Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.32
      1 /*	$NetBSD: i82557.c,v 1.32 2000/05/26 19:11:24 tsutsui Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice unmodified, this list of conditions, and the following
     49  *    disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
     67  */
     68 
     69 /*
     70  * Device driver for the Intel i82557 fast Ethernet controller,
     71  * and its successors, the i82558 and i82559.
     72  */
     73 
     74 #include "opt_inet.h"
     75 #include "opt_ns.h"
     76 #include "bpfilter.h"
     77 #include "rnd.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/callout.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/kernel.h>
     85 #include <sys/socket.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/errno.h>
     88 #include <sys/device.h>
     89 
     90 #include <machine/endian.h>
     91 
     92 #include <vm/vm.h>		/* for PAGE_SIZE */
     93 
     94 #if NRND > 0
     95 #include <sys/rnd.h>
     96 #endif
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #if NBPFILTER > 0
    104 #include <net/bpf.h>
    105 #endif
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/if_inarp.h>
    110 #endif
    111 
    112 #ifdef NS
    113 #include <netns/ns.h>
    114 #include <netns/ns_if.h>
    115 #endif
    116 
    117 #include <machine/bus.h>
    118 #include <machine/intr.h>
    119 
    120 #include <dev/mii/miivar.h>
    121 
    122 #include <dev/ic/i82557reg.h>
    123 #include <dev/ic/i82557var.h>
    124 
    125 /*
    126  * NOTE!  On the Alpha, we have an alignment constraint.  The
    127  * card DMAs the packet immediately following the RFA.  However,
    128  * the first thing in the packet is a 14-byte Ethernet header.
    129  * This means that the packet is misaligned.  To compensate,
    130  * we actually offset the RFA 2 bytes into the cluster.  This
    131  * alignes the packet after the Ethernet header at a 32-bit
    132  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    133  */
    134 #define	RFA_ALIGNMENT_FUDGE	2
    135 
    136 /*
    137  * Template for default configuration parameters.
    138  * See struct fxp_cb_config for the bit definitions.
    139  */
    140 u_int8_t fxp_cb_config_template[] = {
    141 	0x0, 0x0,		/* cb_status */
    142 	0x80, 0x2,		/* cb_command */
    143 	0xff, 0xff, 0xff, 0xff,	/* link_addr */
    144 	0x16,	/*  0 */
    145 	0x8,	/*  1 */
    146 	0x0,	/*  2 */
    147 	0x0,	/*  3 */
    148 	0x0,	/*  4 */
    149 	0x80,	/*  5 */
    150 	0xb2,	/*  6 */
    151 	0x3,	/*  7 */
    152 	0x1,	/*  8 */
    153 	0x0,	/*  9 */
    154 	0x26,	/* 10 */
    155 	0x0,	/* 11 */
    156 	0x60,	/* 12 */
    157 	0x0,	/* 13 */
    158 	0xf2,	/* 14 */
    159 	0x48,	/* 15 */
    160 	0x0,	/* 16 */
    161 	0x40,	/* 17 */
    162 	0xf3,	/* 18 */
    163 	0x0,	/* 19 */
    164 	0x3f,	/* 20 */
    165 	0x5	/* 21 */
    166 };
    167 
    168 void	fxp_mii_initmedia __P((struct fxp_softc *));
    169 int	fxp_mii_mediachange __P((struct ifnet *));
    170 void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
    171 
    172 void	fxp_80c24_initmedia __P((struct fxp_softc *));
    173 int	fxp_80c24_mediachange __P((struct ifnet *));
    174 void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
    175 
    176 inline void fxp_scb_wait __P((struct fxp_softc *));
    177 
    178 void	fxp_start __P((struct ifnet *));
    179 int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
    180 int	fxp_init __P((struct fxp_softc *));
    181 void	fxp_rxdrain __P((struct fxp_softc *));
    182 void	fxp_stop __P((struct fxp_softc *, int));
    183 void	fxp_watchdog __P((struct ifnet *));
    184 int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
    185 int	fxp_mdi_read __P((struct device *, int, int));
    186 void	fxp_statchg __P((struct device *));
    187 void	fxp_mdi_write __P((struct device *, int, int, int));
    188 void	fxp_autosize_eeprom __P((struct fxp_softc*));
    189 void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
    190 void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
    191 void	fxp_tick __P((void *));
    192 void	fxp_mc_setup __P((struct fxp_softc *));
    193 
    194 void	fxp_shutdown __P((void *));
    195 void	fxp_power __P((int, void *));
    196 
    197 int	fxp_copy_small = 0;
    198 
    199 struct fxp_phytype {
    200 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    201 	void	(*fp_init) __P((struct fxp_softc *));
    202 } fxp_phytype_table[] = {
    203 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    204 	{ -1,				fxp_mii_initmedia },
    205 };
    206 
    207 /*
    208  * Set initial transmit threshold at 64 (512 bytes). This is
    209  * increased by 64 (512 bytes) at a time, to maximum of 192
    210  * (1536 bytes), if an underrun occurs.
    211  */
    212 static int tx_threshold = 64;
    213 
    214 /*
    215  * Wait for the previous command to be accepted (but not necessarily
    216  * completed).
    217  */
    218 inline void
    219 fxp_scb_wait(sc)
    220 	struct fxp_softc *sc;
    221 {
    222 	int i = 10000;
    223 
    224 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    225 		delay(2);
    226 	if (i == 0)
    227 		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    228 }
    229 
    230 /*
    231  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    232  */
    233 void
    234 fxp_attach(sc)
    235 	struct fxp_softc *sc;
    236 {
    237 	u_int8_t enaddr[6];
    238 	struct ifnet *ifp;
    239 	bus_dma_segment_t seg;
    240 	int rseg, i, error;
    241 	struct fxp_phytype *fp;
    242 
    243 	callout_init(&sc->sc_callout);
    244 
    245 	/*
    246 	 * Allocate the control data structures, and create and load the
    247 	 * DMA map for it.
    248 	 */
    249 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    250 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    251 	    0)) != 0) {
    252 		printf("%s: unable to allocate control data, error = %d\n",
    253 		    sc->sc_dev.dv_xname, error);
    254 		goto fail_0;
    255 	}
    256 
    257 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    258 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
    259 	    BUS_DMA_COHERENT)) != 0) {
    260 		printf("%s: unable to map control data, error = %d\n",
    261 		    sc->sc_dev.dv_xname, error);
    262 		goto fail_1;
    263 	}
    264 	sc->sc_cdseg = seg;
    265 	sc->sc_cdnseg = rseg;
    266 
    267 	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
    268 
    269 	if ((error = bus_dmamap_create(sc->sc_dmat,
    270 	    sizeof(struct fxp_control_data), 1,
    271 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    272 		printf("%s: unable to create control data DMA map, "
    273 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    274 		goto fail_2;
    275 	}
    276 
    277 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    278 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    279 	    0)) != 0) {
    280 		printf("%s: can't load control data DMA map, error = %d\n",
    281 		    sc->sc_dev.dv_xname, error);
    282 		goto fail_3;
    283 	}
    284 
    285 	/*
    286 	 * Create the transmit buffer DMA maps.
    287 	 */
    288 	for (i = 0; i < FXP_NTXCB; i++) {
    289 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    290 		    FXP_NTXSEG, MCLBYTES, 0, 0,
    291 		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    292 			printf("%s: unable to create tx DMA map %d, "
    293 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    294 			goto fail_4;
    295 		}
    296 	}
    297 
    298 	/*
    299 	 * Create the receive buffer DMA maps.
