i82557.c revision 1.18 1 /* $NetBSD: i82557.c,v 1.18 2000/02/09 22:15:57 joda Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88
89 #include <machine/endian.h>
90
91 #include <vm/vm.h> /* for PAGE_SIZE */
92
93 #if NRND > 0
94 #include <sys/rnd.h>
95 #endif
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #if NBPFILTER > 0
103 #include <net/bpf.h>
104 #endif
105
106 #ifdef INET
107 #include <netinet/in.h>
108 #include <netinet/if_inarp.h>
109 #endif
110
111 #ifdef NS
112 #include <netns/ns.h>
113 #include <netns/ns_if.h>
114 #endif
115
116 #include <machine/bus.h>
117 #include <machine/intr.h>
118
119 #include <dev/mii/miivar.h>
120
121 #include <dev/ic/i82557reg.h>
122 #include <dev/ic/i82557var.h>
123
124 /*
125 * NOTE! On the Alpha, we have an alignment constraint. The
126 * card DMAs the packet immediately following the RFA. However,
127 * the first thing in the packet is a 14-byte Ethernet header.
128 * This means that the packet is misaligned. To compensate,
129 * we actually offset the RFA 2 bytes into the cluster. This
130 * alignes the packet after the Ethernet header at a 32-bit
131 * boundary. HOWEVER! This means that the RFA is misaligned!
132 */
133 #define RFA_ALIGNMENT_FUDGE 2
134
135 /*
136 * Template for default configuration parameters.
137 * See struct fxp_cb_config for the bit definitions.
138 */
139 u_int8_t fxp_cb_config_template[] = {
140 0x0, 0x0, /* cb_status */
141 0x80, 0x2, /* cb_command */
142 0xff, 0xff, 0xff, 0xff, /* link_addr */
143 0x16, /* 0 */
144 0x8, /* 1 */
145 0x0, /* 2 */
146 0x0, /* 3 */
147 0x0, /* 4 */
148 0x80, /* 5 */
149 0xb2, /* 6 */
150 0x3, /* 7 */
151 0x1, /* 8 */
152 0x0, /* 9 */
153 0x26, /* 10 */
154 0x0, /* 11 */
155 0x60, /* 12 */
156 0x0, /* 13 */
157 0xf2, /* 14 */
158 0x48, /* 15 */
159 0x0, /* 16 */
160 0x40, /* 17 */
161 0xf3, /* 18 */
162 0x0, /* 19 */
163 0x3f, /* 20 */
164 0x5 /* 21 */
165 };
166
167 void fxp_mii_initmedia __P((struct fxp_softc *));
168 int fxp_mii_mediachange __P((struct ifnet *));
169 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
170
171 void fxp_80c24_initmedia __P((struct fxp_softc *));
172 int fxp_80c24_mediachange __P((struct ifnet *));
173 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
174
175 inline void fxp_scb_wait __P((struct fxp_softc *));
176
177 void fxp_start __P((struct ifnet *));
178 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
179 int fxp_init __P((struct fxp_softc *));
180 void fxp_rxdrain __P((struct fxp_softc *));
181 void fxp_stop __P((struct fxp_softc *, int));
182 void fxp_watchdog __P((struct ifnet *));
183 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
184 int fxp_mdi_read __P((struct device *, int, int));
185 void fxp_statchg __P((struct device *));
186 void fxp_mdi_write __P((struct device *, int, int, int));
187 void fxp_autosize_eeprom __P((struct fxp_softc*));
188 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
189 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
190 void fxp_tick __P((void *));
191 void fxp_mc_setup __P((struct fxp_softc *));
192
193 void fxp_shutdown __P((void *));
194 void fxp_power __P((int, void *));
195
196 int fxp_copy_small = 0;
197
198 int fxp_enable __P((struct fxp_softc*));
199 void fxp_disable __P((struct fxp_softc*));
200
201 struct fxp_phytype {
202 int fp_phy; /* type of PHY, -1 for MII at the end. */
203 void (*fp_init) __P((struct fxp_softc *));
204 } fxp_phytype_table[] = {
205 { FXP_PHY_80C24, fxp_80c24_initmedia },
206 { -1, fxp_mii_initmedia },
207 };
208
209 /*
210 * Set initial transmit threshold at 64 (512 bytes). This is
211 * increased by 64 (512 bytes) at a time, to maximum of 192
212 * (1536 bytes), if an underrun occurs.
213 */
214 static int tx_threshold = 64;
215
216 /*
217 * Wait for the previous command to be accepted (but not necessarily
218 * completed).
219 */
220 inline void
221 fxp_scb_wait(sc)
222 struct fxp_softc *sc;
223 {
224 int i = 10000;
225
226 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
227 delay(2);
228 if (i == 0)
229 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
230 }
231
232 /*
233 * Finish attaching an i82557 interface. Called by bus-specific front-end.
234 */
235 void
236 fxp_attach(sc)
237 struct fxp_softc *sc;
238 {
239 u_int8_t enaddr[6];
240 struct ifnet *ifp;
241 bus_dma_segment_t seg;
242 int rseg, i, error;
243 struct fxp_phytype *fp;
244
245 /*
246 * Allocate the control data structures, and create and load the
247 * DMA map for it.
248 */
249 if ((error = bus_dmamem_alloc(sc->sc_dmat,
250 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251 0)) != 0) {
252 printf("%s: unable to allocate control data, error = %d\n",
253 sc->sc_dev.dv_xname, error);
254 goto fail_0;
255 }
256
257 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259 BUS_DMA_COHERENT)) != 0) {
260 printf("%s: unable to map control data, error = %d\n",
261 sc->sc_dev.dv_xname, error);
262 goto fail_1;
263 }
264 sc->sc_cdseg = seg;
265 sc->sc_cdnseg = rseg;
266
267 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269 if ((error = bus_dmamap_create(sc->sc_dmat,
270 sizeof(struct fxp_control_data), 1,
271 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272 printf("%s: unable to create control data DMA map, "
273 "error = %d\n", sc->sc_dev.dv_xname, error);
274 goto fail_2;
275 }
276
277 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279 0)) != 0) {
280 printf("%s: can't load control data DMA map, error = %d\n",
281 sc->sc_dev.dv_xname, error);
282 goto fail_3;
283 }
284
285 /*
286 * Create the transmit buffer DMA maps.
287 */
288 for (i = 0; i < FXP_NTXCB; i++) {
289 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290 FXP_NTXSEG, MCLBYTES, 0, 0,
291 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292 printf("%s: unable to create tx DMA map %d, "
293 "error = %d\n", sc->sc_dev.dv_xname, i, error);
294 goto fail_4;
295 }
296 }
297
298 /*
299 * Create the receive buffer DMA maps.
