i82557.c revision 1.31 1 /* $NetBSD: i82557.c,v 1.31 2000/05/24 13:20:32 soren Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <vm/vm.h> /* for PAGE_SIZE */
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 int fxp_init __P((struct fxp_softc *));
181 void fxp_rxdrain __P((struct fxp_softc *));
182 void fxp_stop __P((struct fxp_softc *, int));
183 void fxp_watchdog __P((struct ifnet *));
184 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185 int fxp_mdi_read __P((struct device *, int, int));
186 void fxp_statchg __P((struct device *));
187 void fxp_mdi_write __P((struct device *, int, int, int));
188 void fxp_autosize_eeprom __P((struct fxp_softc*));
189 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191 void fxp_tick __P((void *));
192 void fxp_mc_setup __P((struct fxp_softc *));
193
194 void fxp_shutdown __P((void *));
195 void fxp_power __P((int, void *));
196
197 int fxp_copy_small = 0;
198
199 struct fxp_phytype {
200 int fp_phy; /* type of PHY, -1 for MII at the end. */
201 void (*fp_init) __P((struct fxp_softc *));
202 } fxp_phytype_table[] = {
203 { FXP_PHY_80C24, fxp_80c24_initmedia },
204 { -1, fxp_mii_initmedia },
205 };
206
207 /*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212 static int tx_threshold = 64;
213
214 /*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218 inline void
219 fxp_scb_wait(sc)
220 struct fxp_softc *sc;
221 {
222 int i = 10000;
223
224 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225 delay(2);
226 if (i == 0)
227 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228 }
229
230 /*
231 * Finish attaching an i82557 interface. Called by bus-specific front-end.
232 */
233 void
234 fxp_attach(sc)
235 struct fxp_softc *sc;
236 {
237 u_int8_t enaddr[6];
238 struct ifnet *ifp;
239 bus_dma_segment_t seg;
240 int rseg, i, error;
241 struct fxp_phytype *fp;
242
243 callout_init(&sc->sc_callout);
244
245 /*
246 * Allocate the control data structures, and create and load the
247 * DMA map for it.
248 */
249 if ((error = bus_dmamem_alloc(sc->sc_dmat,
250 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251 0)) != 0) {
252 printf("%s: unable to allocate control data, error = %d\n",
253 sc->sc_dev.dv_xname, error);
254 goto fail_0;
255 }
256
257 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259 BUS_DMA_COHERENT)) != 0) {
260 printf("%s: unable to map control data, error = %d\n",
261 sc->sc_dev.dv_xname, error);
262 goto fail_1;
263 }
264 sc->sc_cdseg = seg;
265 sc->sc_cdnseg = rseg;
266
267 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269 if ((error = bus_dmamap_create(sc->sc_dmat,
270 sizeof(struct fxp_control_data), 1,
271 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272 printf("%s: unable to create control data DMA map, "
273 "error = %d\n", sc->sc_dev.dv_xname, error);
274 goto fail_2;
275 }
276
277 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279 0)) != 0) {
280 printf("%s: can't load control data DMA map, error = %d\n",
281 sc->sc_dev.dv_xname, error);
282 goto fail_3;
283 }
284
285 /*
286 * Create the transmit buffer DMA maps.
287 */
288 for (i = 0; i < FXP_NTXCB; i++) {
289 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290 FXP_NTXSEG, MCLBYTES, 0, 0,
291 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292 printf("%s: unable to create tx DMA map %d, "
293 "error = %d\n", sc->sc_dev.dv_xname, i, error);
294 goto fail_4;
295 }
296 }
297
298 /*
299 * Create the receive buffer DMA maps.
300 */
301 for (i = 0; i < FXP_NRFABUFS; i++) {
302 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304 printf("%s: unable to create rx DMA map %d, "
305 "error = %d\n", sc->sc_dev.dv_xname, i, error);
306 goto fail_5;
307 }
308 }
309
310 /* Initialize MAC address and media structures. */
311 fxp_get_info(sc, enaddr);
312
313 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316 ifp = &sc->sc_ethercom.ec_if;
317
318 /*
319 * Get info about our media interface, and initialize it. Note
320 * the table terminates itself with a phy of -1, indicating
321 * that we're using MII.
322 */
323 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324 if (fp->fp_phy == sc->phy_primary_device)
325 break;
326 (*fp->fp_init)(sc);
327
328 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329 ifp->if_softc = sc;
330 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331 ifp->if_ioctl = fxp_ioctl;
332 ifp->if_start = fxp_start;
333 ifp->if_watchdog = fxp_watchdog;
334
335 /*
336 * Attach the interface.
337 */
338 if_attach(ifp);
339 ether_ifattach(ifp, enaddr);
340 #if NBPFILTER > 0
341 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
342 sizeof(struct ether_header));
343 #endif
344 #if NRND > 0
345 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346 RND_TYPE_NET, 0);
347 #endif
348
349 /*
350 * Add shutdown hook so that DMA is disabled prior to reboot. Not
351 * doing do could allow DMA to corrupt kernel memory during the
352 * reboot before the driver initializes.
353 */
354 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
355 if (sc->sc_sdhook == NULL)
356 printf("%s: WARNING: unable to establish shutdown hook\n",
357 sc->sc_dev.dv_xname);
358 /*
359 * Add suspend hook, for similar reasons..
360 */
361 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
362 if (sc->sc_powerhook == NULL)
363 printf("%s: WARNING: unable to establish power hook\n",
364 sc->sc_dev.dv_xname);
365 return;
366
367 /*
368 * Free any resources we've allocated during the failed attach
369 * attempt. Do this in reverse order and fall though.
370 */
371 fail_5:
372 for (i = 0; i < FXP_NRFABUFS; i++) {
373 if (sc->sc_rxmaps[i] != NULL)
374 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
375 }
376 fail_4:
377 for (i = 0; i < FXP_NTXCB; i++) {
378 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
379 bus_dmamap_destroy(sc->sc_dmat,
380 FXP_DSTX(sc, i)->txs_dmamap);
381 }
382 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
383 fail_3:
384 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
385 fail_2:
386 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
387 sizeof(struct fxp_control_data));
388 fail_1:
389 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
390 fail_0:
391 return;
392 }
393
394 void
395 fxp_mii_initmedia(sc)
396 struct fxp_softc *sc;
397 {
398
399 sc->sc_flags |= FXPF_MII;
400
401 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
402 sc->sc_mii.mii_readreg = fxp_mdi_read;
403 sc->sc_mii.mii_writereg = fxp_mdi_write;
404 sc->sc_mii.mii_statchg = fxp_statchg;
405 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
406 fxp_mii_mediastatus);
407 /*
408 * The i82557 wedges if all of its PHYs are isolated!