    300 	 */
    301 	for (i = 0; i < FXP_NRFABUFS; i++) {
    302 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    303 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    304 			printf("%s: unable to create rx DMA map %d, "
    305 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    306 			goto fail_5;
    307 		}
    308 	}
    309 
    310 	/* Initialize MAC address and media structures. */
    311 	fxp_get_info(sc, enaddr);
    312 
    313 	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
    314 	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
    315 
    316 	ifp = &sc->sc_ethercom.ec_if;
    317 
    318 	/*
    319 	 * Get info about our media interface, and initialize it.  Note
    320 	 * the table terminates itself with a phy of -1, indicating
    321 	 * that we're using MII.
    322 	 */
    323 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    324 		if (fp->fp_phy == sc->phy_primary_device)
    325 			break;
    326 	(*fp->fp_init)(sc);
    327 
    328 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    329 	ifp->if_softc = sc;
    330 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    331 	ifp->if_ioctl = fxp_ioctl;
    332 	ifp->if_start = fxp_start;
    333 	ifp->if_watchdog = fxp_watchdog;
    334 
    335 	/*
    336 	 * Attach the interface.
    337 	 */
    338 	if_attach(ifp);
    339 	ether_ifattach(ifp, enaddr);
    340 #if NBPFILTER > 0
    341 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    342 	    sizeof(struct ether_header));
    343 #endif
    344 #if NRND > 0
    345 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    346 	    RND_TYPE_NET, 0);
    347 #endif
    348 
    349 	/*
    350 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    351 	 * doing do could allow DMA to corrupt kernel memory during the
    352 	 * reboot before the driver initializes.
    353 	 */
    354 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    355 	if (sc->sc_sdhook == NULL)
    356 		printf("%s: WARNING: unable to establish shutdown hook\n",
    357 		    sc->sc_dev.dv_xname);
    358 	/*
    359   	 * Add suspend hook, for similar reasons..
    360 	 */
    361 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
    362 	if (sc->sc_powerhook == NULL)
    363 		printf("%s: WARNING: unable to establish power hook\n",
    364 		    sc->sc_dev.dv_xname);
    365 	return;
    366 
    367 	/*
    368 	 * Free any resources we've allocated during the failed attach
    369 	 * attempt.  Do this in reverse order and fall though.
    370 	 */
    371  fail_5:
    372 	for (i = 0; i < FXP_NRFABUFS; i++) {
    373 		if (sc->sc_rxmaps[i] != NULL)
    374 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    375 	}
    376  fail_4:
    377 	for (i = 0; i < FXP_NTXCB; i++) {
    378 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    379 			bus_dmamap_destroy(sc->sc_dmat,
    380 			    FXP_DSTX(sc, i)->txs_dmamap);
    381 	}
    382 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    383  fail_3:
    384 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    385  fail_2:
    386 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    387 	    sizeof(struct fxp_control_data));
    388  fail_1:
    389 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    390  fail_0:
    391 	return;
    392 }
    393 
    394 void
    395 fxp_mii_initmedia(sc)
    396 	struct fxp_softc *sc;
    397 {
    398 
    399 	sc->sc_flags |= FXPF_MII;
    400 
    401 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    402 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    403 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    404 	sc->sc_mii.mii_statchg = fxp_statchg;
    405 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
    406 	    fxp_mii_mediastatus);
    407 	/*
    408 	 * The i82557 wedges if all of its PHYs are isolated!
    409 	 */
    410 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    411 	    MII_OFFSET_ANY, MIIF_NOISOLATE);
    412 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    413 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    414 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    415 	} else
    416 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    417 }
    418 
    419 void
    420 fxp_80c24_initmedia(sc)
    421 	struct fxp_softc *sc;
    422 {
    423 
    424 	/*
    425 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    426 	 * doesn't have a programming interface of any sort.  The
    427 	 * media is sensed automatically based on how the link partner
    428 	 * is configured.  This is, in essence, manual configuration.
    429 	 */
    430 	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    431 	    sc->sc_dev.dv_xname);
    432 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    433 	    fxp_80c24_mediastatus);
    434 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    435 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    436 }
    437 
    438 /*
    439  * Device shutdown routine. Called at system shutdown after sync. The
    440  * main purpose of this routine is to shut off receiver DMA so that
    441  * kernel memory doesn't get clobbered during warmboot.
    442  */
    443 void
    444 fxp_shutdown(arg)
    445 	void *arg;
    446 {
    447 	struct fxp_softc *sc = arg;
    448 
    449 	/*
    450 	 * Since the system's going to halt shortly, don't bother
    451 	 * freeing mbufs.
    452 	 */
    453 	fxp_stop(sc, 0);
    454 }
    455 /*
    456  * Power handler routine. Called when the system is transitioning
    457  * into/out of power save modes.  As with fxp_shutdown, the main
    458  * purpose of this routine is to shut off receiver DMA so it doesn't
    459  * clobber kernel memory at the wrong time.
    460  */
    461 void
    462 fxp_power(why, arg)
    463 	int why;
    464 	void *arg;
    465 {
    466 	struct fxp_softc *sc = arg;
    467 	struct ifnet *ifp;
    468 	int s;
    469 
    470 	s = splnet();
    471 	if (why != PWR_RESUME)
    472 		fxp_stop(sc, 0);
    473 	else {
    474 		ifp = &sc->sc_ethercom.ec_if;
    475 		if (ifp->if_flags & IFF_UP)
    476 			fxp_init(sc);
    477 	}
    478 	splx(s);
    479 }
    480 
    481 /*
    482  * Initialize the interface media.
    483  */
    484 void
    485 fxp_get_info(sc, enaddr)
    486 	struct fxp_softc *sc;
    487 	u_int8_t *enaddr;
    488 {
    489 	u_int16_t data, myea[3];
    490 
    491 	/*
    492 	 * Reset to a stable state.
    493 	 */
    494 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    495 	DELAY(10);
    496 
    497 	sc->sc_eeprom_size = 0;
    498 	fxp_autosize_eeprom(sc);
    499 	if(sc->sc_eeprom_size == 0) {
    500 	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
    501 	    sc->sc_eeprom_size = 6; /* XXX panic here? */
    502 	}
    503 #ifdef DEBUG
    504 	printf("%s: detected %d word EEPROM\n",
    505 	       sc->sc_dev.dv_xname,
    506 	       1 << sc->sc_eeprom_size);
    507 #endif
    508 
    509 	/*
    510 	 * Get info about the primary PHY
    511 	 */
    512 	fxp_read_eeprom(sc, &data, 6, 1);
    513 	sc->phy_primary_addr = data & 0xff;
    514 	sc->phy_primary_device = (data >> 8) & 0x3f;
    515 	sc->phy_10Mbps_only = data >> 15;
    516 
    517 	/*
    518 	 * Read MAC address.
    519 	 */
    520 	fxp_read_eeprom(sc, myea, 0, 3);
    521 	enaddr[0] = myea[0] & 0xff;
    522 	enaddr[1] = myea[0] >> 8;
    523 	enaddr[2] = myea[1] & 0xff;
    524 	enaddr[3] = myea[1] >> 8;
    525 	enaddr[4] = myea[2] & 0xff;
    526 	enaddr[5] = myea[2] >> 8;
    527 }
    528 
    529 /*
    530  * Figure out EEPROM size.
    531  *
    532  * 559's can have either 64-word or 256-word EEPROMs, the 558
    533  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    534  * talks about the existance of 16 to 256 word EEPROMs.
    535  *
    536  * The only known sizes are 64 and 256, where the 256 version is used
    537  * by CardBus cards to store CIS information.
    538  *
    539  * The address is shifted in msb-to-lsb, and after the last
    540  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    541  * after which follows the actual data. We try to detect this zero, by
    542  * probing the data-out bit in the EEPROM control register just after
    543  * having shifted in a bit. If the bit is zero, we assume we've
    544  * shifted enough address bits. The data-out should be tri-state,
    545  * before this, which should translate to a logical one.
