i82557.c revision 1.24 1 /* $NetBSD: i82557.c,v 1.24 2000/03/23 07:01:31 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <vm/vm.h> /* for PAGE_SIZE */
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 int fxp_init __P((struct fxp_softc *));
181 void fxp_rxdrain __P((struct fxp_softc *));
182 void fxp_stop __P((struct fxp_softc *, int));
183 void fxp_watchdog __P((struct ifnet *));
184 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185 int fxp_mdi_read __P((struct device *, int, int));
186 void fxp_statchg __P((struct device *));
187 void fxp_mdi_write __P((struct device *, int, int, int));
188 void fxp_autosize_eeprom __P((struct fxp_softc*));
189 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191 void fxp_tick __P((void *));
192 void fxp_mc_setup __P((struct fxp_softc *));
193
194 void fxp_shutdown __P((void *));
195 void fxp_power __P((int, void *));
196
197 int fxp_copy_small = 0;
198
199 int fxp_enable __P((struct fxp_softc*));
200 void fxp_disable __P((struct fxp_softc*));
201
202 struct fxp_phytype {
203 int fp_phy; /* type of PHY, -1 for MII at the end. */
204 void (*fp_init) __P((struct fxp_softc *));
205 } fxp_phytype_table[] = {
206 { FXP_PHY_80C24, fxp_80c24_initmedia },
207 { -1, fxp_mii_initmedia },
208 };
209
210 /*
211 * Set initial transmit threshold at 64 (512 bytes). This is
212 * increased by 64 (512 bytes) at a time, to maximum of 192
213 * (1536 bytes), if an underrun occurs.
214 */
215 static int tx_threshold = 64;
216
217 /*
218 * Wait for the previous command to be accepted (but not necessarily
219 * completed).
220 */
221 inline void
222 fxp_scb_wait(sc)
223 struct fxp_softc *sc;
224 {
225 int i = 10000;
226
227 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
228 delay(2);
229 if (i == 0)
230 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
231 }
232
233 /*
234 * Finish attaching an i82557 interface. Called by bus-specific front-end.
235 */
236 void
237 fxp_attach(sc)
238 struct fxp_softc *sc;
239 {
240 u_int8_t enaddr[6];
241 struct ifnet *ifp;
242 bus_dma_segment_t seg;
243 int rseg, i, error;
244 struct fxp_phytype *fp;
245
246 callout_init(&sc->sc_callout);
247
248 /*
249 * Allocate the control data structures, and create and load the
250 * DMA map for it.
251 */
252 if ((error = bus_dmamem_alloc(sc->sc_dmat,
253 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
254 0)) != 0) {
255 printf("%s: unable to allocate control data, error = %d\n",
256 sc->sc_dev.dv_xname, error);
257 goto fail_0;
258 }
259
260 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
261 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
262 BUS_DMA_COHERENT)) != 0) {
263 printf("%s: unable to map control data, error = %d\n",
264 sc->sc_dev.dv_xname, error);
265 goto fail_1;
266 }
267 sc->sc_cdseg = seg;
268 sc->sc_cdnseg = rseg;
269
270 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
271
272 if ((error = bus_dmamap_create(sc->sc_dmat,
273 sizeof(struct fxp_control_data), 1,
274 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
275 printf("%s: unable to create control data DMA map, "
276 "error = %d\n", sc->sc_dev.dv_xname, error);
277 goto fail_2;
278 }
279
280 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
281 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
282 0)) != 0) {
283 printf("%s: can't load control data DMA map, error = %d\n",
284 sc->sc_dev.dv_xname, error);
285 goto fail_3;
286 }
287
288 /*
289 * Create the transmit buffer DMA maps.
290 */
291 for (i = 0; i < FXP_NTXCB; i++) {
292 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
293 FXP_NTXSEG, MCLBYTES, 0, 0,
294 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
295 printf("%s: unable to create tx DMA map %d, "
296 "error = %d\n", sc->sc_dev.dv_xname, i, error);
297 goto fail_4;
298 }
299 }
300
301 /*
302 * Create the receive buffer DMA maps.
303 */
304 for (i = 0; i < FXP_NRFABUFS; i++) {
305 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
306 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
307 printf("%s: unable to create rx DMA map %d, "
308 "error = %d\n", sc->sc_dev.dv_xname, i, error);
309 goto fail_5;
310 }
311 }
312
313 /* Initialize MAC address and media structures. */
314 fxp_get_info(sc, enaddr);
315
316 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
317 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
318
319 ifp = &sc->sc_ethercom.ec_if;
320
321 /*
322 * Get info about our media interface, and initialize it. Note
323 * the table terminates itself with a phy of -1, indicating
324 * that we're using MII.
325 */
326 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
327 if (fp->fp_phy == sc->phy_primary_device)
328 break;
329 (*fp->fp_init)(sc);
330
331 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
332 ifp->if_softc = sc;
333 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
334 ifp->if_ioctl = fxp_ioctl;
335 ifp->if_start = fxp_start;
336 ifp->if_watchdog = fxp_watchdog;
337
338 /*
339 * Attach the interface.
340 */
341 if_attach(ifp);
342 ether_ifattach(ifp, enaddr);
343 #if NBPFILTER > 0
344 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
345 sizeof(struct ether_header));
346 #endif
347 #if NRND > 0
348 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
349 RND_TYPE_NET, 0);
350 #endif
351
352 /*
353 * Add shutdown hook so that DMA is disabled prior to reboot. Not
354 * doing do could allow DMA to corrupt kernel memory during the
355 * reboot before the driver initializes.
356 */
357 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
358 if (sc->sc_sdhook == NULL)
359 printf("%s: WARNING: unable to establish shutdown hook\n",
360 sc->sc_dev.dv_xname);
361 /*
362 * Add suspend hook, for similar reasons..
363 */
364 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
365 if (sc->sc_powerhook == NULL)
366 printf("%s: WARNING: unable to establish power hook\n",
367 sc->sc_dev.dv_xname);
368 return;
369
370 /*
371 * Free any resources we've allocated during the failed attach
372 * attempt. Do this in reverse order and fall though.
