Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.23
      1 /*	$NetBSD: i82557.c,v 1.23 2000/03/20 07:52:58 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice unmodified, this list of conditions, and the following
     49  *    disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
     67  */
     68 
     69 /*
     70  * Device driver for the Intel i82557 fast Ethernet controller,
     71  * and its successors, the i82558 and i82559.
     72  */
     73 
     74 #include "opt_inet.h"
     75 #include "opt_ns.h"
     76 #include "bpfilter.h"
     77 #include "rnd.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/malloc.h>
     83 #include <sys/kernel.h>
     84 #include <sys/socket.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/errno.h>
     87 #include <sys/device.h>
     88 
     89 #include <machine/endian.h>
     90 
     91 #include <vm/vm.h>		/* for PAGE_SIZE */
     92 
     93 #if NRND > 0
     94 #include <sys/rnd.h>
     95 #endif
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #if NBPFILTER > 0
    103 #include <net/bpf.h>
    104 #endif
    105 
    106 #ifdef INET
    107 #include <netinet/in.h>
    108 #include <netinet/if_inarp.h>
    109 #endif
    110 
    111 #ifdef NS
    112 #include <netns/ns.h>
    113 #include <netns/ns_if.h>
    114 #endif
    115 
    116 #include <machine/bus.h>
    117 #include <machine/intr.h>
    118 
    119 #include <dev/mii/miivar.h>
    120 
    121 #include <dev/ic/i82557reg.h>
    122 #include <dev/ic/i82557var.h>
    123 
    124 /*
    125  * NOTE!  On the Alpha, we have an alignment constraint.  The
    126  * card DMAs the packet immediately following the RFA.  However,
    127  * the first thing in the packet is a 14-byte Ethernet header.
    128  * This means that the packet is misaligned.  To compensate,
    129  * we actually offset the RFA 2 bytes into the cluster.  This
    130  * alignes the packet after the Ethernet header at a 32-bit
    131  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    132  */
    133 #define	RFA_ALIGNMENT_FUDGE	2
    134 
    135 /*
    136  * Template for default configuration parameters.
    137  * See struct fxp_cb_config for the bit definitions.
    138  */
    139 u_int8_t fxp_cb_config_template[] = {
    140 	0x0, 0x0,		/* cb_status */
    141 	0x80, 0x2,		/* cb_command */
    142 	0xff, 0xff, 0xff, 0xff,	/* link_addr */
    143 	0x16,	/*  0 */
    144 	0x8,	/*  1 */
    145 	0x0,	/*  2 */
    146 	0x0,	/*  3 */
    147 	0x0,	/*  4 */
    148 	0x80,	/*  5 */
    149 	0xb2,	/*  6 */
    150 	0x3,	/*  7 */
    151 	0x1,	/*  8 */
    152 	0x0,	/*  9 */
    153 	0x26,	/* 10 */
    154 	0x0,	/* 11 */
    155 	0x60,	/* 12 */
    156 	0x0,	/* 13 */
    157 	0xf2,	/* 14 */
    158 	0x48,	/* 15 */
    159 	0x0,	/* 16 */
    160 	0x40,	/* 17 */
    161 	0xf3,	/* 18 */
    162 	0x0,	/* 19 */
    163 	0x3f,	/* 20 */
    164 	0x5	/* 21 */
    165 };
    166 
    167 void	fxp_mii_initmedia __P((struct fxp_softc *));
    168 int	fxp_mii_mediachange __P((struct ifnet *));
    169 void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
    170 
    171 void	fxp_80c24_initmedia __P((struct fxp_softc *));
    172 int	fxp_80c24_mediachange __P((struct ifnet *));
    173 void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
    174 
    175 inline void fxp_scb_wait __P((struct fxp_softc *));
    176 
    177 void	fxp_start __P((struct ifnet *));
    178 int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
    179 int	fxp_init __P((struct fxp_softc *));
    180 void	fxp_rxdrain __P((struct fxp_softc *));
    181 void	fxp_stop __P((struct fxp_softc *, int));
    182 void	fxp_watchdog __P((struct ifnet *));
    183 int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
    184 int	fxp_mdi_read __P((struct device *, int, int));
    185 void	fxp_statchg __P((struct device *));
    186 void	fxp_mdi_write __P((struct device *, int, int, int));
    187 void	fxp_autosize_eeprom __P((struct fxp_softc*));
    188 void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
    189 void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
    190 void	fxp_tick __P((void *));
    191 void	fxp_mc_setup __P((struct fxp_softc *));
    192 
    193 void	fxp_shutdown __P((void *));
    194 void	fxp_power __P((int, void *));
    195 
    196 int	fxp_copy_small = 0;
    197 
    198 int	fxp_enable __P((struct fxp_softc*));
    199 void	fxp_disable __P((struct fxp_softc*));
    200 
    201 struct fxp_phytype {
    202 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    203 	void	(*fp_init) __P((struct fxp_softc *));
    204 } fxp_phytype_table[] = {
    205 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    206 	{ -1,				fxp_mii_initmedia },
    207 };
    208 
    209 /*
    210  * Set initial transmit threshold at 64 (512 bytes). This is
    211  * increased by 64 (512 bytes) at a time, to maximum of 192
    212  * (1536 bytes), if an underrun occurs.
    213  */
    214 static int tx_threshold = 64;
    215 
    216 /*
    217  * Wait for the previous command to be accepted (but not necessarily
    218  * completed).
    219  */
    220 inline void
    221 fxp_scb_wait(sc)
    222 	struct fxp_softc *sc;
    223 {
    224 	int i = 10000;
    225 
    226 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    227 		delay(2);
    228 	if (i == 0)
    229 		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    230 }
    231 
    232 /*
    233  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    234  */
    235 void
    236 fxp_attach(sc)
    237 	struct fxp_softc *sc;
    238 {
    239 	u_int8_t enaddr[6];
    240 	struct ifnet *ifp;
    241 	bus_dma_segment_t seg;
    242 	int rseg, i, error;
    243 	struct fxp_phytype *fp;
    244 
    245 	/*
    246 	 * Allocate the control data structures, and create and load the
    247 	 * DMA map for it.
    248 	 */
    249 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    250 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    251 	    0)) != 0) {
    252 		printf("%s: unable to allocate control data, error = %d\n",
    253 		    sc->sc_dev.dv_xname, error);
    254 		goto fail_0;
    255 	}
    256 
    257 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    258 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
    259 	    BUS_DMA_COHERENT)) != 0) {
    260 		printf("%s: unable to map control data, error = %d\n",
    261 		    sc->sc_dev.dv_xname, error);
    262 		goto fail_1;
    263 	}
    264 	sc->sc_cdseg = seg;
    265 	sc->sc_cdnseg = rseg;
    266 
    267 	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
    268 
    269 	if ((error = bus_dmamap_create(sc->sc_dmat,
    270 	    sizeof(struct fxp_control_data), 1,
    271 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    272 		printf("%s: unable to create control data DMA map, "
    273 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    274 		goto fail_2;
    275 	}
    276 
    277 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    278 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    279 	    0)) != 0) {
    280 		printf("%s: can't load control data DMA map, error = %d\n",
    281 		    sc->sc_dev.dv_xname, error);
    282 		goto fail_3;
    283 	}
    284 
    285 	/*
    286 	 * Create the transmit buffer DMA maps.
    287 	 */
    288 	for (i = 0; i < FXP_NTXCB; i++) {
    289 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    290 		    FXP_NTXSEG, MCLBYTES, 0, 0,
    291 		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    292 			printf("%s: unable to create tx DMA map %d, "
    293 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    294 			goto fail_4;
    295 		}
    296 	}
    297 
    298 	/*
    299 	 * Create the receive buffer DMA maps.
