i82557.c revision 1.33 1 /* $NetBSD: i82557.c,v 1.33 2000/05/27 00:55:42 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <vm/vm.h> /* for PAGE_SIZE */
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 int fxp_init __P((struct fxp_softc *));
181 void fxp_rxdrain __P((struct fxp_softc *));
182 void fxp_stop __P((struct fxp_softc *, int));
183 void fxp_watchdog __P((struct ifnet *));
184 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185 int fxp_mdi_read __P((struct device *, int, int));
186 void fxp_statchg __P((struct device *));
187 void fxp_mdi_write __P((struct device *, int, int, int));
188 void fxp_autosize_eeprom __P((struct fxp_softc*));
189 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191 void fxp_tick __P((void *));
192 void fxp_mc_setup __P((struct fxp_softc *));
193
194 void fxp_shutdown __P((void *));
195 void fxp_power __P((int, void *));
196
197 int fxp_copy_small = 0;
198
199 struct fxp_phytype {
200 int fp_phy; /* type of PHY, -1 for MII at the end. */
201 void (*fp_init) __P((struct fxp_softc *));
202 } fxp_phytype_table[] = {
203 { FXP_PHY_80C24, fxp_80c24_initmedia },
204 { -1, fxp_mii_initmedia },
205 };
206
207 /*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212 static int tx_threshold = 64;
213
214 /*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218 inline void
219 fxp_scb_wait(sc)
220 struct fxp_softc *sc;
221 {
222 int i = 10000;
223
224 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225 delay(2);
226 if (i == 0)
227 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228 }
229
230 /*
231 * Finish attaching an i82557 interface. Called by bus-specific front-end.
232 */
233 void
234 fxp_attach(sc)
235 struct fxp_softc *sc;
236 {
237 u_int8_t enaddr[6];
238 struct ifnet *ifp;
239 bus_dma_segment_t seg;
240 int rseg, i, error;
241 struct fxp_phytype *fp;
242
243 callout_init(&sc->sc_callout);
244
245 /*
246 * Allocate the control data structures, and create and load the
247 * DMA map for it.
248 */
249 if ((error = bus_dmamem_alloc(sc->sc_dmat,
250 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251 0)) != 0) {
252 printf("%s: unable to allocate control data, error = %d\n",
253 sc->sc_dev.dv_xname, error);
254 goto fail_0;
255 }
256
257 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259 BUS_DMA_COHERENT)) != 0) {
260 printf("%s: unable to map control data, error = %d\n",
261 sc->sc_dev.dv_xname, error);
262 goto fail_1;
263 }
264 sc->sc_cdseg = seg;
265 sc->sc_cdnseg = rseg;
266
267 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269 if ((error = bus_dmamap_create(sc->sc_dmat,
270 sizeof(struct fxp_control_data), 1,
271 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272 printf("%s: unable to create control data DMA map, "
273 "error = %d\n", sc->sc_dev.dv_xname, error);
274 goto fail_2;
275 }
276
277 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279 0)) != 0) {
280 printf("%s: can't load control data DMA map, error = %d\n",
281 sc->sc_dev.dv_xname, error);
282 goto fail_3;
283 }
284
285 /*
286 * Create the transmit buffer DMA maps.
287 */
288 for (i = 0; i < FXP_NTXCB; i++) {
289 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290 FXP_NTXSEG, MCLBYTES, 0, 0,
291 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292 printf("%s: unable to create tx DMA map %d, "
293 "error = %d\n", sc->sc_dev.dv_xname, i, error);
294 goto fail_4;
295 }
296 }
297
298 /*
299 * Create the receive buffer DMA maps.
300 */
301 for (i = 0; i < FXP_NRFABUFS; i++) {
302 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304 printf("%s: unable to create rx DMA map %d, "
305 "error = %d\n", sc->sc_dev.dv_xname, i, error);
306 goto fail_5;
307 }
308 }
309
310 /* Initialize MAC address and media structures. */
311 fxp_get_info(sc, enaddr);
312
313 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316 ifp = &sc->sc_ethercom.ec_if;
317
318 /*
319 * Get info about our media interface, and initialize it. Note
320 * the table terminates itself with a phy of -1, indicating
321 * that we're using MII.
322 */
323 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324 if (fp->fp_phy == sc->phy_primary_device)
325 break;
326 (*fp->fp_init)(sc);
327
328 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329 ifp->if_softc = sc;
330 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331 ifp->if_ioctl = fxp_ioctl;
332 ifp->if_start = fxp_start;
333 ifp->if_watchdog = fxp_watchdog;
334
335 /*
336 * Attach the interface.
337 */
338 if_attach(ifp);
339 ether_ifattach(ifp, enaddr);
340 #if NBPFILTER > 0
341 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
342 sizeof(struct ether_header));
343 #endif
344 #if NRND > 0
345 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346 RND_TYPE_NET, 0);
347 #endif
348
349 /*
350 * Add shutdown hook so that DMA is disabled prior to reboot. Not
351 * doing do could allow DMA to corrupt kernel memory during the
352 * reboot before the driver initializes.
353 */
354 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
355 if (sc->sc_sdhook == NULL)
356 printf("%s: WARNING: unable to establish shutdown hook\n",
357 sc->sc_dev.dv_xname);
358 /*
359 * Add suspend hook, for similar reasons..
360 */
361 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
362 if (sc->sc_powerhook == NULL)
363 printf("%s: WARNING: unable to establish power hook\n",
364 sc->sc_dev.dv_xname);
365 return;
366
367 /*
368 * Free any resources we've allocated during the failed attach
369 * attempt. Do this in reverse order and fall though.
370 */
371 fail_5:
372 for (i = 0; i < FXP_NRFABUFS; i++) {
373 if (sc->sc_rxmaps[i] != NULL)
374 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
375 }
376 fail_4:
377 for (i = 0; i < FXP_NTXCB; i++) {
378 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
379 bus_dmamap_destroy(sc->sc_dmat,
380 FXP_DSTX(sc, i)->txs_dmamap);
381 }
382 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
383 fail_3:
384 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
385 fail_2:
386 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
387 sizeof(struct fxp_control_data));
388 fail_1:
389 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
390 fail_0:
391 return;
392 }
393
394 void
395 fxp_mii_initmedia(sc)
396 struct fxp_softc *sc;
397 {
398
399 sc->sc_flags |= FXPF_MII;
400
401 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
402 sc->sc_mii.mii_readreg = fxp_mdi_read;
403 sc->sc_mii.mii_writereg = fxp_mdi_write;
404 sc->sc_mii.mii_statchg = fxp_statchg;
405 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
406 fxp_mii_mediastatus);
407 /*
408 * The i82557 wedges if all of its PHYs are isolated!