300 */
301 for (i = 0; i < FXP_NRFABUFS; i++) {
302 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304 printf("%s: unable to create rx DMA map %d, "
305 "error = %d\n", sc->sc_dev.dv_xname, i, error);
306 goto fail_5;
307 }
308 }
309
310 /* Initialize MAC address and media structures. */
311 fxp_get_info(sc, enaddr);
312
313 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316 ifp = &sc->sc_ethercom.ec_if;
317
318 /*
319 * Get info about our media interface, and initialize it. Note
320 * the table terminates itself with a phy of -1, indicating
321 * that we're using MII.
322 */
323 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324 if (fp->fp_phy == sc->phy_primary_device)
325 break;
326 (*fp->fp_init)(sc);
327
328 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329 ifp->if_softc = sc;
330 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331 ifp->if_ioctl = fxp_ioctl;
332 ifp->if_start = fxp_start;
333 ifp->if_watchdog = fxp_watchdog;
334
335 /*
336 * Attach the interface.
337 */
338 if_attach(ifp);
339 ether_ifattach(ifp, enaddr);
340 #if NBPFILTER > 0
341 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
342 sizeof(struct ether_header));
343 #endif
344 #if NRND > 0
345 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346 RND_TYPE_NET, 0);
347 #endif
348
349 /*
350 * Add shutdown hook so that DMA is disabled prior to reboot. Not
351 * doing do could allow DMA to corrupt kernel memory during the
352 * reboot before the driver initializes.
353 */
354 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
355 if (sc->sc_sdhook == NULL)
356 printf("%s: WARNING: unable to establish shutdown hook\n",
357 sc->sc_dev.dv_xname);
358 /*
359 * Add suspend hook, for similar reasons..
360 */
361 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
362 if (sc->sc_powerhook == NULL)
363 printf("%s: WARNING: unable to establish power hook\n",
364 sc->sc_dev.dv_xname);
365 return;
366
367 /*
368 * Free any resources we've allocated during the failed attach
369 * attempt. Do this in reverse order and fall though.
370 */
371 fail_5:
372 for (i = 0; i < FXP_NRFABUFS; i++) {
373 if (sc->sc_rxmaps[i] != NULL)
374 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
375 }
376 fail_4:
377 for (i = 0; i < FXP_NTXCB; i++) {
378 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
379 bus_dmamap_destroy(sc->sc_dmat,
380 FXP_DSTX(sc, i)->txs_dmamap);
381 }
382 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
383 fail_3:
384 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
385 fail_2:
386 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
387 sizeof(struct fxp_control_data));
388 fail_1:
389 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
390 fail_0:
391 return;
392 }
393
394 void
395 fxp_mii_initmedia(sc)
396 struct fxp_softc *sc;
397 {
398
399 sc->sc_flags |= FXPF_MII;
400
401 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
402 sc->sc_mii.mii_readreg = fxp_mdi_read;
403 sc->sc_mii.mii_writereg = fxp_mdi_write;
404 sc->sc_mii.mii_statchg = fxp_statchg;
405 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
406 fxp_mii_mediastatus);
407 /*
408 * The i82557 wedges if all of its PHYs are isolated!
409 */
410 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
411 MII_OFFSET_ANY, MIIF_NOISOLATE);
412 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
413 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
414 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else
416 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418
419 void
420 fxp_80c24_initmedia(sc)
421 struct fxp_softc *sc;
422 {
423
424 /*
425 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
426 * doesn't have a programming interface of any sort. The
427 * media is sensed automatically based on how the link partner
428 * is configured. This is, in essence, manual configuration.
429 */
430 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
431 sc->sc_dev.dv_xname);
432 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
433 fxp_80c24_mediastatus);
434 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
435 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
436 }
437
438 /*
439 * Device shutdown routine. Called at system shutdown after sync. The
440 * main purpose of this routine is to shut off receiver DMA so that
441 * kernel memory doesn't get clobbered during warmboot.
442 */
443 void
444 fxp_shutdown(arg)
445 void *arg;
446 {
447 struct fxp_softc *sc = arg;
448
449 /*
450 * Since the system's going to halt shortly, don't bother
451 * freeing mbufs.
452 */
453 fxp_stop(sc, 0);
454 }
455 /*
456 * Power handler routine. Called when the system is transitioning
457 * into/out of power save modes. As with fxp_shutdown, the main
458 * purpose of this routine is to shut off receiver DMA so it doesn't
459 * clobber kernel memory at the wrong time.
460 */
461 void
462 fxp_power(why, arg)
463 int why;
464 void *arg;
465 {
466 struct fxp_softc *sc = arg;
467 struct ifnet *ifp;
468 int s;
469
470 s = splnet();
471 if (why != PWR_RESUME)
472 fxp_stop(sc, 0);
473 else {
474 ifp = &sc->sc_ethercom.ec_if;
475 if (ifp->if_flags & IFF_UP)
476 fxp_init(sc);
477 }
478 splx(s);
479 }
480
481 /*
482 * Initialize the interface media.
483 */
484 void
485 fxp_get_info(sc, enaddr)
486 struct fxp_softc *sc;
487 u_int8_t *enaddr;
488 {
489 u_int16_t data, myea[3];
490
491 /*
492 * Reset to a stable state.
493 */
494 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
495 DELAY(10);
496
497 sc->sc_eeprom_size = 0;
498 fxp_autosize_eeprom(sc);
499 if(sc->sc_eeprom_size == 0) {
500 printf("%s: failed to detect EEPROM size", sc->sc_dev.dv_xname);
501 sc->sc_eeprom_size = 6; /* XXX panic here? */
502 }
503 #ifdef DEBUG
504 printf("%s: detected %d word EEPROM\n",
505 sc->sc_dev.dv_xname,
506 1 << sc->sc_eeprom_size);
507 #endif
508
509 /*
510 * Get info about the primary PHY
511 */
512 fxp_read_eeprom(sc, &data, 6, 1);
513 sc->phy_primary_addr = data & 0xff;
514 sc->phy_primary_device = (data >> 8) & 0x3f;
515 sc->phy_10Mbps_only = data >> 15;
516
517 /*
518 * Read MAC address.
519 */
520 fxp_read_eeprom(sc, myea, 0, 3);
521 bcopy(myea, enaddr, ETHER_ADDR_LEN);
522 }
523
524 /*
525 * Figure out EEPROM size.
526 *
527 * 559's can have either 64-word or 256-word EEPROMs, the 558
528 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
529 * talks about the existance of 16 to 256 word EEPROMs.
