i82557.c revision 1.34.2.2 1 /* $NetBSD: i82557.c,v 1.34.2.2 2000/12/31 20:14:54 jhawk Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <vm/vm.h> /* for PAGE_SIZE */
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 int fxp_init __P((struct fxp_softc *));
181 void fxp_rxdrain __P((struct fxp_softc *));
182 void fxp_stop __P((struct fxp_softc *, int));
183 void fxp_watchdog __P((struct ifnet *));
184 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185 int fxp_mdi_read __P((struct device *, int, int));
186 void fxp_statchg __P((struct device *));
187 void fxp_mdi_write __P((struct device *, int, int, int));
188 void fxp_autosize_eeprom __P((struct fxp_softc*));
189 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191 void fxp_tick __P((void *));
192 void fxp_mc_setup __P((struct fxp_softc *));
193
194 void fxp_shutdown __P((void *));
195 void fxp_power __P((int, void *));
196
197 int fxp_copy_small = 0;
198
199 struct fxp_phytype {
200 int fp_phy; /* type of PHY, -1 for MII at the end. */
201 void (*fp_init) __P((struct fxp_softc *));
202 } fxp_phytype_table[] = {
203 { FXP_PHY_80C24, fxp_80c24_initmedia },
204 { -1, fxp_mii_initmedia },
205 };
206
207 /*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212 static int tx_threshold = 64;
213
214 /*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218 inline void
219 fxp_scb_wait(sc)
220 struct fxp_softc *sc;
221 {
222 int i = 10000;
223
224 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225 delay(2);
226 if (i == 0)
227 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228 }
229
230 /*
231 * Finish attaching an i82557 interface. Called by bus-specific front-end.
232 */
233 void
234 fxp_attach(sc)
235 struct fxp_softc *sc;
236 {
237 u_int8_t enaddr[6];
238 struct ifnet *ifp;
239 bus_dma_segment_t seg;
240 int rseg, i, error;
241 struct fxp_phytype *fp;
242
243 callout_init(&sc->sc_callout);
244
245 /*
246 * Allocate the control data structures, and create and load the
247 * DMA map for it.
248 */
249 if ((error = bus_dmamem_alloc(sc->sc_dmat,
250 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251 0)) != 0) {
252 printf("%s: unable to allocate control data, error = %d\n",
253 sc->sc_dev.dv_xname, error);
254 goto fail_0;
255 }
256
257 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259 BUS_DMA_COHERENT)) != 0) {
260 printf("%s: unable to map control data, error = %d\n",
261 sc->sc_dev.dv_xname, error);
262 goto fail_1;
263 }
264 sc->sc_cdseg = seg;
265 sc->sc_cdnseg = rseg;
266
267 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269 if ((error = bus_dmamap_create(sc->sc_dmat,
270 sizeof(struct fxp_control_data), 1,
271 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272 printf("%s: unable to create control data DMA map, "
273 "error = %d\n", sc->sc_dev.dv_xname, error);
274 goto fail_2;
275 }
276
277 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279 0)) != 0) {
280 printf("%s: can't load control data DMA map, error = %d\n",
281 sc->sc_dev.dv_xname, error);
282 goto fail_3;
283 }
284
285 /*
286 * Create the transmit buffer DMA maps.
287 */
288 for (i = 0; i < FXP_NTXCB; i++) {
289 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290 FXP_NTXSEG, MCLBYTES, 0, 0,
291 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292 printf("%s: unable to create tx DMA map %d, "
293 "error = %d\n", sc->sc_dev.dv_xname, i, error);
294 goto fail_4;
295 }
296 }
297
298 /*
299 * Create the receive buffer DMA maps.
300 */
301 for (i = 0; i < FXP_NRFABUFS; i++) {
302 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304 printf("%s: unable to create rx DMA map %d, "
305 "error = %d\n", sc->sc_dev.dv_xname, i, error);
306 goto fail_5;
307 }
308 }
309
310 /* Initialize MAC address and media structures. */
311 fxp_get_info(sc, enaddr);
312
313 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316 ifp = &sc->sc_ethercom.ec_if;
317
318 /*
319 * Get info about our media interface, and initialize it. Note
320 * the table terminates itself with a phy of -1, indicating
321 * that we're using MII.
322 */
323 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324 if (fp->fp_phy == sc->phy_primary_device)
325 break;
326 (*fp->fp_init)(sc);
327
328 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329 ifp->if_softc = sc;
330 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331 ifp->if_ioctl = fxp_ioctl;
332 ifp->if_start = fxp_start;
333 ifp->if_watchdog = fxp_watchdog;
334
335 /*
336 * We can support 802.1Q VLAN-sized frames.
337 */
338 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
339
340 /*
341 * Attach the interface.
342 */
343 if_attach(ifp);
344 ether_ifattach(ifp, enaddr);
345 #if NBPFILTER > 0
346 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
347 sizeof(struct ether_header));
348 #endif
349 #if NRND > 0
350 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
351 RND_TYPE_NET, 0);
352 #endif
353
354 /*
355 * Add shutdown hook so that DMA is disabled prior to reboot. Not
356 * doing do could allow DMA to corrupt kernel memory during the
357 * reboot before the driver initializes.
358 */
359 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
360 if (sc->sc_sdhook == NULL)
361 printf("%s: WARNING: unable to establish shutdown hook\n",
362 sc->sc_dev.dv_xname);
363 /*
364 * Add suspend hook, for similar reasons..
365 */
366 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
367 if (sc->sc_powerhook == NULL)
368 printf("%s: WARNING: unable to establish power hook\n",
369 sc->sc_dev.dv_xname);
370
371 /* The attach is successful. */
372 sc->sc_flags |= FXPF_ATTACHED;
373
374 return;
375
376 /*
377 * Free any resources we've allocated during the failed attach
378 * attempt. Do this in reverse order and fall though.
379 */
380 fail_5:
381 for (i = 0; i < FXP_NRFABUFS; i++) {
382 if (sc->sc_rxmaps[i] != NULL)
383 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
384 }
385 fail_4:
386 for (i = 0; i < FXP_NTXCB; i++) {
387 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
388 bus_dmamap_destroy(sc->sc_dmat,
389 FXP_DSTX(sc, i)->txs_dmamap);
390 }
391 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
392 fail_3:
393 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
394 fail_2:
395 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
396 sizeof(struct fxp_control_data));
397 fail_1:
398 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
399 fail_0:
400 return;
401 }
402
403 void
404 fxp_mii_initmedia(sc)
405 struct fxp_softc *sc;
406 {
407
408 sc->sc_flags |= FXPF_MII;
409
410 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
411 sc->sc_mii.mii_readreg = fxp_mdi_read;
412 sc->sc_mii.mii_writereg = fxp_mdi_write;
413 sc->sc_mii.mii_statchg = fxp_statchg;
414 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
415 fxp_mii_mediastatus);
416 /*
417 * The i82557 wedges if all of its PHYs are isolated!