    300 	 */
    301 	for (i = 0; i < FXP_NRFABUFS; i++) {
    302 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    303 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    304 			printf("%s: unable to create rx DMA map %d, "
    305 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    306 			goto fail_5;
    307 		}
    308 	}
    309 
    310 	/* Initialize MAC address and media structures. */
    311 	fxp_get_info(sc, enaddr);
    312 
    313 	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
    314 	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
    315 
    316 	ifp = &sc->sc_ethercom.ec_if;
    317 
    318 	/*
    319 	 * Get info about our media interface, and initialize it.  Note
    320 	 * the table terminates itself with a phy of -1, indicating
    321 	 * that we're using MII.
    322 	 */
    323 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    324 		if (fp->fp_phy == sc->phy_primary_device)
    325 			break;
    326 	(*fp->fp_init)(sc);
    327 
    328 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    329 	ifp->if_softc = sc;
    330 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    331 	ifp->if_ioctl = fxp_ioctl;
    332 	ifp->if_start = fxp_start;
    333 	ifp->if_watchdog = fxp_watchdog;
    334 
    335 	/*
    336 	 * Attach the interface.
    337 	 */
    338 	if_attach(ifp);
    339 	ether_ifattach(ifp, enaddr);
    340 #if NBPFILTER > 0
    341 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    342 	    sizeof(struct ether_header));
    343 #endif
    344 #if NRND > 0
    345 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    346 	    RND_TYPE_NET, 0);
    347 #endif
    348 
    349 	/*
    350 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    351 	 * doing do could allow DMA to corrupt kernel memory during the
    352 	 * reboot before the driver initializes.
    353 	 */
    354 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    355 	if (sc->sc_sdhook == NULL)
    356 		printf("%s: WARNING: unable to establish shutdown hook\n",
    357 		    sc->sc_dev.dv_xname);
    358 	/*
    359   	 * Add suspend hook, for similar reasons..
    360 	 */
    361 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
    362 	if (sc->sc_powerhook == NULL)
    363 		printf("%s: WARNING: unable to establish power hook\n",
    364 		    sc->sc_dev.dv_xname);
    365 	return;
    366 
    367 	/*
    368 	 * Free any resources we've allocated during the failed attach
    369 	 * attempt.  Do this in reverse order and fall though.
    370 	 */
    371  fail_5:
    372 	for (i = 0; i < FXP_NRFABUFS; i++) {
    373 		if (sc->sc_rxmaps[i] != NULL)
    374 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    375 	}
    376  fail_4:
    377 	for (i = 0; i < FXP_NTXCB; i++) {
    378 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    379 			bus_dmamap_destroy(sc->sc_dmat,
    380 			    FXP_DSTX(sc, i)->txs_dmamap);
    381 	}
    382 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    383  fail_3:
    384 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    385  fail_2:
    386 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    387 	    sizeof(struct fxp_control_data));
    388  fail_1:
    389 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    390  fail_0:
    391 	return;
    392 }
    393 
    394 void
    395 fxp_mii_initmedia(sc)
    396 	struct fxp_softc *sc;
    397 {
    398 
    399 	sc->sc_flags |= FXPF_MII;
    400 
    401 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    402 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    403 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    404 	sc->sc_mii.mii_statchg = fxp_statchg;
    405 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
    406 	    fxp_mii_mediastatus);
    407 	/*
    408 	 * The i82557 wedges if all of its PHYs are isolated!
    409 	 */
    410 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    411 	    MII_OFFSET_ANY, MIIF_NOISOLATE);
    412 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    413 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    414 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    415 	} else
    416 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    417 }
    418 
    419 void
    420 fxp_80c24_initmedia(sc)
    421 	struct fxp_softc *sc;
    422 {
    423 
    424 	/*
    425 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    426 	 * doesn't have a programming interface of any sort.  The
    427 	 * media is sensed automatically based on how the link partner
    428 	 * is configured.  This is, in essence, manual configuration.
    429 	 */
    430 	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    431 	    sc->sc_dev.dv_xname);
    432 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    433 	    fxp_80c24_mediastatus);
    434 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    435 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    436 }
    437 
    438 /*
    439  * Device shutdown routine. Called at system shutdown after sync. The
    440  * main purpose of this routine is to shut off receiver DMA so that
    441  * kernel memory doesn't get clobbered during warmboot.
    442  */
    443 void
    444 fxp_shutdown(arg)
    445 	void *arg;
    446 {
    447 	struct fxp_softc *sc = arg;
    448 
    449 	/*
    450 	 * Since the system's going to halt shortly, don't bother
    451 	 * freeing mbufs.
    452 	 */
    453 	fxp_stop(sc, 0);
    454 }
    455 /*
    456  * Power handler routine. Called when the system is transitioning
    457  * into/out of power save modes.  As with fxp_shutdown, the main
    458  * purpose of this routine is to shut off receiver DMA so it doesn't
    459  * clobber kernel memory at the wrong time.
    460  */
    461 void
    462 fxp_power(why, arg)
    463 	int why;
    464 	void *arg;
    465 {
    466 	struct fxp_softc *sc = arg;
    467 	struct ifnet *ifp;
    468 	int s;
    469 
    470 	s = splnet();
    471 	if (why != PWR_RESUME)
    472 		fxp_stop(sc, 0);
    473 	else {
    474 		ifp = &sc->sc_ethercom.ec_if;
    475 		if (ifp->if_flags & IFF_UP)
    476 			fxp_init(sc);
    477 	}
    478 	splx(s);
    479 }
    480 
    481 /*
    482  * Initialize the interface media.
    483  */
    484 void
    485 fxp_get_info(sc, enaddr)
    486 	struct fxp_softc *sc;
    487 	u_int8_t *enaddr;
    488 {
    489 	u_int16_t data, myea[3];
    490 
    491 	/*
    492 	 * Reset to a stable state.
    493 	 */
    494 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    495 	DELAY(10);
    496 
    497 	sc->sc_eeprom_size = 0;
    498 	fxp_autosize_eeprom(sc);
    499 	if(sc->sc_eeprom_size == 0) {
    500 	    printf("%s: failed to detect EEPROM size", sc->sc_dev.dv_xname);
    501 	    sc->sc_eeprom_size = 6; /* XXX panic here? */
    502 	}
    503 #ifdef DEBUG
    504 	printf("%s: detected %d word EEPROM\n",
    505 	       sc->sc_dev.dv_xname,
    506 	       1 << sc->sc_eeprom_size);
    507 #endif
    508 
    509 	/*
    510 	 * Get info about the primary PHY
    511 	 */
    512 	fxp_read_eeprom(sc, &data, 6, 1);
    513 	sc->phy_primary_addr = data & 0xff;
    514 	sc->phy_primary_device = (data >> 8) & 0x3f;
    515 	sc->phy_10Mbps_only = data >> 15;
    516 
    517 	/*
    518 	 * Read MAC address.
    519 	 */
    520 	fxp_read_eeprom(sc, myea, 0, 3);
    521 	bcopy(myea, enaddr, ETHER_ADDR_LEN);
    522 }
    523 
    524 /*
    525  * Figure out EEPROM size.
    526  *
    527  * 559's can have either 64-word or 256-word EEPROMs, the 558
    528  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    529  * talks about the existance of 16 to 256 word EEPROMs.
    530  *
    531  * The only known sizes are 64 and 256, where the 256 version is used
    532  * by CardBus cards to store CIS information.