530 *
531 * The only known sizes are 64 and 256, where the 256 version is used
532 * by CardBus cards to store CIS information.
533 *
534 * The address is shifted in msb-to-lsb, and after the last
535 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
536 * after which follows the actual data. We try to detect this zero, by
537 * probing the data-out bit in the EEPROM control register just after
538 * having shifted in a bit. If the bit is zero, we assume we've
539 * shifted enough address bits. The data-out should be tri-state,
540 * before this, which should translate to a logical one.
541 *
542 * Other ways to do this would be to try to read a register with known
543 * contents with a varying number of address bits, but no such
544 * register seem to be available. The high bits of register 10 are 01
545 * on the 558 and 559, but apparently not on the 557.
546 *
547 * The Linux driver computes a checksum on the EEPROM data, but the
548 * value of this checksum is not very well documented.
549 */
550
551 void
552 fxp_autosize_eeprom(sc)
553 struct fxp_softc *sc;
554 {
555 u_int16_t reg;
556 int x;
557
558 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
559 /*
560 * Shift in read opcode.
561 */
562 for (x = 3; x > 0; x--) {
563 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
564 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
565 } else {
566 reg = FXP_EEPROM_EECS;
567 }
568 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
569 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
570 reg | FXP_EEPROM_EESK);
571 DELAY(1);
572 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
573 DELAY(1);
574 }
575 /*
576 * Shift in address, wait for the dummy zero following a correct
577 * address shift.
578 */
579 for (x = 1; x <= 8; x++) {
580 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
581 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
582 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
583 DELAY(1);
584 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
585 FXP_EEPROM_EEDO) == 0)
586 break;
587 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
588 DELAY(1);
589 }
590 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
591 DELAY(1);
592 if(x != 6 && x != 8) {
593 #ifdef DEBUG
594 printf("%s: strange EEPROM size (%d)\n",
595 sc->sc_dev.dv_xname, 1 << x);
596 #endif
597 } else
598 sc->sc_eeprom_size = x;
599 }
600
601 /*
602 * Read from the serial EEPROM. Basically, you manually shift in
603 * the read opcode (one bit at a time) and then shift in the address,
604 * and then you shift out the data (all of this one bit at a time).
605 * The word size is 16 bits, so you have to provide the address for
606 * every 16 bits of data.
607 */
608 void
609 fxp_read_eeprom(sc, data, offset, words)
610 struct fxp_softc *sc;
611 u_int16_t *data;
612 int offset;
613 int words;
614 {
615 u_int16_t reg;
616 int i, x;
617
618 for (i = 0; i < words; i++) {
619 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
620 /*
621 * Shift in read opcode.
622 */
623 for (x = 3; x > 0; x--) {
624 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
625 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
626 } else {
627 reg = FXP_EEPROM_EECS;
628 }
629 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
630 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
631 reg | FXP_EEPROM_EESK);
632 DELAY(1);
633 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
634 DELAY(1);
635 }
636 /*
637 * Shift in address.
638 */
639 for (x = sc->sc_eeprom_size; x > 0; x--) {
640 if ((i + offset) & (1 << (x - 1))) {
641 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
642 } else {
643 reg = FXP_EEPROM_EECS;
644 }
645 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
646 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
647 reg | FXP_EEPROM_EESK);
648 DELAY(1);
649 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
650 DELAY(1);
651 }
652 reg = FXP_EEPROM_EECS;
653 data[i] = 0;
654 /*
655 * Shift out data.
656 */
657 for (x = 16; x > 0; x--) {
658 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
659 reg | FXP_EEPROM_EESK);
660 DELAY(1);
661 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
662 FXP_EEPROM_EEDO)
663 data[i] |= (1 << (x - 1));
664 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
665 DELAY(1);
666 }
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
668 DELAY(1);
669 }
670 }
671
672 /*
673 * Start packet transmission on the interface.
674 */
675 void
676 fxp_start(ifp)
677 struct ifnet *ifp;
678 {
679 struct fxp_softc *sc = ifp->if_softc;
680 struct mbuf *m0, *m;
681 struct fxp_cb_tx *txd;
682 struct fxp_txsoft *txs;
683 struct fxp_tbdlist *tbd;
684 bus_dmamap_t dmamap;
685 int error, lasttx, nexttx, opending, seg;
686
687 /*
688 * If we want a re-init, bail out now.
689 */
690 if (sc->sc_flags & FXPF_WANTINIT) {
691 ifp->if_flags |= IFF_OACTIVE;
692 return;
693 }
694
695 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
696 return;
697
698 /*
699 * Remember the previous txpending and the current lasttx.
700 */
701 opending = sc->sc_txpending;
702 lasttx = sc->sc_txlast;
703
704 /*
705 * Loop through the send queue, setting up transmit descriptors
706 * until we drain the queue, or use up all available transmit
707 * descriptors.
708 */
709 while (sc->sc_txpending < FXP_NTXCB) {
710 /*
711 * Grab a packet off the queue.
712 */
713 IF_DEQUEUE(&ifp->if_snd, m0);
714 if (m0 == NULL)
715 break;
716
717 /*
718 * Get the next available transmit descriptor.
719 */
720 nexttx = FXP_NEXTTX(sc->sc_txlast);
721 txd = FXP_CDTX(sc, nexttx);
722 tbd = FXP_CDTBD(sc, nexttx);
723 txs = FXP_DSTX(sc, nexttx);
724 dmamap = txs->txs_dmamap;
725
726 /*
727 * Load the DMA map. If this fails, the packet either
728 * didn't fit in the allotted number of frags, or we were
729 * short on resources. In this case, we'll copy and try
730 * again.
731 */
732 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
733 BUS_DMA_NOWAIT) != 0) {
734 MGETHDR(m, M_DONTWAIT, MT_DATA);
735 if (m == NULL) {
736 printf("%s: unable to allocate Tx mbuf\n",
737 sc->sc_dev.dv_xname);
738 IF_PREPEND(&ifp->if_snd, m0);
739 break;
740 }
741 if (m0->m_pkthdr.len > MHLEN) {
742 MCLGET(m, M_DONTWAIT);
743 if ((m->m_flags & M_EXT) == 0) {
744 printf("%s: unable to allocate Tx "
745 "cluster\n", sc->sc_dev.dv_xname);
746 m_freem(m);
747 IF_PREPEND(&ifp->if_snd, m0);
748 break;
749 }
750 }
751 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
752 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
753 m_freem(m0);
754 m0 = m;
755 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
756 m0, BUS_DMA_NOWAIT);
757 if (error) {
758 printf("%s: unable to load Tx buffer, "
759 "error = %d\n", sc->sc_dev.dv_xname, error);
760 IF_PREPEND(&ifp->if_snd, m0);
761 break;
762 }
763 }
764
765 /* Initialize the fraglist. */
766 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
767 tbd->tbd_d[seg].tb_addr =
768 htole32(dmamap->dm_segs[seg].ds_addr);
769 tbd->tbd_d[seg].tb_size =
770 htole32(dmamap->dm_segs[seg].ds_len);
771 }
772
773 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
774
775 /* Sync the DMA map. */
776 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
777 BUS_DMASYNC_PREWRITE);
778
779 /*
780 * Store a pointer to the packet so we can free it later.
