492 /*
1493 * If any transmit underruns occurred, bump up the transmit
1494 * threshold by another 512 bytes (64 * 8).
1495 */
1496 if (sp->tx_underruns) {
1497 ifp->if_oerrors += le32toh(sp->tx_underruns);
1498 if (tx_threshold < 192)
1499 tx_threshold += 64;
1500 }
1501 #ifdef FXP_EVENT_COUNTERS
1502 if (sc->sc_flags & FXPF_FC) {
1503 sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
1504 sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
1505 }
1506 #endif
1507
1508 /*
1509 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
1510 * then assume the receiver has locked up and attempt to clear
1511 * the condition by reprogramming the multicast filter (actually,
1512 * resetting the interface). This is a work-around for a bug in
1513 * the 82557 where the receiver locks up if it gets certain types
1514 * of garbage in the synchronization bits prior to the packet header.
1515 * This bug is supposed to only occur in 10Mbps mode, but has been
1516 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1517 * speed transition).
1518 */
1519 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1520 (void) fxp_init(ifp);
1521 splx(s);
1522 return;
1523 }
1524 /*
1525 * If there is no pending command, start another stats
1526 * dump. Otherwise punt for now.
1527 */
1528 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1529 /*
1530 * Start another stats dump.
1531 */
1532 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1533 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1534 } else {
1535 /*
1536 * A previous command is still waiting to be accepted.
1537 * Just zero our copy of the stats and wait for the
1538 * next timer event to update them.
1539 */
1540 /* BIG_ENDIAN: no swap required to store 0 */
1541 sp->tx_good = 0;
1542 sp->tx_underruns = 0;
1543 sp->tx_total_collisions = 0;
1544
1545 sp->rx_good = 0;
1546 sp->rx_crc_errors = 0;
1547 sp->rx_alignment_errors = 0;
1548 sp->rx_rnr_errors = 0;
1549 sp->rx_overrun_errors = 0;
1550 if (sc->sc_flags & FXPF_FC) {
1551 sp->tx_pauseframes = 0;
1552 sp->rx_pauseframes = 0;
1553 }
1554 }
1555
1556 if (sc->sc_flags & FXPF_MII) {
1557 /* Tick the MII clock. */
1558 mii_tick(&sc->sc_mii);
1559 }
1560
1561 splx(s);
1562
1563 /*
1564 * Schedule another timeout one second from now.
1565 */
1566 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1567 }
1568
1569 /*
1570 * Drain the receive queue.
1571 */
1572 void
1573 fxp_rxdrain(struct fxp_softc *sc)
1574 {
1575 bus_dmamap_t rxmap;
1576 struct mbuf *m;
1577
1578 for (;;) {
1579 IF_DEQUEUE(&sc->sc_rxq, m);
1580 if (m == NULL)
1581 break;
1582 rxmap = M_GETCTX(m, bus_dmamap_t);
1583 bus_dmamap_unload(sc->sc_dmat, rxmap);
1584 FXP_RXMAP_PUT(sc, rxmap);
1585 m_freem(m);
1586 }
1587 }
1588
1589 /*
1590 * Stop the interface. Cancels the statistics updater and resets
1591 * the interface.
1592 */
1593 void
1594 fxp_stop(struct ifnet *ifp, int disable)
1595 {
1596 struct fxp_softc *sc = ifp->if_softc;
1597 struct fxp_txsoft *txs;
1598 int i;
1599
1600 /*
1601 * Turn down interface (done early to avoid bad interactions
1602 * between panics, shutdown hooks, and the watchdog timer)
1603 */
1604 ifp->if_timer = 0;
1605 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1606
1607 /*
1608 * Cancel stats updater.
1609 */
1610 callout_stop(&sc->sc_callout);
1611 if (sc->sc_flags & FXPF_MII) {
1612 /* Down the MII. */
1613 mii_down(&sc->sc_mii);
1614 }
1615
1616 /*
1617 * Issue software reset. This unloads any microcode that
1618 * might already be loaded.
1619 */
1620 sc->sc_flags &= ~FXPF_UCODE_LOADED;
1621 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1622 DELAY(50);
1623
1624 /*
1625 * Release any xmit buffers.