373 */
374 fail_5:
375 for (i = 0; i < FXP_NRFABUFS; i++) {
376 if (sc->sc_rxmaps[i] != NULL)
377 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
378 }
379 fail_4:
380 for (i = 0; i < FXP_NTXCB; i++) {
381 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
382 bus_dmamap_destroy(sc->sc_dmat,
383 FXP_DSTX(sc, i)->txs_dmamap);
384 }
385 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
386 fail_3:
387 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
388 fail_2:
389 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
390 sizeof(struct fxp_control_data));
391 fail_1:
392 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
393 fail_0:
394 return;
395 }
396
397 void
398 fxp_mii_initmedia(sc)
399 struct fxp_softc *sc;
400 {
401
402 sc->sc_flags |= FXPF_MII;
403
404 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
405 sc->sc_mii.mii_readreg = fxp_mdi_read;
406 sc->sc_mii.mii_writereg = fxp_mdi_write;
407 sc->sc_mii.mii_statchg = fxp_statchg;
408 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
409 fxp_mii_mediastatus);
410 /*
411 * The i82557 wedges if all of its PHYs are isolated!
412 */
413 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
414 MII_OFFSET_ANY, MIIF_NOISOLATE);
415 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
416 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
417 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
418 } else
419 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
420 }
421
422 void
423 fxp_80c24_initmedia(sc)
424 struct fxp_softc *sc;
425 {
426
427 /*
428 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
429 * doesn't have a programming interface of any sort. The
430 * media is sensed automatically based on how the link partner
431 * is configured. This is, in essence, manual configuration.
432 */
433 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
434 sc->sc_dev.dv_xname);
435 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
436 fxp_80c24_mediastatus);
437 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
438 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
439 }
440
441 /*
442 * Device shutdown routine. Called at system shutdown after sync. The
443 * main purpose of this routine is to shut off receiver DMA so that
444 * kernel memory doesn't get clobbered during warmboot.
445 */
446 void
447 fxp_shutdown(arg)
448 void *arg;
449 {
450 struct fxp_softc *sc = arg;
451
452 /*
453 * Since the system's going to halt shortly, don't bother
454 * freeing mbufs.
455 */
456 fxp_stop(sc, 0);
457 }
458 /*
459 * Power handler routine. Called when the system is transitioning
460 * into/out of power save modes. As with fxp_shutdown, the main
461 * purpose of this routine is to shut off receiver DMA so it doesn't
462 * clobber kernel memory at the wrong time.
463 */
464 void
465 fxp_power(why, arg)
466 int why;
467 void *arg;
468 {
469 struct fxp_softc *sc = arg;
470 struct ifnet *ifp;
471 int s;
472
473 s = splnet();
474 if (why != PWR_RESUME)
475 fxp_stop(sc, 0);
476 else {
477 ifp = &sc->sc_ethercom.ec_if;
478 if (ifp->if_flags & IFF_UP)
479 fxp_init(sc);
480 }
481 splx(s);
482 }
483
484 /*
485 * Initialize the interface media.
486 */
487 void
488 fxp_get_info(sc, enaddr)
489 struct fxp_softc *sc;
490 u_int8_t *enaddr;
491 {
492 u_int16_t data, myea[3];
493
494 /*
495 * Reset to a stable state.
496 */
497 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
498 DELAY(10);
499
500 sc->sc_eeprom_size = 0;
501 fxp_autosize_eeprom(sc);
502 if(sc->sc_eeprom_size == 0) {
503 printf("%s: failed to detect EEPROM size", sc->sc_dev.dv_xname);
504 sc->sc_eeprom_size = 6; /* XXX panic here? */
505 }
506 #ifdef DEBUG
507 printf("%s: detected %d word EEPROM\n",
508 sc->sc_dev.dv_xname,
509 1 << sc->sc_eeprom_size);
510 #endif
511
512 /*
513 * Get info about the primary PHY
514 */
515 fxp_read_eeprom(sc, &data, 6, 1);
516 sc->phy_primary_addr = data & 0xff;
517 sc->phy_primary_device = (data >> 8) & 0x3f;
518 sc->phy_10Mbps_only = data >> 15;
519
520 /*
521 * Read MAC address.
522 */
523 fxp_read_eeprom(sc, myea, 0, 3);
524 bcopy(myea, enaddr, ETHER_ADDR_LEN);
525 }
526
527 /*
528 * Figure out EEPROM size.
529 *
530 * 559's can have either 64-word or 256-word EEPROMs, the 558
531 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
532 * talks about the existance of 16 to 256 word EEPROMs.
533 *
534 * The only known sizes are 64 and 256, where the 256 version is used
535 * by CardBus cards to store CIS information.
536 *
537 * The address is shifted in msb-to-lsb, and after the last
538 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
539 * after which follows the actual data. We try to detect this zero, by
540 * probing the data-out bit in the EEPROM control register just after
541 * having shifted in a bit. If the bit is zero, we assume we've
542 * shifted enough address bits. The data-out should be tri-state,
543 * before this, which should translate to a logical one.
544 *
545 * Other ways to do this would be to try to read a register with known
546 * contents with a varying number of address bits, but no such
547 * register seem to be available. The high bits of register 10 are 01
548 * on the 558 and 559, but apparently not on the 557.
549 *
550 * The Linux driver computes a checksum on the EEPROM data, but the
551 * value of this checksum is not very well documented.
552 */
553
554 void
555 fxp_autosize_eeprom(sc)
556 struct fxp_softc *sc;
557 {
558 u_int16_t reg;
559 int x;
560
561 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
562 /*
563 * Shift in read opcode.
564 */
565 for (x = 3; x > 0; x--) {
566 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
567 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
568 } else {
569 reg = FXP_EEPROM_EECS;
570 }
571 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
572 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
573 reg | FXP_EEPROM_EESK);
574 DELAY(1);
575 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
576 DELAY(1);
577 }
578 /*
579 * Shift in address, wait for the dummy zero following a correct
580 * address shift.
581 */
582 for (x = 1; x <= 8; x++) {
583 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
584 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
585 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
586 DELAY(1);
587 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
588 FXP_EEPROM_EEDO) == 0)
589 break;
590 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
591 DELAY(1);
592 }
593 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
594 DELAY(1);
595 if(x != 6 && x != 8) {
596 #ifdef DEBUG
597 printf("%s: strange EEPROM size (%d)\n",
598 sc->sc_dev.dv_xname, 1 << x);
599 #endif
600 } else
601 sc->sc_eeprom_size = x;
602 }
603
604 /*
605 * Read from the serial EEPROM. Basically, you manually shift in
606 * the read opcode (one bit at a time) and then shift in the address,
607 * and then you shift out the data (all of this one bit at a time).
608 * The word size is 16 bits, so you have to provide the address for
609 * every 16 bits of data.