    546  *
    547  * Other ways to do this would be to try to read a register with known
    548  * contents with a varying number of address bits, but no such
    549  * register seem to be available. The high bits of register 10 are 01
    550  * on the 558 and 559, but apparently not on the 557.
    551  *
    552  * The Linux driver computes a checksum on the EEPROM data, but the
    553  * value of this checksum is not very well documented.
    554  */
    555 
    556 void
    557 fxp_autosize_eeprom(sc)
    558 	struct fxp_softc *sc;
    559 {
    560 	u_int16_t reg;
    561 	int x;
    562 
    563 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    564 	/*
    565 	 * Shift in read opcode.
    566 	 */
    567 	for (x = 3; x > 0; x--) {
    568 		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    569 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    570 		} else {
    571 			reg = FXP_EEPROM_EECS;
    572 		}
    573 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    574 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    575 			    reg | FXP_EEPROM_EESK);
    576 		DELAY(1);
    577 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    578 		DELAY(1);
    579 	}
    580 	/*
    581 	 * Shift in address, wait for the dummy zero following a correct
    582 	 * address shift.
    583 	 */
    584 	for (x = 1; x <=  8; x++) {
    585 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    586 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    587 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    588 		DELAY(1);
    589 		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    590 		    FXP_EEPROM_EEDO) == 0)
    591 			break;
    592 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    593 		DELAY(1);
    594 	}
    595 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    596 	DELAY(1);
    597 	if(x != 6 && x != 8) {
    598 #ifdef DEBUG
    599 		printf("%s: strange EEPROM size (%d)\n",
    600 		       sc->sc_dev.dv_xname, 1 << x);
    601 #endif
    602 	} else
    603 		sc->sc_eeprom_size = x;
    604 }
    605 
    606 /*
    607  * Read from the serial EEPROM. Basically, you manually shift in
    608  * the read opcode (one bit at a time) and then shift in the address,
    609  * and then you shift out the data (all of this one bit at a time).
    610  * The word size is 16 bits, so you have to provide the address for
    611  * every 16 bits of data.
    612  */
    613 void
    614 fxp_read_eeprom(sc, data, offset, words)
    615 	struct fxp_softc *sc;
    616 	u_int16_t *data;
    617 	int offset;
    618 	int words;
    619 {
    620 	u_int16_t reg;
    621 	int i, x;
    622 
    623 	for (i = 0; i < words; i++) {
    624 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    625 		/*
    626 		 * Shift in read opcode.
    627 		 */
    628 		for (x = 3; x > 0; x--) {
    629 			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    630 				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    631 			} else {
    632 				reg = FXP_EEPROM_EECS;
    633 			}
    634 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    635 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    636 			    reg | FXP_EEPROM_EESK);
    637 			DELAY(1);
    638 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    639 			DELAY(1);
    640 		}
    641 		/*
    642 		 * Shift in address.
    643 		 */
    644 		for (x = sc->sc_eeprom_size; x > 0; x--) {
    645 			if ((i + offset) & (1 << (x - 1))) {
    646 			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    647 			} else {
    648 			    reg = FXP_EEPROM_EECS;
    649 			}
    650 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    651 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    652 			    reg | FXP_EEPROM_EESK);
    653 			DELAY(1);
    654 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    655 			DELAY(1);
    656 		}
    657 		reg = FXP_EEPROM_EECS;
    658 		data[i] = 0;
    659 		/*
    660 		 * Shift out data.
    661 		 */
    662 		for (x = 16; x > 0; x--) {
    663 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    664 			    reg | FXP_EEPROM_EESK);
    665 			DELAY(1);
    666 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    667 			    FXP_EEPROM_EEDO)
    668 				data[i] |= (1 << (x - 1));
    669 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    670 			DELAY(1);
    671 		}
    672 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    673 		DELAY(1);
    674 	}
    675 }
    676 
    677 /*
    678  * Start packet transmission on the interface.
    679  */
    680 void
    681 fxp_start(ifp)
    682 	struct ifnet *ifp;
    683 {
    684 	struct fxp_softc *sc = ifp->if_softc;
    685 	struct mbuf *m0, *m;
    686 	struct fxp_cb_tx *txd;
    687 	struct fxp_txsoft *txs;
    688 	struct fxp_tbdlist *tbd;
    689 	bus_dmamap_t dmamap;
    690 	int error, lasttx, nexttx, opending, seg;
    691 
    692 	/*
    693 	 * If we want a re-init, bail out now.
    694 	 */
    695 	if (sc->sc_flags & FXPF_WANTINIT) {
    696 		ifp->if_flags |= IFF_OACTIVE;
    697 		return;
    698 	}
    699 
    700 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    701 		return;
    702 
    703 	/*
    704 	 * Remember the previous txpending and the current lasttx.
    705 	 */
    706 	opending = sc->sc_txpending;
    707 	lasttx = sc->sc_txlast;
    708 
    709 	/*
    710 	 * Loop through the send queue, setting up transmit descriptors
    711 	 * until we drain the queue, or use up all available transmit
    712 	 * descriptors.
    713 	 */
    714 	while (sc->sc_txpending < FXP_NTXCB) {
    715 		/*
    716 		 * Grab a packet off the queue.
    717 		 */
    718 		IF_DEQUEUE(&ifp->if_snd, m0);
    719 		if (m0 == NULL)
    720 			break;
    721 
    722 		/*
    723 		 * Get the next available transmit descriptor.
    724 		 */
    725 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    726 		txd = FXP_CDTX(sc, nexttx);
    727 		tbd = FXP_CDTBD(sc, nexttx);
    728 		txs = FXP_DSTX(sc, nexttx);
    729 		dmamap = txs->txs_dmamap;
    730 
    731 		/*
    732 		 * Load the DMA map.  If this fails, the packet either
    733 		 * didn't fit in the allotted number of frags, or we were
    734 		 * short on resources.  In this case, we'll copy and try
    735 		 * again.
    736 		 */
    737 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    738 		    BUS_DMA_NOWAIT) != 0) {
    739 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    740 			if (m == NULL) {
    741 				printf("%s: unable to allocate Tx mbuf\n",
    742 				    sc->sc_dev.dv_xname);
    743 				IF_PREPEND(&ifp->if_snd, m0);
    744 				break;
    745 			}
    746 			if (m0->m_pkthdr.len > MHLEN) {
    747 				MCLGET(m, M_DONTWAIT);
    748 				if ((m->m_flags & M_EXT) == 0) {
    749 					printf("%s: unable to allocate Tx "
    750 					    "cluster\n", sc->sc_dev.dv_xname);
    751 					m_freem(m);
    752 					IF_PREPEND(&ifp->if_snd, m0);
    753 					break;
    754 				}
    755 			}
    756 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    757 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    758 			m_freem(m0);
    759 			m0 = m;
    760 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    761 			    m0, BUS_DMA_NOWAIT);
    762 			if (error) {
    763 				printf("%s: unable to load Tx buffer, "
    764 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    765 				IF_PREPEND(&ifp->if_snd, m0);
    766 				break;
    767 			}
    768 		}
    769 
    770 		/* Initialize the fraglist. */
    771 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    772 			tbd->tbd_d[seg].tb_addr =
    773 			    htole32(dmamap->dm_segs[seg].ds_addr);
    774 			tbd->tbd_d[seg].tb_size =
    775 			    htole32(dmamap->dm_segs[seg].ds_len);
    776 		}
    777 
    778 		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
    779 
    780 		/* Sync the DMA map. */
    781 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    782 		    BUS_DMASYNC_PREWRITE);
    783 
    784 		/*
    785 		 * Store a pointer to the packet so we can free it later.
