i82557.c revision 1.34.2.3 1 /* $NetBSD: i82557.c,v 1.34.2.3 2001/05/06 15:04:55 he Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <vm/vm.h> /* for PAGE_SIZE */
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 int fxp_init __P((struct fxp_softc *));
181 void fxp_rxdrain __P((struct fxp_softc *));
182 void fxp_stop __P((struct fxp_softc *, int));
183 void fxp_watchdog __P((struct ifnet *));
184 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185 int fxp_mdi_read __P((struct device *, int, int));
186 void fxp_statchg __P((struct device *));
187 void fxp_mdi_write __P((struct device *, int, int, int));
188 void fxp_autosize_eeprom __P((struct fxp_softc*));
189 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191 void fxp_tick __P((void *));
192 void fxp_mc_setup __P((struct fxp_softc *));
193
194 void fxp_shutdown __P((void *));
195 void fxp_power __P((int, void *));
196
197 int fxp_copy_small = 0;
198
199 struct fxp_phytype {
200 int fp_phy; /* type of PHY, -1 for MII at the end. */
201 void (*fp_init) __P((struct fxp_softc *));
202 } fxp_phytype_table[] = {
203 { FXP_PHY_80C24, fxp_80c24_initmedia },
204 { -1, fxp_mii_initmedia },
205 };
206
207 /*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212 static int tx_threshold = 64;
213
214 /*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218 inline void
219 fxp_scb_wait(sc)
220 struct fxp_softc *sc;
221 {
222 int i = 10000;
223
224 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225 delay(2);
226 if (i == 0)
227 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228 }
229
230 /*
231 * Finish attaching an i82557 interface. Called by bus-specific front-end.
232 */
233 void
234 fxp_attach(sc)
235 struct fxp_softc *sc;
236 {
237 u_int8_t enaddr[6];
238 struct ifnet *ifp;
239 bus_dma_segment_t seg;
240 int rseg, i, error;
241 struct fxp_phytype *fp;
242
243 callout_init(&sc->sc_callout);
244
245 /*
246 * Allocate the control data structures, and create and load the
247 * DMA map for it.
248 */
249 if ((error = bus_dmamem_alloc(sc->sc_dmat,
250 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251 0)) != 0) {
252 printf("%s: unable to allocate control data, error = %d\n",
253 sc->sc_dev.dv_xname, error);
254 goto fail_0;
255 }
256
257 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259 BUS_DMA_COHERENT)) != 0) {
260 printf("%s: unable to map control data, error = %d\n",
261 sc->sc_dev.dv_xname, error);
262 goto fail_1;
263 }
264 sc->sc_cdseg = seg;
265 sc->sc_cdnseg = rseg;
266
267 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269 if ((error = bus_dmamap_create(sc->sc_dmat,
270 sizeof(struct fxp_control_data), 1,
271 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272 printf("%s: unable to create control data DMA map, "
273 "error = %d\n", sc->sc_dev.dv_xname, error);
274 goto fail_2;
275 }
276
277 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279 0)) != 0) {
280 printf("%s: can't load control data DMA map, error = %d\n",
281 sc->sc_dev.dv_xname, error);
282 goto fail_3;
283 }
284
285 /*
286 * Create the transmit buffer DMA maps.
287 */
288 for (i = 0; i < FXP_NTXCB; i++) {
289 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290 FXP_NTXSEG, MCLBYTES, 0, 0,
291 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292 printf("%s: unable to create tx DMA map %d, "
293 "error = %d\n", sc->sc_dev.dv_xname, i, error);
294 goto fail_4;
295 }
296 }
297
298 /*
299 * Create the receive buffer DMA maps.
300 */
301 for (i = 0; i < FXP_NRFABUFS; i++) {
302 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304 printf("%s: unable to create rx DMA map %d, "
305 "error = %d\n", sc->sc_dev.dv_xname, i, error);
306 goto fail_5;
307 }
308 }
309
310 /* Initialize MAC address and media structures. */
311 fxp_get_info(sc, enaddr);
312
313 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316 ifp = &sc->sc_ethercom.ec_if;
317
318 /*
319 * Get info about our media interface, and initialize it. Note
320 * the table terminates itself with a phy of -1, indicating
321 * that we're using MII.