610 */
611 void
612 fxp_read_eeprom(sc, data, offset, words)
613 struct fxp_softc *sc;
614 u_int16_t *data;
615 int offset;
616 int words;
617 {
618 u_int16_t reg;
619 int i, x;
620
621 for (i = 0; i < words; i++) {
622 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
623 /*
624 * Shift in read opcode.
625 */
626 for (x = 3; x > 0; x--) {
627 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
628 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
629 } else {
630 reg = FXP_EEPROM_EECS;
631 }
632 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
633 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
634 reg | FXP_EEPROM_EESK);
635 DELAY(1);
636 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
637 DELAY(1);
638 }
639 /*
640 * Shift in address.
641 */
642 for (x = sc->sc_eeprom_size; x > 0; x--) {
643 if ((i + offset) & (1 << (x - 1))) {
644 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
645 } else {
646 reg = FXP_EEPROM_EECS;
647 }
648 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
649 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
650 reg | FXP_EEPROM_EESK);
651 DELAY(1);
652 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
653 DELAY(1);
654 }
655 reg = FXP_EEPROM_EECS;
656 data[i] = 0;
657 /*
658 * Shift out data.
659 */
660 for (x = 16; x > 0; x--) {
661 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
662 reg | FXP_EEPROM_EESK);
663 DELAY(1);
664 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
665 FXP_EEPROM_EEDO)
666 data[i] |= (1 << (x - 1));
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
668 DELAY(1);
669 }
670 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
671 DELAY(1);
672 }
673 }
674
675 /*
676 * Start packet transmission on the interface.
677 */
678 void
679 fxp_start(ifp)
680 struct ifnet *ifp;
681 {
682 struct fxp_softc *sc = ifp->if_softc;
683 struct mbuf *m0, *m;
684 struct fxp_cb_tx *txd;
685 struct fxp_txsoft *txs;
686 struct fxp_tbdlist *tbd;
687 bus_dmamap_t dmamap;
688 int error, lasttx, nexttx, opending, seg;
689
690 /*
691 * If we want a re-init, bail out now.
692 */
693 if (sc->sc_flags & FXPF_WANTINIT) {
694 ifp->if_flags |= IFF_OACTIVE;
695 return;
696 }
697
698 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
699 return;
700
701 /*
702 * Remember the previous txpending and the current lasttx.
703 */
704 opending = sc->sc_txpending;
705 lasttx = sc->sc_txlast;
706
707 /*
708 * Loop through the send queue, setting up transmit descriptors
709 * until we drain the queue, or use up all available transmit
710 * descriptors.
711 */
712 while (sc->sc_txpending < FXP_NTXCB) {
713 /*
714 * Grab a packet off the queue.
715 */
716 IF_DEQUEUE(&ifp->if_snd, m0);
717 if (m0 == NULL)
718 break;
719
720 /*
721 * Get the next available transmit descriptor.
722 */
723 nexttx = FXP_NEXTTX(sc->sc_txlast);
724 txd = FXP_CDTX(sc, nexttx);
725 tbd = FXP_CDTBD(sc, nexttx);
726 txs = FXP_DSTX(sc, nexttx);
727 dmamap = txs->txs_dmamap;
728
729 /*
730 * Load the DMA map. If this fails, the packet either
731 * didn't fit in the allotted number of frags, or we were
732 * short on resources. In this case, we'll copy and try
733 * again.
734 */
735 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
736 BUS_DMA_NOWAIT) != 0) {
737 MGETHDR(m, M_DONTWAIT, MT_DATA);
738 if (m == NULL) {
739 printf("%s: unable to allocate Tx mbuf\n",
740 sc->sc_dev.dv_xname);
741 IF_PREPEND(&ifp->if_snd, m0);
742 break;
743 }
744 if (m0->m_pkthdr.len > MHLEN) {
745 MCLGET(m, M_DONTWAIT);
746 if ((m->m_flags & M_EXT) == 0) {
747 printf("%s: unable to allocate Tx "
748 "cluster\n", sc->sc_dev.dv_xname);
749 m_freem(m);
750 IF_PREPEND(&ifp->if_snd, m0);
751 break;
752 }
753 }
754 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
755 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
756 m_freem(m0);
757 m0 = m;
758 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
759 m0, BUS_DMA_NOWAIT);
760 if (error) {
761 printf("%s: unable to load Tx buffer, "
762 "error = %d\n", sc->sc_dev.dv_xname, error);
763 IF_PREPEND(&ifp->if_snd, m0);
764 break;
765 }
766 }
767
768 /* Initialize the fraglist. */
769 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
770 tbd->tbd_d[seg].tb_addr =
771 htole32(dmamap->dm_segs[seg].ds_addr);
772 tbd->tbd_d[seg].tb_size =
773 htole32(dmamap->dm_segs[seg].ds_len);
774 }
775
776 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
777
778 /* Sync the DMA map. */
779 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
780 BUS_DMASYNC_PREWRITE);
781
782 /*
783 * Store a pointer to the packet so we can free it later.
784 */
785 txs->txs_mbuf = m0;
786
787 /*
788 * Initialize the transmit descriptor.
789 */
790 /* BIG_ENDIAN: no need to swap to store 0 */
791 txd->cb_status = 0;
792 txd->cb_command =
793 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
794 txd->tx_threshold = tx_threshold;
795 txd->tbd_number = dmamap->dm_nsegs;
796
797 FXP_CDTXSYNC(sc, nexttx,
798 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
799
800 /* Advance the tx pointer. */
801 sc->sc_txpending++;
802 sc->sc_txlast = nexttx;
803
804 #if NBPFILTER > 0
805 /*
806 * Pass packet to bpf if there is a listener.
807 */
808 if (ifp->if_bpf)
809 bpf_mtap(ifp->if_bpf, m0);
810 #endif
811 }
812
813 if (sc->sc_txpending == FXP_NTXCB) {
814 /* No more slots; notify upper layer. */
815 ifp->if_flags |= IFF_OACTIVE;
816 }
817
818 if (sc->sc_txpending != opending) {
819 /*
820 * We enqueued packets. If the transmitter was idle,
821 * reset the txdirty pointer.
822 */
823 if (opending == 0)
824 sc->sc_txdirty = FXP_NEXTTX(lasttx);
825
826 /*
827 * Cause the chip to interrupt and suspend command
828 * processing once the last packet we've enqueued
829 * has been transmitted.