409 */
410 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
411 MII_OFFSET_ANY, MIIF_NOISOLATE);
412 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
413 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
414 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else
416 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418
419 void
420 fxp_80c24_initmedia(sc)
421 struct fxp_softc *sc;
422 {
423
424 /*
425 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
426 * doesn't have a programming interface of any sort. The
427 * media is sensed automatically based on how the link partner
428 * is configured. This is, in essence, manual configuration.
429 */
430 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
431 sc->sc_dev.dv_xname);
432 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
433 fxp_80c24_mediastatus);
434 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
435 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
436 }
437
438 /*
439 * Device shutdown routine. Called at system shutdown after sync. The
440 * main purpose of this routine is to shut off receiver DMA so that
441 * kernel memory doesn't get clobbered during warmboot.
442 */
443 void
444 fxp_shutdown(arg)
445 void *arg;
446 {
447 struct fxp_softc *sc = arg;
448
449 /*
450 * Since the system's going to halt shortly, don't bother
451 * freeing mbufs.
452 */
453 fxp_stop(sc, 0);
454 }
455 /*
456 * Power handler routine. Called when the system is transitioning
457 * into/out of power save modes. As with fxp_shutdown, the main
458 * purpose of this routine is to shut off receiver DMA so it doesn't
459 * clobber kernel memory at the wrong time.
460 */
461 void
462 fxp_power(why, arg)
463 int why;
464 void *arg;
465 {
466 struct fxp_softc *sc = arg;
467 struct ifnet *ifp;
468 int s;
469
470 s = splnet();
471 if (why != PWR_RESUME)
472 fxp_stop(sc, 0);
473 else {
474 ifp = &sc->sc_ethercom.ec_if;
475 if (ifp->if_flags & IFF_UP)
476 fxp_init(sc);
477 }
478 splx(s);
479 }
480
481 /*
482 * Initialize the interface media.
483 */
484 void
485 fxp_get_info(sc, enaddr)
486 struct fxp_softc *sc;
487 u_int8_t *enaddr;
488 {
489 u_int16_t data, myea[3];
490
491 /*
492 * Reset to a stable state.
493 */
494 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
495 DELAY(10);
496
497 sc->sc_eeprom_size = 0;
498 fxp_autosize_eeprom(sc);
499 if(sc->sc_eeprom_size == 0) {
500 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
501 sc->sc_eeprom_size = 6; /* XXX panic here? */
502 }
503 #ifdef DEBUG
504 printf("%s: detected %d word EEPROM\n",
505 sc->sc_dev.dv_xname,
506 1 << sc->sc_eeprom_size);
507 #endif
508
509 /*
510 * Get info about the primary PHY
511 */
512 fxp_read_eeprom(sc, &data, 6, 1);
513 sc->phy_primary_addr = data & 0xff;
514 sc->phy_primary_device = (data >> 8) & 0x3f;
515 sc->phy_10Mbps_only = data >> 15;
516
517 /*
518 * Read MAC address.
519 */
520 fxp_read_eeprom(sc, myea, 0, 3);
521 enaddr[0] = myea[0] & 0xff;
522 enaddr[1] = myea[0] >> 8;
523 enaddr[2] = myea[1] & 0xff;
524 enaddr[3] = myea[1] >> 8;
525 enaddr[4] = myea[2] & 0xff;
526 enaddr[5] = myea[2] >> 8;
527 }
528
529 /*
530 * Figure out EEPROM size.
531 *
532 * 559's can have either 64-word or 256-word EEPROMs, the 558
533 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
534 * talks about the existance of 16 to 256 word EEPROMs.
535 *
536 * The only known sizes are 64 and 256, where the 256 version is used
537 * by CardBus cards to store CIS information.
538 *
539 * The address is shifted in msb-to-lsb, and after the last
540 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
541 * after which follows the actual data. We try to detect this zero, by
542 * probing the data-out bit in the EEPROM control register just after
543 * having shifted in a bit. If the bit is zero, we assume we've
544 * shifted enough address bits. The data-out should be tri-state,
545 * before this, which should translate to a logical one.
546 *
547 * Other ways to do this would be to try to read a register with known
548 * contents with a varying number of address bits, but no such
549 * register seem to be available. The high bits of register 10 are 01
550 * on the 558 and 559, but apparently not on the 557.
551 *
552 * The Linux driver computes a checksum on the EEPROM data, but the
553 * value of this checksum is not very well documented.
554 */
555
556 void
557 fxp_autosize_eeprom(sc)
558 struct fxp_softc *sc;
559 {
560 u_int16_t reg;
561 int x;
562
563 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
564 /*
565 * Shift in read opcode.
566 */
567 for (x = 3; x > 0; x--) {
568 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
569 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
570 } else {
571 reg = FXP_EEPROM_EECS;
572 }
573 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
574 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
575 reg | FXP_EEPROM_EESK);
576 DELAY(4);
577 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
578 DELAY(4);
579 }
580 /*
581 * Shift in address, wait for the dummy zero following a correct
582 * address shift.
583 */
584 for (x = 1; x <= 8; x++) {
585 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
586 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
587 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
588 DELAY(4);
589 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
590 FXP_EEPROM_EEDO) == 0)
591 break;
592 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
593 DELAY(4);
594 }
595 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
596 DELAY(4);
597 if(x != 6 && x != 8) {
598 #ifdef DEBUG
599 printf("%s: strange EEPROM size (%d)\n",
600 sc->sc_dev.dv_xname, 1 << x);
601 #endif
602 } else
603 sc->sc_eeprom_size = x;
604 }
605
606 /*
607 * Read from the serial EEPROM. Basically, you manually shift in
608 * the read opcode (one bit at a time) and then shift in the address,
609 * and then you shift out the data (all of this one bit at a time).
610 * The word size is 16 bits, so you have to provide the address for
611 * every 16 bits of data.
612 */
613 void
614 fxp_read_eeprom(sc, data, offset, words)
615 struct fxp_softc *sc;
616 u_int16_t *data;
617 int offset;
618 int words;
619 {
620 u_int16_t reg;
621 int i, x;
622
623 for (i = 0; i < words; i++) {
624 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
625 /*
626 * Shift in read opcode.