    533  *
    534  * The address is shifted in msb-to-lsb, and after the last
    535  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    536  * after which follows the actual data. We try to detect this zero, by
    537  * probing the data-out bit in the EEPROM control register just after
    538  * having shifted in a bit. If the bit is zero, we assume we've
    539  * shifted enough address bits. The data-out should be tri-state,
    540  * before this, which should translate to a logical one.
    541  *
    542  * Other ways to do this would be to try to read a register with known
    543  * contents with a varying number of address bits, but no such
    544  * register seem to be available. The high bits of register 10 are 01
    545  * on the 558 and 559, but apparently not on the 557.
    546  *
    547  * The Linux driver computes a checksum on the EEPROM data, but the
    548  * value of this checksum is not very well documented.
    549  */
    550 
    551 void
    552 fxp_autosize_eeprom(sc)
    553 	struct fxp_softc *sc;
    554 {
    555 	u_int16_t reg;
    556 	int x;
    557 
    558 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    559 	/*
    560 	 * Shift in read opcode.
    561 	 */
    562 	for (x = 3; x > 0; x--) {
    563 		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    564 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    565 		} else {
    566 			reg = FXP_EEPROM_EECS;
    567 		}
    568 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    569 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    570 			    reg | FXP_EEPROM_EESK);
    571 		DELAY(1);
    572 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    573 		DELAY(1);
    574 	}
    575 	/*
    576 	 * Shift in address, wait for the dummy zero following a correct
    577 	 * address shift.
    578 	 */
    579 	for (x = 1; x <=  8; x++) {
    580 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    581 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    582 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    583 		DELAY(1);
    584 		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    585 		    FXP_EEPROM_EEDO) == 0)
    586 			break;
    587 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    588 		DELAY(1);
    589 	}
    590 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    591 	DELAY(1);
    592 	if(x != 6 && x != 8) {
    593 #ifdef DEBUG
    594 		printf("%s: strange EEPROM size (%d)\n",
    595 		       sc->sc_dev.dv_xname, 1 << x);
    596 #endif
    597 	} else
    598 		sc->sc_eeprom_size = x;
    599 }
    600 
    601 /*
    602  * Read from the serial EEPROM. Basically, you manually shift in
    603  * the read opcode (one bit at a time) and then shift in the address,
    604  * and then you shift out the data (all of this one bit at a time).
    605  * The word size is 16 bits, so you have to provide the address for
    606  * every 16 bits of data.
    607  */
    608 void
    609 fxp_read_eeprom(sc, data, offset, words)
    610 	struct fxp_softc *sc;
    611 	u_int16_t *data;
    612 	int offset;
    613 	int words;
    614 {
    615 	u_int16_t reg;
    616 	int i, x;
    617 
    618 	for (i = 0; i < words; i++) {
    619 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    620 		/*
    621 		 * Shift in read opcode.
    622 		 */
    623 		for (x = 3; x > 0; x--) {
    624 			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    625 				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    626 			} else {
    627 				reg = FXP_EEPROM_EECS;
    628 			}
    629 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    630 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    631 			    reg | FXP_EEPROM_EESK);
    632 			DELAY(1);
    633 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    634 			DELAY(1);
    635 		}
    636 		/*
    637 		 * Shift in address.
    638 		 */
    639 		for (x = sc->sc_eeprom_size; x > 0; x--) {
    640 			if ((i + offset) & (1 << (x - 1))) {
    641 			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    642 			} else {
    643 			    reg = FXP_EEPROM_EECS;
    644 			}
    645 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    646 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    647 			    reg | FXP_EEPROM_EESK);
    648 			DELAY(1);
    649 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    650 			DELAY(1);
    651 		}
    652 		reg = FXP_EEPROM_EECS;
    653 		data[i] = 0;
    654 		/*
    655 		 * Shift out data.
    656 		 */
    657 		for (x = 16; x > 0; x--) {
    658 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    659 			    reg | FXP_EEPROM_EESK);
    660 			DELAY(1);
    661 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    662 			    FXP_EEPROM_EEDO)
    663 				data[i] |= (1 << (x - 1));
    664 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    665 			DELAY(1);
    666 		}
    667 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    668 		DELAY(1);
    669 	}
    670 }
    671 
    672 /*
    673  * Start packet transmission on the interface.
    674  */
    675 void
    676 fxp_start(ifp)
    677 	struct ifnet *ifp;
    678 {
    679 	struct fxp_softc *sc = ifp->if_softc;
    680 	struct mbuf *m0, *m;
    681 	struct fxp_cb_tx *txd;
    682 	struct fxp_txsoft *txs;
    683 	struct fxp_tbdlist *tbd;
    684 	bus_dmamap_t dmamap;
    685 	int error, lasttx, nexttx, opending, seg;
    686 
    687 	/*
    688 	 * If we want a re-init, bail out now.
    689 	 */
    690 	if (sc->sc_flags & FXPF_WANTINIT) {
    691 		ifp->if_flags |= IFF_OACTIVE;
    692 		return;
    693 	}
    694 
    695 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    696 		return;
    697 
    698 	/*
    699 	 * Remember the previous txpending and the current lasttx.
    700 	 */
    701 	opending = sc->sc_txpending;
    702 	lasttx = sc->sc_txlast;
    703 
    704 	/*
    705 	 * Loop through the send queue, setting up transmit descriptors
    706 	 * until we drain the queue, or use up all available transmit
    707 	 * descriptors.
    708 	 */
    709 	while (sc->sc_txpending < FXP_NTXCB) {
    710 		/*
    711 		 * Grab a packet off the queue.
    712 		 */
    713 		IF_DEQUEUE(&ifp->if_snd, m0);
    714 		if (m0 == NULL)
    715 			break;
    716 
    717 		/*
    718 		 * Get the next available transmit descriptor.
    719 		 */
    720 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    721 		txd = FXP_CDTX(sc, nexttx);
    722 		tbd = FXP_CDTBD(sc, nexttx);
    723 		txs = FXP_DSTX(sc, nexttx);
    724 		dmamap = txs->txs_dmamap;
    725 
    726 		/*
    727 		 * Load the DMA map.  If this fails, the packet either
    728 		 * didn't fit in the allotted number of frags, or we were
    729 		 * short on resources.  In this case, we'll copy and try
    730 		 * again.
    731 		 */
    732 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    733 		    BUS_DMA_NOWAIT) != 0) {
    734 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    735 			if (m == NULL) {
    736 				printf("%s: unable to allocate Tx mbuf\n",
    737 				    sc->sc_dev.dv_xname);
    738 				IF_PREPEND(&ifp->if_snd, m0);
    739 				break;
    740 			}
    741 			if (m0->m_pkthdr.len > MHLEN) {
    742 				MCLGET(m, M_DONTWAIT);
    743 				if ((m->m_flags & M_EXT) == 0) {
    744 					printf("%s: unable to allocate Tx "
    745 					    "cluster\n", sc->sc_dev.dv_xname);
    746 					m_freem(m);
    747 					IF_PREPEND(&ifp->if_snd, m0);
    748 					break;
    749 				}
    750 			}
    751 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    752 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    753 			m_freem(m0);
    754 			m0 = m;
    755 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    756 			    m0, BUS_DMA_NOWAIT);
    757 			if (error) {
    758 				printf("%s: unable to load Tx buffer, "
    759 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    760 				IF_PREPEND(&ifp->if_snd, m0);
    761 				break;
    762 			}
    763 		}
    764 
    765 		/* Initialize the fraglist. */
    766 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    767 			tbd->tbd_d[seg].tb_addr =
    768 			    htole32(dmamap->dm_segs[seg].ds_addr);
    769 			tbd->tbd_d[seg].tb_size =
    770 			    htole32(dmamap->dm_segs[seg].ds_len);
    771 		}
    772 
    773 		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
    774 
    775 		/* Sync the DMA map. */
    776 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    777 		    BUS_DMASYNC_PREWRITE);
    778 
    779 		/*
    780 		 * Store a pointer to the packet so we can free it later.