781 */
782 txs->txs_mbuf = m0;
783
784 /*
785 * Initialize the transmit descriptor.
786 */
787 /* BIG_ENDIAN: no need to swap to store 0 */
788 txd->cb_status = 0;
789 txd->cb_command =
790 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
791 txd->tx_threshold = tx_threshold;
792 txd->tbd_number = dmamap->dm_nsegs;
793
794 FXP_CDTXSYNC(sc, nexttx,
795 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
796
797 /* Advance the tx pointer. */
798 sc->sc_txpending++;
799 sc->sc_txlast = nexttx;
800
801 #if NBPFILTER > 0
802 /*
803 * Pass packet to bpf if there is a listener.
804 */
805 if (ifp->if_bpf)
806 bpf_mtap(ifp->if_bpf, m0);
807 #endif
808 }
809
810 if (sc->sc_txpending == FXP_NTXCB) {
811 /* No more slots; notify upper layer. */
812 ifp->if_flags |= IFF_OACTIVE;
813 }
814
815 if (sc->sc_txpending != opending) {
816 /*
817 * We enqueued packets. If the transmitter was idle,
818 * reset the txdirty pointer.
819 */
820 if (opending == 0)
821 sc->sc_txdirty = FXP_NEXTTX(lasttx);
822
823 /*
824 * Cause the chip to interrupt and suspend command
825 * processing once the last packet we've enqueued
826 * has been transmitted.
827 */
828 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
829 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
830 FXP_CDTXSYNC(sc, sc->sc_txlast,
831 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
832
833 /*
834 * The entire packet chain is set up. Clear the suspend bit
835 * on the command prior to the first packet we set up.
836 */
837 FXP_CDTXSYNC(sc, lasttx,
838 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
839 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
840 FXP_CDTXSYNC(sc, lasttx,
841 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
842
843 /*
844 * Issue a Resume command in case the chip was suspended.
845 */
846 fxp_scb_wait(sc);
847 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
848
849 /* Set a watchdog timer in case the chip flakes out. */
850 ifp->if_timer = 5;
851 }
852 }
853
854 /*
855 * Process interface interrupts.
856 */
857 int
858 fxp_intr(arg)
859 void *arg;
860 {
861 struct fxp_softc *sc = arg;
862 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
863 struct fxp_cb_tx *txd;
864 struct fxp_txsoft *txs;
865 struct mbuf *m, *m0;
866 bus_dmamap_t rxmap;
867 struct fxp_rfa *rfa;
868 struct ether_header *eh;
869 int i, claimed = 0;
870 u_int16_t len, rxstat, txstat;
871 u_int8_t statack;
872
873 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
874 return 0;
875 /*
876 * If the interface isn't running, don't try to
877 * service the interrupt.. just ack it and bail.
878 */
879 if ((ifp->if_flags & IFF_RUNNING) == 0) {
880 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
881 if (statack) {
882 claimed = 1;
883 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
884 }
885 return claimed;
886 }
887
888 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
889 claimed = 1;
890
891 /*
892 * First ACK all the interrupts in this pass.
893 */
894 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
895
896 /*
897 * Process receiver interrupts. If a no-resource (RNR)
898 * condition exists, get whatever packets we can and
899 * re-start the receiver.
900 */
901 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
902 rcvloop:
903 m = sc->sc_rxq.ifq_head;
904 rfa = FXP_MTORFA(m);
905 rxmap = M_GETCTX(m, bus_dmamap_t);
906
907 FXP_RFASYNC(sc, m,
908 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
909
910 rxstat = le16toh(rfa->rfa_status);
911
912 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
913 /*
914 * We have processed all of the
915 * receive buffers.
916 */
917 goto do_transmit;
918 }
919
920 IF_DEQUEUE(&sc->sc_rxq, m);
921
922 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
923
924 len = le16toh(rfa->actual_size) &
925 (m->m_ext.ext_size - 1);
926
927 if (len < sizeof(struct ether_header)) {
928 /*
929 * Runt packet; drop it now.
930 */
931 FXP_INIT_RFABUF(sc, m);
932 goto rcvloop;
933 }
934
935 /*
936 * If the packet is small enough to fit in a
937 * single header mbuf, allocate one and copy
938 * the data into it. This greatly reduces
939 * memory consumption when we receive lots
940 * of small packets.
941 *
942 * Otherwise, we add a new buffer to the receive
943 * chain. If this fails, we drop the packet and
944 * recycle the old buffer.
945 */
946 if (fxp_copy_small != 0 && len <= MHLEN) {
947 MGETHDR(m0, M_DONTWAIT, MT_DATA);
948 if (m == NULL)
949 goto dropit;
950 memcpy(mtod(m0, caddr_t),
951 mtod(m, caddr_t), len);
952 FXP_INIT_RFABUF(sc, m);
953 m = m0;
954 } else {
955 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
956 dropit:
957 ifp->if_ierrors++;
958 FXP_INIT_RFABUF(sc, m);
959 goto rcvloop;
960 }
961 }
962
963 m->m_pkthdr.rcvif = ifp;
964 m->m_pkthdr.len = m->m_len = len;
965 eh = mtod(m, struct ether_header *);
966
967 #if NBPFILTER > 0
968 /*
969 * Pass this up to any BPF listeners, but only
970 * pass it up the stack it its for us.
971 */
972 if (ifp->if_bpf) {
973 bpf_mtap(ifp->if_bpf, m);
974
975 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
976 (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
977 (eh->ether_dhost[0] & 1) == 0) {
978 m_freem(m);
979 goto rcvloop;
980 }
981 }
982 #endif /* NBPFILTER > 0 */
983
984 /* Pass it on. */
985 (*ifp->if_input)(ifp, m);
986 goto rcvloop;
987 }
988
989 do_transmit:
990 if (statack & FXP_SCB_STATACK_RNR) {
991 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
992 fxp_scb_wait(sc);
993 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
994 rxmap->dm_segs[0].ds_addr +
995 RFA_ALIGNMENT_FUDGE);
996 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
997 FXP_SCB_COMMAND_RU_START);
998 }
999
1000 /*
1001 * Free any finished transmit mbuf chains.