418 */
419 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
420 MII_OFFSET_ANY, MIIF_NOISOLATE);
421 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
422 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
423 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
424 } else
425 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
426 }
427
428 void
429 fxp_80c24_initmedia(sc)
430 struct fxp_softc *sc;
431 {
432
433 /*
434 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
435 * doesn't have a programming interface of any sort. The
436 * media is sensed automatically based on how the link partner
437 * is configured. This is, in essence, manual configuration.
438 */
439 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
440 sc->sc_dev.dv_xname);
441 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
442 fxp_80c24_mediastatus);
443 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
444 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
445 }
446
447 /*
448 * Device shutdown routine. Called at system shutdown after sync. The
449 * main purpose of this routine is to shut off receiver DMA so that
450 * kernel memory doesn't get clobbered during warmboot.
451 */
452 void
453 fxp_shutdown(arg)
454 void *arg;
455 {
456 struct fxp_softc *sc = arg;
457
458 /*
459 * Since the system's going to halt shortly, don't bother
460 * freeing mbufs.
461 */
462 fxp_stop(sc, 0);
463 }
464 /*
465 * Power handler routine. Called when the system is transitioning
466 * into/out of power save modes. As with fxp_shutdown, the main
467 * purpose of this routine is to shut off receiver DMA so it doesn't
468 * clobber kernel memory at the wrong time.
469 */
470 void
471 fxp_power(why, arg)
472 int why;
473 void *arg;
474 {
475 struct fxp_softc *sc = arg;
476 struct ifnet *ifp;
477 int s;
478
479 s = splnet();
480 if (why != PWR_RESUME)
481 fxp_stop(sc, 0);
482 else {
483 ifp = &sc->sc_ethercom.ec_if;
484 if (ifp->if_flags & IFF_UP)
485 fxp_init(sc);
486 }
487 splx(s);
488 }
489
490 /*
491 * Initialize the interface media.
492 */
493 void
494 fxp_get_info(sc, enaddr)
495 struct fxp_softc *sc;
496 u_int8_t *enaddr;
497 {
498 u_int16_t data, myea[3];
499
500 /*
501 * Reset to a stable state.
502 */
503 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
504 DELAY(10);
505
506 sc->sc_eeprom_size = 0;
507 fxp_autosize_eeprom(sc);
508 if(sc->sc_eeprom_size == 0) {
509 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
510 sc->sc_eeprom_size = 6; /* XXX panic here? */
511 }
512 #ifdef DEBUG
513 printf("%s: detected %d word EEPROM\n",
514 sc->sc_dev.dv_xname,
515 1 << sc->sc_eeprom_size);
516 #endif
517
518 /*
519 * Get info about the primary PHY
520 */
521 fxp_read_eeprom(sc, &data, 6, 1);
522 sc->phy_primary_addr = data & 0xff;
523 sc->phy_primary_device = (data >> 8) & 0x3f;
524 sc->phy_10Mbps_only = data >> 15;
525
526 /*
527 * Read MAC address.
528 */
529 fxp_read_eeprom(sc, myea, 0, 3);
530 enaddr[0] = myea[0] & 0xff;
531 enaddr[1] = myea[0] >> 8;
532 enaddr[2] = myea[1] & 0xff;
533 enaddr[3] = myea[1] >> 8;
534 enaddr[4] = myea[2] & 0xff;
535 enaddr[5] = myea[2] >> 8;
536 }
537
538 /*
539 * Figure out EEPROM size.
540 *
541 * 559's can have either 64-word or 256-word EEPROMs, the 558
542 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
543 * talks about the existance of 16 to 256 word EEPROMs.
544 *
545 * The only known sizes are 64 and 256, where the 256 version is used
546 * by CardBus cards to store CIS information.
547 *
548 * The address is shifted in msb-to-lsb, and after the last
549 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
550 * after which follows the actual data. We try to detect this zero, by
551 * probing the data-out bit in the EEPROM control register just after
552 * having shifted in a bit. If the bit is zero, we assume we've
553 * shifted enough address bits. The data-out should be tri-state,
554 * before this, which should translate to a logical one.
555 *
556 * Other ways to do this would be to try to read a register with known
557 * contents with a varying number of address bits, but no such
558 * register seem to be available. The high bits of register 10 are 01
559 * on the 558 and 559, but apparently not on the 557.
560 *
561 * The Linux driver computes a checksum on the EEPROM data, but the
562 * value of this checksum is not very well documented.
563 */
564
565 void
566 fxp_autosize_eeprom(sc)
567 struct fxp_softc *sc;
568 {
569 u_int16_t reg;
570 int x;
571
572 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
573 /*
574 * Shift in read opcode.
575 */
576 for (x = 3; x > 0; x--) {
577 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
578 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
579 } else {
580 reg = FXP_EEPROM_EECS;
581 }
582 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
583 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
584 reg | FXP_EEPROM_EESK);
585 DELAY(4);
586 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
587 DELAY(4);
588 }
589 /*
590 * Shift in address, wait for the dummy zero following a correct
591 * address shift.
592 */
593 for (x = 1; x <= 8; x++) {
594 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
595 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
596 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
597 DELAY(4);
598 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
599 FXP_EEPROM_EEDO) == 0)
600 break;
601 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
602 DELAY(4);
603 }
604 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
605 DELAY(4);
606 if(x != 6 && x != 8) {
607 #ifdef DEBUG
608 printf("%s: strange EEPROM size (%d)\n",
609 sc->sc_dev.dv_xname, 1 << x);
610 #endif
611 } else
612 sc->sc_eeprom_size = x;
613 }
614
615 /*
616 * Read from the serial EEPROM. Basically, you manually shift in
617 * the read opcode (one bit at a time) and then shift in the address,
618 * and then you shift out the data (all of this one bit at a time).
619 * The word size is 16 bits, so you have to provide the address for
620 * every 16 bits of data.
621 */
622 void
623 fxp_read_eeprom(sc, data, offset, words)
624 struct fxp_softc *sc;
625 u_int16_t *data;
626 int offset;
627 int words;
628 {
629 u_int16_t reg;
630 int i, x;
631
632 for (i = 0; i < words; i++) {
633 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
634 /*
635 * Shift in read opcode.