    781 		 */
    782 		txs->txs_mbuf = m0;
    783 
    784 		/*
    785 		 * Initialize the transmit descriptor.
    786 		 */
    787 		/* BIG_ENDIAN: no need to swap to store 0 */
    788 		txd->cb_status = 0;
    789 		txd->cb_command =
    790 		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
    791 		txd->tx_threshold = tx_threshold;
    792 		txd->tbd_number = dmamap->dm_nsegs;
    793 
    794 		FXP_CDTXSYNC(sc, nexttx,
    795 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    796 
    797 		/* Advance the tx pointer. */
    798 		sc->sc_txpending++;
    799 		sc->sc_txlast = nexttx;
    800 
    801 #if NBPFILTER > 0
    802 		/*
    803 		 * Pass packet to bpf if there is a listener.
    804 		 */
    805 		if (ifp->if_bpf)
    806 			bpf_mtap(ifp->if_bpf, m0);
    807 #endif
    808 	}
    809 
    810 	if (sc->sc_txpending == FXP_NTXCB) {
    811 		/* No more slots; notify upper layer. */
    812 		ifp->if_flags |= IFF_OACTIVE;
    813 	}
    814 
    815 	if (sc->sc_txpending != opending) {
    816 		/*
    817 		 * We enqueued packets.  If the transmitter was idle,
    818 		 * reset the txdirty pointer.
    819 		 */
    820 		if (opending == 0)
    821 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
    822 
    823 		/*
    824 		 * Cause the chip to interrupt and suspend command
    825 		 * processing once the last packet we've enqueued
    826 		 * has been transmitted.
    827 		 */
    828 		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
    829 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
    830 		FXP_CDTXSYNC(sc, sc->sc_txlast,
    831 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    832 
    833 		/*
    834 		 * The entire packet chain is set up.  Clear the suspend bit
    835 		 * on the command prior to the first packet we set up.
    836 		 */
    837 		FXP_CDTXSYNC(sc, lasttx,
    838 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    839 		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
    840 		FXP_CDTXSYNC(sc, lasttx,
    841 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    842 
    843 		/*
    844 		 * Issue a Resume command in case the chip was suspended.
    845 		 */
    846 		fxp_scb_wait(sc);
    847 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
    848 
    849 		/* Set a watchdog timer in case the chip flakes out. */
    850 		ifp->if_timer = 5;
    851 	}
    852 }
    853 
    854 /*
    855  * Process interface interrupts.
    856  */
    857 int
    858 fxp_intr(arg)
    859 	void *arg;
    860 {
    861 	struct fxp_softc *sc = arg;
    862 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    863 	struct fxp_cb_tx *txd;
    864 	struct fxp_txsoft *txs;
    865 	struct mbuf *m, *m0;
    866 	bus_dmamap_t rxmap;
    867 	struct fxp_rfa *rfa;
    868 	struct ether_header *eh;
    869 	int i, claimed = 0;
    870 	u_int16_t len, rxstat, txstat;
    871 	u_int8_t statack;
    872 
    873 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
    874 		return (0);
    875 	/*
    876 	 * If the interface isn't running, don't try to
    877 	 * service the interrupt.. just ack it and bail.
    878 	 */
    879 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
    880 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
    881 		if (statack) {
    882 			claimed = 1;
    883 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    884 		}
    885 		return (claimed);
    886 	}
    887 
    888 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
    889 		claimed = 1;
    890 
    891 		/*
    892 		 * First ACK all the interrupts in this pass.
    893 		 */
    894 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    895 
    896 		/*
    897 		 * Process receiver interrupts. If a no-resource (RNR)
    898 		 * condition exists, get whatever packets we can and
    899 		 * re-start the receiver.
    900 		 */
    901 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
    902  rcvloop:
    903 			m = sc->sc_rxq.ifq_head;
    904 			rfa = FXP_MTORFA(m);
    905 			rxmap = M_GETCTX(m, bus_dmamap_t);
    906 
    907 			FXP_RFASYNC(sc, m,
    908 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    909 
    910 			rxstat = le16toh(rfa->rfa_status);
    911 
    912 			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
    913 				/*
    914 				 * We have processed all of the
    915 				 * receive buffers.
    916 				 */
    917 				goto do_transmit;
    918 			}
    919 
    920 			IF_DEQUEUE(&sc->sc_rxq, m);
    921 
    922 			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
    923 
    924 			len = le16toh(rfa->actual_size) &
    925 			    (m->m_ext.ext_size - 1);
    926 
    927 			if (len < sizeof(struct ether_header)) {
    928 				/*
    929 				 * Runt packet; drop it now.
    930 				 */
    931 				FXP_INIT_RFABUF(sc, m);
    932 				goto rcvloop;
    933 			}
    934 
    935 			/*
    936 			 * If the packet is small enough to fit in a
    937 			 * single header mbuf, allocate one and copy
    938 			 * the data into it.  This greatly reduces
    939 			 * memory consumption when we receive lots
    940 			 * of small packets.
    941 			 *
    942 			 * Otherwise, we add a new buffer to the receive
    943 			 * chain.  If this fails, we drop the packet and
    944 			 * recycle the old buffer.
    945 			 */
    946 			if (fxp_copy_small != 0 && len <= MHLEN) {
    947 				MGETHDR(m0, M_DONTWAIT, MT_DATA);
    948 				if (m == NULL)
    949 					goto dropit;
    950 				memcpy(mtod(m0, caddr_t),
    951 				    mtod(m, caddr_t), len);
    952 				FXP_INIT_RFABUF(sc, m);
    953 				m = m0;
    954 			} else {
    955 				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
    956  dropit:
    957 					ifp->if_ierrors++;
    958 					FXP_INIT_RFABUF(sc, m);
    959 					goto rcvloop;
    960 				}
    961 			}
    962 
    963 			m->m_pkthdr.rcvif = ifp;
    964 			m->m_pkthdr.len = m->m_len = len;
    965 			eh = mtod(m, struct ether_header *);
    966 
    967 #if NBPFILTER > 0
    968 			/*
    969 			 * Pass this up to any BPF listeners, but only
    970 			 * pass it up the stack it its for us.
    971 			 */
    972 			if (ifp->if_bpf) {
    973 				bpf_mtap(ifp->if_bpf, m);
    974 
    975 				if ((ifp->if_flags & IFF_PROMISC) != 0 &&
    976 				    (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
    977 				    (eh->ether_dhost[0] & 1) == 0) {
    978 					m_freem(m);
    979 					goto rcvloop;
    980 				}
    981 			}
    982 #endif /* NBPFILTER > 0 */
    983 
    984 			/* Pass it on. */
    985 			(*ifp->if_input)(ifp, m);
    986 			goto rcvloop;
    987 		}
    988 
    989  do_transmit:
    990 		if (statack & FXP_SCB_STATACK_RNR) {
    991 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
    992 			fxp_scb_wait(sc);
    993 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
    994 			    rxmap->dm_segs[0].ds_addr +
    995 			    RFA_ALIGNMENT_FUDGE);
    996 			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
    997 			    FXP_SCB_COMMAND_RU_START);
    998 		}
    999 
   1000 		/*
   1001 		 * Free any finished transmit mbuf chains.