409 */
410 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
411 MII_OFFSET_ANY, MIIF_NOISOLATE);
412 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
413 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
414 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else
416 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418
419 void
420 fxp_80c24_initmedia(sc)
421 struct fxp_softc *sc;
422 {
423
424 /*
425 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
426 * doesn't have a programming interface of any sort. The
427 * media is sensed automatically based on how the link partner
428 * is configured. This is, in essence, manual configuration.
429 */
430 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
431 sc->sc_dev.dv_xname);
432 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
433 fxp_80c24_mediastatus);
434 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
435 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
436 }
437
438 /*
439 * Device shutdown routine. Called at system shutdown after sync. The
440 * main purpose of this routine is to shut off receiver DMA so that
441 * kernel memory doesn't get clobbered during warmboot.
442 */
443 void
444 fxp_shutdown(arg)
445 void *arg;
446 {
447 struct fxp_softc *sc = arg;
448
449 /*
450 * Since the system's going to halt shortly, don't bother
451 * freeing mbufs.
452 */
453 fxp_stop(sc, 0);
454 }
455 /*
456 * Power handler routine. Called when the system is transitioning
457 * into/out of power save modes. As with fxp_shutdown, the main
458 * purpose of this routine is to shut off receiver DMA so it doesn't
459 * clobber kernel memory at the wrong time.
460 */
461 void
462 fxp_power(why, arg)
463 int why;
464 void *arg;
465 {
466 struct fxp_softc *sc = arg;
467 struct ifnet *ifp;
468 int s;
469
470 s = splnet();
471 if (why != PWR_RESUME)
472 fxp_stop(sc, 0);
473 else {
474 ifp = &sc->sc_ethercom.ec_if;
475 if (ifp->if_flags & IFF_UP)
476 fxp_init(sc);
477 }
478 splx(s);
479 }
480
481 /*
482 * Initialize the interface media.
483 */
484 void
485 fxp_get_info(sc, enaddr)
486 struct fxp_softc *sc;
487 u_int8_t *enaddr;
488 {
489 u_int16_t data, myea[3];
490
491 /*
492 * Reset to a stable state.
493 */
494 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
495 DELAY(10);
496
497 sc->sc_eeprom_size = 0;
498 fxp_autosize_eeprom(sc);
499 if(sc->sc_eeprom_size == 0) {
500 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
501 sc->sc_eeprom_size = 6; /* XXX panic here? */
502 }
503 #ifdef DEBUG
504 printf("%s: detected %d word EEPROM\n",
505 sc->sc_dev.dv_xname,
506 1 << sc->sc_eeprom_size);
507 #endif
508
509 /*
510 * Get info about the primary PHY
511 */
512 fxp_read_eeprom(sc, &data, 6, 1);
513 sc->phy_primary_addr = data & 0xff;
514 sc->phy_primary_device = (data >> 8) & 0x3f;
515 sc->phy_10Mbps_only = data >> 15;
516
517 /*
518 * Read MAC address.
519 */
520 fxp_read_eeprom(sc, myea, 0, 3);
521 enaddr[0] = myea[0] & 0xff;
522 enaddr[1] = myea[0] >> 8;
523 enaddr[2] = myea[1] & 0xff;
524 enaddr[3] = myea[1] >> 8;
525 enaddr[4] = myea[2] & 0xff;
526 enaddr[5] = myea[2] >> 8;
527 }
528
529 /*
530 * Figure out EEPROM size.
531 *
532 * 559's can have either 64-word or 256-word EEPROMs, the 558
533 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
534 * talks about the existance of 16 to 256 word EEPROMs.
535 *
536 * The only known sizes are 64 and 256, where the 256 version is used
537 * by CardBus cards to store CIS information.
538 *
539 * The address is shifted in msb-to-lsb, and after the last
540 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
541 * after which follows the actual data. We try to detect this zero, by
542 * probing the data-out bit in the EEPROM control register just after
543 * having shifted in a bit. If the bit is zero, we assume we've
544 * shifted enough address bits. The data-out should be tri-state,
545 * before this, which should translate to a logical one.
546 *
547 * Other ways to do this would be to try to read a register with known
548 * contents with a varying number of address bits, but no such
549 * register seem to be available. The high bits of register 10 are 01
550 * on the 558 and 559, but apparently not on the 557.
551 *
552 * The Linux driver computes a checksum on the EEPROM data, but the
553 * value of this checksum is not very well documented.
554 */
555
556 void
557 fxp_autosize_eeprom(sc)
558 struct fxp_softc *sc;
559 {
560 u_int16_t reg;
561 int x;
562
563 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
564 /*
565 * Shift in read opcode.
566 */
567 for (x = 3; x > 0; x--) {
568 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
569 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
570 } else {
571 reg = FXP_EEPROM_EECS;
572 }
573 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
574 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
575 reg | FXP_EEPROM_EESK);
576 DELAY(1);
577 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
578 DELAY(1);
579 }
580 /*
581 * Shift in address, wait for the dummy zero following a correct
582 * address shift.
583 */
584 for (x = 1; x <= 8; x++) {
585 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
586 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
587 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
588 DELAY(1);
589 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
590 FXP_EEPROM_EEDO) == 0)
591 break;
592 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
593 DELAY(1);
594 }
595 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
596 DELAY(1);
597 if(x != 6 && x != 8) {
598 #ifdef DEBUG
599 printf("%s: strange EEPROM size (%d)\n",
600 sc->sc_dev.dv_xname, 1 << x);
601 #endif
602 } else
603 sc->sc_eeprom_size = x;
604 }
605
606 /*
607 * Read from the serial EEPROM. Basically, you manually shift in
608 * the read opcode (one bit at a time) and then shift in the address,
609 * and then you shift out the data (all of this one bit at a time).
610 * The word size is 16 bits, so you have to provide the address for
611 * every 16 bits of data.
612 */
613 void
614 fxp_read_eeprom(sc, data, offset, words)
615 struct fxp_softc *sc;
616 u_int16_t *data;
617 int offset;
618 int words;
619 {
620 u_int16_t reg;
621 int i, x;
622
623 for (i = 0; i < words; i++) {
624 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
625 /*
626 * Shift in read opcode.