636 */
637 for (x = 3; x > 0; x--) {
638 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
639 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
640 } else {
641 reg = FXP_EEPROM_EECS;
642 }
643 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
644 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
645 reg | FXP_EEPROM_EESK);
646 DELAY(4);
647 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
648 DELAY(4);
649 }
650 /*
651 * Shift in address.
652 */
653 for (x = sc->sc_eeprom_size; x > 0; x--) {
654 if ((i + offset) & (1 << (x - 1))) {
655 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
656 } else {
657 reg = FXP_EEPROM_EECS;
658 }
659 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
660 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
661 reg | FXP_EEPROM_EESK);
662 DELAY(4);
663 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
664 DELAY(4);
665 }
666 reg = FXP_EEPROM_EECS;
667 data[i] = 0;
668 /*
669 * Shift out data.
670 */
671 for (x = 16; x > 0; x--) {
672 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
673 reg | FXP_EEPROM_EESK);
674 DELAY(4);
675 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
676 FXP_EEPROM_EEDO)
677 data[i] |= (1 << (x - 1));
678 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
679 DELAY(4);
680 }
681 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
682 DELAY(4);
683 }
684 }
685
686 /*
687 * Start packet transmission on the interface.
688 */
689 void
690 fxp_start(ifp)
691 struct ifnet *ifp;
692 {
693 struct fxp_softc *sc = ifp->if_softc;
694 struct mbuf *m0, *m;
695 struct fxp_cb_tx *txd;
696 struct fxp_txsoft *txs;
697 struct fxp_tbdlist *tbd;
698 bus_dmamap_t dmamap;
699 int error, lasttx, nexttx, opending, seg;
700
701 /*
702 * If we want a re-init, bail out now.
703 */
704 if (sc->sc_flags & FXPF_WANTINIT) {
705 ifp->if_flags |= IFF_OACTIVE;
706 return;
707 }
708
709 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
710 return;
711
712 /*
713 * Remember the previous txpending and the current lasttx.
714 */
715 opending = sc->sc_txpending;
716 lasttx = sc->sc_txlast;
717
718 /*
719 * Loop through the send queue, setting up transmit descriptors
720 * until we drain the queue, or use up all available transmit
721 * descriptors.
722 */
723 while (sc->sc_txpending < FXP_NTXCB) {
724 /*
725 * Grab a packet off the queue.
726 */
727 IF_DEQUEUE(&ifp->if_snd, m0);
728 if (m0 == NULL)
729 break;
730
731 /*
732 * Get the next available transmit descriptor.
733 */
734 nexttx = FXP_NEXTTX(sc->sc_txlast);
735 txd = FXP_CDTX(sc, nexttx);
736 tbd = FXP_CDTBD(sc, nexttx);
737 txs = FXP_DSTX(sc, nexttx);
738 dmamap = txs->txs_dmamap;
739
740 /*
741 * Load the DMA map. If this fails, the packet either
742 * didn't fit in the allotted number of frags, or we were
743 * short on resources. In this case, we'll copy and try
744 * again.
745 */
746 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
747 BUS_DMA_NOWAIT) != 0) {
748 MGETHDR(m, M_DONTWAIT, MT_DATA);
749 if (m == NULL) {
750 printf("%s: unable to allocate Tx mbuf\n",
751 sc->sc_dev.dv_xname);
752 IF_PREPEND(&ifp->if_snd, m0);
753 break;
754 }
755 if (m0->m_pkthdr.len > MHLEN) {
756 MCLGET(m, M_DONTWAIT);
757 if ((m->m_flags & M_EXT) == 0) {
758 printf("%s: unable to allocate Tx "
759 "cluster\n", sc->sc_dev.dv_xname);
760 m_freem(m);
761 IF_PREPEND(&ifp->if_snd, m0);
762 break;
763 }
764 }
765 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
766 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
767 m_freem(m0);
768 m0 = m;
769 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
770 m0, BUS_DMA_NOWAIT);
771 if (error) {
772 printf("%s: unable to load Tx buffer, "
773 "error = %d\n", sc->sc_dev.dv_xname, error);
774 IF_PREPEND(&ifp->if_snd, m0);
775 break;
776 }
777 }
778
779 /* Initialize the fraglist. */
780 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
781 tbd->tbd_d[seg].tb_addr =
782 htole32(dmamap->dm_segs[seg].ds_addr);
783 tbd->tbd_d[seg].tb_size =
784 htole32(dmamap->dm_segs[seg].ds_len);
785 }
786
787 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
788
789 /* Sync the DMA map. */
790 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
791 BUS_DMASYNC_PREWRITE);
792
793 /*
794 * Store a pointer to the packet so we can free it later.
795 */
796 txs->txs_mbuf = m0;
797
798 /*
799 * Initialize the transmit descriptor.
800 */
801 /* BIG_ENDIAN: no need to swap to store 0 */
802 txd->cb_status = 0;
803 txd->cb_command =
804 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
805 txd->tx_threshold = tx_threshold;
806 txd->tbd_number = dmamap->dm_nsegs;
807
808 FXP_CDTXSYNC(sc, nexttx,
809 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
810
811 /* Advance the tx pointer. */
812 sc->sc_txpending++;
813 sc->sc_txlast = nexttx;
814
815 #if NBPFILTER > 0
816 /*
817 * Pass packet to bpf if there is a listener.
818 */
819 if (ifp->if_bpf)
820 bpf_mtap(ifp->if_bpf, m0);
821 #endif
822 }
823
824 if (sc->sc_txpending == FXP_NTXCB) {
825 /* No more slots; notify upper layer. */
826 ifp->if_flags |= IFF_OACTIVE;
827 }
828
829 if (sc->sc_txpending != opending) {
830 /*
831 * We enqueued packets. If the transmitter was idle,
832 * reset the txdirty pointer.
833 */
834 if (opending == 0)
835 sc->sc_txdirty = FXP_NEXTTX(lasttx);
836
837 /*
838 * Cause the chip to interrupt and suspend command
839 * processing once the last packet we've enqueued
840 * has been transmitted.
841 */
842 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
843 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
844 FXP_CDTXSYNC(sc, sc->sc_txlast,
845 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
846
847 /*
848 * The entire packet chain is set up. Clear the suspend bit
849 * on the command prior to the first packet we set up.
850 */
851 FXP_CDTXSYNC(sc, lasttx,
852 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
853 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
854 FXP_CDTXSYNC(sc, lasttx,
855 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
856
857 /*
858 * Issue a Resume command in case the chip was suspended.
859 */
860 fxp_scb_wait(sc);
861 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
862
863 /* Set a watchdog timer in case the chip flakes out. */
864 ifp->if_timer = 5;
865 }
866 }
867
868 /*
869 * Process interface interrupts.