   1002 		 */
   1003 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1004 			ifp->if_flags &= ~IFF_OACTIVE;
   1005 			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1006 			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1007 				txd = FXP_CDTX(sc, i);
   1008 				txs = FXP_DSTX(sc, i);
   1009 
   1010 				FXP_CDTXSYNC(sc, i,
   1011 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1012 
   1013 				txstat = le16toh(txd->cb_status);
   1014 
   1015 				if ((txstat & FXP_CB_STATUS_C) == 0)
   1016 					break;
   1017 
   1018 				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
   1019 
   1020 				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1021 				    0, txs->txs_dmamap->dm_mapsize,
   1022 				    BUS_DMASYNC_POSTWRITE);
   1023 				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1024 				m_freem(txs->txs_mbuf);
   1025 				txs->txs_mbuf = NULL;
   1026 			}
   1027 
   1028 			/* Update the dirty transmit buffer pointer. */
   1029 			sc->sc_txdirty = i;
   1030 
   1031 			/*
   1032 			 * Cancel the watchdog timer if there are no pending
   1033 			 * transmissions.
   1034 			 */
   1035 			if (sc->sc_txpending == 0) {
   1036 				ifp->if_timer = 0;
   1037 
   1038 				/*
   1039 				 * If we want a re-init, do that now.
   1040 				 */
   1041 				if (sc->sc_flags & FXPF_WANTINIT)
   1042 					(void) fxp_init(sc);
   1043 			}
   1044 
   1045 			/*
   1046 			 * Try to get more packets going.
   1047 			 */
   1048 			fxp_start(ifp);
   1049 		}
   1050 	}
   1051 
   1052 #if NRND > 0
   1053 	if (claimed)
   1054 		rnd_add_uint32(&sc->rnd_source, statack);
   1055 #endif
   1056 	return (claimed);
   1057 }
   1058 
   1059 /*
   1060  * Update packet in/out/collision statistics. The i82557 doesn't
   1061  * allow you to access these counters without doing a fairly
   1062  * expensive DMA to get _all_ of the statistics it maintains, so
   1063  * we do this operation here only once per second. The statistics
   1064  * counters in the kernel are updated from the previous dump-stats
   1065  * DMA and then a new dump-stats DMA is started. The on-chip
   1066  * counters are zeroed when the DMA completes. If we can't start
   1067  * the DMA immediately, we don't wait - we just prepare to read
   1068  * them again next time.
   1069  */
   1070 void
   1071 fxp_tick(arg)
   1072 	void *arg;
   1073 {
   1074 	struct fxp_softc *sc = arg;
   1075 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1076 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1077 	int s;
   1078 
   1079 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1080 		return;
   1081 
   1082 	s = splnet();
   1083 
   1084 	ifp->if_opackets += le32toh(sp->tx_good);
   1085 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1086 	if (sp->rx_good) {
   1087 		ifp->if_ipackets += le32toh(sp->rx_good);
   1088 		sc->sc_rxidle = 0;
   1089 	} else {
   1090 		sc->sc_rxidle++;
   1091 	}
   1092 	ifp->if_ierrors +=
   1093 	    le32toh(sp->rx_crc_errors) +
   1094 	    le32toh(sp->rx_alignment_errors) +
   1095 	    le32toh(sp->rx_rnr_errors) +
   1096 	    le32toh(sp->rx_overrun_errors);
   1097 	/*
   1098 	 * If any transmit underruns occured, bump up the transmit
   1099 	 * threshold by another 512 bytes (64 * 8).
   1100 	 */
   1101 	if (sp->tx_underruns) {
   1102 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1103 		if (tx_threshold < 192)
   1104 			tx_threshold += 64;
   1105 	}
   1106 
   1107 	/*
   1108 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
   1109 	 * then assume the receiver has locked up and attempt to clear
   1110 	 * the condition by reprogramming the multicast filter (actually,
   1111 	 * resetting the interface). This is a work-around for a bug in
   1112 	 * the 82557 where the receiver locks up if it gets certain types
   1113 	 * of garbage in the syncronization bits prior to the packet header.
   1114 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1115 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1116 	 * speed transition).
   1117 	 */
   1118 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1119 		(void) fxp_init(sc);
   1120 		splx(s);
   1121 		return;
   1122 	}
   1123 	/*
   1124 	 * If there is no pending command, start another stats
   1125 	 * dump. Otherwise punt for now.
   1126 	 */
   1127 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1128 		/*
   1129 		 * Start another stats dump.
   1130 		 */
   1131 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
   1132 		    FXP_SCB_COMMAND_CU_DUMPRESET);
   1133 	} else {
   1134 		/*
   1135 		 * A previous command is still waiting to be accepted.
   1136 		 * Just zero our copy of the stats and wait for the
   1137 		 * next timer event to update them.
   1138 		 */
   1139 		/* BIG_ENDIAN: no swap required to store 0 */
   1140 		sp->tx_good = 0;
   1141 		sp->tx_underruns = 0;
   1142 		sp->tx_total_collisions = 0;
   1143 
   1144 		sp->rx_good = 0;
   1145 		sp->rx_crc_errors = 0;
   1146 		sp->rx_alignment_errors = 0;
   1147 		sp->rx_rnr_errors = 0;
   1148 		sp->rx_overrun_errors = 0;
   1149 	}
   1150 
   1151 	if (sc->sc_flags & FXPF_MII) {
   1152 		/* Tick the MII clock. */
   1153 		mii_tick(&sc->sc_mii);
   1154 	}
   1155 
   1156 	splx(s);
   1157 
   1158 	/*
   1159 	 * Schedule another timeout one second from now.
   1160 	 */
   1161 	timeout(fxp_tick, sc, hz);
   1162 }
   1163 
   1164 /*
   1165  * Drain the receive queue.
   1166  */
   1167 void
   1168 fxp_rxdrain(sc)
   1169 	struct fxp_softc *sc;
   1170 {
   1171 	bus_dmamap_t rxmap;
   1172 	struct mbuf *m;
   1173 
   1174 	for (;;) {
   1175 		IF_DEQUEUE(&sc->sc_rxq, m);
   1176 		if (m == NULL)
   1177 			break;
   1178 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1179 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1180 		FXP_RXMAP_PUT(sc, rxmap);
   1181 		m_freem(m);
   1182 	}
   1183 }
   1184 
   1185 /*
   1186  * Stop the interface. Cancels the statistics updater and resets
   1187  * the interface.
   1188  */
   1189 void
   1190 fxp_stop(sc, drain)
   1191 	struct fxp_softc *sc;
   1192 	int drain;
   1193 {
   1194 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1195 	struct fxp_txsoft *txs;
   1196 	int i;
   1197 
   1198 	/*
   1199 	 * Turn down interface (done early to avoid bad interactions
   1200 	 * between panics, shutdown hooks, and the watchdog timer)
   1201 	 */
   1202 	ifp->if_timer = 0;
   1203 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1204 
   1205 	/*
   1206 	 * Cancel stats updater.
   1207 	 */
   1208 	untimeout(fxp_tick, sc);
   1209 	if (sc->sc_flags & FXPF_MII) {
   1210 		/* Down the MII. */
   1211 		mii_down(&sc->sc_mii);
   1212 	}
   1213 
   1214 	/*
   1215 	 * Issue software reset
   1216 	 */
   1217 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
   1218 	DELAY(10);
   1219 
   1220 	/*
   1221 	 * Release any xmit buffers.