322 */
323 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324 if (fp->fp_phy == sc->phy_primary_device)
325 break;
326 (*fp->fp_init)(sc);
327
328 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329 ifp->if_softc = sc;
330 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331 ifp->if_ioctl = fxp_ioctl;
332 ifp->if_start = fxp_start;
333 ifp->if_watchdog = fxp_watchdog;
334
335 /*
336 * We can support 802.1Q VLAN-sized frames.
337 */
338 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
339
340 /*
341 * Attach the interface.
342 */
343 if_attach(ifp);
344 ether_ifattach(ifp, enaddr);
345 #if NBPFILTER > 0
346 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
347 sizeof(struct ether_header));
348 #endif
349 #if NRND > 0
350 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
351 RND_TYPE_NET, 0);
352 #endif
353
354 /*
355 * Add shutdown hook so that DMA is disabled prior to reboot. Not
356 * doing do could allow DMA to corrupt kernel memory during the
357 * reboot before the driver initializes.
358 */
359 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
360 if (sc->sc_sdhook == NULL)
361 printf("%s: WARNING: unable to establish shutdown hook\n",
362 sc->sc_dev.dv_xname);
363 /*
364 * Add suspend hook, for similar reasons..
365 */
366 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
367 if (sc->sc_powerhook == NULL)
368 printf("%s: WARNING: unable to establish power hook\n",
369 sc->sc_dev.dv_xname);
370
371 /* The attach is successful. */
372 sc->sc_flags |= FXPF_ATTACHED;
373
374 return;
375
376 /*
377 * Free any resources we've allocated during the failed attach
378 * attempt. Do this in reverse order and fall though.
379 */
380 fail_5:
381 for (i = 0; i < FXP_NRFABUFS; i++) {
382 if (sc->sc_rxmaps[i] != NULL)
383 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
384 }
385 fail_4:
386 for (i = 0; i < FXP_NTXCB; i++) {
387 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
388 bus_dmamap_destroy(sc->sc_dmat,
389 FXP_DSTX(sc, i)->txs_dmamap);
390 }
391 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
392 fail_3:
393 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
394 fail_2:
395 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
396 sizeof(struct fxp_control_data));
397 fail_1:
398 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
399 fail_0:
400 return;
401 }
402
403 void
404 fxp_mii_initmedia(sc)
405 struct fxp_softc *sc;
406 {
407
408 sc->sc_flags |= FXPF_MII;
409
410 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
411 sc->sc_mii.mii_readreg = fxp_mdi_read;
412 sc->sc_mii.mii_writereg = fxp_mdi_write;
413 sc->sc_mii.mii_statchg = fxp_statchg;
414 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
415 fxp_mii_mediastatus);
416 /*
417 * The i82557 wedges if all of its PHYs are isolated!
418 */
419 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
420 MII_OFFSET_ANY, MIIF_NOISOLATE);
421 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
422 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
423 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
424 } else
425 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
426 }
427
428 void
429 fxp_80c24_initmedia(sc)
430 struct fxp_softc *sc;
431 {
432
433 /*
434 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
435 * doesn't have a programming interface of any sort. The
436 * media is sensed automatically based on how the link partner
437 * is configured. This is, in essence, manual configuration.
438 */
439 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
440 sc->sc_dev.dv_xname);
441 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
442 fxp_80c24_mediastatus);
443 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
444 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
445 }
446
447 /*
448 * Device shutdown routine. Called at system shutdown after sync. The
449 * main purpose of this routine is to shut off receiver DMA so that
450 * kernel memory doesn't get clobbered during warmboot.
451 */
452 void
453 fxp_shutdown(arg)
454 void *arg;
455 {
456 struct fxp_softc *sc = arg;
457
458 /*
459 * Since the system's going to halt shortly, don't bother
460 * freeing mbufs.
461 */
462 fxp_stop(sc, 0);
463 }
464 /*
465 * Power handler routine. Called when the system is transitioning
466 * into/out of power save modes. As with fxp_shutdown, the main
467 * purpose of this routine is to shut off receiver DMA so it doesn't
468 * clobber kernel memory at the wrong time.