870 */
871 int
872 fxp_intr(arg)
873 void *arg;
874 {
875 struct fxp_softc *sc = arg;
876 struct ethercom *ec = &sc->sc_ethercom;
877 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
878 struct fxp_cb_tx *txd;
879 struct fxp_txsoft *txs;
880 struct mbuf *m, *m0;
881 bus_dmamap_t rxmap;
882 struct fxp_rfa *rfa;
883 struct ether_header *eh;
884 int i, claimed = 0;
885 u_int16_t len, rxstat, txstat;
886 u_int8_t statack;
887
888 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
889 return (0);
890 /*
891 * If the interface isn't running, don't try to
892 * service the interrupt.. just ack it and bail.
893 */
894 if ((ifp->if_flags & IFF_RUNNING) == 0) {
895 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
896 if (statack) {
897 claimed = 1;
898 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
899 }
900 return (claimed);
901 }
902
903 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
904 claimed = 1;
905
906 /*
907 * First ACK all the interrupts in this pass.
908 */
909 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
910
911 /*
912 * Process receiver interrupts. If a no-resource (RNR)
913 * condition exists, get whatever packets we can and
914 * re-start the receiver.
915 */
916 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
917 rcvloop:
918 m = sc->sc_rxq.ifq_head;
919 rfa = FXP_MTORFA(m);
920 rxmap = M_GETCTX(m, bus_dmamap_t);
921
922 FXP_RFASYNC(sc, m,
923 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
924
925 rxstat = le16toh(rfa->rfa_status);
926
927 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
928 /*
929 * We have processed all of the
930 * receive buffers.
931 */
932 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
933 goto do_transmit;
934 }
935
936 IF_DEQUEUE(&sc->sc_rxq, m);
937
938 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
939
940 len = le16toh(rfa->actual_size) &
941 (m->m_ext.ext_size - 1);
942
943 if (len < sizeof(struct ether_header)) {
944 /*
945 * Runt packet; drop it now.
946 */
947 FXP_INIT_RFABUF(sc, m);
948 goto rcvloop;
949 }
950
951 /*
952 * If support for 802.1Q VLAN sized frames is
953 * enabled, we need to do some additional error
954 * checking (as we are saving bad frames, in
955 * order to receive the larger ones).
956 */
957 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
958 (rxstat & (FXP_RFA_STATUS_OVERRUN|
959 FXP_RFA_STATUS_RNR|
960 FXP_RFA_STATUS_ALIGN|
961 FXP_RFA_STATUS_CRC)) != 0) {
962 FXP_INIT_RFABUF(sc, m);
963 goto rcvloop;
964 }
965
966 /*
967 * If the packet is small enough to fit in a
968 * single header mbuf, allocate one and copy
969 * the data into it. This greatly reduces
970 * memory consumption when we receive lots
971 * of small packets.
972 *
973 * Otherwise, we add a new buffer to the receive
974 * chain. If this fails, we drop the packet and
975 * recycle the old buffer.
976 */
977 if (fxp_copy_small != 0 && len <= MHLEN) {
978 MGETHDR(m0, M_DONTWAIT, MT_DATA);
979 if (m == NULL)
980 goto dropit;
981 memcpy(mtod(m0, caddr_t),
982 mtod(m, caddr_t), len);
983 FXP_INIT_RFABUF(sc, m);
984 m = m0;
985 } else {
986 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
987 dropit:
988 ifp->if_ierrors++;
989 FXP_INIT_RFABUF(sc, m);
990 goto rcvloop;
991 }
992 }
993
994 m->m_pkthdr.rcvif = ifp;
995 m->m_pkthdr.len = m->m_len = len;
996 eh = mtod(m, struct ether_header *);
997
998 #if NBPFILTER > 0
999 /*
1000 * Pass this up to any BPF listeners, but only
1001 * pass it up the stack it its for us.
1002 */
1003 if (ifp->if_bpf) {
1004 bpf_mtap(ifp->if_bpf, m);
1005
1006 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1007 (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
1008 (eh->ether_dhost[0] & 1) == 0) {
1009 m_freem(m);
1010 goto rcvloop;
1011 }
1012 }
1013 #endif /* NBPFILTER > 0 */
1014
1015 /* Pass it on. */
1016 (*ifp->if_input)(ifp, m);
1017 goto rcvloop;
1018 }
1019
1020 do_transmit:
1021 if (statack & FXP_SCB_STATACK_RNR) {
1022 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1023 fxp_scb_wait(sc);
1024 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1025 rxmap->dm_segs[0].ds_addr +
1026 RFA_ALIGNMENT_FUDGE);
1027 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1028 FXP_SCB_COMMAND_RU_START);
1029 }
1030
1031 /*
1032 * Free any finished transmit mbuf chains.
1033 */
1034 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1035 ifp->if_flags &= ~IFF_OACTIVE;
1036 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1037 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1038 txd = FXP_CDTX(sc, i);
1039 txs = FXP_DSTX(sc, i);
1040
1041 FXP_CDTXSYNC(sc, i,
1042 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1043
1044 txstat = le16toh(txd->cb_status);
1045
1046 if ((txstat & FXP_CB_STATUS_C) == 0)
1047 break;
1048
1049 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1050
1051 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1052 0, txs->txs_dmamap->dm_mapsize,
1053 BUS_DMASYNC_POSTWRITE);
1054 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1055 m_freem(txs->txs_mbuf);
1056 txs->txs_mbuf = NULL;
1057 }
1058
1059 /* Update the dirty transmit buffer pointer. */
1060 sc->sc_txdirty = i;
1061
1062 /*
1063 * Cancel the watchdog timer if there are no pending
1064 * transmissions.
1065 */
1066 if (sc->sc_txpending == 0) {
1067 ifp->if_timer = 0;
1068
1069 /*
1070 * If we want a re-init, do that now.
1071 */
1072 if (sc->sc_flags & FXPF_WANTINIT)
1073 (void) fxp_init(sc);
1074 }
1075
1076 /*
1077 * Try to get more packets going.
1078 */
1079 fxp_start(ifp);
1080 }
1081 }
1082
1083 #if NRND > 0
1084 if (claimed)
1085 rnd_add_uint32(&sc->rnd_source, statack);
1086 #endif
1087 return (claimed);
1088 }
1089
1090 /*
1091 * Update packet in/out/collision statistics. The i82557 doesn't
1092 * allow you to access these counters without doing a fairly
1093 * expensive DMA to get _all_ of the statistics it maintains, so
1094 * we do this operation here only once per second. The statistics
1095 * counters in the kernel are updated from the previous dump-stats
1096 * DMA and then a new dump-stats DMA is started. The on-chip
1097 * counters are zeroed when the DMA completes. If we can't start
1098 * the DMA immediately, we don't wait - we just prepare to read
1099 * them again next time.