830 */
831 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
832 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
833 FXP_CDTXSYNC(sc, sc->sc_txlast,
834 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
835
836 /*
837 * The entire packet chain is set up. Clear the suspend bit
838 * on the command prior to the first packet we set up.
839 */
840 FXP_CDTXSYNC(sc, lasttx,
841 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
842 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
843 FXP_CDTXSYNC(sc, lasttx,
844 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
845
846 /*
847 * Issue a Resume command in case the chip was suspended.
848 */
849 fxp_scb_wait(sc);
850 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
851
852 /* Set a watchdog timer in case the chip flakes out. */
853 ifp->if_timer = 5;
854 }
855 }
856
857 /*
858 * Process interface interrupts.
859 */
860 int
861 fxp_intr(arg)
862 void *arg;
863 {
864 struct fxp_softc *sc = arg;
865 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
866 struct fxp_cb_tx *txd;
867 struct fxp_txsoft *txs;
868 struct mbuf *m, *m0;
869 bus_dmamap_t rxmap;
870 struct fxp_rfa *rfa;
871 struct ether_header *eh;
872 int i, claimed = 0;
873 u_int16_t len, rxstat, txstat;
874 u_int8_t statack;
875
876 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
877 return (0);
878 /*
879 * If the interface isn't running, don't try to
880 * service the interrupt.. just ack it and bail.
881 */
882 if ((ifp->if_flags & IFF_RUNNING) == 0) {
883 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
884 if (statack) {
885 claimed = 1;
886 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
887 }
888 return (claimed);
889 }
890
891 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
892 claimed = 1;
893
894 /*
895 * First ACK all the interrupts in this pass.
896 */
897 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
898
899 /*
900 * Process receiver interrupts. If a no-resource (RNR)
901 * condition exists, get whatever packets we can and
902 * re-start the receiver.
903 */
904 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
905 rcvloop:
906 m = sc->sc_rxq.ifq_head;
907 rfa = FXP_MTORFA(m);
908 rxmap = M_GETCTX(m, bus_dmamap_t);
909
910 FXP_RFASYNC(sc, m,
911 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
912
913 rxstat = le16toh(rfa->rfa_status);
914
915 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
916 /*
917 * We have processed all of the
918 * receive buffers.
919 */
920 goto do_transmit;
921 }
922
923 IF_DEQUEUE(&sc->sc_rxq, m);
924
925 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
926
927 len = le16toh(rfa->actual_size) &
928 (m->m_ext.ext_size - 1);
929
930 if (len < sizeof(struct ether_header)) {
931 /*
932 * Runt packet; drop it now.
933 */
934 FXP_INIT_RFABUF(sc, m);
935 goto rcvloop;
936 }
937
938 /*
939 * If the packet is small enough to fit in a
940 * single header mbuf, allocate one and copy
941 * the data into it. This greatly reduces
942 * memory consumption when we receive lots
943 * of small packets.
944 *
945 * Otherwise, we add a new buffer to the receive
946 * chain. If this fails, we drop the packet and
947 * recycle the old buffer.
948 */
949 if (fxp_copy_small != 0 && len <= MHLEN) {
950 MGETHDR(m0, M_DONTWAIT, MT_DATA);
951 if (m == NULL)
952 goto dropit;
953 memcpy(mtod(m0, caddr_t),
954 mtod(m, caddr_t), len);
955 FXP_INIT_RFABUF(sc, m);
956 m = m0;
957 } else {
958 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
959 dropit:
960 ifp->if_ierrors++;
961 FXP_INIT_RFABUF(sc, m);
962 goto rcvloop;
963 }
964 }
965
966 m->m_pkthdr.rcvif = ifp;
967 m->m_pkthdr.len = m->m_len = len;
968 eh = mtod(m, struct ether_header *);
969
970 #if NBPFILTER > 0
971 /*
972 * Pass this up to any BPF listeners, but only
973 * pass it up the stack it its for us.
974 */
975 if (ifp->if_bpf) {
976 bpf_mtap(ifp->if_bpf, m);
977
978 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
979 (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
980 (eh->ether_dhost[0] & 1) == 0) {
981 m_freem(m);
982 goto rcvloop;
983 }
984 }
985 #endif /* NBPFILTER > 0 */
986
987 /* Pass it on. */
988 (*ifp->if_input)(ifp, m);
989 goto rcvloop;
990 }
991
992 do_transmit:
993 if (statack & FXP_SCB_STATACK_RNR) {
994 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
995 fxp_scb_wait(sc);
996 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
997 rxmap->dm_segs[0].ds_addr +
998 RFA_ALIGNMENT_FUDGE);
999 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1000 FXP_SCB_COMMAND_RU_START);
1001 }
1002
1003 /*
1004 * Free any finished transmit mbuf chains.
1005 */
1006 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1007 ifp->if_flags &= ~IFF_OACTIVE;
1008 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1009 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1010 txd = FXP_CDTX(sc, i);
1011 txs = FXP_DSTX(sc, i);
1012
1013 FXP_CDTXSYNC(sc, i,
1014 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1015
1016 txstat = le16toh(txd->cb_status);
1017
1018 if ((txstat & FXP_CB_STATUS_C) == 0)
1019 break;
1020
1021 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1022
1023 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1024 0, txs->txs_dmamap->dm_mapsize,
1025 BUS_DMASYNC_POSTWRITE);
1026 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1027 m_freem(txs->txs_mbuf);
1028 txs->txs_mbuf = NULL;
1029 }
1030
1031 /* Update the dirty transmit buffer pointer. */
1032 sc->sc_txdirty = i;
1033
1034 /*
1035 * Cancel the watchdog timer if there are no pending
1036 * transmissions.
1037 */
1038 if (sc->sc_txpending == 0) {
1039 ifp->if_timer = 0;
1040
1041 /*
1042 * If we want a re-init, do that now.
1043 */
1044 if (sc->sc_flags & FXPF_WANTINIT)
1045 (void) fxp_init(sc);
1046 }
1047
1048 /*
1049 * Try to get more packets going.
1050 */
1051 fxp_start(ifp);
1052 }
1053 }
1054
1055 #if NRND > 0
1056 if (claimed)
1057 rnd_add_uint32(&sc->rnd_source, statack);
1058 #endif
1059 return (claimed);
1060 }
1061
1062 /*
1063 * Update packet in/out/collision statistics. The i82557 doesn't
1064 * allow you to access these counters without doing a fairly
1065 * expensive DMA to get _all_ of the statistics it maintains, so
1066 * we do this operation here only once per second. The statistics
1067 * counters in the kernel are updated from the previous dump-stats
1068 * DMA and then a new dump-stats DMA is started. The on-chip
1069 * counters are zeroed when the DMA completes. If we can't start
1070 * the DMA immediately, we don't wait - we just prepare to read
1071 * them again next time.