469 */
470 void
471 fxp_power(why, arg)
472 int why;
473 void *arg;
474 {
475 struct fxp_softc *sc = arg;
476 struct ifnet *ifp;
477 int s;
478
479 s = splnet();
480 switch (why) {
481 case PWR_SUSPEND:
482 case PWR_STANDBY:
483 fxp_stop(sc, 0);
484 break;
485 case PWR_RESUME:
486 ifp = &sc->sc_ethercom.ec_if;
487 if (ifp->if_flags & IFF_UP)
488 fxp_init(sc);
489 break;
490 case PWR_SOFTSUSPEND:
491 case PWR_SOFTSTANDBY:
492 case PWR_SOFTRESUME:
493 break;
494 }
495 splx(s);
496 }
497
498 /*
499 * Initialize the interface media.
500 */
501 void
502 fxp_get_info(sc, enaddr)
503 struct fxp_softc *sc;
504 u_int8_t *enaddr;
505 {
506 u_int16_t data, myea[3];
507
508 /*
509 * Reset to a stable state.
510 */
511 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
512 DELAY(10);
513
514 sc->sc_eeprom_size = 0;
515 fxp_autosize_eeprom(sc);
516 if(sc->sc_eeprom_size == 0) {
517 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
518 sc->sc_eeprom_size = 6; /* XXX panic here? */
519 }
520 #ifdef DEBUG
521 printf("%s: detected %d word EEPROM\n",
522 sc->sc_dev.dv_xname,
523 1 << sc->sc_eeprom_size);
524 #endif
525
526 /*
527 * Get info about the primary PHY
528 */
529 fxp_read_eeprom(sc, &data, 6, 1);
530 sc->phy_primary_addr = data & 0xff;
531 sc->phy_primary_device = (data >> 8) & 0x3f;
532 sc->phy_10Mbps_only = data >> 15;
533
534 /*
535 * Read MAC address.
536 */
537 fxp_read_eeprom(sc, myea, 0, 3);
538 enaddr[0] = myea[0] & 0xff;
539 enaddr[1] = myea[0] >> 8;
540 enaddr[2] = myea[1] & 0xff;
541 enaddr[3] = myea[1] >> 8;
542 enaddr[4] = myea[2] & 0xff;
543 enaddr[5] = myea[2] >> 8;
544 }
545
546 /*
547 * Figure out EEPROM size.
548 *
549 * 559's can have either 64-word or 256-word EEPROMs, the 558
550 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
551 * talks about the existance of 16 to 256 word EEPROMs.
552 *
553 * The only known sizes are 64 and 256, where the 256 version is used
554 * by CardBus cards to store CIS information.
555 *
556 * The address is shifted in msb-to-lsb, and after the last
557 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
558 * after which follows the actual data. We try to detect this zero, by
559 * probing the data-out bit in the EEPROM control register just after
560 * having shifted in a bit. If the bit is zero, we assume we've
561 * shifted enough address bits. The data-out should be tri-state,
562 * before this, which should translate to a logical one.
563 *
564 * Other ways to do this would be to try to read a register with known
565 * contents with a varying number of address bits, but no such
566 * register seem to be available. The high bits of register 10 are 01
567 * on the 558 and 559, but apparently not on the 557.
568 *
569 * The Linux driver computes a checksum on the EEPROM data, but the
570 * value of this checksum is not very well documented.
571 */
572
573 void
574 fxp_autosize_eeprom(sc)
575 struct fxp_softc *sc;
576 {
577 u_int16_t reg;
578 int x;
579
580 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
581 /*
582 * Shift in read opcode.
583 */
584 for (x = 3; x > 0; x--) {
585 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
586 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
587 } else {
588 reg = FXP_EEPROM_EECS;
589 }
590 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
591 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
592 reg | FXP_EEPROM_EESK);
593 DELAY(4);
594 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
595 DELAY(4);
596 }
597 /*
598 * Shift in address, wait for the dummy zero following a correct
599 * address shift.
600 */
601 for (x = 1; x <= 8; x++) {
602 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
603 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
604 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
605 DELAY(4);
606 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
607 FXP_EEPROM_EEDO) == 0)
608 break;
609 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
610 DELAY(4);
611 }
612 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
613 DELAY(4);
614 if(x != 6 && x != 8) {
615 #ifdef DEBUG
616 printf("%s: strange EEPROM size (%d)\n",
617 sc->sc_dev.dv_xname, 1 << x);
618 #endif
619 } else
620 sc->sc_eeprom_size = x;
621 }
622
623 /*
624 * Read from the serial EEPROM. Basically, you manually shift in
625 * the read opcode (one bit at a time) and then shift in the address,
626 * and then you shift out the data (all of this one bit at a time).