1100 */
1101 void
1102 fxp_tick(arg)
1103 void *arg;
1104 {
1105 struct fxp_softc *sc = arg;
1106 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1107 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1108 int s;
1109
1110 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1111 return;
1112
1113 s = splnet();
1114
1115 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1116
1117 ifp->if_opackets += le32toh(sp->tx_good);
1118 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1119 if (sp->rx_good) {
1120 ifp->if_ipackets += le32toh(sp->rx_good);
1121 sc->sc_rxidle = 0;
1122 } else {
1123 sc->sc_rxidle++;
1124 }
1125 ifp->if_ierrors +=
1126 le32toh(sp->rx_crc_errors) +
1127 le32toh(sp->rx_alignment_errors) +
1128 le32toh(sp->rx_rnr_errors) +
1129 le32toh(sp->rx_overrun_errors);
1130 /*
1131 * If any transmit underruns occured, bump up the transmit
1132 * threshold by another 512 bytes (64 * 8).
1133 */
1134 if (sp->tx_underruns) {
1135 ifp->if_oerrors += le32toh(sp->tx_underruns);
1136 if (tx_threshold < 192)
1137 tx_threshold += 64;
1138 }
1139
1140 /*
1141 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1142 * then assume the receiver has locked up and attempt to clear
1143 * the condition by reprogramming the multicast filter (actually,
1144 * resetting the interface). This is a work-around for a bug in
1145 * the 82557 where the receiver locks up if it gets certain types
1146 * of garbage in the syncronization bits prior to the packet header.
1147 * This bug is supposed to only occur in 10Mbps mode, but has been
1148 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1149 * speed transition).
1150 */
1151 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1152 (void) fxp_init(sc);
1153 splx(s);
1154 return;
1155 }
1156 /*
1157 * If there is no pending command, start another stats
1158 * dump. Otherwise punt for now.
1159 */
1160 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1161 /*
1162 * Start another stats dump.
1163 */
1164 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1165 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1166 FXP_SCB_COMMAND_CU_DUMPRESET);
1167 } else {
1168 /*
1169 * A previous command is still waiting to be accepted.
1170 * Just zero our copy of the stats and wait for the
1171 * next timer event to update them.
1172 */
1173 /* BIG_ENDIAN: no swap required to store 0 */
1174 sp->tx_good = 0;
1175 sp->tx_underruns = 0;
1176 sp->tx_total_collisions = 0;
1177
1178 sp->rx_good = 0;
1179 sp->rx_crc_errors = 0;
1180 sp->rx_alignment_errors = 0;
1181 sp->rx_rnr_errors = 0;
1182 sp->rx_overrun_errors = 0;
1183 }
1184
1185 if (sc->sc_flags & FXPF_MII) {
1186 /* Tick the MII clock. */
1187 mii_tick(&sc->sc_mii);
1188 }
1189
1190 splx(s);
1191
1192 /*
1193 * Schedule another timeout one second from now.
1194 */
1195 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1196 }
1197
1198 /*
1199 * Drain the receive queue.
1200 */
1201 void
1202 fxp_rxdrain(sc)
1203 struct fxp_softc *sc;
1204 {
1205 bus_dmamap_t rxmap;
1206 struct mbuf *m;
1207
1208 for (;;) {
1209 IF_DEQUEUE(&sc->sc_rxq, m);
1210 if (m == NULL)
1211 break;
1212 rxmap = M_GETCTX(m, bus_dmamap_t);
1213 bus_dmamap_unload(sc->sc_dmat, rxmap);
1214 FXP_RXMAP_PUT(sc, rxmap);
1215 m_freem(m);
1216 }
1217 }
1218
1219 /*
1220 * Stop the interface. Cancels the statistics updater and resets
1221 * the interface.
1222 */
1223 void
1224 fxp_stop(sc, drain)
1225 struct fxp_softc *sc;
1226 int drain;
1227 {
1228 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1229 struct fxp_txsoft *txs;
1230 int i;
1231
1232 /*
1233 * Turn down interface (done early to avoid bad interactions
1234 * between panics, shutdown hooks, and the watchdog timer)
1235 */
1236 ifp->if_timer = 0;
1237 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1238
1239 /*
1240 * Cancel stats updater.
1241 */
1242 callout_stop(&sc->sc_callout);
1243 if (sc->sc_flags & FXPF_MII) {
1244 /* Down the MII. */
1245 mii_down(&sc->sc_mii);
1246 }
1247
1248 /*
1249 * Issue software reset
1250 */
1251 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1252 DELAY(10);
1253
1254 /*
1255 * Release any xmit buffers.
1256 */
1257 for (i = 0; i < FXP_NTXCB; i++) {
1258 txs = FXP_DSTX(sc, i);
1259 if (txs->txs_mbuf != NULL) {
1260 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1261 m_freem(txs->txs_mbuf);
1262 txs->txs_mbuf = NULL;
1263 }
1264 }
1265 sc->sc_txpending = 0;
1266
1267 if (drain) {
1268 /*
1269 * Release the receive buffers.
1270 */
1271 fxp_rxdrain(sc);
1272 }
1273
1274 }
1275
1276 /*
1277 * Watchdog/transmission transmit timeout handler. Called when a
1278 * transmission is started on the interface, but no interrupt is
1279 * received before the timeout. This usually indicates that the
1280 * card has wedged for some reason.
1281 */
1282 void
1283 fxp_watchdog(ifp)
1284 struct ifnet *ifp;
1285 {
1286 struct fxp_softc *sc = ifp->if_softc;
1287
1288 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1289 ifp->if_oerrors++;
1290
1291 (void) fxp_init(sc);
1292 }
1293
1294 /*
1295 * Initialize the interface. Must be called at splnet().
1296 */
1297 int
1298 fxp_init(sc)
1299 struct fxp_softc *sc;
1300 {
1301 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1302 struct fxp_cb_config *cbp;
1303 struct fxp_cb_ias *cb_ias;
1304 struct fxp_cb_tx *txd;
1305 bus_dmamap_t rxmap;
1306 int i, prm, save_bf, allm, error = 0;
1307
1308 /*
1309 * Cancel any pending I/O
1310 */
1311 fxp_stop(sc, 0);
1312
1313 /*
1314 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1315 * flag, and this prevents the MII from detaching resulting in
1316 * a panic. The flags field should perhaps be split in runtime
1317 * flags and more static information. For now, just clear the
1318 * only other flag set.
1319 */
1320
1321 sc->sc_flags &= ~FXPF_WANTINIT;
1322
1323 /*
1324 * Initialize base of CBL and RFA memory. Loading with zero
1325 * sets it up for regular linear addressing.