627 */
628 for (x = 3; x > 0; x--) {
629 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
630 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
631 } else {
632 reg = FXP_EEPROM_EECS;
633 }
634 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
635 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
636 reg | FXP_EEPROM_EESK);
637 DELAY(4);
638 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
639 DELAY(4);
640 }
641 /*
642 * Shift in address.
643 */
644 for (x = sc->sc_eeprom_size; x > 0; x--) {
645 if ((i + offset) & (1 << (x - 1))) {
646 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
647 } else {
648 reg = FXP_EEPROM_EECS;
649 }
650 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
651 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
652 reg | FXP_EEPROM_EESK);
653 DELAY(4);
654 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
655 DELAY(4);
656 }
657 reg = FXP_EEPROM_EECS;
658 data[i] = 0;
659 /*
660 * Shift out data.
661 */
662 for (x = 16; x > 0; x--) {
663 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
664 reg | FXP_EEPROM_EESK);
665 DELAY(4);
666 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
667 FXP_EEPROM_EEDO)
668 data[i] |= (1 << (x - 1));
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
670 DELAY(4);
671 }
672 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
673 DELAY(4);
674 }
675 }
676
677 /*
678 * Start packet transmission on the interface.
679 */
680 void
681 fxp_start(ifp)
682 struct ifnet *ifp;
683 {
684 struct fxp_softc *sc = ifp->if_softc;
685 struct mbuf *m0, *m;
686 struct fxp_cb_tx *txd;
687 struct fxp_txsoft *txs;
688 struct fxp_tbdlist *tbd;
689 bus_dmamap_t dmamap;
690 int error, lasttx, nexttx, opending, seg;
691
692 /*
693 * If we want a re-init, bail out now.
694 */
695 if (sc->sc_flags & FXPF_WANTINIT) {
696 ifp->if_flags |= IFF_OACTIVE;
697 return;
698 }
699
700 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
701 return;
702
703 /*
704 * Remember the previous txpending and the current lasttx.
705 */
706 opending = sc->sc_txpending;
707 lasttx = sc->sc_txlast;
708
709 /*
710 * Loop through the send queue, setting up transmit descriptors
711 * until we drain the queue, or use up all available transmit
712 * descriptors.
713 */
714 while (sc->sc_txpending < FXP_NTXCB) {
715 /*
716 * Grab a packet off the queue.
717 */
718 IF_DEQUEUE(&ifp->if_snd, m0);
719 if (m0 == NULL)
720 break;
721
722 /*
723 * Get the next available transmit descriptor.
724 */
725 nexttx = FXP_NEXTTX(sc->sc_txlast);
726 txd = FXP_CDTX(sc, nexttx);
727 tbd = FXP_CDTBD(sc, nexttx);
728 txs = FXP_DSTX(sc, nexttx);
729 dmamap = txs->txs_dmamap;
730
731 /*
732 * Load the DMA map. If this fails, the packet either
733 * didn't fit in the allotted number of frags, or we were
734 * short on resources. In this case, we'll copy and try
735 * again.
736 */
737 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
738 BUS_DMA_NOWAIT) != 0) {
739 MGETHDR(m, M_DONTWAIT, MT_DATA);
740 if (m == NULL) {
741 printf("%s: unable to allocate Tx mbuf\n",
742 sc->sc_dev.dv_xname);
743 IF_PREPEND(&ifp->if_snd, m0);
744 break;
745 }
746 if (m0->m_pkthdr.len > MHLEN) {
747 MCLGET(m, M_DONTWAIT);
748 if ((m->m_flags & M_EXT) == 0) {
749 printf("%s: unable to allocate Tx "
750 "cluster\n", sc->sc_dev.dv_xname);
751 m_freem(m);
752 IF_PREPEND(&ifp->if_snd, m0);
753 break;
754 }
755 }
756 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
757 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
758 m_freem(m0);
759 m0 = m;
760 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
761 m0, BUS_DMA_NOWAIT);
762 if (error) {
763 printf("%s: unable to load Tx buffer, "
764 "error = %d\n", sc->sc_dev.dv_xname, error);
765 IF_PREPEND(&ifp->if_snd, m0);
766 break;
767 }
768 }
769
770 /* Initialize the fraglist. */
771 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
772 tbd->tbd_d[seg].tb_addr =
773 htole32(dmamap->dm_segs[seg].ds_addr);
774 tbd->tbd_d[seg].tb_size =
775 htole32(dmamap->dm_segs[seg].ds_len);
776 }
777
778 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
779
780 /* Sync the DMA map. */
781 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
782 BUS_DMASYNC_PREWRITE);
783
784 /*
785 * Store a pointer to the packet so we can free it later.
786 */
787 txs->txs_mbuf = m0;
788
789 /*
790 * Initialize the transmit descriptor.
791 */
792 /* BIG_ENDIAN: no need to swap to store 0 */
793 txd->cb_status = 0;
794 txd->cb_command =
795 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
796 txd->tx_threshold = tx_threshold;
797 txd->tbd_number = dmamap->dm_nsegs;
798
799 FXP_CDTXSYNC(sc, nexttx,
800 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
801
802 /* Advance the tx pointer. */
803 sc->sc_txpending++;
804 sc->sc_txlast = nexttx;
805
806 #if NBPFILTER > 0
807 /*
808 * Pass packet to bpf if there is a listener.
809 */
810 if (ifp->if_bpf)
811 bpf_mtap(ifp->if_bpf, m0);
812 #endif
813 }
814
815 if (sc->sc_txpending == FXP_NTXCB) {
816 /* No more slots; notify upper layer. */
817 ifp->if_flags |= IFF_OACTIVE;
818 }
819
820 if (sc->sc_txpending != opending) {
821 /*
822 * We enqueued packets. If the transmitter was idle,
823 * reset the txdirty pointer.
824 */
825 if (opending == 0)
826 sc->sc_txdirty = FXP_NEXTTX(lasttx);
827
828 /*
829 * Cause the chip to interrupt and suspend command
830 * processing once the last packet we've enqueued
831 * has been transmitted.
832 */
833 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
834 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
835 FXP_CDTXSYNC(sc, sc->sc_txlast,
836 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
837
838 /*
839 * The entire packet chain is set up. Clear the suspend bit
840 * on the command prior to the first packet we set up.
841 */
842 FXP_CDTXSYNC(sc, lasttx,
843 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
844 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
845 FXP_CDTXSYNC(sc, lasttx,
846 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
847
848 /*
849 * Issue a Resume command in case the chip was suspended.