1072 */
1073 void
1074 fxp_tick(arg)
1075 void *arg;
1076 {
1077 struct fxp_softc *sc = arg;
1078 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1079 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1080 int s;
1081
1082 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1083 return;
1084
1085 s = splnet();
1086
1087 ifp->if_opackets += le32toh(sp->tx_good);
1088 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1089 if (sp->rx_good) {
1090 ifp->if_ipackets += le32toh(sp->rx_good);
1091 sc->sc_rxidle = 0;
1092 } else {
1093 sc->sc_rxidle++;
1094 }
1095 ifp->if_ierrors +=
1096 le32toh(sp->rx_crc_errors) +
1097 le32toh(sp->rx_alignment_errors) +
1098 le32toh(sp->rx_rnr_errors) +
1099 le32toh(sp->rx_overrun_errors);
1100 /*
1101 * If any transmit underruns occured, bump up the transmit
1102 * threshold by another 512 bytes (64 * 8).
1103 */
1104 if (sp->tx_underruns) {
1105 ifp->if_oerrors += le32toh(sp->tx_underruns);
1106 if (tx_threshold < 192)
1107 tx_threshold += 64;
1108 }
1109
1110 /*
1111 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1112 * then assume the receiver has locked up and attempt to clear
1113 * the condition by reprogramming the multicast filter (actually,
1114 * resetting the interface). This is a work-around for a bug in
1115 * the 82557 where the receiver locks up if it gets certain types
1116 * of garbage in the syncronization bits prior to the packet header.
1117 * This bug is supposed to only occur in 10Mbps mode, but has been
1118 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1119 * speed transition).
1120 */
1121 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1122 (void) fxp_init(sc);
1123 splx(s);
1124 return;
1125 }
1126 /*
1127 * If there is no pending command, start another stats
1128 * dump. Otherwise punt for now.
1129 */
1130 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1131 /*
1132 * Start another stats dump.
1133 */
1134 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1135 FXP_SCB_COMMAND_CU_DUMPRESET);
1136 } else {
1137 /*
1138 * A previous command is still waiting to be accepted.
1139 * Just zero our copy of the stats and wait for the
1140 * next timer event to update them.
1141 */
1142 /* BIG_ENDIAN: no swap required to store 0 */
1143 sp->tx_good = 0;
1144 sp->tx_underruns = 0;
1145 sp->tx_total_collisions = 0;
1146
1147 sp->rx_good = 0;
1148 sp->rx_crc_errors = 0;
1149 sp->rx_alignment_errors = 0;
1150 sp->rx_rnr_errors = 0;
1151 sp->rx_overrun_errors = 0;
1152 }
1153
1154 if (sc->sc_flags & FXPF_MII) {
1155 /* Tick the MII clock. */
1156 mii_tick(&sc->sc_mii);
1157 }
1158
1159 splx(s);
1160
1161 /*
1162 * Schedule another timeout one second from now.
1163 */
1164 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1165 }
1166
1167 /*
1168 * Drain the receive queue.
1169 */
1170 void
1171 fxp_rxdrain(sc)
1172 struct fxp_softc *sc;
1173 {
1174 bus_dmamap_t rxmap;
1175 struct mbuf *m;
1176
1177 for (;;) {
1178 IF_DEQUEUE(&sc->sc_rxq, m);
1179 if (m == NULL)
1180 break;
1181 rxmap = M_GETCTX(m, bus_dmamap_t);
1182 bus_dmamap_unload(sc->sc_dmat, rxmap);
1183 FXP_RXMAP_PUT(sc, rxmap);
1184 m_freem(m);
1185 }
1186 }
1187
1188 /*
1189 * Stop the interface. Cancels the statistics updater and resets
1190 * the interface.
1191 */
1192 void
1193 fxp_stop(sc, drain)
1194 struct fxp_softc *sc;
1195 int drain;
1196 {
1197 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1198 struct fxp_txsoft *txs;
1199 int i;
1200
1201 /*
1202 * Turn down interface (done early to avoid bad interactions
1203 * between panics, shutdown hooks, and the watchdog timer)
1204 */
1205 ifp->if_timer = 0;
1206 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1207
1208 /*
1209 * Cancel stats updater.
1210 */
1211 callout_stop(&sc->sc_callout);
1212 if (sc->sc_flags & FXPF_MII) {
1213 /* Down the MII. */
1214 mii_down(&sc->sc_mii);
1215 }
1216
1217 /*
1218 * Issue software reset
1219 */
1220 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1221 DELAY(10);
1222
1223 /*
1224 * Release any xmit buffers.
1225 */
1226 for (i = 0; i < FXP_NTXCB; i++) {
1227 txs = FXP_DSTX(sc, i);
1228 if (txs->txs_mbuf != NULL) {
1229 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1230 m_freem(txs->txs_mbuf);
1231 txs->txs_mbuf = NULL;
1232 }
1233 }
1234 sc->sc_txpending = 0;
1235
1236 if (drain) {
1237 /*
1238 * Release the receive buffers.
1239 */
1240 fxp_rxdrain(sc);
1241 }
1242
1243 }
1244
1245 /*
1246 * Watchdog/transmission transmit timeout handler. Called when a
1247 * transmission is started on the interface, but no interrupt is
1248 * received before the timeout. This usually indicates that the
1249 * card has wedged for some reason.
1250 */
1251 void
1252 fxp_watchdog(ifp)
1253 struct ifnet *ifp;
1254 {
1255 struct fxp_softc *sc = ifp->if_softc;
1256
1257 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1258 ifp->if_oerrors++;
1259
1260 (void) fxp_init(sc);
1261 }
1262
1263 /*
1264 * Initialize the interface. Must be called at splnet().
1265 */
1266 int
1267 fxp_init(sc)
1268 struct fxp_softc *sc;
1269 {
1270 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1271 struct fxp_cb_config *cbp;
1272 struct fxp_cb_ias *cb_ias;
1273 struct fxp_cb_tx *txd;
1274 bus_dmamap_t rxmap;
1275 int i, prm, allm, error = 0;
1276
1277 /*
1278 * Cancel any pending I/O
1279 */
1280 fxp_stop(sc, 0);
1281
1282 /*
1283 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1284 * flag, and this prevents the MII from detaching resulting in
1285 * a panic. The flags field should perhaps be split in runtime
1286 * flags and more static information. For now, just clear the
1287 * only other flag set.