1326 */
1327 fxp_scb_wait(sc);
1328 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1329 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1330
1331 fxp_scb_wait(sc);
1332 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1333
1334 /*
1335 * Initialize the multicast filter. Do this now, since we might
1336 * have to setup the config block differently.
1337 */
1338 fxp_mc_setup(sc);
1339
1340 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1341 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1342
1343 /*
1344 * In order to support receiving 802.1Q VLAN frames, we have to
1345 * enable "save bad frames", since they are 4 bytes larger than
1346 * the normal Ethernet maximum frame length.
1347 */
1348 save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
1349
1350 /*
1351 * Initialize base of dump-stats buffer.
1352 */
1353 fxp_scb_wait(sc);
1354 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1355 sc->sc_cddma + FXP_CDSTATSOFF);
1356 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1357 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1358
1359 cbp = &sc->sc_control_data->fcd_configcb;
1360 memset(cbp, 0, sizeof(struct fxp_cb_config));
1361
1362 /*
1363 * This copy is kind of disgusting, but there are a bunch of must be
1364 * zero and must be one bits in this structure and this is the easiest
1365 * way to initialize them all to proper values.
1366 */
1367 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1368
1369 /* BIG_ENDIAN: no need to swap to store 0 */
1370 cbp->cb_status = 0;
1371 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1372 FXP_CB_COMMAND_EL);
1373 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1374 cbp->link_addr = 0xffffffff; /* (no) next command */
1375 cbp->byte_count = 22; /* (22) bytes to config */
1376 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1377 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1378 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1379 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1380 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1381 cbp->dma_bce = 0; /* (disable) dma max counters */
1382 cbp->late_scb = 0; /* (don't) defer SCB update */
1383 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1384 cbp->ci_int = 1; /* interrupt on CU idle */
1385 cbp->save_bf = save_bf;/* save bad frames */
1386 cbp->disc_short_rx = !prm; /* discard short packets */
1387 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1388 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1389 cbp->nsai = 1; /* (don't) disable source addr insert */
1390 cbp->preamble_length = 2; /* (7 byte) preamble */
1391 cbp->loopback = 0; /* (don't) loopback */
1392 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1393 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1394 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1395 cbp->promiscuous = prm; /* promiscuous mode */
1396 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1397 cbp->crscdt = 0; /* (CRS only) */
1398 cbp->stripping = !prm; /* truncate rx packet to byte count */
1399 cbp->padding = 1; /* (do) pad short tx packets */
1400 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1401 cbp->force_fdx = 0; /* (don't) force full duplex */
1402 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1403 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1404 cbp->mc_all = allm; /* accept all multicasts */
1405
1406 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1407
1408 /*
1409 * Start the config command/DMA.
1410 */
1411 fxp_scb_wait(sc);
1412 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1413 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1414 /* ...and wait for it to complete. */
1415 i = 1000;
1416 do {
1417 FXP_CDCONFIGSYNC(sc,
1418 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1419 DELAY(1);
1420 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1421 if (i == 0) {
1422 printf("%s at line %d: dmasync timeout\n",
1423 sc->sc_dev.dv_xname, __LINE__);
1424 return ETIMEDOUT;
1425 }
1426
1427 /*
1428 * Initialize the station address.
1429 */
1430 cb_ias = &sc->sc_control_data->fcd_iascb;
1431 /* BIG_ENDIAN: no need to swap to store 0 */
1432 cb_ias->cb_status = 0;
1433 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1434 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1435 cb_ias->link_addr = 0xffffffff;
1436 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1437
1438 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1439
1440 /*
1441 * Start the IAS (Individual Address Setup) command/DMA.
1442 */
1443 fxp_scb_wait(sc);
1444 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1445 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1446 /* ...and wait for it to complete. */
1447 i = 1000;
1448 do {
1449 FXP_CDIASSYNC(sc,
1450 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1451 DELAY(1);
1452 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1453 if (i == 0) {
1454 printf("%s at line %d: dmasync timeout\n",
1455 sc->sc_dev.dv_xname, __LINE__);
1456 return ETIMEDOUT;
1457 }
1458
1459 /*
1460 * Initialize the transmit descriptor ring. txlast is initialized
1461 * to the end of the list so that it will wrap around to the first
1462 * descriptor when the first packet is transmitted.
1463 */
1464 for (i = 0; i < FXP_NTXCB; i++) {
1465 txd = FXP_CDTX(sc, i);
1466 memset(txd, 0, sizeof(struct fxp_cb_tx));
1467 txd->cb_command =
1468 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1469 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1470 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1471 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1472 }
1473 sc->sc_txpending = 0;
1474 sc->sc_txdirty = 0;
1475 sc->sc_txlast = FXP_NTXCB - 1;
1476
1477 /*
1478 * Initialize the receive buffer list.
1479 */
1480 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1481 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1482 rxmap = FXP_RXMAP_GET(sc);
1483 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1484 printf("%s: unable to allocate or map rx "
1485 "buffer %d, error = %d\n",
1486 sc->sc_dev.dv_xname,
1487 sc->sc_rxq.ifq_len, error);
1488 /*
1489 * XXX Should attempt to run with fewer receive
1490 * XXX buffers instead of just failing.
1491 */
1492 FXP_RXMAP_PUT(sc, rxmap);
1493 fxp_rxdrain(sc);
1494 goto out;
1495 }
1496 }
1497 sc->sc_rxidle = 0;
1498
1499 /*
1500 * Give the transmit ring to the chip. We do this by pointing
1501 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1502 * issuing a start command. It will execute the NOP and then
1503 * suspend, pointing at the first descriptor.
1504 */
1505 fxp_scb_wait(sc);
1506 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1507 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1508
1509 /*
1510 * Initialize receiver buffer area - RFA.
1511 */
1512 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1513 fxp_scb_wait(sc);
1514 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1515 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1516 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1517
1518 if (sc->sc_flags & FXPF_MII) {
1519 /*
1520 * Set current media.
1521 */
1522 mii_mediachg(&sc->sc_mii);
1523 }
1524
1525 /*
1526 * ...all done!
1527 */
1528 ifp->if_flags |= IFF_RUNNING;
1529 ifp->if_flags &= ~IFF_OACTIVE;
1530
1531 /*
1532 * Start the one second timer.
1533 */
1534 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1535
1536 /*
1537 * Attempt to start output on the interface.
1538 */
1539 fxp_start(ifp);
1540
1541 out:
1542 if (error)
1543 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1544 return (error);
1545 }
1546
1547 /*
1548 * Change media according to request.