850 */
851 fxp_scb_wait(sc);
852 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
853
854 /* Set a watchdog timer in case the chip flakes out. */
855 ifp->if_timer = 5;
856 }
857 }
858
859 /*
860 * Process interface interrupts.
861 */
862 int
863 fxp_intr(arg)
864 void *arg;
865 {
866 struct fxp_softc *sc = arg;
867 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
868 struct fxp_cb_tx *txd;
869 struct fxp_txsoft *txs;
870 struct mbuf *m, *m0;
871 bus_dmamap_t rxmap;
872 struct fxp_rfa *rfa;
873 struct ether_header *eh;
874 int i, claimed = 0;
875 u_int16_t len, rxstat, txstat;
876 u_int8_t statack;
877
878 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
879 return (0);
880 /*
881 * If the interface isn't running, don't try to
882 * service the interrupt.. just ack it and bail.
883 */
884 if ((ifp->if_flags & IFF_RUNNING) == 0) {
885 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
886 if (statack) {
887 claimed = 1;
888 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
889 }
890 return (claimed);
891 }
892
893 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
894 claimed = 1;
895
896 /*
897 * First ACK all the interrupts in this pass.
898 */
899 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
900
901 /*
902 * Process receiver interrupts. If a no-resource (RNR)
903 * condition exists, get whatever packets we can and
904 * re-start the receiver.
905 */
906 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
907 rcvloop:
908 m = sc->sc_rxq.ifq_head;
909 rfa = FXP_MTORFA(m);
910 rxmap = M_GETCTX(m, bus_dmamap_t);
911
912 FXP_RFASYNC(sc, m,
913 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
914
915 rxstat = le16toh(rfa->rfa_status);
916
917 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
918 /*
919 * We have processed all of the
920 * receive buffers.
921 */
922 goto do_transmit;
923 }
924
925 IF_DEQUEUE(&sc->sc_rxq, m);
926
927 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
928
929 len = le16toh(rfa->actual_size) &
930 (m->m_ext.ext_size - 1);
931
932 if (len < sizeof(struct ether_header)) {
933 /*
934 * Runt packet; drop it now.
935 */
936 FXP_INIT_RFABUF(sc, m);
937 goto rcvloop;
938 }
939
940 /*
941 * If the packet is small enough to fit in a
942 * single header mbuf, allocate one and copy
943 * the data into it. This greatly reduces
944 * memory consumption when we receive lots
945 * of small packets.
946 *
947 * Otherwise, we add a new buffer to the receive
948 * chain. If this fails, we drop the packet and
949 * recycle the old buffer.
950 */
951 if (fxp_copy_small != 0 && len <= MHLEN) {
952 MGETHDR(m0, M_DONTWAIT, MT_DATA);
953 if (m == NULL)
954 goto dropit;
955 memcpy(mtod(m0, caddr_t),
956 mtod(m, caddr_t), len);
957 FXP_INIT_RFABUF(sc, m);
958 m = m0;
959 } else {
960 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
961 dropit:
962 ifp->if_ierrors++;
963 FXP_INIT_RFABUF(sc, m);
964 goto rcvloop;
965 }
966 }
967
968 m->m_pkthdr.rcvif = ifp;
969 m->m_pkthdr.len = m->m_len = len;
970 eh = mtod(m, struct ether_header *);
971
972 #if NBPFILTER > 0
973 /*
974 * Pass this up to any BPF listeners, but only
975 * pass it up the stack it its for us.
976 */
977 if (ifp->if_bpf) {
978 bpf_mtap(ifp->if_bpf, m);
979
980 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
981 (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
982 (eh->ether_dhost[0] & 1) == 0) {
983 m_freem(m);
984 goto rcvloop;
985 }
986 }
987 #endif /* NBPFILTER > 0 */
988
989 /* Pass it on. */
990 (*ifp->if_input)(ifp, m);
991 goto rcvloop;
992 }
993
994 do_transmit:
995 if (statack & FXP_SCB_STATACK_RNR) {
996 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
997 fxp_scb_wait(sc);
998 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
999 rxmap->dm_segs[0].ds_addr +
1000 RFA_ALIGNMENT_FUDGE);
1001 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1002 FXP_SCB_COMMAND_RU_START);
1003 }
1004
1005 /*
1006 * Free any finished transmit mbuf chains.
1007 */
1008 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1009 ifp->if_flags &= ~IFF_OACTIVE;
1010 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1011 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1012 txd = FXP_CDTX(sc, i);
1013 txs = FXP_DSTX(sc, i);
1014
1015 FXP_CDTXSYNC(sc, i,
1016 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1017
1018 txstat = le16toh(txd->cb_status);
1019
1020 if ((txstat & FXP_CB_STATUS_C) == 0)
1021 break;
1022
1023 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1024
1025 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1026 0, txs->txs_dmamap->dm_mapsize,
1027 BUS_DMASYNC_POSTWRITE);
1028 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1029 m_freem(txs->txs_mbuf);
1030 txs->txs_mbuf = NULL;
1031 }
1032
1033 /* Update the dirty transmit buffer pointer. */
1034 sc->sc_txdirty = i;
1035
1036 /*
1037 * Cancel the watchdog timer if there are no pending
1038 * transmissions.
1039 */
1040 if (sc->sc_txpending == 0) {
1041 ifp->if_timer = 0;
1042
1043 /*
1044 * If we want a re-init, do that now.
1045 */
1046 if (sc->sc_flags & FXPF_WANTINIT)
1047 (void) fxp_init(sc);
1048 }
1049
1050 /*
1051 * Try to get more packets going.
1052 */
1053 fxp_start(ifp);
1054 }
1055 }
1056
1057 #if NRND > 0
1058 if (claimed)
1059 rnd_add_uint32(&sc->rnd_source, statack);
1060 #endif
1061 return (claimed);
1062 }
1063
1064 /*
1065 * Update packet in/out/collision statistics. The i82557 doesn't
1066 * allow you to access these counters without doing a fairly
1067 * expensive DMA to get _all_ of the statistics it maintains, so
1068 * we do this operation here only once per second. The statistics
1069 * counters in the kernel are updated from the previous dump-stats
1070 * DMA and then a new dump-stats DMA is started. The on-chip
1071 * counters are zeroed when the DMA completes. If we can't start
1072 * the DMA immediately, we don't wait - we just prepare to read
1073 * them again next time.