1626 */
1627 for (i = 0; i < FXP_NTXCB; i++) {
1628 txs = FXP_DSTX(sc, i);
1629 if (txs->txs_mbuf != NULL) {
1630 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1631 m_freem(txs->txs_mbuf);
1632 txs->txs_mbuf = NULL;
1633 }
1634 }
1635 sc->sc_txpending = 0;
1636
1637 if (disable) {
1638 fxp_rxdrain(sc);
1639 fxp_disable(sc);
1640 }
1641
1642 }
1643
1644 /*
1645 * Watchdog/transmission transmit timeout handler. Called when a
1646 * transmission is started on the interface, but no interrupt is
1647 * received before the timeout. This usually indicates that the
1648 * card has wedged for some reason.
1649 */
1650 void
1651 fxp_watchdog(struct ifnet *ifp)
1652 {
1653 struct fxp_softc *sc = ifp->if_softc;
1654
1655 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1656 ifp->if_oerrors++;
1657
1658 (void) fxp_init(ifp);
1659 }
1660
1661 /*
1662 * Initialize the interface. Must be called at splnet().
1663 */
1664 int
1665 fxp_init(struct ifnet *ifp)
1666 {
1667 struct fxp_softc *sc = ifp->if_softc;
1668 struct fxp_cb_config *cbp;
1669 struct fxp_cb_ias *cb_ias;
1670 struct fxp_txdesc *txd;
1671 bus_dmamap_t rxmap;
1672 int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
1673 uint16_t status;
1674
1675 if ((error = fxp_enable(sc)) != 0)
1676 goto out;
1677
1678 /*
1679 * Cancel any pending I/O
1680 */
1681 fxp_stop(ifp, 0);
1682
1683 /*
1684 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1685 * flag, and this prevents the MII from detaching resulting in
1686 * a panic. The flags field should perhaps be split in runtime
1687 * flags and more static information. For now, just clear the
1688 * only other flag set.
1689 */
1690
1691 sc->sc_flags &= ~FXPF_WANTINIT;
1692
1693 /*
1694 * Initialize base of CBL and RFA memory. Loading with zero
1695 * sets it up for regular linear addressing.
1696 */
1697 fxp_scb_wait(sc);
1698 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1699 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1700
1701 fxp_scb_wait(sc);
1702 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1703
1704 /*
1705 * Initialize the multicast filter. Do this now, since we might
1706 * have to setup the config block differently.
1707 */
1708 fxp_mc_setup(sc);
1709
1710 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1711 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1712
1713 /*
1714 * In order to support receiving 802.1Q VLAN frames, we have to
1715 * enable "save bad frames", since they are 4 bytes larger than
1716 * the normal Ethernet maximum frame length. On i82558 and later,
1717 * we have a better mechanism for this.
1718 */
1719 save_bf = 0;
1720 lrxen = 0;
1721 vlan_drop = 0;
1722 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1723 if (sc->sc_rev < FXP_REV_82558_A4)
1724 save_bf = 1;
1725 else
1726 lrxen = 1;
1727 if (sc->sc_rev >= FXP_REV_82550)
1728 vlan_drop = 1;
1729 }
1730
1731 /*
1732 * Initialize base of dump-stats buffer.
1733 */
1734 fxp_scb_wait(sc);
1735 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1736 sc->sc_cddma + FXP_CDSTATSOFF);
1737 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1738 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1739
1740 cbp = &sc->sc_control_data->fcd_configcb;
1741 memset(cbp, 0, sizeof(struct fxp_cb_config));
1742
1743 /*
1744 * Load microcode for this controller.
1745 */
1746 fxp_load_ucode(sc);
1747
1748 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
1749 sc->sc_flags |= FXPF_RECV_WORKAROUND;
1750 else
1751 sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
1752
1753 /*
1754 * This copy is kind of disgusting, but there are a bunch of must be
1755 * zero and must be one bits in this structure and this is the easiest
1756 * way to initialize them all to proper values.