    786 		 */
    787 		txs->txs_mbuf = m0;
    788 
    789 		/*
    790 		 * Initialize the transmit descriptor.
    791 		 */
    792 		/* BIG_ENDIAN: no need to swap to store 0 */
    793 		txd->cb_status = 0;
    794 		txd->cb_command =
    795 		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
    796 		txd->tx_threshold = tx_threshold;
    797 		txd->tbd_number = dmamap->dm_nsegs;
    798 
    799 		FXP_CDTXSYNC(sc, nexttx,
    800 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    801 
    802 		/* Advance the tx pointer. */
    803 		sc->sc_txpending++;
    804 		sc->sc_txlast = nexttx;
    805 
    806 #if NBPFILTER > 0
    807 		/*
    808 		 * Pass packet to bpf if there is a listener.
    809 		 */
    810 		if (ifp->if_bpf)
    811 			bpf_mtap(ifp->if_bpf, m0);
    812 #endif
    813 	}
    814 
    815 	if (sc->sc_txpending == FXP_NTXCB) {
    816 		/* No more slots; notify upper layer. */
    817 		ifp->if_flags |= IFF_OACTIVE;
    818 	}
    819 
    820 	if (sc->sc_txpending != opending) {
    821 		/*
    822 		 * We enqueued packets.  If the transmitter was idle,
    823 		 * reset the txdirty pointer.
    824 		 */
    825 		if (opending == 0)
    826 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
    827 
    828 		/*
    829 		 * Cause the chip to interrupt and suspend command
    830 		 * processing once the last packet we've enqueued
    831 		 * has been transmitted.
    832 		 */
    833 		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
    834 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
    835 		FXP_CDTXSYNC(sc, sc->sc_txlast,
    836 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    837 
    838 		/*
    839 		 * The entire packet chain is set up.  Clear the suspend bit
    840 		 * on the command prior to the first packet we set up.
    841 		 */
    842 		FXP_CDTXSYNC(sc, lasttx,
    843 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    844 		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
    845 		FXP_CDTXSYNC(sc, lasttx,
    846 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    847 
    848 		/*
    849 		 * Issue a Resume command in case the chip was suspended.
    850 		 */
    851 		fxp_scb_wait(sc);
    852 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
    853 
    854 		/* Set a watchdog timer in case the chip flakes out. */
    855 		ifp->if_timer = 5;
    856 	}
    857 }
    858 
    859 /*
    860  * Process interface interrupts.
    861  */
    862 int
    863 fxp_intr(arg)
    864 	void *arg;
    865 {
    866 	struct fxp_softc *sc = arg;
    867 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    868 	struct fxp_cb_tx *txd;
    869 	struct fxp_txsoft *txs;
    870 	struct mbuf *m, *m0;
    871 	bus_dmamap_t rxmap;
    872 	struct fxp_rfa *rfa;
    873 	struct ether_header *eh;
    874 	int i, claimed = 0;
    875 	u_int16_t len, rxstat, txstat;
    876 	u_int8_t statack;
    877 
    878 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
    879 		return (0);
    880 	/*
    881 	 * If the interface isn't running, don't try to
    882 	 * service the interrupt.. just ack it and bail.
    883 	 */
    884 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
    885 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
    886 		if (statack) {
    887 			claimed = 1;
    888 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    889 		}
    890 		return (claimed);
    891 	}
    892 
    893 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
    894 		claimed = 1;
    895 
    896 		/*
    897 		 * First ACK all the interrupts in this pass.
    898 		 */
    899 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    900 
    901 		/*
    902 		 * Process receiver interrupts. If a no-resource (RNR)
    903 		 * condition exists, get whatever packets we can and
    904 		 * re-start the receiver.
    905 		 */
    906 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
    907  rcvloop:
    908 			m = sc->sc_rxq.ifq_head;
    909 			rfa = FXP_MTORFA(m);
    910 			rxmap = M_GETCTX(m, bus_dmamap_t);
    911 
    912 			FXP_RFASYNC(sc, m,
    913 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    914 
    915 			rxstat = le16toh(rfa->rfa_status);
    916 
    917 			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
    918 				/*
    919 				 * We have processed all of the
    920 				 * receive buffers.
    921 				 */
    922 				goto do_transmit;
    923 			}
    924 
    925 			IF_DEQUEUE(&sc->sc_rxq, m);
    926 
    927 			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
    928 
    929 			len = le16toh(rfa->actual_size) &
    930 			    (m->m_ext.ext_size - 1);
    931 
    932 			if (len < sizeof(struct ether_header)) {
    933 				/*
    934 				 * Runt packet; drop it now.
    935 				 */
    936 				FXP_INIT_RFABUF(sc, m);
    937 				goto rcvloop;
    938 			}
    939 
    940 			/*
    941 			 * If the packet is small enough to fit in a
    942 			 * single header mbuf, allocate one and copy
    943 			 * the data into it.  This greatly reduces
    944 			 * memory consumption when we receive lots
    945 			 * of small packets.
    946 			 *
    947 			 * Otherwise, we add a new buffer to the receive
    948 			 * chain.  If this fails, we drop the packet and
    949 			 * recycle the old buffer.
    950 			 */
    951 			if (fxp_copy_small != 0 && len <= MHLEN) {
    952 				MGETHDR(m0, M_DONTWAIT, MT_DATA);
    953 				if (m == NULL)
    954 					goto dropit;
    955 				memcpy(mtod(m0, caddr_t),
    956 				    mtod(m, caddr_t), len);
    957 				FXP_INIT_RFABUF(sc, m);
    958 				m = m0;
    959 			} else {
    960 				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
    961  dropit:
    962 					ifp->if_ierrors++;
    963 					FXP_INIT_RFABUF(sc, m);
    964 					goto rcvloop;
    965 				}
    966 			}
    967 
    968 			m->m_pkthdr.rcvif = ifp;
    969 			m->m_pkthdr.len = m->m_len = len;
    970 			eh = mtod(m, struct ether_header *);
    971 
    972 #if NBPFILTER > 0
    973 			/*
    974 			 * Pass this up to any BPF listeners, but only
    975 			 * pass it up the stack it its for us.
    976 			 */
    977 			if (ifp->if_bpf) {
    978 				bpf_mtap(ifp->if_bpf, m);
    979 
    980 				if ((ifp->if_flags & IFF_PROMISC) != 0 &&
    981 				    (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
    982 				    (eh->ether_dhost[0] & 1) == 0) {
    983 					m_freem(m);
    984 					goto rcvloop;
    985 				}
    986 			}
    987 #endif /* NBPFILTER > 0 */
    988 
    989 			/* Pass it on. */
    990 			(*ifp->if_input)(ifp, m);
    991 			goto rcvloop;
    992 		}
    993 
    994  do_transmit:
    995 		if (statack & FXP_SCB_STATACK_RNR) {
    996 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
    997 			fxp_scb_wait(sc);
    998 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
    999 			    rxmap->dm_segs[0].ds_addr +
   1000 			    RFA_ALIGNMENT_FUDGE);
   1001 			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
   1002 			    FXP_SCB_COMMAND_RU_START);
   1003 		}
   1004 
   1005 		/*
   1006 		 * Free any finished transmit mbuf chains.