1074 */
1075 void
1076 fxp_tick(arg)
1077 void *arg;
1078 {
1079 struct fxp_softc *sc = arg;
1080 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1081 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1082 int s;
1083
1084 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1085 return;
1086
1087 s = splnet();
1088
1089 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1090
1091 ifp->if_opackets += le32toh(sp->tx_good);
1092 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1093 if (sp->rx_good) {
1094 ifp->if_ipackets += le32toh(sp->rx_good);
1095 sc->sc_rxidle = 0;
1096 } else {
1097 sc->sc_rxidle++;
1098 }
1099 ifp->if_ierrors +=
1100 le32toh(sp->rx_crc_errors) +
1101 le32toh(sp->rx_alignment_errors) +
1102 le32toh(sp->rx_rnr_errors) +
1103 le32toh(sp->rx_overrun_errors);
1104 /*
1105 * If any transmit underruns occured, bump up the transmit
1106 * threshold by another 512 bytes (64 * 8).
1107 */
1108 if (sp->tx_underruns) {
1109 ifp->if_oerrors += le32toh(sp->tx_underruns);
1110 if (tx_threshold < 192)
1111 tx_threshold += 64;
1112 }
1113
1114 /*
1115 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1116 * then assume the receiver has locked up and attempt to clear
1117 * the condition by reprogramming the multicast filter (actually,
1118 * resetting the interface). This is a work-around for a bug in
1119 * the 82557 where the receiver locks up if it gets certain types
1120 * of garbage in the syncronization bits prior to the packet header.
1121 * This bug is supposed to only occur in 10Mbps mode, but has been
1122 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1123 * speed transition).
1124 */
1125 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1126 (void) fxp_init(sc);
1127 splx(s);
1128 return;
1129 }
1130 /*
1131 * If there is no pending command, start another stats
1132 * dump. Otherwise punt for now.
1133 */
1134 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1135 /*
1136 * Start another stats dump.
1137 */
1138 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1139 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1140 FXP_SCB_COMMAND_CU_DUMPRESET);
1141 } else {
1142 /*
1143 * A previous command is still waiting to be accepted.
1144 * Just zero our copy of the stats and wait for the
1145 * next timer event to update them.
1146 */
1147 /* BIG_ENDIAN: no swap required to store 0 */
1148 sp->tx_good = 0;
1149 sp->tx_underruns = 0;
1150 sp->tx_total_collisions = 0;
1151
1152 sp->rx_good = 0;
1153 sp->rx_crc_errors = 0;
1154 sp->rx_alignment_errors = 0;
1155 sp->rx_rnr_errors = 0;
1156 sp->rx_overrun_errors = 0;
1157 }
1158
1159 if (sc->sc_flags & FXPF_MII) {
1160 /* Tick the MII clock. */
1161 mii_tick(&sc->sc_mii);
1162 }
1163
1164 splx(s);
1165
1166 /*
1167 * Schedule another timeout one second from now.
1168 */
1169 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1170 }
1171
1172 /*
1173 * Drain the receive queue.
1174 */
1175 void
1176 fxp_rxdrain(sc)
1177 struct fxp_softc *sc;
1178 {
1179 bus_dmamap_t rxmap;
1180 struct mbuf *m;
1181
1182 for (;;) {
1183 IF_DEQUEUE(&sc->sc_rxq, m);
1184 if (m == NULL)
1185 break;
1186 rxmap = M_GETCTX(m, bus_dmamap_t);
1187 bus_dmamap_unload(sc->sc_dmat, rxmap);
1188 FXP_RXMAP_PUT(sc, rxmap);
1189 m_freem(m);
1190 }
1191 }
1192
1193 /*
1194 * Stop the interface. Cancels the statistics updater and resets
1195 * the interface.
1196 */
1197 void
1198 fxp_stop(sc, drain)
1199 struct fxp_softc *sc;
1200 int drain;
1201 {
1202 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1203 struct fxp_txsoft *txs;
1204 int i;
1205
1206 /*
1207 * Turn down interface (done early to avoid bad interactions
1208 * between panics, shutdown hooks, and the watchdog timer)
1209 */
1210 ifp->if_timer = 0;
1211 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1212
1213 /*
1214 * Cancel stats updater.
1215 */
1216 callout_stop(&sc->sc_callout);
1217 if (sc->sc_flags & FXPF_MII) {
1218 /* Down the MII. */
1219 mii_down(&sc->sc_mii);
1220 }
1221
1222 /*
1223 * Issue software reset
1224 */
1225 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1226 DELAY(10);
1227
1228 /*
1229 * Release any xmit buffers.
1230 */
1231 for (i = 0; i < FXP_NTXCB; i++) {
1232 txs = FXP_DSTX(sc, i);
1233 if (txs->txs_mbuf != NULL) {
1234 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1235 m_freem(txs->txs_mbuf);
1236 txs->txs_mbuf = NULL;
1237 }
1238 }
1239 sc->sc_txpending = 0;
1240
1241 if (drain) {
1242 /*
1243 * Release the receive buffers.
1244 */
1245 fxp_rxdrain(sc);
1246 }
1247
1248 }
1249
1250 /*
1251 * Watchdog/transmission transmit timeout handler. Called when a
1252 * transmission is started on the interface, but no interrupt is
1253 * received before the timeout. This usually indicates that the
1254 * card has wedged for some reason.
1255 */
1256 void
1257 fxp_watchdog(ifp)
1258 struct ifnet *ifp;
1259 {
1260 struct fxp_softc *sc = ifp->if_softc;
1261
1262 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1263 ifp->if_oerrors++;
1264
1265 (void) fxp_init(sc);
1266 }
1267
1268 /*
1269 * Initialize the interface. Must be called at splnet().
1270 */
1271 int
1272 fxp_init(sc)
1273 struct fxp_softc *sc;
1274 {
1275 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1276 struct fxp_cb_config *cbp;
1277 struct fxp_cb_ias *cb_ias;
1278 struct fxp_cb_tx *txd;
1279 bus_dmamap_t rxmap;
1280 int i, prm, allm, error = 0;
1281
1282 /*
1283 * Cancel any pending I/O
1284 */
1285 fxp_stop(sc, 0);
1286
1287 /*
1288 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1289 * flag, and this prevents the MII from detaching resulting in
1290 * a panic. The flags field should perhaps be split in runtime
1291 * flags and more static information. For now, just clear the
1292 * only other flag set.
1293 */
1294
1295 sc->sc_flags &= ~FXPF_WANTINIT;
1296
1297 /*
1298 * Initialize base of CBL and RFA memory. Loading with zero
1299 * sets it up for regular linear addressing.