1757 */
1758 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1759
1760 /* BIG_ENDIAN: no need to swap to store 0 */
1761 cbp->cb_status = 0;
1762 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1763 FXP_CB_COMMAND_EL);
1764 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1765 cbp->link_addr = 0xffffffff; /* (no) next command */
1766 /* bytes in config block */
1767 cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
1768 FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
1769 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1770 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1771 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1772 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1773 cbp->type_enable = 0; /* actually reserved */
1774 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1775 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1776 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1777 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1778 cbp->dma_mbce = 0; /* (disable) dma max counters */
1779 cbp->late_scb = 0; /* (don't) defer SCB update */
1780 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1781 cbp->ci_int = 1; /* interrupt on CU idle */
1782 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1783 cbp->ext_stats_dis = 1; /* disable extended counters */
1784 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1785 cbp->save_bf = save_bf;/* save bad frames */
1786 cbp->disc_short_rx = !prm; /* discard short packets */
1787 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1788 cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1789 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1790 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1791 /* interface mode */
1792 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1793 cbp->csma_dis = 0; /* (don't) disable link */
1794 cbp->tcp_udp_cksum = (sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
1795 /* (don't) enable RX checksum */
1796 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1797 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1798 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1799 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1800 cbp->nsai = 1; /* (don't) disable source addr insert */
1801 cbp->preamble_length = 2; /* (7 byte) preamble */
1802 cbp->loopback = 0; /* (don't) loopback */
1803 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1804 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1805 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1806 cbp->promiscuous = prm; /* promiscuous mode */
1807 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1808 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1809 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1810 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1811 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1812 cbp->stripping = !prm; /* truncate rx packet to byte count */
1813 cbp->padding = 1; /* (do) pad short tx packets */
1814 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1815 cbp->long_rx_en = lrxen; /* long packet receive enable */
1816 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1817 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1818 /* must set wake_en in PMCSR also */
1819 cbp->force_fdx = 0; /* (don't) force full duplex */
1820 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1821 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1822 cbp->mc_all = allm; /* accept all multicasts */
1823 cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
1824 cbp->vlan_drop_en = vlan_drop;
1825
1826 if (!(sc->sc_flags & FXPF_FC)) {
1827 /*
1828 * The i82557 has no hardware flow control, the values
1829 * here are the defaults for the chip.
1830 */
1831 cbp->fc_delay_lsb = 0;
1832 cbp->fc_delay_msb = 0x40;
1833 cbp->pri_fc_thresh = 3;
1834 cbp->tx_fc_dis = 0;
1835 cbp->rx_fc_restop = 0;
1836 cbp->rx_fc_restart = 0;
1837 cbp->fc_filter = 0;
1838 cbp->pri_fc_loc = 1;
1839 } else {
1840 cbp->fc_delay_lsb = 0x1f;
1841 cbp->fc_delay_msb = 0x01;
1842 cbp->pri_fc_thresh = 3;
1843 cbp->tx_fc_dis = 0; /* enable transmit FC */
1844 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1845 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1846 cbp->fc_filter = !prm; /* drop FC frames to host */
1847 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1848 cbp->ext_stats_dis = 0; /* enable extended stats */
1849 }
1850
1851 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1852
1853 /*
1854 * Start the config command/DMA.
1855 */
1856 fxp_scb_wait(sc);
1857 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1858 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1859 /* ...and wait for it to complete. */
1860 for (i = 1000; i > 0; i--) {
1861 FXP_CDCONFIGSYNC(sc,
1862 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1863 status = le16toh(cbp->cb_status);
1864 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
1865 if ((status & FXP_CB_STATUS_C) != 0)
1866 break;
1867 DELAY(1);
1868 }
1869 if (i == 0) {
1870 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1871 device_xname(sc->sc_dev), __LINE__);
1872 return (ETIMEDOUT);
1873 }
1874
1875 /*
1876 * Initialize the station address.
1877 */
1878 cb_ias = &sc->sc_control_data->fcd_iascb;
1879 /* BIG_ENDIAN: no need to swap to store 0 */
1880 cb_ias->cb_status = 0;
1881 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1882 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1883 cb_ias->link_addr = 0xffffffff;
1884 memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1885
1886 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1887
1888 /*
1889 * Start the IAS (Individual Address Setup) command/DMA.
1890 */
1891 fxp_scb_wait(sc);
1892 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1893 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1894 /* ...and wait for it to complete. */
1895 for (i = 1000; i > 0; i--) {
1896 FXP_CDIASSYNC(sc,
1897 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1898 status = le16toh(cb_ias->cb_status);
1899 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
1900 if ((status & FXP_CB_STATUS_C) != 0)
1901 break;
1902 DELAY(1);
1903 }
1904 if (i == 0) {
1905 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
1906 device_xname(sc->sc_dev), __LINE__);
1907 return (ETIMEDOUT);
1908 }
1909
1910 /*
1911 * Initialize the transmit descriptor ring. txlast is initialized
1912 * to the end of the list so that it will wrap around to the first
1913 * descriptor when the first packet is transmitted.