1549 */
1550 int
1551 fxp_mii_mediachange(ifp)
1552 struct ifnet *ifp;
1553 {
1554 struct fxp_softc *sc = ifp->if_softc;
1555
1556 if (ifp->if_flags & IFF_UP)
1557 mii_mediachg(&sc->sc_mii);
1558 return (0);
1559 }
1560
1561 /*
1562 * Notify the world which media we're using.
1563 */
1564 void
1565 fxp_mii_mediastatus(ifp, ifmr)
1566 struct ifnet *ifp;
1567 struct ifmediareq *ifmr;
1568 {
1569 struct fxp_softc *sc = ifp->if_softc;
1570
1571 if(sc->sc_enabled == 0) {
1572 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1573 ifmr->ifm_status = 0;
1574 return;
1575 }
1576
1577 mii_pollstat(&sc->sc_mii);
1578 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1579 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1580 }
1581
1582 int
1583 fxp_80c24_mediachange(ifp)
1584 struct ifnet *ifp;
1585 {
1586
1587 /* Nothing to do here. */
1588 return (0);
1589 }
1590
1591 void
1592 fxp_80c24_mediastatus(ifp, ifmr)
1593 struct ifnet *ifp;
1594 struct ifmediareq *ifmr;
1595 {
1596 struct fxp_softc *sc = ifp->if_softc;
1597
1598 /*
1599 * Media is currently-selected media. We cannot determine
1600 * the link status.
1601 */
1602 ifmr->ifm_status = 0;
1603 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1604 }
1605
1606 /*
1607 * Add a buffer to the end of the RFA buffer list.
1608 * Return 0 if successful, error code on failure.
1609 *
1610 * The RFA struct is stuck at the beginning of mbuf cluster and the
1611 * data pointer is fixed up to point just past it.
1612 */
1613 int
1614 fxp_add_rfabuf(sc, rxmap, unload)
1615 struct fxp_softc *sc;
1616 bus_dmamap_t rxmap;
1617 int unload;
1618 {
1619 struct mbuf *m;
1620 int error;
1621
1622 MGETHDR(m, M_DONTWAIT, MT_DATA);
1623 if (m == NULL)
1624 return (ENOBUFS);
1625
1626 MCLGET(m, M_DONTWAIT);
1627 if ((m->m_flags & M_EXT) == 0) {
1628 m_freem(m);
1629 return (ENOBUFS);
1630 }
1631
1632 if (unload)
1633 bus_dmamap_unload(sc->sc_dmat, rxmap);
1634
1635 M_SETCTX(m, rxmap);
1636
1637 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1638 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1639 if (error) {
1640 printf("%s: can't load rx DMA map %d, error = %d\n",
1641 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1642 panic("fxp_add_rfabuf"); /* XXX */
1643 }
1644
1645 FXP_INIT_RFABUF(sc, m);
1646
1647 return (0);
1648 }
1649
1650 volatile int
1651 fxp_mdi_read(self, phy, reg)
1652 struct device *self;
1653 int phy;
1654 int reg;
1655 {
1656 struct fxp_softc *sc = (struct fxp_softc *)self;
1657 int count = 10000;
1658 int value;
1659
1660 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1661 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1662
1663 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1664 && count--)
1665 DELAY(10);
1666
1667 if (count <= 0)
1668 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1669
1670 return (value & 0xffff);
1671 }
1672
1673 void
1674 fxp_statchg(self)
1675 struct device *self;
1676 {
1677
1678 /* Nothing to do. */
1679 }
1680
1681 void
1682 fxp_mdi_write(self, phy, reg, value)
1683 struct device *self;
1684 int phy;
1685 int reg;
1686 int value;
1687 {
1688 struct fxp_softc *sc = (struct fxp_softc *)self;
1689 int count = 10000;
1690
1691 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1692 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1693 (value & 0xffff));
1694
1695 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1696 count--)
1697 DELAY(10);
1698
1699 if (count <= 0)
1700 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1701 }
1702
1703 int
1704 fxp_ioctl(ifp, command, data)
1705 struct ifnet *ifp;
1706 u_long command;
1707 caddr_t data;
1708 {
1709 struct fxp_softc *sc = ifp->if_softc;
1710 struct ifreq *ifr = (struct ifreq *)data;
1711 struct ifaddr *ifa = (struct ifaddr *)data;
1712 int s, error = 0;
1713
1714 s = splnet();
1715
1716 switch (command) {
1717 case SIOCSIFADDR:
1718 if ((error = fxp_enable(sc)) != 0)
1719 break;
1720 ifp->if_flags |= IFF_UP;
1721
1722 switch (ifa->ifa_addr->sa_family) {
1723 #ifdef INET
1724 case AF_INET:
1725 if ((error = fxp_init(sc)) != 0)
1726 break;
1727 arp_ifinit(ifp, ifa);
1728 break;
1729 #endif /* INET */
1730 #ifdef NS
1731 case AF_NS:
1732 {
1733 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1734
1735 if (ns_nullhost(*ina))
1736 ina->x_host = *(union ns_host *)
1737 LLADDR(ifp->if_sadl);
1738 else
1739 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1740 ifp->if_addrlen);
1741 /* Set new address. */
1742 error = fxp_init(sc);
1743 break;
1744 }
1745 #endif /* NS */
1746 default:
1747 error = fxp_init(sc);
1748 break;
1749 }
1750 break;
1751
1752 case SIOCSIFMTU:
1753 if (ifr->ifr_mtu > ETHERMTU)
1754 error = EINVAL;
1755 else
1756 ifp->if_mtu = ifr->ifr_mtu;
1757 break;
1758
1759 case SIOCSIFFLAGS:
1760 if ((ifp->if_flags & IFF_UP) == 0 &&
1761 (ifp->if_flags & IFF_RUNNING) != 0) {
1762 /*
1763 * If interface is marked down and it is running, then
1764 * stop it.
1765 */
1766 fxp_stop(sc, 1);
1767 fxp_disable(sc);
1768 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1769 (ifp->if_flags & IFF_RUNNING) == 0) {
1770 /*
1771 * If interface is marked up and it is stopped, then
1772 * start it.
1773 */
1774 if((error = fxp_enable(sc)) != 0)
1775 break;
1776 error = fxp_init(sc);
1777 } else if ((ifp->if_flags & IFF_UP) != 0) {
1778 /*
1779 * Reset the interface to pick up change in any other
1780 * flags that affect the hardware state.
1781 */
1782 if((error = fxp_enable(sc)) != 0)
1783 break;
1784 error = fxp_init(sc);
1785 }
1786 break;
1787
1788 case SIOCADDMULTI:
1789 case SIOCDELMULTI:
1790 if(sc->sc_enabled == 0) {
1791 error = EIO;
1792 break;
1793 }
1794 error = (command == SIOCADDMULTI) ?