1300 */
1301 fxp_scb_wait(sc);
1302 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1303 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1304
1305 fxp_scb_wait(sc);
1306 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1307
1308 /*
1309 * Initialize the multicast filter. Do this now, since we might
1310 * have to setup the config block differently.
1311 */
1312 fxp_mc_setup(sc);
1313
1314 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1315 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1316
1317 /*
1318 * Initialize base of dump-stats buffer.
1319 */
1320 fxp_scb_wait(sc);
1321 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1322 sc->sc_cddma + FXP_CDSTATSOFF);
1323 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1324 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1325
1326 cbp = &sc->sc_control_data->fcd_configcb;
1327 memset(cbp, 0, sizeof(struct fxp_cb_config));
1328
1329 /*
1330 * This copy is kind of disgusting, but there are a bunch of must be
1331 * zero and must be one bits in this structure and this is the easiest
1332 * way to initialize them all to proper values.
1333 */
1334 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1335
1336 /* BIG_ENDIAN: no need to swap to store 0 */
1337 cbp->cb_status = 0;
1338 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1339 FXP_CB_COMMAND_EL);
1340 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1341 cbp->link_addr = 0xffffffff; /* (no) next command */
1342 cbp->byte_count = 22; /* (22) bytes to config */
1343 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1344 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1345 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1346 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1347 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1348 cbp->dma_bce = 0; /* (disable) dma max counters */
1349 cbp->late_scb = 0; /* (don't) defer SCB update */
1350 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1351 cbp->ci_int = 1; /* interrupt on CU idle */
1352 cbp->save_bf = prm; /* save bad frames */
1353 cbp->disc_short_rx = !prm; /* discard short packets */
1354 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1355 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1356 cbp->nsai = 1; /* (don't) disable source addr insert */
1357 cbp->preamble_length = 2; /* (7 byte) preamble */
1358 cbp->loopback = 0; /* (don't) loopback */
1359 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1360 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1361 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1362 cbp->promiscuous = prm; /* promiscuous mode */
1363 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1364 cbp->crscdt = 0; /* (CRS only) */
1365 cbp->stripping = !prm; /* truncate rx packet to byte count */
1366 cbp->padding = 1; /* (do) pad short tx packets */
1367 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1368 cbp->force_fdx = 0; /* (don't) force full duplex */
1369 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1370 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1371 cbp->mc_all = allm; /* accept all multicasts */
1372
1373 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1374
1375 /*
1376 * Start the config command/DMA.
1377 */
1378 fxp_scb_wait(sc);
1379 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1380 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1381 /* ...and wait for it to complete. */
1382 i = 1000;
1383 do {
1384 FXP_CDCONFIGSYNC(sc,
1385 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1386 DELAY(1);
1387 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1388 if (i == 0) {
1389 printf("%s at line %d: dmasync timeout\n",
1390 sc->sc_dev.dv_xname, __LINE__);
1391 return ETIMEDOUT;
1392 }
1393
1394 /*
1395 * Initialize the station address.
1396 */
1397 cb_ias = &sc->sc_control_data->fcd_iascb;
1398 /* BIG_ENDIAN: no need to swap to store 0 */
1399 cb_ias->cb_status = 0;
1400 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1401 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1402 cb_ias->link_addr = 0xffffffff;
1403 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1404
1405 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1406
1407 /*
1408 * Start the IAS (Individual Address Setup) command/DMA.
1409 */
1410 fxp_scb_wait(sc);
1411 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1412 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1413 /* ...and wait for it to complete. */
1414 i = 1000;
1415 do {
1416 FXP_CDIASSYNC(sc,
1417 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1418 DELAY(1);
1419 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1420 if (i == 0) {
1421 printf("%s at line %d: dmasync timeout\n",
1422 sc->sc_dev.dv_xname, __LINE__);
1423 return ETIMEDOUT;
1424 }
1425
1426 /*
1427 * Initialize the transmit descriptor ring. txlast is initialized
1428 * to the end of the list so that it will wrap around to the first
1429 * descriptor when the first packet is transmitted.
1430 */
1431 for (i = 0; i < FXP_NTXCB; i++) {
1432 txd = FXP_CDTX(sc, i);
1433 memset(txd, 0, sizeof(struct fxp_cb_tx));
1434 txd->cb_command =
1435 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1436 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1437 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1438 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1439 }
1440 sc->sc_txpending = 0;
1441 sc->sc_txdirty = 0;
1442 sc->sc_txlast = FXP_NTXCB - 1;
1443
1444 /*
1445 * Initialize the receive buffer list.
1446 */
1447 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1448 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1449 rxmap = FXP_RXMAP_GET(sc);
1450 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1451 printf("%s: unable to allocate or map rx "
1452 "buffer %d, error = %d\n",
1453 sc->sc_dev.dv_xname,
1454 sc->sc_rxq.ifq_len, error);
1455 /*
1456 * XXX Should attempt to run with fewer receive
1457 * XXX buffers instead of just failing.
1458 */
1459 FXP_RXMAP_PUT(sc, rxmap);
1460 fxp_rxdrain(sc);
1461 goto out;
1462 }
1463 }
1464 sc->sc_rxidle = 0;
1465
1466 /*
1467 * Give the transmit ring to the chip. We do this by pointing
1468 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1469 * issuing a start command. It will execute the NOP and then
1470 * suspend, pointing at the first descriptor.
1471 */
1472 fxp_scb_wait(sc);
1473 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1474 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1475
1476 /*
1477 * Initialize receiver buffer area - RFA.
1478 */
1479 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1480 fxp_scb_wait(sc);
1481 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1482 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1483 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1484
1485 if (sc->sc_flags & FXPF_MII) {
1486 /*
1487 * Set current media.
1488 */
1489 mii_mediachg(&sc->sc_mii);
1490 }
1491
1492 /*
1493 * ...all done!
1494 */
1495 ifp->if_flags |= IFF_RUNNING;
1496 ifp->if_flags &= ~IFF_OACTIVE;
1497
1498 /*
1499 * Start the one second timer.
1500 */
1501 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1502
1503 /*
1504 * Attempt to start output on the interface.
1505 */
1506 fxp_start(ifp);
1507
1508 out:
1509 if (error)
1510 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1511 return (error);
1512 }
1513
1514 /*
1515 * Change media according to request.
1516 */
1517 int
1518 fxp_mii_mediachange(ifp)
1519 struct ifnet *ifp;
1520 {
1521 struct fxp_softc *sc = ifp->if_softc;
1522
1523 if (ifp->if_flags & IFF_UP)
1524 mii_mediachg(&sc->sc_mii);
1525 return (0);
1526 }
1527
1528 /*
1529 * Notify the world which media we're using.