1914 */
1915 for (i = 0; i < FXP_NTXCB; i++) {
1916 txd = FXP_CDTX(sc, i);
1917 memset(txd, 0, sizeof(*txd));
1918 txd->txd_txcb.cb_command =
1919 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1920 txd->txd_txcb.link_addr =
1921 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1922 if (sc->sc_flags & FXPF_EXT_TXCB)
1923 txd->txd_txcb.tbd_array_addr =
1924 htole32(FXP_CDTBDADDR(sc, i) +
1925 (2 * sizeof(struct fxp_tbd)));
1926 else
1927 txd->txd_txcb.tbd_array_addr =
1928 htole32(FXP_CDTBDADDR(sc, i));
1929 FXP_CDTXSYNC(sc, i,
1930 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1931 }
1932 sc->sc_txpending = 0;
1933 sc->sc_txdirty = 0;
1934 sc->sc_txlast = FXP_NTXCB - 1;
1935
1936 /*
1937 * Initialize the receive buffer list.
1938 */
1939 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1940 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1941 rxmap = FXP_RXMAP_GET(sc);
1942 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1943 log(LOG_ERR, "%s: unable to allocate or map rx "
1944 "buffer %d, error = %d\n",
1945 device_xname(sc->sc_dev),
1946 sc->sc_rxq.ifq_len, error);
1947 /*
1948 * XXX Should attempt to run with fewer receive
1949 * XXX buffers instead of just failing.
1950 */
1951 FXP_RXMAP_PUT(sc, rxmap);
1952 fxp_rxdrain(sc);
1953 goto out;
1954 }
1955 }
1956 sc->sc_rxidle = 0;
1957
1958 /*
1959 * Give the transmit ring to the chip. We do this by pointing
1960 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1961 * issuing a start command. It will execute the NOP and then
1962 * suspend, pointing at the first descriptor.
1963 */
1964 fxp_scb_wait(sc);
1965 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1966 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1967
1968 /*
1969 * Initialize receiver buffer area - RFA.
1970 */
1971 #if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
1972 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1973 fxp_scb_wait(sc);
1974 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1975 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1976 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1977 #endif
1978
1979 if (sc->sc_flags & FXPF_MII) {
1980 /*
1981 * Set current media.
1982 */
1983 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1984 goto out;
1985 }
1986
1987 /*
1988 * ...all done!
1989 */
1990 ifp->if_flags |= IFF_RUNNING;
1991 ifp->if_flags &= ~IFF_OACTIVE;
1992
1993 /*
1994 * Request a software generated interrupt that will be used to
1995 * (re)start the RU processing. If we direct the chip to start
1996 * receiving from the start of queue now, instead of letting the
1997 * interrupt handler first process all received packets, we run
1998 * the risk of having it overwrite mbuf clusters while they are
1999 * being processed or after they have been returned to the pool.
2000 */
2001 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
2002
2003 /*
2004 * Start the one second timer.
2005 */
2006 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
2007
2008 /*
2009 * Attempt to start output on the interface.
2010 */
2011 fxp_start(ifp);
2012
2013 out:
2014 if (error) {
2015 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2016 ifp->if_timer = 0;
2017 log(LOG_ERR, "%s: interface not running\n",
2018 device_xname(sc->sc_dev));
2019 }
2020 return (error);
2021 }
2022
2023 /*
2024 * Notify the world which media we're using.
2025 */
2026 void
2027 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2028 {
2029 struct fxp_softc *sc = ifp->if_softc;
2030
2031 if (sc->sc_enabled == 0) {
2032 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2033 ifmr->ifm_status = 0;
2034 return;
2035 }
2036
2037 ether_mediastatus(ifp, ifmr);
2038 }
2039
2040 int
2041 fxp_80c24_mediachange(struct ifnet *ifp)
2042 {
2043
2044 /* Nothing to do here. */
2045 return (0);
2046 }
2047
2048 void
2049 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2050 {
2051 struct fxp_softc *sc = ifp->if_softc;
2052
2053 /*
2054 * Media is currently-selected media. We cannot determine
2055 * the link status.