1002 */
1003 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1004 ifp->if_flags &= ~IFF_OACTIVE;
1005 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1006 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1007 txd = FXP_CDTX(sc, i);
1008 txs = FXP_DSTX(sc, i);
1009
1010 FXP_CDTXSYNC(sc, i,
1011 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1012
1013 txstat = le16toh(txd->cb_status);
1014
1015 if ((txstat & FXP_CB_STATUS_C) == 0)
1016 break;
1017
1018 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1019
1020 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1021 0, txs->txs_dmamap->dm_mapsize,
1022 BUS_DMASYNC_POSTWRITE);
1023 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1024 m_freem(txs->txs_mbuf);
1025 txs->txs_mbuf = NULL;
1026 }
1027
1028 /* Update the dirty transmit buffer pointer. */
1029 sc->sc_txdirty = i;
1030
1031 /*
1032 * Cancel the watchdog timer if there are no pending
1033 * transmissions.
1034 */
1035 if (sc->sc_txpending == 0) {
1036 ifp->if_timer = 0;
1037
1038 /*
1039 * If we want a re-init, do that now.
1040 */
1041 if (sc->sc_flags & FXPF_WANTINIT)
1042 (void) fxp_init(sc);
1043 }
1044
1045 /*
1046 * Try to get more packets going.
1047 */
1048 fxp_start(ifp);
1049 }
1050 }
1051
1052 #if NRND > 0
1053 if (claimed)
1054 rnd_add_uint32(&sc->rnd_source, statack);
1055 #endif
1056 return (claimed);
1057 }
1058
1059 /*
1060 * Update packet in/out/collision statistics. The i82557 doesn't
1061 * allow you to access these counters without doing a fairly
1062 * expensive DMA to get _all_ of the statistics it maintains, so
1063 * we do this operation here only once per second. The statistics
1064 * counters in the kernel are updated from the previous dump-stats
1065 * DMA and then a new dump-stats DMA is started. The on-chip
1066 * counters are zeroed when the DMA completes. If we can't start
1067 * the DMA immediately, we don't wait - we just prepare to read
1068 * them again next time.
1069 */
1070 void
1071 fxp_tick(arg)
1072 void *arg;
1073 {
1074 struct fxp_softc *sc = arg;
1075 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1076 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1077 int s;
1078
1079 s = splnet();
1080
1081 ifp->if_opackets += le32toh(sp->tx_good);
1082 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1083 if (sp->rx_good) {
1084 ifp->if_ipackets += le32toh(sp->rx_good);
1085 sc->sc_rxidle = 0;
1086 } else {
1087 sc->sc_rxidle++;
1088 }
1089 ifp->if_ierrors +=
1090 le32toh(sp->rx_crc_errors) +
1091 le32toh(sp->rx_alignment_errors) +
1092 le32toh(sp->rx_rnr_errors) +
1093 le32toh(sp->rx_overrun_errors);
1094 /*
1095 * If any transmit underruns occured, bump up the transmit
1096 * threshold by another 512 bytes (64 * 8).
1097 */
1098 if (sp->tx_underruns) {
1099 ifp->if_oerrors += le32toh(sp->tx_underruns);
1100 if (tx_threshold < 192)
1101 tx_threshold += 64;
1102 }
1103
1104 /*
1105 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1106 * then assume the receiver has locked up and attempt to clear
1107 * the condition by reprogramming the multicast filter (actually,
1108 * resetting the interface). This is a work-around for a bug in
1109 * the 82557 where the receiver locks up if it gets certain types
1110 * of garbage in the syncronization bits prior to the packet header.
1111 * This bug is supposed to only occur in 10Mbps mode, but has been
1112 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1113 * speed transition).
1114 */
1115 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1116 (void) fxp_init(sc);
1117 splx(s);
1118 return;
1119 }
1120 /*
1121 * If there is no pending command, start another stats
1122 * dump. Otherwise punt for now.
1123 */
1124 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1125 /*
1126 * Start another stats dump.
1127 */
1128 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1129 FXP_SCB_COMMAND_CU_DUMPRESET);
1130 } else {
1131 /*
1132 * A previous command is still waiting to be accepted.
1133 * Just zero our copy of the stats and wait for the
1134 * next timer event to update them.
1135 */
1136 /* BIG_ENDIAN: no swap required to store 0 */
1137 sp->tx_good = 0;
1138 sp->tx_underruns = 0;
1139 sp->tx_total_collisions = 0;
1140
1141 sp->rx_good = 0;
1142 sp->rx_crc_errors = 0;
1143 sp->rx_alignment_errors = 0;
1144 sp->rx_rnr_errors = 0;
1145 sp->rx_overrun_errors = 0;
1146 }
1147
1148 if (sc->sc_flags & FXPF_MII) {
1149 /* Tick the MII clock. */
1150 mii_tick(&sc->sc_mii);
1151 }
1152
1153 splx(s);
1154
1155 /*
1156 * Schedule another timeout one second from now.
1157 */
1158 timeout(fxp_tick, sc, hz);
1159 }
1160
1161 /*
1162 * Drain the receive queue.
1163 */
1164 void
1165 fxp_rxdrain(sc)
1166 struct fxp_softc *sc;
1167 {
1168 bus_dmamap_t rxmap;
1169 struct mbuf *m;
1170
1171 for (;;) {
1172 IF_DEQUEUE(&sc->sc_rxq, m);
1173 if (m == NULL)
1174 break;
1175 rxmap = M_GETCTX(m, bus_dmamap_t);
1176 bus_dmamap_unload(sc->sc_dmat, rxmap);
1177 FXP_RXMAP_PUT(sc, rxmap);
1178 m_freem(m);
1179 }
1180 }
1181
1182 /*
1183 * Stop the interface. Cancels the statistics updater and resets
1184 * the interface.
1185 */
1186 void
1187 fxp_stop(sc, drain)
1188 struct fxp_softc *sc;
1189 int drain;
1190 {
1191 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1192 struct fxp_txsoft *txs;
1193 int i;
1194
1195 /*
1196 * Turn down interface (done early to avoid bad interactions
1197 * between panics, shutdown hooks, and the watchdog timer)
1198 */
1199 ifp->if_timer = 0;
1200 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1201
1202 /*
1203 * Cancel stats updater.
1204 */
1205 untimeout(fxp_tick, sc);
1206 if (sc->sc_flags & FXPF_MII) {
1207 /* Down the MII. */
1208 mii_down(&sc->sc_mii);
1209 }
1210
1211 /*
1212 * Issue software reset
1213 */
1214 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1215 DELAY(10);
1216
1217 /*
1218 * Release any xmit buffers.