1288 */
1289
1290 sc->sc_flags &= ~FXPF_WANTINIT;
1291
1292 /*
1293 * Initialize base of CBL and RFA memory. Loading with zero
1294 * sets it up for regular linear addressing.
1295 */
1296 fxp_scb_wait(sc);
1297 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1298 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1299
1300 fxp_scb_wait(sc);
1301 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1302
1303 /*
1304 * Initialize the multicast filter. Do this now, since we might
1305 * have to setup the config block differently.
1306 */
1307 fxp_mc_setup(sc);
1308
1309 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1310 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1311
1312 /*
1313 * Initialize base of dump-stats buffer.
1314 */
1315 fxp_scb_wait(sc);
1316 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1317 sc->sc_cddma + FXP_CDSTATSOFF);
1318 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1319
1320 cbp = &sc->sc_control_data->fcd_configcb;
1321 memset(cbp, 0, sizeof(struct fxp_cb_config));
1322
1323 /*
1324 * This copy is kind of disgusting, but there are a bunch of must be
1325 * zero and must be one bits in this structure and this is the easiest
1326 * way to initialize them all to proper values.
1327 */
1328 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1329
1330 /* BIG_ENDIAN: no need to swap to store 0 */
1331 cbp->cb_status = 0;
1332 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1333 FXP_CB_COMMAND_EL);
1334 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1335 cbp->link_addr = 0xffffffff; /* (no) next command */
1336 cbp->byte_count = 22; /* (22) bytes to config */
1337 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1338 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1339 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1340 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1341 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1342 cbp->dma_bce = 0; /* (disable) dma max counters */
1343 cbp->late_scb = 0; /* (don't) defer SCB update */
1344 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1345 cbp->ci_int = 1; /* interrupt on CU idle */
1346 cbp->save_bf = prm; /* save bad frames */
1347 cbp->disc_short_rx = !prm; /* discard short packets */
1348 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1349 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1350 cbp->nsai = 1; /* (don't) disable source addr insert */
1351 cbp->preamble_length = 2; /* (7 byte) preamble */
1352 cbp->loopback = 0; /* (don't) loopback */
1353 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1354 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1355 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1356 cbp->promiscuous = prm; /* promiscuous mode */
1357 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1358 cbp->crscdt = 0; /* (CRS only) */
1359 cbp->stripping = !prm; /* truncate rx packet to byte count */
1360 cbp->padding = 1; /* (do) pad short tx packets */
1361 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1362 cbp->force_fdx = 0; /* (don't) force full duplex */
1363 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1364 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1365 cbp->mc_all = allm; /* accept all multicasts */
1366
1367 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1368
1369 /*
1370 * Start the config command/DMA.
1371 */
1372 fxp_scb_wait(sc);
1373 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1374 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1375 /* ...and wait for it to complete. */
1376 do {
1377 FXP_CDCONFIGSYNC(sc,
1378 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1379 } while ((cbp->cb_status & FXP_CB_STATUS_C) == 0);
1380
1381 /*
1382 * Initialize the station address.
1383 */
1384 cb_ias = &sc->sc_control_data->fcd_iascb;
1385 /* BIG_ENDIAN: no need to swap to store 0 */
1386 cb_ias->cb_status = 0;
1387 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1388 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1389 cb_ias->link_addr = 0xffffffff;
1390 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1391
1392 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1393
1394 /*
1395 * Start the IAS (Individual Address Setup) command/DMA.
1396 */
1397 fxp_scb_wait(sc);
1398 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1399 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1400 /* ...and wait for it to complete. */
1401 do {
1402 FXP_CDIASSYNC(sc,
1403 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1404 } while ((cb_ias->cb_status & FXP_CB_STATUS_C) == 0);
1405
1406 /*
1407 * Initialize the transmit descriptor ring. txlast is initialized
1408 * to the end of the list so that it will wrap around to the first
1409 * descriptor when the first packet is transmitted.
1410 */
1411 for (i = 0; i < FXP_NTXCB; i++) {
1412 txd = FXP_CDTX(sc, i);
1413 memset(txd, 0, sizeof(struct fxp_cb_tx));
1414 txd->cb_command =
1415 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1416 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1417 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1418 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1419 }
1420 sc->sc_txpending = 0;
1421 sc->sc_txdirty = 0;
1422 sc->sc_txlast = FXP_NTXCB - 1;
1423
1424 /*
1425 * Initialize the receive buffer list.
1426 */
1427 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1428 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1429 rxmap = FXP_RXMAP_GET(sc);
1430 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1431 printf("%s: unable to allocate or map rx "
1432 "buffer %d, error = %d\n",
1433 sc->sc_dev.dv_xname,
1434 sc->sc_rxq.ifq_len, error);
1435 /*
1436 * XXX Should attempt to run with fewer receive
1437 * XXX buffers instead of just failing.
1438 */
1439 FXP_RXMAP_PUT(sc, rxmap);
1440 fxp_rxdrain(sc);
1441 goto out;
1442 }
1443 }
1444 sc->sc_rxidle = 0;
1445
1446 /*
1447 * Give the transmit ring to the chip. We do this by pointing
1448 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1449 * issuing a start command. It will execute the NOP and then
1450 * suspend, pointing at the first descriptor.
1451 */
1452 fxp_scb_wait(sc);
1453 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1454 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1455
1456 /*
1457 * Initialize receiver buffer area - RFA.
1458 */
1459 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1460 fxp_scb_wait(sc);
1461 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1462 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1463 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1464
1465 if (sc->sc_flags & FXPF_MII) {
1466 /*
1467 * Set current media.
1468 */
1469 mii_mediachg(&sc->sc_mii);
1470 }
1471
1472 /*
1473 * ...all done!
1474 */
1475 ifp->if_flags |= IFF_RUNNING;
1476 ifp->if_flags &= ~IFF_OACTIVE;
1477
1478 /*
1479 * Start the one second timer.
1480 */
1481 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1482
1483 /*
1484 * Attempt to start output on the interface.
1485 */
1486 fxp_start(ifp);
1487
1488 out:
1489 if (error)
1490 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1491 return (error);
1492 }
1493
1494 /*
1495 * Change media according to request.