1530 */
1531 void
1532 fxp_mii_mediastatus(ifp, ifmr)
1533 struct ifnet *ifp;
1534 struct ifmediareq *ifmr;
1535 {
1536 struct fxp_softc *sc = ifp->if_softc;
1537
1538 if(sc->sc_enabled == 0) {
1539 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1540 ifmr->ifm_status = 0;
1541 return;
1542 }
1543
1544 mii_pollstat(&sc->sc_mii);
1545 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1546 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1547 }
1548
1549 int
1550 fxp_80c24_mediachange(ifp)
1551 struct ifnet *ifp;
1552 {
1553
1554 /* Nothing to do here. */
1555 return (0);
1556 }
1557
1558 void
1559 fxp_80c24_mediastatus(ifp, ifmr)
1560 struct ifnet *ifp;
1561 struct ifmediareq *ifmr;
1562 {
1563 struct fxp_softc *sc = ifp->if_softc;
1564
1565 /*
1566 * Media is currently-selected media. We cannot determine
1567 * the link status.
1568 */
1569 ifmr->ifm_status = 0;
1570 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1571 }
1572
1573 /*
1574 * Add a buffer to the end of the RFA buffer list.
1575 * Return 0 if successful, error code on failure.
1576 *
1577 * The RFA struct is stuck at the beginning of mbuf cluster and the
1578 * data pointer is fixed up to point just past it.
1579 */
1580 int
1581 fxp_add_rfabuf(sc, rxmap, unload)
1582 struct fxp_softc *sc;
1583 bus_dmamap_t rxmap;
1584 int unload;
1585 {
1586 struct mbuf *m;
1587 int error;
1588
1589 MGETHDR(m, M_DONTWAIT, MT_DATA);
1590 if (m == NULL)
1591 return (ENOBUFS);
1592
1593 MCLGET(m, M_DONTWAIT);
1594 if ((m->m_flags & M_EXT) == 0) {
1595 m_freem(m);
1596 return (ENOBUFS);
1597 }
1598
1599 if (unload)
1600 bus_dmamap_unload(sc->sc_dmat, rxmap);
1601
1602 M_SETCTX(m, rxmap);
1603
1604 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1605 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1606 if (error) {
1607 printf("%s: can't load rx DMA map %d, error = %d\n",
1608 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1609 panic("fxp_add_rfabuf"); /* XXX */
1610 }
1611
1612 FXP_INIT_RFABUF(sc, m);
1613
1614 return (0);
1615 }
1616
1617 volatile int
1618 fxp_mdi_read(self, phy, reg)
1619 struct device *self;
1620 int phy;
1621 int reg;
1622 {
1623 struct fxp_softc *sc = (struct fxp_softc *)self;
1624 int count = 10000;
1625 int value;
1626
1627 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1628 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1629
1630 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1631 && count--)
1632 DELAY(10);
1633
1634 if (count <= 0)
1635 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1636
1637 return (value & 0xffff);
1638 }
1639
1640 void
1641 fxp_statchg(self)
1642 struct device *self;
1643 {
1644
1645 /* Nothing to do. */
1646 }
1647
1648 void
1649 fxp_mdi_write(self, phy, reg, value)
1650 struct device *self;
1651 int phy;
1652 int reg;
1653 int value;
1654 {
1655 struct fxp_softc *sc = (struct fxp_softc *)self;
1656 int count = 10000;
1657
1658 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1659 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1660 (value & 0xffff));
1661
1662 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1663 count--)
1664 DELAY(10);
1665
1666 if (count <= 0)
1667 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1668 }
1669
1670 int
1671 fxp_ioctl(ifp, command, data)
1672 struct ifnet *ifp;
1673 u_long command;
1674 caddr_t data;
1675 {
1676 struct fxp_softc *sc = ifp->if_softc;
1677 struct ifreq *ifr = (struct ifreq *)data;
1678 struct ifaddr *ifa = (struct ifaddr *)data;
1679 int s, error = 0;
1680
1681 s = splnet();
1682
1683 switch (command) {
1684 case SIOCSIFADDR:
1685 if ((error = fxp_enable(sc)) != 0)
1686 break;
1687 ifp->if_flags |= IFF_UP;
1688
1689 switch (ifa->ifa_addr->sa_family) {
1690 #ifdef INET
1691 case AF_INET:
1692 if ((error = fxp_init(sc)) != 0)
1693 break;
1694 arp_ifinit(ifp, ifa);
1695 break;
1696 #endif /* INET */
1697 #ifdef NS
1698 case AF_NS:
1699 {
1700 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1701
1702 if (ns_nullhost(*ina))
1703 ina->x_host = *(union ns_host *)
1704 LLADDR(ifp->if_sadl);
1705 else
1706 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1707 ifp->if_addrlen);
1708 /* Set new address. */
1709 error = fxp_init(sc);
1710 break;
1711 }
1712 #endif /* NS */
1713 default:
1714 error = fxp_init(sc);
1715 break;
1716 }
1717 break;
1718
1719 case SIOCSIFMTU:
1720 if (ifr->ifr_mtu > ETHERMTU)
1721 error = EINVAL;
1722 else
1723 ifp->if_mtu = ifr->ifr_mtu;
1724 break;
1725
1726 case SIOCSIFFLAGS:
1727 if ((ifp->if_flags & IFF_UP) == 0 &&
1728 (ifp->if_flags & IFF_RUNNING) != 0) {
1729 /*
1730 * If interface is marked down and it is running, then
1731 * stop it.
1732 */
1733 fxp_stop(sc, 1);
1734 fxp_disable(sc);
1735 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1736 (ifp->if_flags & IFF_RUNNING) == 0) {
1737 /*
1738 * If interface is marked up and it is stopped, then
1739 * start it.
1740 */
1741 if((error = fxp_enable(sc)) != 0)
1742 break;
1743 error = fxp_init(sc);
1744 } else if ((ifp->if_flags & IFF_UP) != 0) {
1745 /*
1746 * Reset the interface to pick up change in any other
1747 * flags that affect the hardware state.
1748 */
1749 if((error = fxp_enable(sc)) != 0)
1750 break;
1751 error = fxp_init(sc);
1752 }
1753 break;
1754
1755 case SIOCADDMULTI:
1756 case SIOCDELMULTI:
1757 if(sc->sc_enabled == 0) {
1758 error = EIO;
1759 break;
1760 }
1761 error = (command == SIOCADDMULTI) ?