1219 */
1220 for (i = 0; i < FXP_NTXCB; i++) {
1221 txs = FXP_DSTX(sc, i);
1222 if (txs->txs_mbuf != NULL) {
1223 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1224 m_freem(txs->txs_mbuf);
1225 txs->txs_mbuf = NULL;
1226 }
1227 }
1228 sc->sc_txpending = 0;
1229
1230 if (drain) {
1231 /*
1232 * Release the receive buffers.
1233 */
1234 fxp_rxdrain(sc);
1235 }
1236
1237 }
1238
1239 /*
1240 * Watchdog/transmission transmit timeout handler. Called when a
1241 * transmission is started on the interface, but no interrupt is
1242 * received before the timeout. This usually indicates that the
1243 * card has wedged for some reason.
1244 */
1245 void
1246 fxp_watchdog(ifp)
1247 struct ifnet *ifp;
1248 {
1249 struct fxp_softc *sc = ifp->if_softc;
1250
1251 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1252 ifp->if_oerrors++;
1253
1254 (void) fxp_init(sc);
1255 }
1256
1257 /*
1258 * Initialize the interface. Must be called at splnet().
1259 */
1260 int
1261 fxp_init(sc)
1262 struct fxp_softc *sc;
1263 {
1264 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1265 struct fxp_cb_config *cbp;
1266 struct fxp_cb_ias *cb_ias;
1267 struct fxp_cb_tx *txd;
1268 bus_dmamap_t rxmap;
1269 int i, prm, allm, error = 0;
1270
1271 /*
1272 * Cancel any pending I/O
1273 */
1274 fxp_stop(sc, 0);
1275
1276 sc->sc_flags = 0;
1277
1278 /*
1279 * Initialize base of CBL and RFA memory. Loading with zero
1280 * sets it up for regular linear addressing.
1281 */
1282 fxp_scb_wait(sc);
1283 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1284 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1285
1286 fxp_scb_wait(sc);
1287 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1288
1289 /*
1290 * Initialize the multicast filter. Do this now, since we might
1291 * have to setup the config block differently.
1292 */
1293 fxp_mc_setup(sc);
1294
1295 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1296 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1297
1298 /*
1299 * Initialize base of dump-stats buffer.
1300 */
1301 fxp_scb_wait(sc);
1302 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1303 sc->sc_cddma + FXP_CDSTATSOFF);
1304 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1305
1306 cbp = &sc->sc_control_data->fcd_configcb;
1307 memset(cbp, 0, sizeof(struct fxp_cb_config));
1308
1309 /*
1310 * This copy is kind of disgusting, but there are a bunch of must be
1311 * zero and must be one bits in this structure and this is the easiest
1312 * way to initialize them all to proper values.
1313 */
1314 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1315
1316 /* BIG_ENDIAN: no need to swap to store 0 */
1317 cbp->cb_status = 0;
1318 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1319 FXP_CB_COMMAND_EL);
1320 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1321 cbp->link_addr = 0xffffffff; /* (no) next command */
1322 cbp->byte_count = 22; /* (22) bytes to config */
1323 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1324 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1325 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1326 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1327 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1328 cbp->dma_bce = 0; /* (disable) dma max counters */
1329 cbp->late_scb = 0; /* (don't) defer SCB update */
1330 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1331 cbp->ci_int = 1; /* interrupt on CU idle */
1332 cbp->save_bf = prm; /* save bad frames */
1333 cbp->disc_short_rx = !prm; /* discard short packets */
1334 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1335 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1336 cbp->nsai = 1; /* (don't) disable source addr insert */
1337 cbp->preamble_length = 2; /* (7 byte) preamble */
1338 cbp->loopback = 0; /* (don't) loopback */
1339 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1340 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1341 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1342 cbp->promiscuous = prm; /* promiscuous mode */
1343 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1344 cbp->crscdt = 0; /* (CRS only) */
1345 cbp->stripping = !prm; /* truncate rx packet to byte count */
1346 cbp->padding = 1; /* (do) pad short tx packets */
1347 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1348 cbp->force_fdx = 0; /* (don't) force full duplex */
1349 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1350 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1351 cbp->mc_all = allm; /* accept all multicasts */
1352
1353 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1354
1355 /*
1356 * Start the config command/DMA.
1357 */
1358 fxp_scb_wait(sc);
1359 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1360 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1361 /* ...and wait for it to complete. */
1362 do {
1363 FXP_CDCONFIGSYNC(sc,
1364 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1365 } while ((cbp->cb_status & FXP_CB_STATUS_C) == 0);
1366
1367 /*
1368 * Initialize the station address.
1369 */
1370 cb_ias = &sc->sc_control_data->fcd_iascb;
1371 /* BIG_ENDIAN: no need to swap to store 0 */
1372 cb_ias->cb_status = 0;
1373 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1374 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1375 cb_ias->link_addr = 0xffffffff;
1376 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1377
1378 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1379
1380 /*
1381 * Start the IAS (Individual Address Setup) command/DMA.
1382 */
1383 fxp_scb_wait(sc);
1384 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1385 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1386 /* ...and wait for it to complete. */
1387 do {
1388 FXP_CDIASSYNC(sc,
1389 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1390 } while ((cb_ias->cb_status & FXP_CB_STATUS_C) == 0);
1391
1392 /*
1393 * Initialize the transmit descriptor ring. txlast is initialized
1394 * to the end of the list so that it will wrap around to the first
1395 * descriptor when the first packet is transmitted.
1396 */
1397 for (i = 0; i < FXP_NTXCB; i++) {
1398 txd = FXP_CDTX(sc, i);
1399 memset(txd, 0, sizeof(struct fxp_cb_tx));
1400 txd->cb_command =
1401 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1402 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1403 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1404 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1405 }
1406 sc->sc_txpending = 0;
1407 sc->sc_txdirty = 0;
1408 sc->sc_txlast = FXP_NTXCB - 1;
1409
1410 /*
1411 * Initialize the receive buffer list.
1412 */
1413 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1414 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1415 rxmap = FXP_RXMAP_GET(sc);
1416 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1417 printf("%s: unable to allocate or map rx "
1418 "buffer %d, error = %d\n",
1419 sc->sc_dev.dv_xname,
1420 sc->sc_rxq.ifq_len, error);
1421 /*
1422 * XXX Should attempt to run with fewer receive
1423 * XXX buffers instead of just failing.