627 * The word size is 16 bits, so you have to provide the address for
628 * every 16 bits of data.
629 */
630 void
631 fxp_read_eeprom(sc, data, offset, words)
632 struct fxp_softc *sc;
633 u_int16_t *data;
634 int offset;
635 int words;
636 {
637 u_int16_t reg;
638 int i, x;
639
640 for (i = 0; i < words; i++) {
641 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
642 /*
643 * Shift in read opcode.
644 */
645 for (x = 3; x > 0; x--) {
646 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
647 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
648 } else {
649 reg = FXP_EEPROM_EECS;
650 }
651 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
652 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
653 reg | FXP_EEPROM_EESK);
654 DELAY(4);
655 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
656 DELAY(4);
657 }
658 /*
659 * Shift in address.
660 */
661 for (x = sc->sc_eeprom_size; x > 0; x--) {
662 if ((i + offset) & (1 << (x - 1))) {
663 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
664 } else {
665 reg = FXP_EEPROM_EECS;
666 }
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
668 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
669 reg | FXP_EEPROM_EESK);
670 DELAY(4);
671 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
672 DELAY(4);
673 }
674 reg = FXP_EEPROM_EECS;
675 data[i] = 0;
676 /*
677 * Shift out data.
678 */
679 for (x = 16; x > 0; x--) {
680 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
681 reg | FXP_EEPROM_EESK);
682 DELAY(4);
683 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
684 FXP_EEPROM_EEDO)
685 data[i] |= (1 << (x - 1));
686 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
687 DELAY(4);
688 }
689 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
690 DELAY(4);
691 }
692 }
693
694 /*
695 * Start packet transmission on the interface.
696 */
697 void
698 fxp_start(ifp)
699 struct ifnet *ifp;
700 {
701 struct fxp_softc *sc = ifp->if_softc;
702 struct mbuf *m0, *m;
703 struct fxp_cb_tx *txd;
704 struct fxp_txsoft *txs;
705 struct fxp_tbdlist *tbd;
706 bus_dmamap_t dmamap;
707 int error, lasttx, nexttx, opending, seg;
708
709 /*
710 * If we want a re-init, bail out now.
711 */
712 if (sc->sc_flags & FXPF_WANTINIT) {
713 ifp->if_flags |= IFF_OACTIVE;
714 return;
715 }
716
717 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
718 return;
719
720 /*
721 * Remember the previous txpending and the current lasttx.
722 */
723 opending = sc->sc_txpending;
724 lasttx = sc->sc_txlast;
725
726 /*
727 * Loop through the send queue, setting up transmit descriptors
728 * until we drain the queue, or use up all available transmit
729 * descriptors.
730 */
731 while (sc->sc_txpending < FXP_NTXCB) {
732 /*
733 * Grab a packet off the queue.
734 */
735 IF_DEQUEUE(&ifp->if_snd, m0);
736 if (m0 == NULL)
737 break;
738
739 /*
740 * Get the next available transmit descriptor.
741 */
742 nexttx = FXP_NEXTTX(sc->sc_txlast);
743 txd = FXP_CDTX(sc, nexttx);
744 tbd = FXP_CDTBD(sc, nexttx);
745 txs = FXP_DSTX(sc, nexttx);
746 dmamap = txs->txs_dmamap;
747
748 /*
749 * Load the DMA map. If this fails, the packet either
750 * didn't fit in the allotted number of frags, or we were
751 * short on resources. In this case, we'll copy and try
752 * again.