   1007 		 */
   1008 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1009 			ifp->if_flags &= ~IFF_OACTIVE;
   1010 			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1011 			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1012 				txd = FXP_CDTX(sc, i);
   1013 				txs = FXP_DSTX(sc, i);
   1014 
   1015 				FXP_CDTXSYNC(sc, i,
   1016 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1017 
   1018 				txstat = le16toh(txd->cb_status);
   1019 
   1020 				if ((txstat & FXP_CB_STATUS_C) == 0)
   1021 					break;
   1022 
   1023 				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
   1024 
   1025 				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1026 				    0, txs->txs_dmamap->dm_mapsize,
   1027 				    BUS_DMASYNC_POSTWRITE);
   1028 				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1029 				m_freem(txs->txs_mbuf);
   1030 				txs->txs_mbuf = NULL;
   1031 			}
   1032 
   1033 			/* Update the dirty transmit buffer pointer. */
   1034 			sc->sc_txdirty = i;
   1035 
   1036 			/*
   1037 			 * Cancel the watchdog timer if there are no pending
   1038 			 * transmissions.
   1039 			 */
   1040 			if (sc->sc_txpending == 0) {
   1041 				ifp->if_timer = 0;
   1042 
   1043 				/*
   1044 				 * If we want a re-init, do that now.
   1045 				 */
   1046 				if (sc->sc_flags & FXPF_WANTINIT)
   1047 					(void) fxp_init(sc);
   1048 			}
   1049 
   1050 			/*
   1051 			 * Try to get more packets going.
   1052 			 */
   1053 			fxp_start(ifp);
   1054 		}
   1055 	}
   1056 
   1057 #if NRND > 0
   1058 	if (claimed)
   1059 		rnd_add_uint32(&sc->rnd_source, statack);
   1060 #endif
   1061 	return (claimed);
   1062 }
   1063 
   1064 /*
   1065  * Update packet in/out/collision statistics. The i82557 doesn't
   1066  * allow you to access these counters without doing a fairly
   1067  * expensive DMA to get _all_ of the statistics it maintains, so
   1068  * we do this operation here only once per second. The statistics
   1069  * counters in the kernel are updated from the previous dump-stats
   1070  * DMA and then a new dump-stats DMA is started. The on-chip
   1071  * counters are zeroed when the DMA completes. If we can't start
   1072  * the DMA immediately, we don't wait - we just prepare to read
   1073  * them again next time.
   1074  */
   1075 void
   1076 fxp_tick(arg)
   1077 	void *arg;
   1078 {
   1079 	struct fxp_softc *sc = arg;
   1080 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1081 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1082 	int s;
   1083 
   1084 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1085 		return;
   1086 
   1087 	s = splnet();
   1088 
   1089 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1090 
   1091 	ifp->if_opackets += le32toh(sp->tx_good);
   1092 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1093 	if (sp->rx_good) {
   1094 		ifp->if_ipackets += le32toh(sp->rx_good);
   1095 		sc->sc_rxidle = 0;
   1096 	} else {
   1097 		sc->sc_rxidle++;
   1098 	}
   1099 	ifp->if_ierrors +=
   1100 	    le32toh(sp->rx_crc_errors) +
   1101 	    le32toh(sp->rx_alignment_errors) +
   1102 	    le32toh(sp->rx_rnr_errors) +
   1103 	    le32toh(sp->rx_overrun_errors);
   1104 	/*
   1105 	 * If any transmit underruns occured, bump up the transmit
   1106 	 * threshold by another 512 bytes (64 * 8).
   1107 	 */
   1108 	if (sp->tx_underruns) {
   1109 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1110 		if (tx_threshold < 192)
   1111 			tx_threshold += 64;
   1112 	}
   1113 
   1114 	/*
   1115 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
   1116 	 * then assume the receiver has locked up and attempt to clear
   1117 	 * the condition by reprogramming the multicast filter (actually,
   1118 	 * resetting the interface). This is a work-around for a bug in
   1119 	 * the 82557 where the receiver locks up if it gets certain types
   1120 	 * of garbage in the syncronization bits prior to the packet header.
   1121 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1122 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1123 	 * speed transition).
   1124 	 */
   1125 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1126 		(void) fxp_init(sc);
   1127 		splx(s);
   1128 		return;
   1129 	}
   1130 	/*
   1131 	 * If there is no pending command, start another stats
   1132 	 * dump. Otherwise punt for now.
   1133 	 */
   1134 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1135 		/*
   1136 		 * Start another stats dump.
   1137 		 */
   1138 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1139 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
   1140 		    FXP_SCB_COMMAND_CU_DUMPRESET);
   1141 	} else {
   1142 		/*
   1143 		 * A previous command is still waiting to be accepted.
   1144 		 * Just zero our copy of the stats and wait for the
   1145 		 * next timer event to update them.
   1146 		 */
   1147 		/* BIG_ENDIAN: no swap required to store 0 */
   1148 		sp->tx_good = 0;
   1149 		sp->tx_underruns = 0;
   1150 		sp->tx_total_collisions = 0;
   1151 
   1152 		sp->rx_good = 0;
   1153 		sp->rx_crc_errors = 0;
   1154 		sp->rx_alignment_errors = 0;
   1155 		sp->rx_rnr_errors = 0;
   1156 		sp->rx_overrun_errors = 0;
   1157 	}
   1158 
   1159 	if (sc->sc_flags & FXPF_MII) {
   1160 		/* Tick the MII clock. */
   1161 		mii_tick(&sc->sc_mii);
   1162 	}
   1163 
   1164 	splx(s);
   1165 
   1166 	/*
   1167 	 * Schedule another timeout one second from now.
   1168 	 */
   1169 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1170 }
   1171 
   1172 /*
   1173  * Drain the receive queue.
   1174  */
   1175 void
   1176 fxp_rxdrain(sc)
   1177 	struct fxp_softc *sc;
   1178 {
   1179 	bus_dmamap_t rxmap;
   1180 	struct mbuf *m;
   1181 
   1182 	for (;;) {
   1183 		IF_DEQUEUE(&sc->sc_rxq, m);
   1184 		if (m == NULL)
   1185 			break;
   1186 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1187 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1188 		FXP_RXMAP_PUT(sc, rxmap);
   1189 		m_freem(m);
   1190 	}
   1191 }
   1192 
   1193 /*
   1194  * Stop the interface. Cancels the statistics updater and resets
   1195  * the interface.
   1196  */
   1197 void
   1198 fxp_stop(sc, drain)
   1199 	struct fxp_softc *sc;
   1200 	int drain;
   1201 {
   1202 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1203 	struct fxp_txsoft *txs;
   1204 	int i;
   1205 
   1206 	/*
   1207 	 * Turn down interface (done early to avoid bad interactions
   1208 	 * between panics, shutdown hooks, and the watchdog timer)
   1209 	 */
   1210 	ifp->if_timer = 0;
   1211 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1212 
   1213 	/*
   1214 	 * Cancel stats updater.
   1215 	 */
   1216 	callout_stop(&sc->sc_callout);
   1217 	if (sc->sc_flags & FXPF_MII) {
   1218 		/* Down the MII. */
   1219 		mii_down(&sc->sc_mii);
   1220 	}
   1221 
   1222 	/*
   1223 	 * Issue software reset
   1224 	 */
   1225 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
   1226 	DELAY(10);
   1227 
   1228 	/*
   1229 	 * Release any xmit buffers.
   1230 	 */
   1231 	for (i = 0; i < FXP_NTXCB; i++) {
   1232 		txs = FXP_DSTX(sc, i);
   1233 		if (txs->txs_mbuf != NULL) {
   1234 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1235 			m_freem(txs->txs_mbuf);
   1236 			txs->txs_mbuf = NULL;
   1237 		}
   1238 	}
   1239 	sc->sc_txpending = 0;
   1240 
   1241 	if (drain) {
   1242 		/*
   1243 		 * Release the receive buffers.