   1222 	 */
   1223 	for (i = 0; i < FXP_NTXCB; i++) {
   1224 		txs = FXP_DSTX(sc, i);
   1225 		if (txs->txs_mbuf != NULL) {
   1226 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1227 			m_freem(txs->txs_mbuf);
   1228 			txs->txs_mbuf = NULL;
   1229 		}
   1230 	}
   1231 	sc->sc_txpending = 0;
   1232 
   1233 	if (drain) {
   1234 		/*
   1235 		 * Release the receive buffers.
   1236 		 */
   1237 		fxp_rxdrain(sc);
   1238 	}
   1239 
   1240 }
   1241 
   1242 /*
   1243  * Watchdog/transmission transmit timeout handler. Called when a
   1244  * transmission is started on the interface, but no interrupt is
   1245  * received before the timeout. This usually indicates that the
   1246  * card has wedged for some reason.
   1247  */
   1248 void
   1249 fxp_watchdog(ifp)
   1250 	struct ifnet *ifp;
   1251 {
   1252 	struct fxp_softc *sc = ifp->if_softc;
   1253 
   1254 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1255 	ifp->if_oerrors++;
   1256 
   1257 	(void) fxp_init(sc);
   1258 }
   1259 
   1260 /*
   1261  * Initialize the interface.  Must be called at splnet().
   1262  */
   1263 int
   1264 fxp_init(sc)
   1265 	struct fxp_softc *sc;
   1266 {
   1267 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1268 	struct fxp_cb_config *cbp;
   1269 	struct fxp_cb_ias *cb_ias;
   1270 	struct fxp_cb_tx *txd;
   1271 	bus_dmamap_t rxmap;
   1272 	int i, prm, allm, error = 0;
   1273 
   1274 	/*
   1275 	 * Cancel any pending I/O
   1276 	 */
   1277 	fxp_stop(sc, 0);
   1278 
   1279 	/*
   1280 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1281 	 * flag, and this prevents the MII from detaching resulting in
   1282 	 * a panic. The flags field should perhaps be split in runtime
   1283 	 * flags and more static information. For now, just clear the
   1284 	 * only other flag set.
   1285 	 */
   1286 
   1287 	sc->sc_flags &= ~FXPF_WANTINIT;
   1288 
   1289 	/*
   1290 	 * Initialize base of CBL and RFA memory. Loading with zero
   1291 	 * sets it up for regular linear addressing.
   1292 	 */
   1293 	fxp_scb_wait(sc);
   1294 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1295 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
   1296 
   1297 	fxp_scb_wait(sc);
   1298 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
   1299 
   1300 	/*
   1301 	 * Initialize the multicast filter.  Do this now, since we might
   1302 	 * have to setup the config block differently.
   1303 	 */
   1304 	fxp_mc_setup(sc);
   1305 
   1306 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1307 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1308 
   1309 	/*
   1310 	 * Initialize base of dump-stats buffer.
   1311 	 */
   1312 	fxp_scb_wait(sc);
   1313 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1314 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1315 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1316 
   1317 	cbp = &sc->sc_control_data->fcd_configcb;
   1318 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1319 
   1320 	/*
   1321 	 * This copy is kind of disgusting, but there are a bunch of must be
   1322 	 * zero and must be one bits in this structure and this is the easiest
   1323 	 * way to initialize them all to proper values.
   1324 	 */
   1325 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1326 
   1327 	/* BIG_ENDIAN: no need to swap to store 0 */
   1328 	cbp->cb_status =	0;
   1329 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1330 				    FXP_CB_COMMAND_EL);
   1331 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1332 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1333 	cbp->byte_count =	22;	/* (22) bytes to config */
   1334 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1335 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1336 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1337 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1338 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1339 	cbp->dma_bce =		0;	/* (disable) dma max counters */
   1340 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1341 	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
   1342 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1343 	cbp->save_bf =		prm;	/* save bad frames */
   1344 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1345 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1346 	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
   1347 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1348 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1349 	cbp->loopback =		0;	/* (don't) loopback */
   1350 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1351 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1352 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1353 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1354 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1355 	cbp->crscdt =		0;	/* (CRS only) */
   1356 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1357 	cbp->padding =		1;	/* (do) pad short tx packets */
   1358 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1359 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1360 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1361 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1362 	cbp->mc_all =		allm;	/* accept all multicasts */
   1363 
   1364 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1365 
   1366 	/*
   1367 	 * Start the config command/DMA.
   1368 	 */
   1369 	fxp_scb_wait(sc);
   1370 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1371 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1372 	/* ...and wait for it to complete. */
   1373 	do {
   1374 		FXP_CDCONFIGSYNC(sc,
   1375 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1376 	} while ((cbp->cb_status & FXP_CB_STATUS_C) == 0);
   1377 
   1378 	/*
   1379 	 * Initialize the station address.
   1380 	 */
   1381 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1382 	/* BIG_ENDIAN: no need to swap to store 0 */
   1383 	cb_ias->cb_status = 0;
   1384 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1385 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1386 	cb_ias->link_addr = 0xffffffff;
   1387 	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1388 
   1389 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1390 
   1391 	/*
   1392 	 * Start the IAS (Individual Address Setup) command/DMA.
   1393 	 */
   1394 	fxp_scb_wait(sc);
   1395 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1396 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1397 	/* ...and wait for it to complete. */
   1398 	do {
   1399 		FXP_CDIASSYNC(sc,
   1400 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1401 	} while ((cb_ias->cb_status & FXP_CB_STATUS_C) == 0);
   1402 
   1403 	/*
   1404 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1405 	 * to the end of the list so that it will wrap around to the first
   1406 	 * descriptor when the first packet is transmitted.
   1407 	 */
   1408 	for (i = 0; i < FXP_NTXCB; i++) {
   1409 		txd = FXP_CDTX(sc, i);
   1410 		memset(txd, 0, sizeof(struct fxp_cb_tx));
   1411 		txd->cb_command =
   1412 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1413 		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
   1414 		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1415 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1416 	}
   1417 	sc->sc_txpending = 0;
   1418 	sc->sc_txdirty = 0;
   1419 	sc->sc_txlast = FXP_NTXCB - 1;
   1420 
   1421 	/*
   1422 	 * Initialize the receive buffer list.
   1423 	 */
   1424 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1425 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1426 		rxmap = FXP_RXMAP_GET(sc);
   1427 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1428 			printf("%s: unable to allocate or map rx "
   1429 			    "buffer %d, error = %d\n",
   1430 			    sc->sc_dev.dv_xname,
   1431 			    sc->sc_rxq.ifq_len, error);
   1432 			/*
   1433 			 * XXX Should attempt to run with fewer receive
   1434 			 * XXX buffers instead of just failing.
   1435 			 */
   1436 			FXP_RXMAP_PUT(sc, rxmap);
   1437 			fxp_rxdrain(sc);
   1438 			goto out;
   1439 		}
   1440 	}
   1441 	sc->sc_rxidle = 0;
   1442 
   1443 	/*
   1444 	 * Give the transmit ring to the chip.  We do this by pointing
   1445 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1446 	 * issuing a start command.  It will execute the NOP and then
   1447 	 * suspend, pointing at the first descriptor.
   1448 	 */
   1449 	fxp_scb_wait(sc);
   1450 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1451 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1452 
   1453 	/*
   1454 	 * Initialize receiver buffer area - RFA.
   1455 	 */
   1456 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1457 	fxp_scb_wait(sc);
   1458 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1459 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1460 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
   1461 
   1462 	if (sc->sc_flags & FXPF_MII) {
   1463 		/*
   1464 		 * Set current media.