1795 ether_addmulti(ifr, &sc->sc_ethercom) :
1796 ether_delmulti(ifr, &sc->sc_ethercom);
1797
1798 if (error == ENETRESET) {
1799 /*
1800 * Multicast list has changed; set the hardware
1801 * filter accordingly.
1802 */
1803 if (sc->sc_txpending) {
1804 sc->sc_flags |= FXPF_WANTINIT;
1805 error = 0;
1806 } else
1807 error = fxp_init(sc);
1808 }
1809 break;
1810
1811 case SIOCSIFMEDIA:
1812 case SIOCGIFMEDIA:
1813 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1814 break;
1815
1816 default:
1817 error = EINVAL;
1818 break;
1819 }
1820
1821 splx(s);
1822 return (error);
1823 }
1824
1825 /*
1826 * Program the multicast filter.
1827 *
1828 * This function must be called at splnet().
1829 */
1830 void
1831 fxp_mc_setup(sc)
1832 struct fxp_softc *sc;
1833 {
1834 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1835 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1836 struct ethercom *ec = &sc->sc_ethercom;
1837 struct ether_multi *enm;
1838 struct ether_multistep step;
1839 int count, nmcasts;
1840
1841 #ifdef DIAGNOSTIC
1842 if (sc->sc_txpending)
1843 panic("fxp_mc_setup: pending transmissions");
1844 #endif
1845
1846 ifp->if_flags &= ~IFF_ALLMULTI;
1847
1848 /*
1849 * Initialize multicast setup descriptor.
1850 */
1851 nmcasts = 0;
1852 ETHER_FIRST_MULTI(step, ec, enm);
1853 while (enm != NULL) {
1854 /*
1855 * Check for too many multicast addresses or if we're
1856 * listening to a range. Either way, we simply have
1857 * to accept all multicasts.
1858 */
1859 if (nmcasts >= MAXMCADDR ||
1860 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1861 ETHER_ADDR_LEN) != 0) {
1862 /*
1863 * Callers of this function must do the
1864 * right thing with this. If we're called
1865 * from outside fxp_init(), the caller must
1866 * detect if the state if IFF_ALLMULTI changes.
1867 * If it does, the caller must then call
1868 * fxp_init(), since allmulti is handled by
1869 * the config block.
1870 */
1871 ifp->if_flags |= IFF_ALLMULTI;
1872 return;
1873 }
1874 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1875 ETHER_ADDR_LEN);
1876 nmcasts++;
1877 ETHER_NEXT_MULTI(step, enm);
1878 }
1879
1880 /* BIG_ENDIAN: no need to swap to store 0 */
1881 mcsp->cb_status = 0;
1882 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1883 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1884 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1885
1886 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1887
1888 /*
1889 * Wait until the command unit is not active. This should never
1890 * happen since nothing is queued, but make sure anyway.
1891 */
1892 count = 100;
1893 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1894 FXP_SCB_CUS_ACTIVE && --count)
1895 DELAY(1);
1896 if (count == 0) {
1897 printf("%s at line %d: command queue timeout\n",
1898 sc->sc_dev.dv_xname, __LINE__);
1899 return;
1900 }
1901
1902 /*
1903 * Start the multicast setup command/DMA.
1904 */
1905 fxp_scb_wait(sc);
1906 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1907 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1908
1909 /* ...and wait for it to complete. */
1910 count = 1000;
1911 do {
1912 FXP_CDMCSSYNC(sc,
1913 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1914 DELAY(1);
1915 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1916 if (count == 0) {
1917 printf("%s at line %d: dmasync timeout\n",
1918 sc->sc_dev.dv_xname, __LINE__);
1919 return;
1920 }
1921 }
1922
1923 int
1924 fxp_enable(sc)
1925 struct fxp_softc *sc;
1926 {
1927
1928 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1929 if ((*sc->sc_enable)(sc) != 0) {
1930 printf("%s: device enable failed\n",
1931 sc->sc_dev.dv_xname);
1932 return (EIO);
1933 }
1934 }
1935
1936 sc->sc_enabled = 1;
1937 return (0);
1938 }
1939
1940 void
1941 fxp_disable(sc)
1942 struct fxp_softc *sc;
1943 {
1944
1945 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1946 (*sc->sc_disable)(sc);
1947 sc->sc_enabled = 0;
1948 }
1949 }
1950
1951 /*
1952 * fxp_activate:
1953 *
1954 * Handle device activation/deactivation requests.
1955 */
1956 int
1957 fxp_activate(self, act)
1958 struct device *self;
1959 enum devact act;
1960 {
1961 struct fxp_softc *sc = (void *) self;
1962 int s, error = 0;
1963
1964 s = splnet();
1965 switch (act) {
1966 case DVACT_ACTIVATE:
1967 error = EOPNOTSUPP;
1968 break;
1969
1970 case DVACT_DEACTIVATE:
1971 if (sc->sc_flags & FXPF_MII)
1972 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1973 MII_OFFSET_ANY);
1974 if_deactivate(&sc->sc_ethercom.ec_if);
1975 break;
1976 }
1977 splx(s);
1978
1979 return (error);
1980 }
1981
1982 /*
1983 * fxp_detach:
1984 *
1985 * Detach an i82557 interface.
1986 */
1987 int
1988 fxp_detach(sc)
1989 struct fxp_softc *sc;
1990 {
1991 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1992 int i;
1993
1994 /* Succeed now if there's no work to do. */
1995 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1996 return (0);
1997
1998 /* Unhook our tick handler. */
1999 callout_stop(&sc->sc_callout);
2000
2001 if (sc->sc_flags & FXPF_MII) {
2002 /* Detach all PHYs */
2003 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2004 }
2005
2006 /* Delete all remaining media. */
2007 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2008
2009 #if NRND > 0
2010 rnd_detach_source(&sc->rnd_source);
2011 #endif
2012 #if NBPFILTER > 0
2013 bpfdetach(ifp);
2014 #endif
2015 ether_ifdetach(ifp);
2016 if_detach(ifp);
2017
2018 for (i = 0; i < FXP_NRFABUFS; i++) {
2019 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2020 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2021 }
2022
2023 for (i = 0; i < FXP_NTXCB; i++) {
2024 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2025 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2026 }
2027
2028 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2029 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2030 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2031 sizeof(struct fxp_control_data));
2032 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2033
2034 shutdownhook_disestablish(sc->sc_sdhook);
2035 powerhook_disestablish(sc->sc_powerhook);
2036
2037 return (0);
2038 }
2039