1496 */
1497 int
1498 fxp_mii_mediachange(ifp)
1499 struct ifnet *ifp;
1500 {
1501 struct fxp_softc *sc = ifp->if_softc;
1502
1503 if (ifp->if_flags & IFF_UP)
1504 mii_mediachg(&sc->sc_mii);
1505 return (0);
1506 }
1507
1508 /*
1509 * Notify the world which media we're using.
1510 */
1511 void
1512 fxp_mii_mediastatus(ifp, ifmr)
1513 struct ifnet *ifp;
1514 struct ifmediareq *ifmr;
1515 {
1516 struct fxp_softc *sc = ifp->if_softc;
1517
1518 if(sc->sc_enabled == 0) {
1519 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1520 ifmr->ifm_status = 0;
1521 return;
1522 }
1523
1524 mii_pollstat(&sc->sc_mii);
1525 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1526 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1527 }
1528
1529 int
1530 fxp_80c24_mediachange(ifp)
1531 struct ifnet *ifp;
1532 {
1533
1534 /* Nothing to do here. */
1535 return (0);
1536 }
1537
1538 void
1539 fxp_80c24_mediastatus(ifp, ifmr)
1540 struct ifnet *ifp;
1541 struct ifmediareq *ifmr;
1542 {
1543 struct fxp_softc *sc = ifp->if_softc;
1544
1545 /*
1546 * Media is currently-selected media. We cannot determine
1547 * the link status.
1548 */
1549 ifmr->ifm_status = 0;
1550 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1551 }
1552
1553 /*
1554 * Add a buffer to the end of the RFA buffer list.
1555 * Return 0 if successful, error code on failure.
1556 *
1557 * The RFA struct is stuck at the beginning of mbuf cluster and the
1558 * data pointer is fixed up to point just past it.
1559 */
1560 int
1561 fxp_add_rfabuf(sc, rxmap, unload)
1562 struct fxp_softc *sc;
1563 bus_dmamap_t rxmap;
1564 int unload;
1565 {
1566 struct mbuf *m;
1567 int error;
1568
1569 MGETHDR(m, M_DONTWAIT, MT_DATA);
1570 if (m == NULL)
1571 return (ENOBUFS);
1572
1573 MCLGET(m, M_DONTWAIT);
1574 if ((m->m_flags & M_EXT) == 0) {
1575 m_freem(m);
1576 return (ENOBUFS);
1577 }
1578
1579 if (unload)
1580 bus_dmamap_unload(sc->sc_dmat, rxmap);
1581
1582 M_SETCTX(m, rxmap);
1583
1584 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1585 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1586 if (error) {
1587 printf("%s: can't load rx DMA map %d, error = %d\n",
1588 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1589 panic("fxp_add_rfabuf"); /* XXX */
1590 }
1591
1592 FXP_INIT_RFABUF(sc, m);
1593
1594 return (0);
1595 }
1596
1597 volatile int
1598 fxp_mdi_read(self, phy, reg)
1599 struct device *self;
1600 int phy;
1601 int reg;
1602 {
1603 struct fxp_softc *sc = (struct fxp_softc *)self;
1604 int count = 10000;
1605 int value;
1606
1607 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1608 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1609
1610 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1611 && count--)
1612 DELAY(10);
1613
1614 if (count <= 0)
1615 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1616
1617 return (value & 0xffff);
1618 }
1619
1620 void
1621 fxp_statchg(self)
1622 struct device *self;
1623 {
1624
1625 /* Nothing to do. */
1626 }
1627
1628 void
1629 fxp_mdi_write(self, phy, reg, value)
1630 struct device *self;
1631 int phy;
1632 int reg;
1633 int value;
1634 {
1635 struct fxp_softc *sc = (struct fxp_softc *)self;
1636 int count = 10000;
1637
1638 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1639 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1640 (value & 0xffff));
1641
1642 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1643 count--)
1644 DELAY(10);
1645
1646 if (count <= 0)
1647 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1648 }
1649
1650 int
1651 fxp_ioctl(ifp, command, data)
1652 struct ifnet *ifp;
1653 u_long command;
1654 caddr_t data;
1655 {
1656 struct fxp_softc *sc = ifp->if_softc;
1657 struct ifreq *ifr = (struct ifreq *)data;
1658 struct ifaddr *ifa = (struct ifaddr *)data;
1659 int s, error = 0;
1660
1661 s = splnet();
1662
1663 switch (command) {
1664 case SIOCSIFADDR:
1665 if ((error = fxp_enable(sc)) != 0)
1666 break;
1667 ifp->if_flags |= IFF_UP;
1668
1669 switch (ifa->ifa_addr->sa_family) {
1670 #ifdef INET
1671 case AF_INET:
1672 if ((error = fxp_init(sc)) != 0)
1673 break;
1674 arp_ifinit(ifp, ifa);
1675 break;
1676 #endif /* INET */
1677 #ifdef NS
1678 case AF_NS:
1679 {
1680 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1681
1682 if (ns_nullhost(*ina))
1683 ina->x_host = *(union ns_host *)
1684 LLADDR(ifp->if_sadl);
1685 else
1686 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1687 ifp->if_addrlen);
1688 /* Set new address. */
1689 error = fxp_init(sc);
1690 break;
1691 }
1692 #endif /* NS */
1693 default:
1694 error = fxp_init(sc);
1695 break;
1696 }
1697 break;
1698
1699 case SIOCSIFMTU:
1700 if (ifr->ifr_mtu > ETHERMTU)
1701 error = EINVAL;
1702 else
1703 ifp->if_mtu = ifr->ifr_mtu;
1704 break;
1705
1706 case SIOCSIFFLAGS:
1707 if ((ifp->if_flags & IFF_UP) == 0 &&
1708 (ifp->if_flags & IFF_RUNNING) != 0) {
1709 /*
1710 * If interface is marked down and it is running, then
1711 * stop it.
1712 */
1713 fxp_stop(sc, 1);
1714 fxp_disable(sc);
1715 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1716 (ifp->if_flags & IFF_RUNNING) == 0) {
1717 /*
1718 * If interface is marked up and it is stopped, then
1719 * start it.
1720 */
1721 if((error = fxp_enable(sc)) != 0)
1722 break;
1723 error = fxp_init(sc);
1724 } else if ((ifp->if_flags & IFF_UP) != 0) {
1725 /*
1726 * Reset the interface to pick up change in any other
1727 * flags that affect the hardware state.