627 */
628 for (x = 3; x > 0; x--) {
629 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
630 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
631 } else {
632 reg = FXP_EEPROM_EECS;
633 }
634 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
635 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
636 reg | FXP_EEPROM_EESK);
637 DELAY(1);
638 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
639 DELAY(1);
640 }
641 /*
642 * Shift in address.
643 */
644 for (x = sc->sc_eeprom_size; x > 0; x--) {
645 if ((i + offset) & (1 << (x - 1))) {
646 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
647 } else {
648 reg = FXP_EEPROM_EECS;
649 }
650 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
651 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
652 reg | FXP_EEPROM_EESK);
653 DELAY(1);
654 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
655 DELAY(1);
656 }
657 reg = FXP_EEPROM_EECS;
658 data[i] = 0;
659 /*
660 * Shift out data.
661 */
662 for (x = 16; x > 0; x--) {
663 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
664 reg | FXP_EEPROM_EESK);
665 DELAY(1);
666 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
667 FXP_EEPROM_EEDO)
668 data[i] |= (1 << (x - 1));
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
670 DELAY(1);
671 }
672 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
673 DELAY(1);
674 }
675 }
676
677 /*
678 * Start packet transmission on the interface.
679 */
680 void
681 fxp_start(ifp)
682 struct ifnet *ifp;
683 {
684 struct fxp_softc *sc = ifp->if_softc;
685 struct mbuf *m0, *m;
686 struct fxp_cb_tx *txd;
687 struct fxp_txsoft *txs;
688 struct fxp_tbdlist *tbd;
689 bus_dmamap_t dmamap;
690 int error, lasttx, nexttx, opending, seg;
691
692 /*
693 * If we want a re-init, bail out now.
694 */
695 if (sc->sc_flags & FXPF_WANTINIT) {
696 ifp->if_flags |= IFF_OACTIVE;
697 return;
698 }
699
700 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
701 return;
702
703 /*
704 * Remember the previous txpending and the current lasttx.
705 */
706 opending = sc->sc_txpending;
707 lasttx = sc->sc_txlast;
708
709 /*
710 * Loop through the send queue, setting up transmit descriptors
711 * until we drain the queue, or use up all available transmit
712 * descriptors.
713 */
714 while (sc->sc_txpending < FXP_NTXCB) {
715 /*
716 * Grab a packet off the queue.
717 */
718 IF_DEQUEUE(&ifp->if_snd, m0);
719 if (m0 == NULL)
720 break;
721
722 /*
723 * Get the next available transmit descriptor.
724 */
725 nexttx = FXP_NEXTTX(sc->sc_txlast);
726 txd = FXP_CDTX(sc, nexttx);
727 tbd = FXP_CDTBD(sc, nexttx);
728 txs = FXP_DSTX(sc, nexttx);
729 dmamap = txs->txs_dmamap;
730
731 /*
732 * Load the DMA map. If this fails, the packet either
733 * didn't fit in the allotted number of frags, or we were
734 * short on resources. In this case, we'll copy and try
735 * again.
736 */
737 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
738 BUS_DMA_NOWAIT) != 0) {
739 MGETHDR(m, M_DONTWAIT, MT_DATA);
740 if (m == NULL) {
741 printf("%s: unable to allocate Tx mbuf\n",
742 sc->sc_dev.dv_xname);
743 IF_PREPEND(&ifp->if_snd, m0);
744 break;
745 }
746 if (m0->m_pkthdr.len > MHLEN) {
747 MCLGET(m, M_DONTWAIT);
748 if ((m->m_flags & M_EXT) == 0) {
749 printf("%s: unable to allocate Tx "
750 "cluster\n", sc->sc_dev.dv_xname);
751 m_freem(m);
752 IF_PREPEND(&ifp->if_snd, m0);
753 break;
754 }
755 }
756 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
757 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
758 m_freem(m0);
759 m0 = m;
760 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
761 m0, BUS_DMA_NOWAIT);
762 if (error) {
763 printf("%s: unable to load Tx buffer, "
764 "error = %d\n", sc->sc_dev.dv_xname, error);
765 IF_PREPEND(&ifp->if_snd, m0);
766 break;
767 }
768 }
769
770 /* Initialize the fraglist. */
771 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
772 tbd->tbd_d[seg].tb_addr =
773 htole32(dmamap->dm_segs[seg].ds_addr);
774 tbd->tbd_d[seg].tb_size =
775 htole32(dmamap->dm_segs[seg].ds_len);
776 }
777
778 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
779
780 /* Sync the DMA map. */
781 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
782 BUS_DMASYNC_PREWRITE);
783
784 /*
785 * Store a pointer to the packet so we can free it later.
786 */
787 txs->txs_mbuf = m0;
788
789 /*
790 * Initialize the transmit descriptor.
791 */
792 /* BIG_ENDIAN: no need to swap to store 0 */
793 txd->cb_status = 0;
794 txd->cb_command =
795 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
796 txd->tx_threshold = tx_threshold;
797 txd->tbd_number = dmamap->dm_nsegs;
798
799 FXP_CDTXSYNC(sc, nexttx,
800 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
801
802 /* Advance the tx pointer. */
803 sc->sc_txpending++;
804 sc->sc_txlast = nexttx;
805
806 #if NBPFILTER > 0
807 /*
808 * Pass packet to bpf if there is a listener.
809 */
810 if (ifp->if_bpf)
811 bpf_mtap(ifp->if_bpf, m0);
812 #endif
813 }
814
815 if (sc->sc_txpending == FXP_NTXCB) {
816 /* No more slots; notify upper layer. */
817 ifp->if_flags |= IFF_OACTIVE;
818 }
819
820 if (sc->sc_txpending != opending) {
821 /*
822 * We enqueued packets. If the transmitter was idle,
823 * reset the txdirty pointer.
824 */
825 if (opending == 0)
826 sc->sc_txdirty = FXP_NEXTTX(lasttx);
827
828 /*
829 * Cause the chip to interrupt and suspend command
830 * processing once the last packet we've enqueued
831 * has been transmitted.
832 */
833 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
834 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
835 FXP_CDTXSYNC(sc, sc->sc_txlast,
836 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
837
838 /*
839 * The entire packet chain is set up. Clear the suspend bit
840 * on the command prior to the first packet we set up.
841 */
842 FXP_CDTXSYNC(sc, lasttx,
843 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
844 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
845 FXP_CDTXSYNC(sc, lasttx,
846 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
847
848 /*
849 * Issue a Resume command in case the chip was suspended.