2056 */
2057 ifmr->ifm_status = 0;
2058 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
2059 }
2060
2061 /*
2062 * Add a buffer to the end of the RFA buffer list.
2063 * Return 0 if successful, error code on failure.
2064 *
2065 * The RFA struct is stuck at the beginning of mbuf cluster and the
2066 * data pointer is fixed up to point just past it.
2067 */
2068 int
2069 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
2070 {
2071 struct mbuf *m;
2072 int error;
2073
2074 MGETHDR(m, M_DONTWAIT, MT_DATA);
2075 if (m == NULL)
2076 return (ENOBUFS);
2077
2078 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2079 MCLGET(m, M_DONTWAIT);
2080 if ((m->m_flags & M_EXT) == 0) {
2081 m_freem(m);
2082 return (ENOBUFS);
2083 }
2084
2085 if (unload)
2086 bus_dmamap_unload(sc->sc_dmat, rxmap);
2087
2088 M_SETCTX(m, rxmap);
2089
2090 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2091 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
2092 BUS_DMA_READ | BUS_DMA_NOWAIT);
2093 if (error) {
2094 /* XXX XXX XXX */
2095 aprint_error_dev(sc->sc_dev,
2096 "can't load rx DMA map %d, error = %d\n",
2097 sc->sc_rxq.ifq_len, error);
2098 panic("fxp_add_rfabuf");
2099 }
2100
2101 FXP_INIT_RFABUF(sc, m);
2102
2103 return (0);
2104 }
2105
2106 int
2107 fxp_mdi_read(device_t self, int phy, int reg, uint16_t *value)
2108 {
2109 struct fxp_softc *sc = device_private(self);
2110 int count = 10000;
2111 uint32_t data;
2112
2113 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2114 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2115
2116 while (((data = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
2117 0x10000000) == 0 && count--)
2118 DELAY(10);
2119
2120 if (count <= 0) {
2121 log(LOG_WARNING,
2122 "%s: fxp_mdi_read: timed out\n", device_xname(self));
2123 return ETIMEDOUT;
2124 }
2125
2126 *value = data & 0xffff;
2127 return 0;
2128 }
2129
2130 void
2131 fxp_statchg(struct ifnet *ifp)
2132 {
2133
2134 /* Nothing to do. */
2135 }
2136
2137 int
2138 fxp_mdi_write(device_t self, int phy, int reg, uint16_t value)
2139 {
2140 struct fxp_softc *sc = device_private(self);
2141 int count = 10000;
2142
2143 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2144 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | value);
2145
2146 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2147 count--)
2148 DELAY(10);
2149
2150 if (count <= 0) {
2151 log(LOG_WARNING,
2152 "%s: fxp_mdi_write: timed out\n", device_xname(self));
2153 return ETIMEDOUT;
2154 }
2155
2156 return 0;
2157 }
2158
2159 int
2160 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2161 {
2162 struct fxp_softc *sc = ifp->if_softc;
2163 int s, error;
2164
2165 s = splnet();
2166
2167 switch (cmd) {
2168 default:
2169 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2170 break;
2171
2172 error = 0;
2173
2174 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2175 ;
2176 else if (ifp->if_flags & IFF_RUNNING) {
2177 /*
2178 * Multicast list has changed; set the
2179 * hardware filter accordingly.
2180 */
2181 while (sc->sc_txpending) {
2182 sc->sc_flags |= FXPF_WANTINIT;
2183 tsleep(sc, PSOCK, "fxp_init", 0);
2184 }
2185 error = fxp_init(ifp);
2186 }
2187 break;
2188 }
2189
2190 /* Try to get more packets going. */
2191 if (sc->sc_enabled)
2192 fxp_start(ifp);
2193
2194 splx(s);
2195 return (error);
2196 }
2197
2198 /*
2199 * Program the multicast filter.
2200 *
2201 * This function must be called at splnet().
2202 */
2203 void
2204 fxp_mc_setup(struct fxp_softc *sc)
2205 {
2206 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2207 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2208 struct ethercom *ec = &sc->sc_ethercom;
2209 struct ether_multi *enm;
2210 struct ether_multistep step;
2211 int count, nmcasts;
2212 uint16_t status;
2213
2214 #ifdef DIAGNOSTIC
2215 if (sc->sc_txpending)
2216 panic("fxp_mc_setup: pending transmissions");
2217 #endif
2218
2219
2220 if (ifp->if_flags & IFF_PROMISC) {
2221 ifp->if_flags |= IFF_ALLMULTI;
2222 return;
2223 } else {
2224 ifp->if_flags &= ~IFF_ALLMULTI;
2225 }
2226
2227 /*
2228 * Initialize multicast setup descriptor.