1728 */
1729 if((error = fxp_enable(sc)) != 0)
1730 break;
1731 error = fxp_init(sc);
1732 }
1733 break;
1734
1735 case SIOCADDMULTI:
1736 case SIOCDELMULTI:
1737 if(sc->sc_enabled == 0) {
1738 error = EIO;
1739 break;
1740 }
1741 error = (command == SIOCADDMULTI) ?
1742 ether_addmulti(ifr, &sc->sc_ethercom) :
1743 ether_delmulti(ifr, &sc->sc_ethercom);
1744
1745 if (error == ENETRESET) {
1746 /*
1747 * Multicast list has changed; set the hardware
1748 * filter accordingly.
1749 */
1750 if (sc->sc_txpending) {
1751 sc->sc_flags |= FXPF_WANTINIT;
1752 error = 0;
1753 } else
1754 error = fxp_init(sc);
1755 }
1756 break;
1757
1758 case SIOCSIFMEDIA:
1759 case SIOCGIFMEDIA:
1760 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1761 break;
1762
1763 default:
1764 error = EINVAL;
1765 break;
1766 }
1767
1768 splx(s);
1769 return (error);
1770 }
1771
1772 /*
1773 * Program the multicast filter.
1774 *
1775 * This function must be called at splnet().
1776 */
1777 void
1778 fxp_mc_setup(sc)
1779 struct fxp_softc *sc;
1780 {
1781 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1782 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1783 struct ethercom *ec = &sc->sc_ethercom;
1784 struct ether_multi *enm;
1785 struct ether_multistep step;
1786 int nmcasts;
1787
1788 #ifdef DIAGNOSTIC
1789 if (sc->sc_txpending)
1790 panic("fxp_mc_setup: pending transmissions");
1791 #endif
1792
1793 ifp->if_flags &= ~IFF_ALLMULTI;
1794
1795 /*
1796 * Initialize multicast setup descriptor.
1797 */
1798 nmcasts = 0;
1799 ETHER_FIRST_MULTI(step, ec, enm);
1800 while (enm != NULL) {
1801 /*
1802 * Check for too many multicast addresses or if we're
1803 * listening to a range. Either way, we simply have
1804 * to accept all multicasts.
1805 */
1806 if (nmcasts >= MAXMCADDR ||
1807 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1808 ETHER_ADDR_LEN) != 0) {
1809 /*
1810 * Callers of this function must do the
1811 * right thing with this. If we're called
1812 * from outside fxp_init(), the caller must
1813 * detect if the state if IFF_ALLMULTI changes.
1814 * If it does, the caller must then call
1815 * fxp_init(), since allmulti is handled by
1816 * the config block.
1817 */
1818 ifp->if_flags |= IFF_ALLMULTI;
1819 return;
1820 }
1821 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1822 ETHER_ADDR_LEN);
1823 nmcasts++;
1824 ETHER_NEXT_MULTI(step, enm);
1825 }
1826
1827 /* BIG_ENDIAN: no need to swap to store 0 */
1828 mcsp->cb_status = 0;
1829 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1830 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1831 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1832
1833 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1834
1835 /*
1836 * Wait until the command unit is not active. This should never
1837 * happen since nothing is queued, but make sure anyway.
1838 */
1839 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1840 FXP_SCB_CUS_ACTIVE)
1841 /* nothing */ ;
1842
1843 /*
1844 * Start the multicast setup command/DMA.
1845 */
1846 fxp_scb_wait(sc);
1847 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1848 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1849
1850 /* ...and wait for it to complete. */
1851 do {
1852 FXP_CDMCSSYNC(sc,
1853 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1854 } while ((mcsp->cb_status & FXP_CB_STATUS_C) == 0);
1855 }
1856
1857 int
1858 fxp_enable(sc)
1859 struct fxp_softc *sc;
1860 {
1861
1862 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1863 if ((*sc->sc_enable)(sc) != 0) {
1864 printf("%s: device enable failed\n",
1865 sc->sc_dev.dv_xname);
1866 return (EIO);
1867 }
1868 }
1869
1870 sc->sc_enabled = 1;
1871 return (0);
1872 }
1873
1874 void
1875 fxp_disable(sc)
1876 struct fxp_softc *sc;
1877 {
1878
1879 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1880 (*sc->sc_disable)(sc);
1881 sc->sc_enabled = 0;
1882 }
1883 }
1884
1885 /*
1886 * fxp_activate:
1887 *
1888 * Handle device activation/deactivation requests.
1889 */
1890 int
1891 fxp_activate(self, act)
1892 struct device *self;
1893 enum devact act;
1894 {
1895 struct fxp_softc *sc = (void *) self;
1896 int s, error = 0;
1897
1898 s = splnet();
1899 switch (act) {
1900 case DVACT_ACTIVATE:
1901 error = EOPNOTSUPP;
1902 break;
1903
1904 case DVACT_DEACTIVATE:
1905 if (sc->sc_flags & FXPF_MII)
1906 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1907 MII_OFFSET_ANY);
1908 if_deactivate(&sc->sc_ethercom.ec_if);
1909 break;
1910 }
1911 splx(s);
1912
1913 return (error);
1914 }
1915
1916 /*
1917 * fxp_detach:
1918 *
1919 * Detach an i82557 interface.
1920 */
1921 int
1922 fxp_detach(sc)
1923 struct fxp_softc *sc;
1924 {
1925 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1926 int i;
1927
1928 /* Unhook our tick handler. */
1929 callout_stop(&sc->sc_callout);
1930
1931 if (sc->sc_flags & FXPF_MII) {
1932 /* Detach all PHYs */
1933 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1934 }
1935
1936 /* Delete all remaining media. */
1937 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1938
1939 #if NRND > 0
1940 rnd_detach_source(&sc->rnd_source);
1941 #endif
1942 #if NBPFILTER > 0
1943 bpfdetach(ifp);
1944 #endif
1945 ether_ifdetach(ifp);
1946 if_detach(ifp);
1947
1948 for (i = 0; i < FXP_NRFABUFS; i++) {
1949 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1950 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1951 }
1952
1953 for (i = 0; i < FXP_NTXCB; i++) {
1954 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1955 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1956 }
1957
1958 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1959 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1960 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1961 sizeof(struct fxp_control_data));
1962 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1963
1964 shutdownhook_disestablish(sc->sc_sdhook);
1965 powerhook_disestablish(sc->sc_powerhook);
1966
1967 return (0);
1968 }
1969