850 */
851 fxp_scb_wait(sc);
852 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
853
854 /* Set a watchdog timer in case the chip flakes out. */
855 ifp->if_timer = 5;
856 }
857 }
858
859 /*
860 * Process interface interrupts.
861 */
862 int
863 fxp_intr(arg)
864 void *arg;
865 {
866 struct fxp_softc *sc = arg;
867 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
868 struct fxp_cb_tx *txd;
869 struct fxp_txsoft *txs;
870 struct mbuf *m, *m0;
871 bus_dmamap_t rxmap;
872 struct fxp_rfa *rfa;
873 struct ether_header *eh;
874 int i, claimed = 0;
875 u_int16_t len, rxstat, txstat;
876 u_int8_t statack;
877
878 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
879 return (0);
880 /*
881 * If the interface isn't running, don't try to
882 * service the interrupt.. just ack it and bail.
883 */
884 if ((ifp->if_flags & IFF_RUNNING) == 0) {
885 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
886 if (statack) {
887 claimed = 1;
888 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
889 }
890 return (claimed);
891 }
892
893 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
894 claimed = 1;
895
896 /*
897 * First ACK all the interrupts in this pass.
898 */
899 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
900
901 /*
902 * Process receiver interrupts. If a no-resource (RNR)
903 * condition exists, get whatever packets we can and
904 * re-start the receiver.
905 */
906 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
907 rcvloop:
908 m = sc->sc_rxq.ifq_head;
909 rfa = FXP_MTORFA(m);
910 rxmap = M_GETCTX(m, bus_dmamap_t);
911
912 FXP_RFASYNC(sc, m,
913 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
914
915 rxstat = le16toh(rfa->rfa_status);
916
917 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
918 /*
919 * We have processed all of the
920 * receive buffers.
921 */
922 goto do_transmit;
923 }
924
925 IF_DEQUEUE(&sc->sc_rxq, m);
926
927 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
928
929 len = le16toh(rfa->actual_size) &
930 (m->m_ext.ext_size - 1);
931
932 if (len < sizeof(struct ether_header)) {
933 /*
934 * Runt packet; drop it now.
935 */
936 FXP_INIT_RFABUF(sc, m);
937 goto rcvloop;
938 }
939
940 /*
941 * If the packet is small enough to fit in a
942 * single header mbuf, allocate one and copy
943 * the data into it. This greatly reduces
944 * memory consumption when we receive lots
945 * of small packets.
946 *
947 * Otherwise, we add a new buffer to the receive
948 * chain. If this fails, we drop the packet and
949 * recycle the old buffer.
950 */
951 if (fxp_copy_small != 0 && len <= MHLEN) {
952 MGETHDR(m0, M_DONTWAIT, MT_DATA);
953 if (m == NULL)
954 goto dropit;
955 memcpy(mtod(m0, caddr_t),
956 mtod(m, caddr_t), len);
957 FXP_INIT_RFABUF(sc, m);
958 m = m0;
959 } else {
960 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
961 dropit:
962 ifp->if_ierrors++;
963 FXP_INIT_RFABUF(sc, m);
964 goto rcvloop;
965 }
966 }
967
968 m->m_pkthdr.rcvif = ifp;
969 m->m_pkthdr.len = m->m_len = len;
970 eh = mtod(m, struct ether_header *);
971
972 #if NBPFILTER > 0
973 /*
974 * Pass this up to any BPF listeners, but only
975 * pass it up the stack it its for us.
976 */
977 if (ifp->if_bpf) {
978 bpf_mtap(ifp->if_bpf, m);
979
980 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
981 (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
982 (eh->ether_dhost[0] & 1) == 0) {
983 m_freem(m);
984 goto rcvloop;
985 }
986 }
987 #endif /* NBPFILTER > 0 */
988
989 /* Pass it on. */
990 (*ifp->if_input)(ifp, m);
991 goto rcvloop;
992 }
993
994 do_transmit:
995 if (statack & FXP_SCB_STATACK_RNR) {
996 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
997 fxp_scb_wait(sc);
998 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
999 rxmap->dm_segs[0].ds_addr +
1000 RFA_ALIGNMENT_FUDGE);
1001 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1002 FXP_SCB_COMMAND_RU_START);
1003 }
1004
1005 /*
1006 * Free any finished transmit mbuf chains.
1007 */
1008 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1009 ifp->if_flags &= ~IFF_OACTIVE;
1010 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1011 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1012 txd = FXP_CDTX(sc, i);
1013 txs = FXP_DSTX(sc, i);
1014
1015 FXP_CDTXSYNC(sc, i,
1016 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1017
1018 txstat = le16toh(txd->cb_status);
1019
1020 if ((txstat & FXP_CB_STATUS_C) == 0)
1021 break;
1022
1023 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1024
1025 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1026 0, txs->txs_dmamap->dm_mapsize,
1027 BUS_DMASYNC_POSTWRITE);
1028 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1029 m_freem(txs->txs_mbuf);
1030 txs->txs_mbuf = NULL;
1031 }
1032
1033 /* Update the dirty transmit buffer pointer. */
1034 sc->sc_txdirty = i;
1035
1036 /*
1037 * Cancel the watchdog timer if there are no pending
1038 * transmissions.
1039 */
1040 if (sc->sc_txpending == 0) {
1041 ifp->if_timer = 0;
1042
1043 /*
1044 * If we want a re-init, do that now.
1045 */
1046 if (sc->sc_flags & FXPF_WANTINIT)
1047 (void) fxp_init(sc);
1048 }
1049
1050 /*
1051 * Try to get more packets going.
1052 */
1053 fxp_start(ifp);
1054 }
1055 }
1056
1057 #if NRND > 0
1058 if (claimed)
1059 rnd_add_uint32(&sc->rnd_source, statack);
1060 #endif
1061 return (claimed);
1062 }
1063
1064 /*
1065 * Update packet in/out/collision statistics. The i82557 doesn't
1066 * allow you to access these counters without doing a fairly
1067 * expensive DMA to get _all_ of the statistics it maintains, so
1068 * we do this operation here only once per second. The statistics
1069 * counters in the kernel are updated from the previous dump-stats
1070 * DMA and then a new dump-stats DMA is started. The on-chip
1071 * counters are zeroed when the DMA completes. If we can't start
1072 * the DMA immediately, we don't wait - we just prepare to read
1073 * them again next time.