1424 */
1425 FXP_RXMAP_PUT(sc, rxmap);
1426 fxp_rxdrain(sc);
1427 goto out;
1428 }
1429 }
1430 sc->sc_rxidle = 0;
1431
1432 /*
1433 * Give the transmit ring to the chip. We do this by pointing
1434 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1435 * issuing a start command. It will execute the NOP and then
1436 * suspend, pointing at the first descriptor.
1437 */
1438 fxp_scb_wait(sc);
1439 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1440 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1441
1442 /*
1443 * Initialize receiver buffer area - RFA.
1444 */
1445 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1446 fxp_scb_wait(sc);
1447 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1448 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1449 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1450
1451 if (sc->sc_flags & FXPF_MII) {
1452 /*
1453 * Set current media.
1454 */
1455 mii_mediachg(&sc->sc_mii);
1456 }
1457
1458 /*
1459 * ...all done!
1460 */
1461 ifp->if_flags |= IFF_RUNNING;
1462 ifp->if_flags &= ~IFF_OACTIVE;
1463
1464 /*
1465 * Start the one second timer.
1466 */
1467 timeout(fxp_tick, sc, hz);
1468
1469 /*
1470 * Attempt to start output on the interface.
1471 */
1472 fxp_start(ifp);
1473
1474 out:
1475 if (error)
1476 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1477 return (error);
1478 }
1479
1480 /*
1481 * Change media according to request.
1482 */
1483 int
1484 fxp_mii_mediachange(ifp)
1485 struct ifnet *ifp;
1486 {
1487 struct fxp_softc *sc = ifp->if_softc;
1488
1489 if (ifp->if_flags & IFF_UP)
1490 mii_mediachg(&sc->sc_mii);
1491 return (0);
1492 }
1493
1494 /*
1495 * Notify the world which media we're using.
1496 */
1497 void
1498 fxp_mii_mediastatus(ifp, ifmr)
1499 struct ifnet *ifp;
1500 struct ifmediareq *ifmr;
1501 {
1502 struct fxp_softc *sc = ifp->if_softc;
1503
1504 if(sc->sc_enabled == 0) {
1505 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1506 ifmr->ifm_status = 0;
1507 return;
1508 }
1509
1510 mii_pollstat(&sc->sc_mii);
1511 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1512 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1513 }
1514
1515 int
1516 fxp_80c24_mediachange(ifp)
1517 struct ifnet *ifp;
1518 {
1519
1520 /* Nothing to do here. */
1521 return (0);
1522 }
1523
1524 void
1525 fxp_80c24_mediastatus(ifp, ifmr)
1526 struct ifnet *ifp;
1527 struct ifmediareq *ifmr;
1528 {
1529 struct fxp_softc *sc = ifp->if_softc;
1530
1531 /*
1532 * Media is currently-selected media. We cannot determine
1533 * the link status.
1534 */
1535 ifmr->ifm_status = 0;
1536 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1537 }
1538
1539 /*
1540 * Add a buffer to the end of the RFA buffer list.
1541 * Return 0 if successful, error code on failure.
1542 *
1543 * The RFA struct is stuck at the beginning of mbuf cluster and the
1544 * data pointer is fixed up to point just past it.
1545 */
1546 int
1547 fxp_add_rfabuf(sc, rxmap, unload)
1548 struct fxp_softc *sc;
1549 bus_dmamap_t rxmap;
1550 int unload;
1551 {
1552 struct mbuf *m;
1553 int error;
1554
1555 MGETHDR(m, M_DONTWAIT, MT_DATA);
1556 if (m == NULL)
1557 return (ENOBUFS);
1558
1559 MCLGET(m, M_DONTWAIT);
1560 if ((m->m_flags & M_EXT) == 0) {
1561 m_freem(m);
1562 return (ENOBUFS);
1563 }
1564
1565 if (unload)
1566 bus_dmamap_unload(sc->sc_dmat, rxmap);
1567
1568 M_SETCTX(m, rxmap);
1569
1570 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1571 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1572 if (error) {
1573 printf("%s: can't load rx DMA map %d, error = %d\n",
1574 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1575 panic("fxp_add_rfabuf"); /* XXX */
1576 }
1577
1578 FXP_INIT_RFABUF(sc, m);
1579
1580 return (0);
1581 }
1582
1583 volatile int
1584 fxp_mdi_read(self, phy, reg)
1585 struct device *self;
1586 int phy;
1587 int reg;
1588 {
1589 struct fxp_softc *sc = (struct fxp_softc *)self;
1590 int count = 10000;
1591 int value;
1592
1593 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1594 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1595
1596 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1597 && count--)
1598 DELAY(10);
1599
1600 if (count <= 0)
1601 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1602
1603 return (value & 0xffff);
1604 }
1605
1606 void
1607 fxp_statchg(self)
1608 struct device *self;
1609 {
1610
1611 /* XXX Update ifp->if_baudrate */
1612 }
1613
1614 void
1615 fxp_mdi_write(self, phy, reg, value)
1616 struct device *self;
1617 int phy;
1618 int reg;
1619 int value;
1620 {
1621 struct fxp_softc *sc = (struct fxp_softc *)self;
1622 int count = 10000;
1623
1624 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1625 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1626 (value & 0xffff));
1627
1628 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1629 count--)
1630 DELAY(10);
1631
1632 if (count <= 0)
1633 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1634 }
1635
1636 int
1637 fxp_ioctl(ifp, command, data)
1638 struct ifnet *ifp;
1639 u_long command;
1640 caddr_t data;
1641 {
1642 struct fxp_softc *sc = ifp->if_softc;
1643 struct ifreq *ifr = (struct ifreq *)data;
1644 struct ifaddr *ifa = (struct ifaddr *)data;
1645 int s, error = 0;
1646
1647 s = splnet();
1648
1649 switch (command) {
1650 case SIOCSIFADDR:
1651 if ((error = fxp_enable(sc)) != 0)
1652 break;
1653 ifp->if_flags |= IFF_UP;
1654
1655 switch (ifa->ifa_addr->sa_family) {
1656 #ifdef INET
1657 case AF_INET:
1658 if ((error = fxp_init(sc)) != 0)
1659 break;
1660 arp_ifinit(ifp, ifa);
1661 break;
1662 #endif /* INET */
1663 #ifdef NS
1664 case AF_NS:
1665 {
1666 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1667
1668 if (ns_nullhost(*ina))
1669 ina->x_host = *(union ns_host *)
1670 LLADDR(ifp->if_sadl);
1671 else
1672 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1673 ifp->if_addrlen);
1674 /* Set new address. */
1675 error = fxp_init(sc);
1676 break;
1677 }
1678 #endif /* NS */
1679 default:
1680 error = fxp_init(sc);
1681 break;
1682 }
1683 break;
1684
1685 case SIOCSIFMTU:
1686 if (ifr->ifr_mtu > ETHERMTU)
1687 error = EINVAL;
1688 else
1689 ifp->if_mtu = ifr->ifr_mtu;
1690 break;
1691
1692 case SIOCSIFFLAGS:
1693 if ((ifp->if_flags & IFF_UP) == 0 &&
1694 (ifp->if_flags & IFF_RUNNING) != 0) {
1695 /*
1696 * If interface is marked down and it is running, then
1697 * stop it.