   1244 		 */
   1245 		fxp_rxdrain(sc);
   1246 	}
   1247 
   1248 }
   1249 
   1250 /*
   1251  * Watchdog/transmission transmit timeout handler. Called when a
   1252  * transmission is started on the interface, but no interrupt is
   1253  * received before the timeout. This usually indicates that the
   1254  * card has wedged for some reason.
   1255  */
   1256 void
   1257 fxp_watchdog(ifp)
   1258 	struct ifnet *ifp;
   1259 {
   1260 	struct fxp_softc *sc = ifp->if_softc;
   1261 
   1262 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1263 	ifp->if_oerrors++;
   1264 
   1265 	(void) fxp_init(sc);
   1266 }
   1267 
   1268 /*
   1269  * Initialize the interface.  Must be called at splnet().
   1270  */
   1271 int
   1272 fxp_init(sc)
   1273 	struct fxp_softc *sc;
   1274 {
   1275 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1276 	struct fxp_cb_config *cbp;
   1277 	struct fxp_cb_ias *cb_ias;
   1278 	struct fxp_cb_tx *txd;
   1279 	bus_dmamap_t rxmap;
   1280 	int i, prm, allm, error = 0;
   1281 
   1282 	/*
   1283 	 * Cancel any pending I/O
   1284 	 */
   1285 	fxp_stop(sc, 0);
   1286 
   1287 	/*
   1288 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1289 	 * flag, and this prevents the MII from detaching resulting in
   1290 	 * a panic. The flags field should perhaps be split in runtime
   1291 	 * flags and more static information. For now, just clear the
   1292 	 * only other flag set.
   1293 	 */
   1294 
   1295 	sc->sc_flags &= ~FXPF_WANTINIT;
   1296 
   1297 	/*
   1298 	 * Initialize base of CBL and RFA memory. Loading with zero
   1299 	 * sets it up for regular linear addressing.
   1300 	 */
   1301 	fxp_scb_wait(sc);
   1302 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1303 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
   1304 
   1305 	fxp_scb_wait(sc);
   1306 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
   1307 
   1308 	/*
   1309 	 * Initialize the multicast filter.  Do this now, since we might
   1310 	 * have to setup the config block differently.
   1311 	 */
   1312 	fxp_mc_setup(sc);
   1313 
   1314 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1315 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1316 
   1317 	/*
   1318 	 * Initialize base of dump-stats buffer.
   1319 	 */
   1320 	fxp_scb_wait(sc);
   1321 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1322 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1323 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1324 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1325 
   1326 	cbp = &sc->sc_control_data->fcd_configcb;
   1327 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1328 
   1329 	/*
   1330 	 * This copy is kind of disgusting, but there are a bunch of must be
   1331 	 * zero and must be one bits in this structure and this is the easiest
   1332 	 * way to initialize them all to proper values.
   1333 	 */
   1334 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1335 
   1336 	/* BIG_ENDIAN: no need to swap to store 0 */
   1337 	cbp->cb_status =	0;
   1338 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1339 				    FXP_CB_COMMAND_EL);
   1340 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1341 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1342 	cbp->byte_count =	22;	/* (22) bytes to config */
   1343 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1344 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1345 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1346 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1347 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1348 	cbp->dma_bce =		0;	/* (disable) dma max counters */
   1349 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1350 	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
   1351 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1352 	cbp->save_bf =		prm;	/* save bad frames */
   1353 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1354 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1355 	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
   1356 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1357 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1358 	cbp->loopback =		0;	/* (don't) loopback */
   1359 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1360 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1361 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1362 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1363 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1364 	cbp->crscdt =		0;	/* (CRS only) */
   1365 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1366 	cbp->padding =		1;	/* (do) pad short tx packets */
   1367 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1368 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1369 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1370 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1371 	cbp->mc_all =		allm;	/* accept all multicasts */
   1372 
   1373 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1374 
   1375 	/*
   1376 	 * Start the config command/DMA.
   1377 	 */
   1378 	fxp_scb_wait(sc);
   1379 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1380 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1381 	/* ...and wait for it to complete. */
   1382 	i = 1000;
   1383 	do {
   1384 		FXP_CDCONFIGSYNC(sc,
   1385 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1386 		DELAY(1);
   1387 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1388 	if (i == 0) {
   1389 		printf("%s at line %d: dmasync timeout\n",
   1390 		    sc->sc_dev.dv_xname, __LINE__);
   1391 		return ETIMEDOUT;
   1392 	}
   1393 
   1394 	/*
   1395 	 * Initialize the station address.
   1396 	 */
   1397 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1398 	/* BIG_ENDIAN: no need to swap to store 0 */
   1399 	cb_ias->cb_status = 0;
   1400 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1401 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1402 	cb_ias->link_addr = 0xffffffff;
   1403 	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1404 
   1405 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1406 
   1407 	/*
   1408 	 * Start the IAS (Individual Address Setup) command/DMA.
   1409 	 */
   1410 	fxp_scb_wait(sc);
   1411 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1412 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1413 	/* ...and wait for it to complete. */
   1414 	i = 1000;
   1415 	do {
   1416 		FXP_CDIASSYNC(sc,
   1417 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1418 		DELAY(1);
   1419 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1420 	if (i == 0) {
   1421 		printf("%s at line %d: dmasync timeout\n",
   1422 		    sc->sc_dev.dv_xname, __LINE__);
   1423 		return ETIMEDOUT;
   1424 	}
   1425 
   1426 	/*
   1427 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1428 	 * to the end of the list so that it will wrap around to the first
   1429 	 * descriptor when the first packet is transmitted.
   1430 	 */
   1431 	for (i = 0; i < FXP_NTXCB; i++) {
   1432 		txd = FXP_CDTX(sc, i);
   1433 		memset(txd, 0, sizeof(struct fxp_cb_tx));
   1434 		txd->cb_command =
   1435 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1436 		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
   1437 		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1438 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1439 	}
   1440 	sc->sc_txpending = 0;
   1441 	sc->sc_txdirty = 0;
   1442 	sc->sc_txlast = FXP_NTXCB - 1;
   1443 
   1444 	/*
   1445 	 * Initialize the receive buffer list.
   1446 	 */
   1447 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1448 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1449 		rxmap = FXP_RXMAP_GET(sc);
   1450 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1451 			printf("%s: unable to allocate or map rx "
   1452 			    "buffer %d, error = %d\n",
   1453 			    sc->sc_dev.dv_xname,
   1454 			    sc->sc_rxq.ifq_len, error);
   1455 			/*
   1456 			 * XXX Should attempt to run with fewer receive
   1457 			 * XXX buffers instead of just failing.
   1458 			 */
   1459 			FXP_RXMAP_PUT(sc, rxmap);
   1460 			fxp_rxdrain(sc);
   1461 			goto out;
   1462 		}
   1463 	}
   1464 	sc->sc_rxidle = 0;
   1465 
   1466 	/*
   1467 	 * Give the transmit ring to the chip.  We do this by pointing
   1468 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1469 	 * issuing a start command.  It will execute the NOP and then
   1470 	 * suspend, pointing at the first descriptor.
   1471 	 */
   1472 	fxp_scb_wait(sc);
   1473 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1474 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1475 
   1476 	/*
   1477 	 * Initialize receiver buffer area - RFA.
   1478 	 */
   1479 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1480 	fxp_scb_wait(sc);
   1481 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1482 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1483 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
   1484 
   1485 	if (sc->sc_flags & FXPF_MII) {
   1486 		/*
   1487 		 * Set current media.
   1488 		 */
   1489 		mii_mediachg(&sc->sc_mii);
   1490 	}
   1491 
   1492 	/*
   1493 	 * ...all done!