1074 */
1075 void
1076 fxp_tick(arg)
1077 void *arg;
1078 {
1079 struct fxp_softc *sc = arg;
1080 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1081 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1082 int s;
1083
1084 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1085 return;
1086
1087 s = splnet();
1088
1089 ifp->if_opackets += le32toh(sp->tx_good);
1090 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1091 if (sp->rx_good) {
1092 ifp->if_ipackets += le32toh(sp->rx_good);
1093 sc->sc_rxidle = 0;
1094 } else {
1095 sc->sc_rxidle++;
1096 }
1097 ifp->if_ierrors +=
1098 le32toh(sp->rx_crc_errors) +
1099 le32toh(sp->rx_alignment_errors) +
1100 le32toh(sp->rx_rnr_errors) +
1101 le32toh(sp->rx_overrun_errors);
1102 /*
1103 * If any transmit underruns occured, bump up the transmit
1104 * threshold by another 512 bytes (64 * 8).
1105 */
1106 if (sp->tx_underruns) {
1107 ifp->if_oerrors += le32toh(sp->tx_underruns);
1108 if (tx_threshold < 192)
1109 tx_threshold += 64;
1110 }
1111
1112 /*
1113 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1114 * then assume the receiver has locked up and attempt to clear
1115 * the condition by reprogramming the multicast filter (actually,
1116 * resetting the interface). This is a work-around for a bug in
1117 * the 82557 where the receiver locks up if it gets certain types
1118 * of garbage in the syncronization bits prior to the packet header.
1119 * This bug is supposed to only occur in 10Mbps mode, but has been
1120 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1121 * speed transition).
1122 */
1123 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1124 (void) fxp_init(sc);
1125 splx(s);
1126 return;
1127 }
1128 /*
1129 * If there is no pending command, start another stats
1130 * dump. Otherwise punt for now.
1131 */
1132 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1133 /*
1134 * Start another stats dump.
1135 */
1136 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1137 FXP_SCB_COMMAND_CU_DUMPRESET);
1138 } else {
1139 /*
1140 * A previous command is still waiting to be accepted.
1141 * Just zero our copy of the stats and wait for the
1142 * next timer event to update them.
1143 */
1144 /* BIG_ENDIAN: no swap required to store 0 */
1145 sp->tx_good = 0;
1146 sp->tx_underruns = 0;
1147 sp->tx_total_collisions = 0;
1148
1149 sp->rx_good = 0;
1150 sp->rx_crc_errors = 0;
1151 sp->rx_alignment_errors = 0;
1152 sp->rx_rnr_errors = 0;
1153 sp->rx_overrun_errors = 0;
1154 }
1155
1156 if (sc->sc_flags & FXPF_MII) {
1157 /* Tick the MII clock. */
1158 mii_tick(&sc->sc_mii);
1159 }
1160
1161 splx(s);
1162
1163 /*
1164 * Schedule another timeout one second from now.
1165 */
1166 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1167 }
1168
1169 /*
1170 * Drain the receive queue.
1171 */
1172 void
1173 fxp_rxdrain(sc)
1174 struct fxp_softc *sc;
1175 {
1176 bus_dmamap_t rxmap;
1177 struct mbuf *m;
1178
1179 for (;;) {
1180 IF_DEQUEUE(&sc->sc_rxq, m);
1181 if (m == NULL)
1182 break;
1183 rxmap = M_GETCTX(m, bus_dmamap_t);
1184 bus_dmamap_unload(sc->sc_dmat, rxmap);
1185 FXP_RXMAP_PUT(sc, rxmap);
1186 m_freem(m);
1187 }
1188 }
1189
1190 /*
1191 * Stop the interface. Cancels the statistics updater and resets
1192 * the interface.
1193 */
1194 void
1195 fxp_stop(sc, drain)
1196 struct fxp_softc *sc;
1197 int drain;
1198 {
1199 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1200 struct fxp_txsoft *txs;
1201 int i;
1202
1203 /*
1204 * Turn down interface (done early to avoid bad interactions
1205 * between panics, shutdown hooks, and the watchdog timer)
1206 */
1207 ifp->if_timer = 0;
1208 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1209
1210 /*
1211 * Cancel stats updater.
1212 */
1213 callout_stop(&sc->sc_callout);
1214 if (sc->sc_flags & FXPF_MII) {
1215 /* Down the MII. */
1216 mii_down(&sc->sc_mii);
1217 }
1218
1219 /*
1220 * Issue software reset
1221 */
1222 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1223 DELAY(10);
1224
1225 /*
1226 * Release any xmit buffers.
1227 */
1228 for (i = 0; i < FXP_NTXCB; i++) {
1229 txs = FXP_DSTX(sc, i);
1230 if (txs->txs_mbuf != NULL) {
1231 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1232 m_freem(txs->txs_mbuf);
1233 txs->txs_mbuf = NULL;
1234 }
1235 }
1236 sc->sc_txpending = 0;
1237
1238 if (drain) {
1239 /*
1240 * Release the receive buffers.
1241 */
1242 fxp_rxdrain(sc);
1243 }
1244
1245 }
1246
1247 /*
1248 * Watchdog/transmission transmit timeout handler. Called when a
1249 * transmission is started on the interface, but no interrupt is
1250 * received before the timeout. This usually indicates that the
1251 * card has wedged for some reason.
1252 */
1253 void
1254 fxp_watchdog(ifp)
1255 struct ifnet *ifp;
1256 {
1257 struct fxp_softc *sc = ifp->if_softc;
1258
1259 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1260 ifp->if_oerrors++;
1261
1262 (void) fxp_init(sc);
1263 }
1264
1265 /*
1266 * Initialize the interface. Must be called at splnet().
1267 */
1268 int
1269 fxp_init(sc)
1270 struct fxp_softc *sc;
1271 {
1272 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1273 struct fxp_cb_config *cbp;
1274 struct fxp_cb_ias *cb_ias;
1275 struct fxp_cb_tx *txd;
1276 bus_dmamap_t rxmap;
1277 int i, prm, allm, error = 0;
1278
1279 /*
1280 * Cancel any pending I/O
1281 */
1282 fxp_stop(sc, 0);
1283
1284 /*
1285 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1286 * flag, and this prevents the MII from detaching resulting in
1287 * a panic. The flags field should perhaps be split in runtime
1288 * flags and more static information. For now, just clear the
1289 * only other flag set.
1290 */
1291
1292 sc->sc_flags &= ~FXPF_WANTINIT;
1293
1294 /*
1295 * Initialize base of CBL and RFA memory. Loading with zero
1296 * sets it up for regular linear addressing.