1762 ether_addmulti(ifr, &sc->sc_ethercom) :
1763 ether_delmulti(ifr, &sc->sc_ethercom);
1764
1765 if (error == ENETRESET) {
1766 /*
1767 * Multicast list has changed; set the hardware
1768 * filter accordingly.
1769 */
1770 if (sc->sc_txpending) {
1771 sc->sc_flags |= FXPF_WANTINIT;
1772 error = 0;
1773 } else
1774 error = fxp_init(sc);
1775 }
1776 break;
1777
1778 case SIOCSIFMEDIA:
1779 case SIOCGIFMEDIA:
1780 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1781 break;
1782
1783 default:
1784 error = EINVAL;
1785 break;
1786 }
1787
1788 splx(s);
1789 return (error);
1790 }
1791
1792 /*
1793 * Program the multicast filter.
1794 *
1795 * This function must be called at splnet().
1796 */
1797 void
1798 fxp_mc_setup(sc)
1799 struct fxp_softc *sc;
1800 {
1801 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1802 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1803 struct ethercom *ec = &sc->sc_ethercom;
1804 struct ether_multi *enm;
1805 struct ether_multistep step;
1806 int count, nmcasts;
1807
1808 #ifdef DIAGNOSTIC
1809 if (sc->sc_txpending)
1810 panic("fxp_mc_setup: pending transmissions");
1811 #endif
1812
1813 ifp->if_flags &= ~IFF_ALLMULTI;
1814
1815 /*
1816 * Initialize multicast setup descriptor.
1817 */
1818 nmcasts = 0;
1819 ETHER_FIRST_MULTI(step, ec, enm);
1820 while (enm != NULL) {
1821 /*
1822 * Check for too many multicast addresses or if we're
1823 * listening to a range. Either way, we simply have
1824 * to accept all multicasts.
1825 */
1826 if (nmcasts >= MAXMCADDR ||
1827 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1828 ETHER_ADDR_LEN) != 0) {
1829 /*
1830 * Callers of this function must do the
1831 * right thing with this. If we're called
1832 * from outside fxp_init(), the caller must
1833 * detect if the state if IFF_ALLMULTI changes.
1834 * If it does, the caller must then call
1835 * fxp_init(), since allmulti is handled by
1836 * the config block.
1837 */
1838 ifp->if_flags |= IFF_ALLMULTI;
1839 return;
1840 }
1841 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1842 ETHER_ADDR_LEN);
1843 nmcasts++;
1844 ETHER_NEXT_MULTI(step, enm);
1845 }
1846
1847 /* BIG_ENDIAN: no need to swap to store 0 */
1848 mcsp->cb_status = 0;
1849 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1850 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1851 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1852
1853 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1854
1855 /*
1856 * Wait until the command unit is not active. This should never
1857 * happen since nothing is queued, but make sure anyway.
1858 */
1859 count = 100;
1860 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1861 FXP_SCB_CUS_ACTIVE && --count)
1862 DELAY(1);
1863 if (count == 0) {
1864 printf("%s at line %d: command queue timeout\n",
1865 sc->sc_dev.dv_xname, __LINE__);
1866 return;
1867 }
1868
1869 /*
1870 * Start the multicast setup command/DMA.
1871 */
1872 fxp_scb_wait(sc);
1873 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1874 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1875
1876 /* ...and wait for it to complete. */
1877 count = 1000;
1878 do {
1879 FXP_CDMCSSYNC(sc,
1880 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1881 DELAY(1);
1882 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1883 if (count == 0) {
1884 printf("%s at line %d: dmasync timeout\n",
1885 sc->sc_dev.dv_xname, __LINE__);
1886 return;
1887 }
1888 }
1889
1890 int
1891 fxp_enable(sc)
1892 struct fxp_softc *sc;
1893 {
1894
1895 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1896 if ((*sc->sc_enable)(sc) != 0) {
1897 printf("%s: device enable failed\n",
1898 sc->sc_dev.dv_xname);
1899 return (EIO);
1900 }
1901 }
1902
1903 sc->sc_enabled = 1;
1904 return (0);
1905 }
1906
1907 void
1908 fxp_disable(sc)
1909 struct fxp_softc *sc;
1910 {
1911
1912 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1913 (*sc->sc_disable)(sc);
1914 sc->sc_enabled = 0;
1915 }
1916 }
1917
1918 /*
1919 * fxp_activate:
1920 *
1921 * Handle device activation/deactivation requests.
1922 */
1923 int
1924 fxp_activate(self, act)
1925 struct device *self;
1926 enum devact act;
1927 {
1928 struct fxp_softc *sc = (void *) self;
1929 int s, error = 0;
1930
1931 s = splnet();
1932 switch (act) {
1933 case DVACT_ACTIVATE:
1934 error = EOPNOTSUPP;
1935 break;
1936
1937 case DVACT_DEACTIVATE:
1938 if (sc->sc_flags & FXPF_MII)
1939 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1940 MII_OFFSET_ANY);
1941 if_deactivate(&sc->sc_ethercom.ec_if);
1942 break;
1943 }
1944 splx(s);
1945
1946 return (error);
1947 }
1948
1949 /*
1950 * fxp_detach:
1951 *
1952 * Detach an i82557 interface.
1953 */
1954 int
1955 fxp_detach(sc)
1956 struct fxp_softc *sc;
1957 {
1958 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1959 int i;
1960
1961 /* Unhook our tick handler. */
1962 callout_stop(&sc->sc_callout);
1963
1964 if (sc->sc_flags & FXPF_MII) {
1965 /* Detach all PHYs */
1966 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1967 }
1968
1969 /* Delete all remaining media. */
1970 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1971
1972 #if NRND > 0
1973 rnd_detach_source(&sc->rnd_source);
1974 #endif
1975 #if NBPFILTER > 0
1976 bpfdetach(ifp);
1977 #endif
1978 ether_ifdetach(ifp);
1979 if_detach(ifp);
1980
1981 for (i = 0; i < FXP_NRFABUFS; i++) {
1982 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1983 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1984 }
1985
1986 for (i = 0; i < FXP_NTXCB; i++) {
1987 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1988 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1989 }
1990
1991 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1992 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1993 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1994 sizeof(struct fxp_control_data));
1995 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1996
1997 shutdownhook_disestablish(sc->sc_sdhook);
1998 powerhook_disestablish(sc->sc_powerhook);
1999
2000 return (0);
2001 }
2002