   1494 	 */
   1495 	ifp->if_flags |= IFF_RUNNING;
   1496 	ifp->if_flags &= ~IFF_OACTIVE;
   1497 
   1498 	/*
   1499 	 * Start the one second timer.
   1500 	 */
   1501 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1502 
   1503 	/*
   1504 	 * Attempt to start output on the interface.
   1505 	 */
   1506 	fxp_start(ifp);
   1507 
   1508  out:
   1509 	if (error)
   1510 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1511 	return (error);
   1512 }
   1513 
   1514 /*
   1515  * Change media according to request.
   1516  */
   1517 int
   1518 fxp_mii_mediachange(ifp)
   1519 	struct ifnet *ifp;
   1520 {
   1521 	struct fxp_softc *sc = ifp->if_softc;
   1522 
   1523 	if (ifp->if_flags & IFF_UP)
   1524 		mii_mediachg(&sc->sc_mii);
   1525 	return (0);
   1526 }
   1527 
   1528 /*
   1529  * Notify the world which media we're using.
   1530  */
   1531 void
   1532 fxp_mii_mediastatus(ifp, ifmr)
   1533 	struct ifnet *ifp;
   1534 	struct ifmediareq *ifmr;
   1535 {
   1536 	struct fxp_softc *sc = ifp->if_softc;
   1537 
   1538 	if(sc->sc_enabled == 0) {
   1539 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1540 		ifmr->ifm_status = 0;
   1541 		return;
   1542 	}
   1543 
   1544 	mii_pollstat(&sc->sc_mii);
   1545 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1546 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1547 }
   1548 
   1549 int
   1550 fxp_80c24_mediachange(ifp)
   1551 	struct ifnet *ifp;
   1552 {
   1553 
   1554 	/* Nothing to do here. */
   1555 	return (0);
   1556 }
   1557 
   1558 void
   1559 fxp_80c24_mediastatus(ifp, ifmr)
   1560 	struct ifnet *ifp;
   1561 	struct ifmediareq *ifmr;
   1562 {
   1563 	struct fxp_softc *sc = ifp->if_softc;
   1564 
   1565 	/*
   1566 	 * Media is currently-selected media.  We cannot determine
   1567 	 * the link status.
   1568 	 */
   1569 	ifmr->ifm_status = 0;
   1570 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1571 }
   1572 
   1573 /*
   1574  * Add a buffer to the end of the RFA buffer list.
   1575  * Return 0 if successful, error code on failure.
   1576  *
   1577  * The RFA struct is stuck at the beginning of mbuf cluster and the
   1578  * data pointer is fixed up to point just past it.
   1579  */
   1580 int
   1581 fxp_add_rfabuf(sc, rxmap, unload)
   1582 	struct fxp_softc *sc;
   1583 	bus_dmamap_t rxmap;
   1584 	int unload;
   1585 {
   1586 	struct mbuf *m;
   1587 	int error;
   1588 
   1589 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1590 	if (m == NULL)
   1591 		return (ENOBUFS);
   1592 
   1593 	MCLGET(m, M_DONTWAIT);
   1594 	if ((m->m_flags & M_EXT) == 0) {
   1595 		m_freem(m);
   1596 		return (ENOBUFS);
   1597 	}
   1598 
   1599 	if (unload)
   1600 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1601 
   1602 	M_SETCTX(m, rxmap);
   1603 
   1604 	error = bus_dmamap_load(sc->sc_dmat, rxmap,
   1605 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1606 	if (error) {
   1607 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1608 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   1609 		panic("fxp_add_rfabuf");		/* XXX */
   1610 	}
   1611 
   1612 	FXP_INIT_RFABUF(sc, m);
   1613 
   1614 	return (0);
   1615 }
   1616 
   1617 volatile int
   1618 fxp_mdi_read(self, phy, reg)
   1619 	struct device *self;
   1620 	int phy;
   1621 	int reg;
   1622 {
   1623 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1624 	int count = 10000;
   1625 	int value;
   1626 
   1627 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1628 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   1629 
   1630 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
   1631 	    && count--)
   1632 		DELAY(10);
   1633 
   1634 	if (count <= 0)
   1635 		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   1636 
   1637 	return (value & 0xffff);
   1638 }
   1639 
   1640 void
   1641 fxp_statchg(self)
   1642 	struct device *self;
   1643 {
   1644 
   1645 	/* Nothing to do. */
   1646 }
   1647 
   1648 void
   1649 fxp_mdi_write(self, phy, reg, value)
   1650 	struct device *self;
   1651 	int phy;
   1652 	int reg;
   1653 	int value;
   1654 {
   1655 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1656 	int count = 10000;
   1657 
   1658 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1659 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   1660 	    (value & 0xffff));
   1661 
   1662 	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   1663 	    count--)
   1664 		DELAY(10);
   1665 
   1666 	if (count <= 0)
   1667 		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   1668 }
   1669 
   1670 int
   1671 fxp_ioctl(ifp, command, data)
   1672 	struct ifnet *ifp;
   1673 	u_long command;
   1674 	caddr_t data;
   1675 {
   1676 	struct fxp_softc *sc = ifp->if_softc;
   1677 	struct ifreq *ifr = (struct ifreq *)data;
   1678 	struct ifaddr *ifa = (struct ifaddr *)data;
   1679 	int s, error = 0;
   1680 
   1681 	s = splnet();
   1682 
   1683 	switch (command) {
   1684 	case SIOCSIFADDR:
   1685 		if ((error = fxp_enable(sc)) != 0)
   1686 			break;
   1687 		ifp->if_flags |= IFF_UP;
   1688 
   1689 		switch (ifa->ifa_addr->sa_family) {
   1690 #ifdef INET
   1691 		case AF_INET:
   1692 			if ((error = fxp_init(sc)) != 0)
   1693 				break;
   1694 			arp_ifinit(ifp, ifa);
   1695 			break;
   1696 #endif /* INET */
   1697 #ifdef NS
   1698 		case AF_NS:
   1699 		    {
   1700 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1701 
   1702 			 if (ns_nullhost(*ina))
   1703 				ina->x_host = *(union ns_host *)
   1704 				    LLADDR(ifp->if_sadl);
   1705 			 else
   1706 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
   1707 				    ifp->if_addrlen);
   1708 			 /* Set new address. */
   1709 			 error = fxp_init(sc);
   1710 			 break;
   1711 		    }
   1712 #endif /* NS */
   1713 		default:
   1714 			error = fxp_init(sc);
   1715 			break;
   1716 		}
   1717 		break;
   1718 
   1719 	case SIOCSIFMTU:
   1720 		if (ifr->ifr_mtu > ETHERMTU)
   1721 			error = EINVAL;
   1722 		else
   1723 			ifp->if_mtu = ifr->ifr_mtu;
   1724 		break;
   1725 
   1726 	case SIOCSIFFLAGS:
   1727 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1728 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1729 			/*
   1730 			 * If interface is marked down and it is running, then
   1731 			 * stop it.
   1732 			 */
   1733 			fxp_stop(sc, 1);
   1734 			fxp_disable(sc);
   1735 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1736 		    (ifp->if_flags & IFF_RUNNING) == 0) {
   1737 			/*
   1738 			 * If interface is marked up and it is stopped, then
   1739 			 * start it.
   1740 			 */
   1741 			if((error = fxp_enable(sc)) != 0)
   1742 				break;
   1743 			error = fxp_init(sc);
   1744 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1745 			/*
   1746 			 * Reset the interface to pick up change in any other
   1747 			 * flags that affect the hardware state.