1297 */
1298 fxp_scb_wait(sc);
1299 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1300 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1301
1302 fxp_scb_wait(sc);
1303 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1304
1305 /*
1306 * Initialize the multicast filter. Do this now, since we might
1307 * have to setup the config block differently.
1308 */
1309 fxp_mc_setup(sc);
1310
1311 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1312 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1313
1314 /*
1315 * Initialize base of dump-stats buffer.
1316 */
1317 fxp_scb_wait(sc);
1318 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1319 sc->sc_cddma + FXP_CDSTATSOFF);
1320 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1321
1322 cbp = &sc->sc_control_data->fcd_configcb;
1323 memset(cbp, 0, sizeof(struct fxp_cb_config));
1324
1325 /*
1326 * This copy is kind of disgusting, but there are a bunch of must be
1327 * zero and must be one bits in this structure and this is the easiest
1328 * way to initialize them all to proper values.
1329 */
1330 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1331
1332 /* BIG_ENDIAN: no need to swap to store 0 */
1333 cbp->cb_status = 0;
1334 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1335 FXP_CB_COMMAND_EL);
1336 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1337 cbp->link_addr = 0xffffffff; /* (no) next command */
1338 cbp->byte_count = 22; /* (22) bytes to config */
1339 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1340 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1341 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1342 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1343 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1344 cbp->dma_bce = 0; /* (disable) dma max counters */
1345 cbp->late_scb = 0; /* (don't) defer SCB update */
1346 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1347 cbp->ci_int = 1; /* interrupt on CU idle */
1348 cbp->save_bf = prm; /* save bad frames */
1349 cbp->disc_short_rx = !prm; /* discard short packets */
1350 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1351 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1352 cbp->nsai = 1; /* (don't) disable source addr insert */
1353 cbp->preamble_length = 2; /* (7 byte) preamble */
1354 cbp->loopback = 0; /* (don't) loopback */
1355 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1356 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1357 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1358 cbp->promiscuous = prm; /* promiscuous mode */
1359 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1360 cbp->crscdt = 0; /* (CRS only) */
1361 cbp->stripping = !prm; /* truncate rx packet to byte count */
1362 cbp->padding = 1; /* (do) pad short tx packets */
1363 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1364 cbp->force_fdx = 0; /* (don't) force full duplex */
1365 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1366 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1367 cbp->mc_all = allm; /* accept all multicasts */
1368
1369 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1370
1371 /*
1372 * Start the config command/DMA.
1373 */
1374 fxp_scb_wait(sc);
1375 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1376 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1377 /* ...and wait for it to complete. */
1378 i = 1000;
1379 do {
1380 FXP_CDCONFIGSYNC(sc,
1381 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1382 DELAY(1);
1383 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1384 if (i == 0) {
1385 printf("%s at line %d: dmasync timeout\n",
1386 sc->sc_dev.dv_xname, __LINE__);
1387 return ETIMEDOUT;
1388 }
1389
1390 /*
1391 * Initialize the station address.
1392 */
1393 cb_ias = &sc->sc_control_data->fcd_iascb;
1394 /* BIG_ENDIAN: no need to swap to store 0 */
1395 cb_ias->cb_status = 0;
1396 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1397 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1398 cb_ias->link_addr = 0xffffffff;
1399 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1400
1401 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1402
1403 /*
1404 * Start the IAS (Individual Address Setup) command/DMA.
1405 */
1406 fxp_scb_wait(sc);
1407 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1408 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1409 /* ...and wait for it to complete. */
1410 i = 1000;
1411 do {
1412 FXP_CDIASSYNC(sc,
1413 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1414 DELAY(1);
1415 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1416 if (i == 0) {
1417 printf("%s at line %d: dmasync timeout\n",
1418 sc->sc_dev.dv_xname, __LINE__);
1419 return ETIMEDOUT;
1420 }
1421
1422 /*
1423 * Initialize the transmit descriptor ring. txlast is initialized
1424 * to the end of the list so that it will wrap around to the first
1425 * descriptor when the first packet is transmitted.
1426 */
1427 for (i = 0; i < FXP_NTXCB; i++) {
1428 txd = FXP_CDTX(sc, i);
1429 memset(txd, 0, sizeof(struct fxp_cb_tx));
1430 txd->cb_command =
1431 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1432 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1433 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1434 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1435 }
1436 sc->sc_txpending = 0;
1437 sc->sc_txdirty = 0;
1438 sc->sc_txlast = FXP_NTXCB - 1;
1439
1440 /*
1441 * Initialize the receive buffer list.
1442 */
1443 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1444 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1445 rxmap = FXP_RXMAP_GET(sc);
1446 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1447 printf("%s: unable to allocate or map rx "
1448 "buffer %d, error = %d\n",
1449 sc->sc_dev.dv_xname,
1450 sc->sc_rxq.ifq_len, error);
1451 /*
1452 * XXX Should attempt to run with fewer receive
1453 * XXX buffers instead of just failing.
1454 */
1455 FXP_RXMAP_PUT(sc, rxmap);
1456 fxp_rxdrain(sc);
1457 goto out;
1458 }
1459 }
1460 sc->sc_rxidle = 0;
1461
1462 /*
1463 * Give the transmit ring to the chip. We do this by pointing
1464 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1465 * issuing a start command. It will execute the NOP and then
1466 * suspend, pointing at the first descriptor.
1467 */
1468 fxp_scb_wait(sc);
1469 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1470 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1471
1472 /*
1473 * Initialize receiver buffer area - RFA.
1474 */
1475 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1476 fxp_scb_wait(sc);
1477 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1478 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1479 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1480
1481 if (sc->sc_flags & FXPF_MII) {
1482 /*
1483 * Set current media.
1484 */
1485 mii_mediachg(&sc->sc_mii);
1486 }
1487
1488 /*
1489 * ...all done!
1490 */
1491 ifp->if_flags |= IFF_RUNNING;
1492 ifp->if_flags &= ~IFF_OACTIVE;
1493
1494 /*
1495 * Start the one second timer.
1496 */
1497 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1498
1499 /*
1500 * Attempt to start output on the interface.
1501 */
1502 fxp_start(ifp);
1503
1504 out:
1505 if (error)
1506 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1507 return (error);
1508 }
1509
1510 /*
1511 * Change media according to request.
1512 */
1513 int
1514 fxp_mii_mediachange(ifp)
1515 struct ifnet *ifp;
1516 {
1517 struct fxp_softc *sc = ifp->if_softc;
1518
1519 if (ifp->if_flags & IFF_UP)
1520 mii_mediachg(&sc->sc_mii);
1521 return (0);
1522 }
1523
1524 /*
1525 * Notify the world which media we're using.