   1465 		 */
   1466 		mii_mediachg(&sc->sc_mii);
   1467 	}
   1468 
   1469 	/*
   1470 	 * ...all done!
   1471 	 */
   1472 	ifp->if_flags |= IFF_RUNNING;
   1473 	ifp->if_flags &= ~IFF_OACTIVE;
   1474 
   1475 	/*
   1476 	 * Start the one second timer.
   1477 	 */
   1478 	timeout(fxp_tick, sc, hz);
   1479 
   1480 	/*
   1481 	 * Attempt to start output on the interface.
   1482 	 */
   1483 	fxp_start(ifp);
   1484 
   1485  out:
   1486 	if (error)
   1487 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1488 	return (error);
   1489 }
   1490 
   1491 /*
   1492  * Change media according to request.
   1493  */
   1494 int
   1495 fxp_mii_mediachange(ifp)
   1496 	struct ifnet *ifp;
   1497 {
   1498 	struct fxp_softc *sc = ifp->if_softc;
   1499 
   1500 	if (ifp->if_flags & IFF_UP)
   1501 		mii_mediachg(&sc->sc_mii);
   1502 	return (0);
   1503 }
   1504 
   1505 /*
   1506  * Notify the world which media we're using.
   1507  */
   1508 void
   1509 fxp_mii_mediastatus(ifp, ifmr)
   1510 	struct ifnet *ifp;
   1511 	struct ifmediareq *ifmr;
   1512 {
   1513 	struct fxp_softc *sc = ifp->if_softc;
   1514 
   1515 	if(sc->sc_enabled == 0) {
   1516 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1517 		ifmr->ifm_status = 0;
   1518 		return;
   1519 	}
   1520 
   1521 	mii_pollstat(&sc->sc_mii);
   1522 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1523 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1524 }
   1525 
   1526 int
   1527 fxp_80c24_mediachange(ifp)
   1528 	struct ifnet *ifp;
   1529 {
   1530 
   1531 	/* Nothing to do here. */
   1532 	return (0);
   1533 }
   1534 
   1535 void
   1536 fxp_80c24_mediastatus(ifp, ifmr)
   1537 	struct ifnet *ifp;
   1538 	struct ifmediareq *ifmr;
   1539 {
   1540 	struct fxp_softc *sc = ifp->if_softc;
   1541 
   1542 	/*
   1543 	 * Media is currently-selected media.  We cannot determine
   1544 	 * the link status.
   1545 	 */
   1546 	ifmr->ifm_status = 0;
   1547 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1548 }
   1549 
   1550 /*
   1551  * Add a buffer to the end of the RFA buffer list.
   1552  * Return 0 if successful, error code on failure.
   1553  *
   1554  * The RFA struct is stuck at the beginning of mbuf cluster and the
   1555  * data pointer is fixed up to point just past it.
   1556  */
   1557 int
   1558 fxp_add_rfabuf(sc, rxmap, unload)
   1559 	struct fxp_softc *sc;
   1560 	bus_dmamap_t rxmap;
   1561 	int unload;
   1562 {
   1563 	struct mbuf *m;
   1564 	int error;
   1565 
   1566 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1567 	if (m == NULL)
   1568 		return (ENOBUFS);
   1569 
   1570 	MCLGET(m, M_DONTWAIT);
   1571 	if ((m->m_flags & M_EXT) == 0) {
   1572 		m_freem(m);
   1573 		return (ENOBUFS);
   1574 	}
   1575 
   1576 	if (unload)
   1577 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1578 
   1579 	M_SETCTX(m, rxmap);
   1580 
   1581 	error = bus_dmamap_load(sc->sc_dmat, rxmap,
   1582 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1583 	if (error) {
   1584 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1585 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   1586 		panic("fxp_add_rfabuf");		/* XXX */
   1587 	}
   1588 
   1589 	FXP_INIT_RFABUF(sc, m);
   1590 
   1591 	return (0);
   1592 }
   1593 
   1594 volatile int
   1595 fxp_mdi_read(self, phy, reg)
   1596 	struct device *self;
   1597 	int phy;
   1598 	int reg;
   1599 {
   1600 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1601 	int count = 10000;
   1602 	int value;
   1603 
   1604 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1605 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   1606 
   1607 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
   1608 	    && count--)
   1609 		DELAY(10);
   1610 
   1611 	if (count <= 0)
   1612 		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   1613 
   1614 	return (value & 0xffff);
   1615 }
   1616 
   1617 void
   1618 fxp_statchg(self)
   1619 	struct device *self;
   1620 {
   1621 
   1622 	/* Nothing to do. */
   1623 }
   1624 
   1625 void
   1626 fxp_mdi_write(self, phy, reg, value)
   1627 	struct device *self;
   1628 	int phy;
   1629 	int reg;
   1630 	int value;
   1631 {
   1632 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1633 	int count = 10000;
   1634 
   1635 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1636 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   1637 	    (value & 0xffff));
   1638 
   1639 	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   1640 	    count--)
   1641 		DELAY(10);
   1642 
   1643 	if (count <= 0)
   1644 		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   1645 }
   1646 
   1647 int
   1648 fxp_ioctl(ifp, command, data)
   1649 	struct ifnet *ifp;
   1650 	u_long command;
   1651 	caddr_t data;
   1652 {
   1653 	struct fxp_softc *sc = ifp->if_softc;
   1654 	struct ifreq *ifr = (struct ifreq *)data;
   1655 	struct ifaddr *ifa = (struct ifaddr *)data;
   1656 	int s, error = 0;
   1657 
   1658 	s = splnet();
   1659 
   1660 	switch (command) {
   1661 	case SIOCSIFADDR:
   1662 		if ((error = fxp_enable(sc)) != 0)
   1663 			break;
   1664 		ifp->if_flags |= IFF_UP;
   1665 
   1666 		switch (ifa->ifa_addr->sa_family) {
   1667 #ifdef INET
   1668 		case AF_INET:
   1669 			if ((error = fxp_init(sc)) != 0)
   1670 				break;
   1671 			arp_ifinit(ifp, ifa);
   1672 			break;
   1673 #endif /* INET */
   1674 #ifdef NS
   1675 		case AF_NS:
   1676 		    {
   1677 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1678 
   1679 			 if (ns_nullhost(*ina))
   1680 				ina->x_host = *(union ns_host *)
   1681 				    LLADDR(ifp->if_sadl);
   1682 			 else
   1683 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
   1684 				    ifp->if_addrlen);
   1685 			 /* Set new address. */
   1686 			 error = fxp_init(sc);
   1687 			 break;
   1688 		    }
   1689 #endif /* NS */
   1690 		default:
   1691 			error = fxp_init(sc);
   1692 			break;
   1693 		}
   1694 		break;
   1695 
   1696 	case SIOCSIFMTU:
   1697 		if (ifr->ifr_mtu > ETHERMTU)
   1698 			error = EINVAL;
   1699 		else
   1700 			ifp->if_mtu = ifr->ifr_mtu;
   1701 		break;
   1702 
   1703 	case SIOCSIFFLAGS:
   1704 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1705 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1706 			/*
   1707 			 * If interface is marked down and it is running, then
   1708 			 * stop it.
   1709 			 */
   1710 			fxp_stop(sc, 1);
   1711 			fxp_disable(sc);
   1712 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1713 		    (ifp->if_flags & IFF_RUNNING) == 0) {
   1714 			/*
   1715 			 * If interface is marked up and it is stopped, then
   1716 			 * start it.