1698 */
1699 fxp_stop(sc, 1);
1700 fxp_disable(sc);
1701 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1702 (ifp->if_flags & IFF_RUNNING) == 0) {
1703 /*
1704 * If interface is marked up and it is stopped, then
1705 * start it.
1706 */
1707 if((error = fxp_enable(sc)) != 0)
1708 break;
1709 error = fxp_init(sc);
1710 } else if ((ifp->if_flags & IFF_UP) != 0) {
1711 /*
1712 * Reset the interface to pick up change in any other
1713 * flags that affect the hardware state.
1714 */
1715 if((error = fxp_enable(sc)) != 0)
1716 break;
1717 error = fxp_init(sc);
1718 }
1719 break;
1720
1721 case SIOCADDMULTI:
1722 case SIOCDELMULTI:
1723 if(sc->sc_enabled == 0) {
1724 error = EIO;
1725 break;
1726 }
1727 error = (command == SIOCADDMULTI) ?
1728 ether_addmulti(ifr, &sc->sc_ethercom) :
1729 ether_delmulti(ifr, &sc->sc_ethercom);
1730
1731 if (error == ENETRESET) {
1732 /*
1733 * Multicast list has changed; set the hardware
1734 * filter accordingly.
1735 */
1736 if (sc->sc_txpending) {
1737 sc->sc_flags |= FXPF_WANTINIT;
1738 error = 0;
1739 } else
1740 error = fxp_init(sc);
1741 }
1742 break;
1743
1744 case SIOCSIFMEDIA:
1745 case SIOCGIFMEDIA:
1746 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1747 break;
1748
1749 default:
1750 error = EINVAL;
1751 break;
1752 }
1753
1754 splx(s);
1755 return (error);
1756 }
1757
1758 /*
1759 * Program the multicast filter.
1760 *
1761 * This function must be called at splnet().
1762 */
1763 void
1764 fxp_mc_setup(sc)
1765 struct fxp_softc *sc;
1766 {
1767 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1768 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1769 struct ethercom *ec = &sc->sc_ethercom;
1770 struct ether_multi *enm;
1771 struct ether_multistep step;
1772 int nmcasts;
1773
1774 #ifdef DIAGNOSTIC
1775 if (sc->sc_txpending)
1776 panic("fxp_mc_setup: pending transmissions");
1777 #endif
1778
1779 ifp->if_flags &= ~IFF_ALLMULTI;
1780
1781 /*
1782 * Initialize multicast setup descriptor.
1783 */
1784 nmcasts = 0;
1785 ETHER_FIRST_MULTI(step, ec, enm);
1786 while (enm != NULL) {
1787 /*
1788 * Check for too many multicast addresses or if we're
1789 * listening to a range. Either way, we simply have
1790 * to accept all multicasts.
1791 */
1792 if (nmcasts >= MAXMCADDR ||
1793 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1794 ETHER_ADDR_LEN) != 0) {
1795 /*
1796 * Callers of this function must do the
1797 * right thing with this. If we're called
1798 * from outside fxp_init(), the caller must
1799 * detect if the state if IFF_ALLMULTI changes.
1800 * If it does, the caller must then call
1801 * fxp_init(), since allmulti is handled by
1802 * the config block.
1803 */
1804 ifp->if_flags |= IFF_ALLMULTI;
1805 return;
1806 }
1807 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1808 ETHER_ADDR_LEN);
1809 nmcasts++;
1810 ETHER_NEXT_MULTI(step, enm);
1811 }
1812
1813 /* BIG_ENDIAN: no need to swap to store 0 */
1814 mcsp->cb_status = 0;
1815 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1816 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1817 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1818
1819 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1820
1821 /*
1822 * Wait until the command unit is not active. This should never
1823 * happen since nothing is queued, but make sure anyway.
1824 */
1825 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1826 FXP_SCB_CUS_ACTIVE)
1827 /* nothing */ ;
1828
1829 /*
1830 * Start the multicast setup command/DMA.
1831 */
1832 fxp_scb_wait(sc);
1833 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1834 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1835
1836 /* ...and wait for it to complete. */
1837 do {
1838 FXP_CDMCSSYNC(sc,
1839 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1840 } while ((mcsp->cb_status & FXP_CB_STATUS_C) == 0);
1841 }
1842
1843 int
1844 fxp_enable(sc)
1845 struct fxp_softc *sc;
1846 {
1847
1848 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1849 if ((*sc->sc_enable)(sc) != 0) {
1850 printf("%s: device enable failed\n",
1851 sc->sc_dev.dv_xname);
1852 return (EIO);
1853 }
1854 }
1855
1856 sc->sc_enabled = 1;
1857
1858 return 0;
1859 }
1860
1861 void
1862 fxp_disable(sc)
1863 struct fxp_softc *sc;
1864 {
1865 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1866 (*sc->sc_disable)(sc);
1867 sc->sc_enabled = 0;
1868 }
1869 }
1870
1871
1872
1873 int
1874 fxp_detach(sc)
1875 struct fxp_softc *sc;
1876 {
1877 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1878 int i;
1879
1880 /* Unhook our tick handler. */
1881 untimeout(fxp_tick, sc);
1882
1883 if (sc->sc_flags & FXPF_MII) {
1884 /* Detach all PHYs */
1885 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1886 }
1887
1888 /* Delete all remaining media. */
1889 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1890
1891 #if NRND > 0
1892 rnd_detach_source(&sc->rnd_source);
1893 #endif
1894 #if NBPFILTER > 0
1895 bpfdetach(ifp);
1896 #endif
1897 ether_ifdetach(ifp);
1898 if_detach(ifp);
1899
1900 for (i = 0; i < FXP_NRFABUFS; i++) {
1901 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1902 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1903 }
1904
1905 for (i = 0; i < FXP_NTXCB; i++) {
1906 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1907 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1908 }
1909
1910
1911 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1912 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1913 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1914 sizeof(struct fxp_control_data));
1915 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1916
1917 shutdownhook_disestablish(sc->sc_sdhook);
1918
1919 return (0);
1920 }
1921