1526 */
1527 void
1528 fxp_mii_mediastatus(ifp, ifmr)
1529 struct ifnet *ifp;
1530 struct ifmediareq *ifmr;
1531 {
1532 struct fxp_softc *sc = ifp->if_softc;
1533
1534 if(sc->sc_enabled == 0) {
1535 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1536 ifmr->ifm_status = 0;
1537 return;
1538 }
1539
1540 mii_pollstat(&sc->sc_mii);
1541 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1542 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1543 }
1544
1545 int
1546 fxp_80c24_mediachange(ifp)
1547 struct ifnet *ifp;
1548 {
1549
1550 /* Nothing to do here. */
1551 return (0);
1552 }
1553
1554 void
1555 fxp_80c24_mediastatus(ifp, ifmr)
1556 struct ifnet *ifp;
1557 struct ifmediareq *ifmr;
1558 {
1559 struct fxp_softc *sc = ifp->if_softc;
1560
1561 /*
1562 * Media is currently-selected media. We cannot determine
1563 * the link status.
1564 */
1565 ifmr->ifm_status = 0;
1566 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1567 }
1568
1569 /*
1570 * Add a buffer to the end of the RFA buffer list.
1571 * Return 0 if successful, error code on failure.
1572 *
1573 * The RFA struct is stuck at the beginning of mbuf cluster and the
1574 * data pointer is fixed up to point just past it.
1575 */
1576 int
1577 fxp_add_rfabuf(sc, rxmap, unload)
1578 struct fxp_softc *sc;
1579 bus_dmamap_t rxmap;
1580 int unload;
1581 {
1582 struct mbuf *m;
1583 int error;
1584
1585 MGETHDR(m, M_DONTWAIT, MT_DATA);
1586 if (m == NULL)
1587 return (ENOBUFS);
1588
1589 MCLGET(m, M_DONTWAIT);
1590 if ((m->m_flags & M_EXT) == 0) {
1591 m_freem(m);
1592 return (ENOBUFS);
1593 }
1594
1595 if (unload)
1596 bus_dmamap_unload(sc->sc_dmat, rxmap);
1597
1598 M_SETCTX(m, rxmap);
1599
1600 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1601 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1602 if (error) {
1603 printf("%s: can't load rx DMA map %d, error = %d\n",
1604 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1605 panic("fxp_add_rfabuf"); /* XXX */
1606 }
1607
1608 FXP_INIT_RFABUF(sc, m);
1609
1610 return (0);
1611 }
1612
1613 volatile int
1614 fxp_mdi_read(self, phy, reg)
1615 struct device *self;
1616 int phy;
1617 int reg;
1618 {
1619 struct fxp_softc *sc = (struct fxp_softc *)self;
1620 int count = 10000;
1621 int value;
1622
1623 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1624 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1625
1626 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1627 && count--)
1628 DELAY(10);
1629
1630 if (count <= 0)
1631 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1632
1633 return (value & 0xffff);
1634 }
1635
1636 void
1637 fxp_statchg(self)
1638 struct device *self;
1639 {
1640
1641 /* Nothing to do. */
1642 }
1643
1644 void
1645 fxp_mdi_write(self, phy, reg, value)
1646 struct device *self;
1647 int phy;
1648 int reg;
1649 int value;
1650 {
1651 struct fxp_softc *sc = (struct fxp_softc *)self;
1652 int count = 10000;
1653
1654 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1655 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1656 (value & 0xffff));
1657
1658 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1659 count--)
1660 DELAY(10);
1661
1662 if (count <= 0)
1663 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1664 }
1665
1666 int
1667 fxp_ioctl(ifp, command, data)
1668 struct ifnet *ifp;
1669 u_long command;
1670 caddr_t data;
1671 {
1672 struct fxp_softc *sc = ifp->if_softc;
1673 struct ifreq *ifr = (struct ifreq *)data;
1674 struct ifaddr *ifa = (struct ifaddr *)data;
1675 int s, error = 0;
1676
1677 s = splnet();
1678
1679 switch (command) {
1680 case SIOCSIFADDR:
1681 if ((error = fxp_enable(sc)) != 0)
1682 break;
1683 ifp->if_flags |= IFF_UP;
1684
1685 switch (ifa->ifa_addr->sa_family) {
1686 #ifdef INET
1687 case AF_INET:
1688 if ((error = fxp_init(sc)) != 0)
1689 break;
1690 arp_ifinit(ifp, ifa);
1691 break;
1692 #endif /* INET */
1693 #ifdef NS
1694 case AF_NS:
1695 {
1696 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1697
1698 if (ns_nullhost(*ina))
1699 ina->x_host = *(union ns_host *)
1700 LLADDR(ifp->if_sadl);
1701 else
1702 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1703 ifp->if_addrlen);
1704 /* Set new address. */
1705 error = fxp_init(sc);
1706 break;
1707 }
1708 #endif /* NS */
1709 default:
1710 error = fxp_init(sc);
1711 break;
1712 }
1713 break;
1714
1715 case SIOCSIFMTU:
1716 if (ifr->ifr_mtu > ETHERMTU)
1717 error = EINVAL;
1718 else
1719 ifp->if_mtu = ifr->ifr_mtu;
1720 break;
1721
1722 case SIOCSIFFLAGS:
1723 if ((ifp->if_flags & IFF_UP) == 0 &&
1724 (ifp->if_flags & IFF_RUNNING) != 0) {
1725 /*
1726 * If interface is marked down and it is running, then
1727 * stop it.
1728 */
1729 fxp_stop(sc, 1);
1730 fxp_disable(sc);
1731 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1732 (ifp->if_flags & IFF_RUNNING) == 0) {
1733 /*
1734 * If interface is marked up and it is stopped, then
1735 * start it.
1736 */
1737 if((error = fxp_enable(sc)) != 0)
1738 break;
1739 error = fxp_init(sc);
1740 } else if ((ifp->if_flags & IFF_UP) != 0) {
1741 /*
1742 * Reset the interface to pick up change in any other
1743 * flags that affect the hardware state.
1744 */
1745 if((error = fxp_enable(sc)) != 0)
1746 break;
1747 error = fxp_init(sc);
1748 }
1749 break;
1750
1751 case SIOCADDMULTI:
1752 case SIOCDELMULTI:
1753 if(sc->sc_enabled == 0) {
1754 error = EIO;
1755 break;
1756 }
1757 error = (command == SIOCADDMULTI) ?