   1717 			 */
   1718 			if((error = fxp_enable(sc)) != 0)
   1719 				break;
   1720 			error = fxp_init(sc);
   1721 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1722 			/*
   1723 			 * Reset the interface to pick up change in any other
   1724 			 * flags that affect the hardware state.
   1725 			 */
   1726 			if((error = fxp_enable(sc)) != 0)
   1727 				break;
   1728 			error = fxp_init(sc);
   1729 		}
   1730 		break;
   1731 
   1732 	case SIOCADDMULTI:
   1733 	case SIOCDELMULTI:
   1734 		if(sc->sc_enabled == 0) {
   1735 			error = EIO;
   1736 			break;
   1737 		}
   1738 		error = (command == SIOCADDMULTI) ?
   1739 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1740 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1741 
   1742 		if (error == ENETRESET) {
   1743 			/*
   1744 			 * Multicast list has changed; set the hardware
   1745 			 * filter accordingly.
   1746 			 */
   1747 			if (sc->sc_txpending) {
   1748 				sc->sc_flags |= FXPF_WANTINIT;
   1749 				error = 0;
   1750 			} else
   1751 				error = fxp_init(sc);
   1752 		}
   1753 		break;
   1754 
   1755 	case SIOCSIFMEDIA:
   1756 	case SIOCGIFMEDIA:
   1757 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
   1758 		break;
   1759 
   1760 	default:
   1761 		error = EINVAL;
   1762 		break;
   1763 	}
   1764 
   1765 	splx(s);
   1766 	return (error);
   1767 }
   1768 
   1769 /*
   1770  * Program the multicast filter.
   1771  *
   1772  * This function must be called at splnet().
   1773  */
   1774 void
   1775 fxp_mc_setup(sc)
   1776 	struct fxp_softc *sc;
   1777 {
   1778 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   1779 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1780 	struct ethercom *ec = &sc->sc_ethercom;
   1781 	struct ether_multi *enm;
   1782 	struct ether_multistep step;
   1783 	int nmcasts;
   1784 
   1785 #ifdef DIAGNOSTIC
   1786 	if (sc->sc_txpending)
   1787 		panic("fxp_mc_setup: pending transmissions");
   1788 #endif
   1789 
   1790 	ifp->if_flags &= ~IFF_ALLMULTI;
   1791 
   1792 	/*
   1793 	 * Initialize multicast setup descriptor.
   1794 	 */
   1795 	nmcasts = 0;
   1796 	ETHER_FIRST_MULTI(step, ec, enm);
   1797 	while (enm != NULL) {
   1798 		/*
   1799 		 * Check for too many multicast addresses or if we're
   1800 		 * listening to a range.  Either way, we simply have
   1801 		 * to accept all multicasts.
   1802 		 */
   1803 		if (nmcasts >= MAXMCADDR ||
   1804 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1805 		    ETHER_ADDR_LEN) != 0) {
   1806 			/*
   1807 			 * Callers of this function must do the
   1808 			 * right thing with this.  If we're called
   1809 			 * from outside fxp_init(), the caller must
   1810 			 * detect if the state if IFF_ALLMULTI changes.
   1811 			 * If it does, the caller must then call
   1812 			 * fxp_init(), since allmulti is handled by
   1813 			 * the config block.
   1814 			 */
   1815 			ifp->if_flags |= IFF_ALLMULTI;
   1816 			return;
   1817 		}
   1818 		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   1819 		    ETHER_ADDR_LEN);
   1820 		nmcasts++;
   1821 		ETHER_NEXT_MULTI(step, enm);
   1822 	}
   1823 
   1824 	/* BIG_ENDIAN: no need to swap to store 0 */
   1825 	mcsp->cb_status = 0;
   1826 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   1827 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   1828 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   1829 
   1830 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1831 
   1832 	/*
   1833 	 * Wait until the command unit is not active.  This should never
   1834 	 * happen since nothing is queued, but make sure anyway.
   1835 	 */
   1836 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   1837 	    FXP_SCB_CUS_ACTIVE)
   1838 		/* nothing */ ;
   1839 
   1840 	/*
   1841 	 * Start the multicast setup command/DMA.
   1842 	 */
   1843 	fxp_scb_wait(sc);
   1844 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   1845 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1846 
   1847 	/* ...and wait for it to complete. */
   1848 	do {
   1849 		FXP_CDMCSSYNC(sc,
   1850 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1851 	} while ((mcsp->cb_status & FXP_CB_STATUS_C) == 0);
   1852 }
   1853 
   1854 int
   1855 fxp_enable(sc)
   1856 	struct fxp_softc *sc;
   1857 {
   1858 
   1859 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   1860 		if ((*sc->sc_enable)(sc) != 0) {
   1861 			printf("%s: device enable failed\n",
   1862 			    sc->sc_dev.dv_xname);
   1863 			return (EIO);
   1864 		}
   1865 	}
   1866 
   1867 	sc->sc_enabled = 1;
   1868 	return (0);
   1869 }
   1870 
   1871 void
   1872 fxp_disable(sc)
   1873 	struct fxp_softc *sc;
   1874 {
   1875 
   1876 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   1877 		(*sc->sc_disable)(sc);
   1878 		sc->sc_enabled = 0;
   1879 	}
   1880 }
   1881 
   1882 /*
   1883  * fxp_activate:
   1884  *
   1885  *	Handle device activation/deactivation requests.
   1886  */
   1887 int
   1888 fxp_activate(self, act)
   1889 	struct device *self;
   1890 	enum devact act;
   1891 {
   1892 	struct fxp_softc *sc = (void *) self;
   1893 	int s, error = 0;
   1894 
   1895 	s = splnet();
   1896 	switch (act) {
   1897 	case DVACT_ACTIVATE:
   1898 		error = EOPNOTSUPP;
   1899 		break;
   1900 
   1901 	case DVACT_DEACTIVATE:
   1902 		if (sc->sc_flags & FXPF_MII)
   1903 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   1904 			    MII_OFFSET_ANY);
   1905 		if_deactivate(&sc->sc_ethercom.ec_if);
   1906 		break;
   1907 	}
   1908 	splx(s);
   1909 
   1910 	return (error);
   1911 }
   1912 
   1913 /*
   1914  * fxp_detach:
   1915  *
   1916  *	Detach an i82557 interface.
   1917  */
   1918 int
   1919 fxp_detach(sc)
   1920 	struct fxp_softc *sc;
   1921 {
   1922 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1923 	int i;
   1924 
   1925 	/* Unhook our tick handler. */
   1926 	untimeout(fxp_tick, sc);
   1927 
   1928 	if (sc->sc_flags & FXPF_MII) {
   1929 		/* Detach all PHYs */
   1930 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   1931 	}
   1932 
   1933 	/* Delete all remaining media. */
   1934 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   1935 
   1936 #if NRND > 0
   1937 	rnd_detach_source(&sc->rnd_source);
   1938 #endif
   1939 #if NBPFILTER > 0
   1940 	bpfdetach(ifp);
   1941 #endif
   1942 	ether_ifdetach(ifp);
   1943 	if_detach(ifp);
   1944 
   1945 	for (i = 0; i < FXP_NRFABUFS; i++) {
   1946 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   1947 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   1948 	}
   1949 
   1950 	for (i = 0; i < FXP_NTXCB; i++) {
   1951 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   1952 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   1953 	}
   1954 
   1955 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   1956 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   1957 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1958 	    sizeof(struct fxp_control_data));
   1959 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   1960 
   1961 	shutdownhook_disestablish(sc->sc_sdhook);
   1962 	powerhook_disestablish(sc->sc_powerhook);
   1963 
   1964 	return (0);
   1965 }
   1966