2229 */
2230 nmcasts = 0;
2231 ETHER_LOCK(ec);
2232 ETHER_FIRST_MULTI(step, ec, enm);
2233 while (enm != NULL) {
2234 /*
2235 * Check for too many multicast addresses or if we're
2236 * listening to a range. Either way, we simply have
2237 * to accept all multicasts.
2238 */
2239 if (nmcasts >= MAXMCADDR ||
2240 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2241 ETHER_ADDR_LEN) != 0) {
2242 /*
2243 * Callers of this function must do the
2244 * right thing with this. If we're called
2245 * from outside fxp_init(), the caller must
2246 * detect if the state if IFF_ALLMULTI changes.
2247 * If it does, the caller must then call
2248 * fxp_init(), since allmulti is handled by
2249 * the config block.
2250 */
2251 ifp->if_flags |= IFF_ALLMULTI;
2252 ETHER_UNLOCK(ec);
2253 return;
2254 }
2255 memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2256 ETHER_ADDR_LEN);
2257 nmcasts++;
2258 ETHER_NEXT_MULTI(step, enm);
2259 }
2260 ETHER_UNLOCK(ec);
2261
2262 /* BIG_ENDIAN: no need to swap to store 0 */
2263 mcsp->cb_status = 0;
2264 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2265 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2266 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2267
2268 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2269
2270 /*
2271 * Wait until the command unit is not active. This should never
2272 * happen since nothing is queued, but make sure anyway.
2273 */
2274 count = 100;
2275 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2276 FXP_SCB_CUS_ACTIVE && --count)
2277 DELAY(1);
2278 if (count == 0) {
2279 log(LOG_WARNING, "%s: line %d: command queue timeout\n",
2280 device_xname(sc->sc_dev), __LINE__);
2281 return;
2282 }
2283
2284 /*
2285 * Start the multicast setup command/DMA.
2286 */
2287 fxp_scb_wait(sc);
2288 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2289 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2290
2291 /* ...and wait for it to complete. */
2292 for (count = 1000; count > 0; count--) {
2293 FXP_CDMCSSYNC(sc,
2294 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2295 status = le16toh(mcsp->cb_status);
2296 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
2297 if ((status & FXP_CB_STATUS_C) != 0)
2298 break;
2299 DELAY(1);
2300 }
2301 if (count == 0) {
2302 log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
2303 device_xname(sc->sc_dev), __LINE__);
2304 return;
2305 }
2306 }
2307
2308 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2309 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2310 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2311 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2312 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2313 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2314 static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
2315
2316 #define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
2317
2318 static const struct ucode {
2319 int32_t revision;
2320 const uint32_t *ucode;
2321 size_t length;
2322 uint16_t int_delay_offset;
2323 uint16_t bundle_max_offset;
2324 } ucode_table[] = {
2325 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
2326 D101_CPUSAVER_DWORD, 0 },
2327
2328 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
2329 D101_CPUSAVER_DWORD, 0 },
2330
2331 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2332 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2333
2334 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2335 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2336
2337 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2338 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2339
2340 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2341 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2342
2343 { FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
2344 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2345
2346 { FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
2347 D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
2348
2349 { 0, NULL, 0, 0, 0 }
2350 };
2351
2352 void
2353 fxp_load_ucode(struct fxp_softc *sc)
2354 {
2355 const struct ucode *uc;
2356 struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
2357 int count, i;
2358 uint16_t status;
2359
2360 if (sc->sc_flags & FXPF_UCODE_LOADED)
2361 return;
2362
2363 /*
2364 * Only load the uCode if the user has requested that
2365 * we do so.