   1748 			 */
   1749 			if((error = fxp_enable(sc)) != 0)
   1750 				break;
   1751 			error = fxp_init(sc);
   1752 		}
   1753 		break;
   1754 
   1755 	case SIOCADDMULTI:
   1756 	case SIOCDELMULTI:
   1757 		if(sc->sc_enabled == 0) {
   1758 			error = EIO;
   1759 			break;
   1760 		}
   1761 		error = (command == SIOCADDMULTI) ?
   1762 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1763 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1764 
   1765 		if (error == ENETRESET) {
   1766 			/*
   1767 			 * Multicast list has changed; set the hardware
   1768 			 * filter accordingly.
   1769 			 */
   1770 			if (sc->sc_txpending) {
   1771 				sc->sc_flags |= FXPF_WANTINIT;
   1772 				error = 0;
   1773 			} else
   1774 				error = fxp_init(sc);
   1775 		}
   1776 		break;
   1777 
   1778 	case SIOCSIFMEDIA:
   1779 	case SIOCGIFMEDIA:
   1780 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
   1781 		break;
   1782 
   1783 	default:
   1784 		error = EINVAL;
   1785 		break;
   1786 	}
   1787 
   1788 	splx(s);
   1789 	return (error);
   1790 }
   1791 
   1792 /*
   1793  * Program the multicast filter.
   1794  *
   1795  * This function must be called at splnet().
   1796  */
   1797 void
   1798 fxp_mc_setup(sc)
   1799 	struct fxp_softc *sc;
   1800 {
   1801 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   1802 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1803 	struct ethercom *ec = &sc->sc_ethercom;
   1804 	struct ether_multi *enm;
   1805 	struct ether_multistep step;
   1806 	int count, nmcasts;
   1807 
   1808 #ifdef DIAGNOSTIC
   1809 	if (sc->sc_txpending)
   1810 		panic("fxp_mc_setup: pending transmissions");
   1811 #endif
   1812 
   1813 	ifp->if_flags &= ~IFF_ALLMULTI;
   1814 
   1815 	/*
   1816 	 * Initialize multicast setup descriptor.
   1817 	 */
   1818 	nmcasts = 0;
   1819 	ETHER_FIRST_MULTI(step, ec, enm);
   1820 	while (enm != NULL) {
   1821 		/*
   1822 		 * Check for too many multicast addresses or if we're
   1823 		 * listening to a range.  Either way, we simply have
   1824 		 * to accept all multicasts.
   1825 		 */
   1826 		if (nmcasts >= MAXMCADDR ||
   1827 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1828 		    ETHER_ADDR_LEN) != 0) {
   1829 			/*
   1830 			 * Callers of this function must do the
   1831 			 * right thing with this.  If we're called
   1832 			 * from outside fxp_init(), the caller must
   1833 			 * detect if the state if IFF_ALLMULTI changes.
   1834 			 * If it does, the caller must then call
   1835 			 * fxp_init(), since allmulti is handled by
   1836 			 * the config block.
   1837 			 */
   1838 			ifp->if_flags |= IFF_ALLMULTI;
   1839 			return;
   1840 		}
   1841 		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   1842 		    ETHER_ADDR_LEN);
   1843 		nmcasts++;
   1844 		ETHER_NEXT_MULTI(step, enm);
   1845 	}
   1846 
   1847 	/* BIG_ENDIAN: no need to swap to store 0 */
   1848 	mcsp->cb_status = 0;
   1849 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   1850 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   1851 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   1852 
   1853 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1854 
   1855 	/*
   1856 	 * Wait until the command unit is not active.  This should never
   1857 	 * happen since nothing is queued, but make sure anyway.
   1858 	 */
   1859 	count = 100;
   1860 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   1861 	    FXP_SCB_CUS_ACTIVE && --count)
   1862 		DELAY(1);
   1863 	if (count == 0) {
   1864 		printf("%s at line %d: command queue timeout\n",
   1865 		    sc->sc_dev.dv_xname, __LINE__);
   1866 		return;
   1867 	}
   1868 
   1869 	/*
   1870 	 * Start the multicast setup command/DMA.
   1871 	 */
   1872 	fxp_scb_wait(sc);
   1873 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   1874 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1875 
   1876 	/* ...and wait for it to complete. */
   1877 	count = 1000;
   1878 	do {
   1879 		FXP_CDMCSSYNC(sc,
   1880 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1881 		DELAY(1);
   1882 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   1883 	if (count == 0) {
   1884 		printf("%s at line %d: dmasync timeout\n",
   1885 		    sc->sc_dev.dv_xname, __LINE__);
   1886 		return;
   1887 	}
   1888 }
   1889 
   1890 int
   1891 fxp_enable(sc)
   1892 	struct fxp_softc *sc;
   1893 {
   1894 
   1895 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   1896 		if ((*sc->sc_enable)(sc) != 0) {
   1897 			printf("%s: device enable failed\n",
   1898 			    sc->sc_dev.dv_xname);
   1899 			return (EIO);
   1900 		}
   1901 	}
   1902 
   1903 	sc->sc_enabled = 1;
   1904 	return (0);
   1905 }
   1906 
   1907 void
   1908 fxp_disable(sc)
   1909 	struct fxp_softc *sc;
   1910 {
   1911 
   1912 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   1913 		(*sc->sc_disable)(sc);
   1914 		sc->sc_enabled = 0;
   1915 	}
   1916 }
   1917 
   1918 /*
   1919  * fxp_activate:
   1920  *
   1921  *	Handle device activation/deactivation requests.
   1922  */
   1923 int
   1924 fxp_activate(self, act)
   1925 	struct device *self;
   1926 	enum devact act;
   1927 {
   1928 	struct fxp_softc *sc = (void *) self;
   1929 	int s, error = 0;
   1930 
   1931 	s = splnet();
   1932 	switch (act) {
   1933 	case DVACT_ACTIVATE:
   1934 		error = EOPNOTSUPP;
   1935 		break;
   1936 
   1937 	case DVACT_DEACTIVATE:
   1938 		if (sc->sc_flags & FXPF_MII)
   1939 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   1940 			    MII_OFFSET_ANY);
   1941 		if_deactivate(&sc->sc_ethercom.ec_if);
   1942 		break;
   1943 	}
   1944 	splx(s);
   1945 
   1946 	return (error);
   1947 }
   1948 
   1949 /*
   1950  * fxp_detach:
   1951  *
   1952  *	Detach an i82557 interface.
   1953  */
   1954 int
   1955 fxp_detach(sc)
   1956 	struct fxp_softc *sc;
   1957 {
   1958 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1959 	int i;
   1960 
   1961 	/* Unhook our tick handler. */
   1962 	callout_stop(&sc->sc_callout);
   1963 
   1964 	if (sc->sc_flags & FXPF_MII) {
   1965 		/* Detach all PHYs */
   1966 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   1967 	}
   1968 
   1969 	/* Delete all remaining media. */
   1970 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   1971 
   1972 #if NRND > 0
   1973 	rnd_detach_source(&sc->rnd_source);
   1974 #endif
   1975 #if NBPFILTER > 0
   1976 	bpfdetach(ifp);
   1977 #endif
   1978 	ether_ifdetach(ifp);
   1979 	if_detach(ifp);
   1980 
   1981 	for (i = 0; i < FXP_NRFABUFS; i++) {
   1982 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   1983 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   1984 	}
   1985 
   1986 	for (i = 0; i < FXP_NTXCB; i++) {
   1987 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   1988 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   1989 	}
   1990 
   1991 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   1992 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   1993 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1994 	    sizeof(struct fxp_control_data));
   1995 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   1996 
   1997 	shutdownhook_disestablish(sc->sc_sdhook);
   1998 	powerhook_disestablish(sc->sc_powerhook);
   1999 
   2000 	return (0);
   2001 }
   2002