1758 ether_addmulti(ifr, &sc->sc_ethercom) :
1759 ether_delmulti(ifr, &sc->sc_ethercom);
1760
1761 if (error == ENETRESET) {
1762 /*
1763 * Multicast list has changed; set the hardware
1764 * filter accordingly.
1765 */
1766 if (sc->sc_txpending) {
1767 sc->sc_flags |= FXPF_WANTINIT;
1768 error = 0;
1769 } else
1770 error = fxp_init(sc);
1771 }
1772 break;
1773
1774 case SIOCSIFMEDIA:
1775 case SIOCGIFMEDIA:
1776 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1777 break;
1778
1779 default:
1780 error = EINVAL;
1781 break;
1782 }
1783
1784 splx(s);
1785 return (error);
1786 }
1787
1788 /*
1789 * Program the multicast filter.
1790 *
1791 * This function must be called at splnet().
1792 */
1793 void
1794 fxp_mc_setup(sc)
1795 struct fxp_softc *sc;
1796 {
1797 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1798 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1799 struct ethercom *ec = &sc->sc_ethercom;
1800 struct ether_multi *enm;
1801 struct ether_multistep step;
1802 int count, nmcasts;
1803
1804 #ifdef DIAGNOSTIC
1805 if (sc->sc_txpending)
1806 panic("fxp_mc_setup: pending transmissions");
1807 #endif
1808
1809 ifp->if_flags &= ~IFF_ALLMULTI;
1810
1811 /*
1812 * Initialize multicast setup descriptor.
1813 */
1814 nmcasts = 0;
1815 ETHER_FIRST_MULTI(step, ec, enm);
1816 while (enm != NULL) {
1817 /*
1818 * Check for too many multicast addresses or if we're
1819 * listening to a range. Either way, we simply have
1820 * to accept all multicasts.
1821 */
1822 if (nmcasts >= MAXMCADDR ||
1823 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1824 ETHER_ADDR_LEN) != 0) {
1825 /*
1826 * Callers of this function must do the
1827 * right thing with this. If we're called
1828 * from outside fxp_init(), the caller must
1829 * detect if the state if IFF_ALLMULTI changes.
1830 * If it does, the caller must then call
1831 * fxp_init(), since allmulti is handled by
1832 * the config block.
1833 */
1834 ifp->if_flags |= IFF_ALLMULTI;
1835 return;
1836 }
1837 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1838 ETHER_ADDR_LEN);
1839 nmcasts++;
1840 ETHER_NEXT_MULTI(step, enm);
1841 }
1842
1843 /* BIG_ENDIAN: no need to swap to store 0 */
1844 mcsp->cb_status = 0;
1845 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1846 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1847 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1848
1849 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1850
1851 /*
1852 * Wait until the command unit is not active. This should never
1853 * happen since nothing is queued, but make sure anyway.
1854 */
1855 count = 100;
1856 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1857 FXP_SCB_CUS_ACTIVE && --count)
1858 DELAY(1);
1859 if (count == 0) {
1860 printf("%s at line %d: command queue timeout\n",
1861 sc->sc_dev.dv_xname, __LINE__);
1862 return;
1863 }
1864
1865 /*
1866 * Start the multicast setup command/DMA.
1867 */
1868 fxp_scb_wait(sc);
1869 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1870 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1871
1872 /* ...and wait for it to complete. */
1873 count = 1000;
1874 do {
1875 FXP_CDMCSSYNC(sc,
1876 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1877 DELAY(1);
1878 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1879 if (count == 0) {
1880 printf("%s at line %d: dmasync timeout\n",
1881 sc->sc_dev.dv_xname, __LINE__);
1882 return;
1883 }
1884 }
1885
1886 int
1887 fxp_enable(sc)
1888 struct fxp_softc *sc;
1889 {
1890
1891 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1892 if ((*sc->sc_enable)(sc) != 0) {
1893 printf("%s: device enable failed\n",
1894 sc->sc_dev.dv_xname);
1895 return (EIO);
1896 }
1897 }
1898
1899 sc->sc_enabled = 1;
1900 return (0);
1901 }
1902
1903 void
1904 fxp_disable(sc)
1905 struct fxp_softc *sc;
1906 {
1907
1908 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1909 (*sc->sc_disable)(sc);
1910 sc->sc_enabled = 0;
1911 }
1912 }
1913
1914 /*
1915 * fxp_activate:
1916 *
1917 * Handle device activation/deactivation requests.
1918 */
1919 int
1920 fxp_activate(self, act)
1921 struct device *self;
1922 enum devact act;
1923 {
1924 struct fxp_softc *sc = (void *) self;
1925 int s, error = 0;
1926
1927 s = splnet();
1928 switch (act) {
1929 case DVACT_ACTIVATE:
1930 error = EOPNOTSUPP;
1931 break;
1932
1933 case DVACT_DEACTIVATE:
1934 if (sc->sc_flags & FXPF_MII)
1935 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1936 MII_OFFSET_ANY);
1937 if_deactivate(&sc->sc_ethercom.ec_if);
1938 break;
1939 }
1940 splx(s);
1941
1942 return (error);
1943 }
1944
1945 /*
1946 * fxp_detach:
1947 *
1948 * Detach an i82557 interface.
1949 */
1950 int
1951 fxp_detach(sc)
1952 struct fxp_softc *sc;
1953 {
1954 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1955 int i;
1956
1957 /* Unhook our tick handler. */
1958 callout_stop(&sc->sc_callout);
1959
1960 if (sc->sc_flags & FXPF_MII) {
1961 /* Detach all PHYs */
1962 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1963 }
1964
1965 /* Delete all remaining media. */
1966 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1967
1968 #if NRND > 0
1969 rnd_detach_source(&sc->rnd_source);
1970 #endif
1971 #if NBPFILTER > 0
1972 bpfdetach(ifp);
1973 #endif
1974 ether_ifdetach(ifp);
1975 if_detach(ifp);
1976
1977 for (i = 0; i < FXP_NRFABUFS; i++) {
1978 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1979 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1980 }
1981
1982 for (i = 0; i < FXP_NTXCB; i++) {
1983 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1984 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1985 }
1986
1987 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1988 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1989 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1990 sizeof(struct fxp_control_data));
1991 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1992
1993 shutdownhook_disestablish(sc->sc_sdhook);
1994 powerhook_disestablish(sc->sc_powerhook);
1995
1996 return (0);
1997 }
1998