2366 */
2367 if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
2368 sc->sc_int_delay = 0;
2369 sc->sc_bundle_max = 0;
2370 return;
2371 }
2372
2373 for (uc = ucode_table; uc->ucode != NULL; uc++) {
2374 if (sc->sc_rev == uc->revision)
2375 break;
2376 }
2377 if (uc->ucode == NULL)
2378 return;
2379
2380 /* BIG ENDIAN: no need to swap to store 0 */
2381 cbp->cb_status = 0;
2382 cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
2383 cbp->link_addr = 0xffffffff; /* (no) next command */
2384 for (i = 0; i < uc->length; i++)
2385 cbp->ucode[i] = htole32(uc->ucode[i]);
2386
2387 if (uc->int_delay_offset)
2388 *(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
2389 htole16(fxp_int_delay + (fxp_int_delay / 2));
2390
2391 if (uc->bundle_max_offset)
2392 *(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
2393 htole16(fxp_bundle_max);
2394
2395 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2396
2397 /*
2398 * Download the uCode to the chip.
2399 */
2400 fxp_scb_wait(sc);
2401 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
2402 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2403
2404 /* ...and wait for it to complete. */
2405 for (count = 10000; count > 0; count--) {
2406 FXP_CDUCODESYNC(sc,
2407 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2408 status = le16toh(cbp->cb_status);
2409 FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
2410 if ((status & FXP_CB_STATUS_C) != 0)
2411 break;
2412 DELAY(2);
2413 }
2414 if (count == 0) {
2415 sc->sc_int_delay = 0;
2416 sc->sc_bundle_max = 0;
2417 log(LOG_WARNING, "%s: timeout loading microcode\n",
2418 device_xname(sc->sc_dev));
2419 return;
2420 }
2421
2422 if (sc->sc_int_delay != fxp_int_delay ||
2423 sc->sc_bundle_max != fxp_bundle_max) {
2424 sc->sc_int_delay = fxp_int_delay;
2425 sc->sc_bundle_max = fxp_bundle_max;
2426 log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
2427 "max bundle: %d\n", device_xname(sc->sc_dev),
2428 sc->sc_int_delay,
2429 uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
2430 }
2431
2432 sc->sc_flags |= FXPF_UCODE_LOADED;
2433 }
2434
2435 int
2436 fxp_enable(struct fxp_softc *sc)
2437 {
2438
2439 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2440 if ((*sc->sc_enable)(sc) != 0) {
2441 log(LOG_ERR, "%s: device enable failed\n",
2442 device_xname(sc->sc_dev));
2443 return (EIO);
2444 }
2445 }
2446
2447 sc->sc_enabled = 1;
2448 return (0);
2449 }
2450
2451 void
2452 fxp_disable(struct fxp_softc *sc)
2453 {
2454
2455 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2456 (*sc->sc_disable)(sc);
2457 sc->sc_enabled = 0;
2458 }
2459 }
2460
2461 /*
2462 * fxp_activate:
2463 *
2464 * Handle device activation/deactivation requests.
2465 */
2466 int
2467 fxp_activate(device_t self, enum devact act)
2468 {
2469 struct fxp_softc *sc = device_private(self);
2470
2471 switch (act) {
2472 case DVACT_DEACTIVATE:
2473 if_deactivate(&sc->sc_ethercom.ec_if);
2474 return 0;
2475 default:
2476 return EOPNOTSUPP;
2477 }
2478 }
2479
2480 /*
2481 * fxp_detach:
2482 *
2483 * Detach an i82557 interface.
2484 */
2485 int
2486 fxp_detach(struct fxp_softc *sc, int flags)
2487 {
2488 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2489 int i, s;
2490
2491 /* Succeed now if there's no work to do. */
2492 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2493 return (0);
2494
2495 s = splnet();
2496 /* Stop the interface. Callouts are stopped in it. */
2497 fxp_stop(ifp, 1);
2498 splx(s);
2499
2500 /* Destroy our callout. */
2501 callout_destroy(&sc->sc_callout);
2502
2503 if (sc->sc_flags & FXPF_MII) {
2504 /* Detach all PHYs */
2505 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2506 }
2507
2508 /* Delete all remaining media. */
2509 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2510
2511 rnd_detach_source(&sc->rnd_source);
2512 ether_ifdetach(ifp);
2513 if_detach(ifp);
2514
2515 for (i = 0; i < FXP_NRFABUFS; i++) {
2516 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2517 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2518 }
2519
2520 for (i = 0; i < FXP_NTXCB; i++) {
2521 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2522 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2523 }
2524
2525 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2526 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2527 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2528 sizeof(struct fxp_control_data));
2529 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2530
2531 return (0);
2532 }
2533