753 */
754 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
755 BUS_DMA_NOWAIT) != 0) {
756 MGETHDR(m, M_DONTWAIT, MT_DATA);
757 if (m == NULL) {
758 printf("%s: unable to allocate Tx mbuf\n",
759 sc->sc_dev.dv_xname);
760 IF_PREPEND(&ifp->if_snd, m0);
761 break;
762 }
763 if (m0->m_pkthdr.len > MHLEN) {
764 MCLGET(m, M_DONTWAIT);
765 if ((m->m_flags & M_EXT) == 0) {
766 printf("%s: unable to allocate Tx "
767 "cluster\n", sc->sc_dev.dv_xname);
768 m_freem(m);
769 IF_PREPEND(&ifp->if_snd, m0);
770 break;
771 }
772 }
773 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
774 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
775 m_freem(m0);
776 m0 = m;
777 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
778 m0, BUS_DMA_NOWAIT);
779 if (error) {
780 printf("%s: unable to load Tx buffer, "
781 "error = %d\n", sc->sc_dev.dv_xname, error);
782 IF_PREPEND(&ifp->if_snd, m0);
783 break;
784 }
785 }
786
787 /* Initialize the fraglist. */
788 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
789 tbd->tbd_d[seg].tb_addr =
790 htole32(dmamap->dm_segs[seg].ds_addr);
791 tbd->tbd_d[seg].tb_size =
792 htole32(dmamap->dm_segs[seg].ds_len);
793 }
794
795 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
796
797 /* Sync the DMA map. */
798 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
799 BUS_DMASYNC_PREWRITE);
800
801 /*
802 * Store a pointer to the packet so we can free it later.
803 */
804 txs->txs_mbuf = m0;
805
806 /*
807 * Initialize the transmit descriptor.
808 */
809 /* BIG_ENDIAN: no need to swap to store 0 */
810 txd->cb_status = 0;
811 txd->cb_command =
812 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
813 txd->tx_threshold = tx_threshold;
814 txd->tbd_number = dmamap->dm_nsegs;
815
816 FXP_CDTXSYNC(sc, nexttx,
817 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
818
819 /* Advance the tx pointer. */
820 sc->sc_txpending++;
821 sc->sc_txlast = nexttx;
822
823 #if NBPFILTER > 0
824 /*
825 * Pass packet to bpf if there is a listener.
826 */
827 if (ifp->if_bpf)
828 bpf_mtap(ifp->if_bpf, m0);
829 #endif
830 }
831
832 if (sc->sc_txpending == FXP_NTXCB) {
833 /* No more slots; notify upper layer. */
834 ifp->if_flags |= IFF_OACTIVE;
835 }
836
837 if (sc->sc_txpending != opending) {
838 /*
839 * We enqueued packets. If the transmitter was idle,
840 * reset the txdirty pointer.
841 */
842 if (opending == 0)
843 sc->sc_txdirty = FXP_NEXTTX(lasttx);
844
845 /*
846 * Cause the chip to interrupt and suspend command
847 * processing once the last packet we've enqueued
848 * has been transmitted.
849 */
850 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
851 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
852 FXP_CDTXSYNC(sc, sc->sc_txlast,
853 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
854
855 /*
856 * The entire packet chain is set up. Clear the suspend bit
857 * on the command prior to the first packet we set up.
858 */
859 FXP_CDTXSYNC(sc, lasttx,
860 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
861 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
862 FXP_CDTXSYNC(sc, lasttx,
863 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
864
865 /*
866 * Issue a Resume command in case the chip was suspended.
867 */
868 fxp_scb_wait(sc);
869 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
870
871 /* Set a watchdog timer in case the chip flakes out. */
872 ifp->if_timer = 5;
873 }
874 }
875
876 /*
877 * Process interface interrupts.
878 */
879 int
880 fxp_intr(arg)
881 void *arg;
882 {
883 struct fxp_softc *sc = arg;
884 struct ethercom *ec = &sc->sc_ethercom;
885 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
886 struct fxp_cb_tx *txd;
887 struct fxp_txsoft *txs;
888 struct mbuf *m, *m0;
889 bus_dmamap_t rxmap;
890 struct fxp_rfa *rfa;
891 struct ether_header *eh;
892 int i, claimed = 0;
893 u_int16_t len, rxstat, txstat;
894 u_int8_t statack;
895
896 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
897 return (0);
898 /*
899 * If the interface isn't running, don't try to
900 * service the interrupt.. just ack it and bail.
901 */
902 if ((ifp->if_flags & IFF_RUNNING) == 0) {
903 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
904 if (statack) {
905 claimed = 1;
906 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
907 }
908 return (claimed);
909 }
910
911 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
912 claimed = 1;
913
914 /*
915 * First ACK all the interrupts in this pass.
916 */
917 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
918
919 /*
920 * Process receiver interrupts. If a no-resource (RNR)
921 * condition exists, get whatever packets we can and
922 * re-start the receiver.
923 */
924 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
925 rcvloop:
926 m = sc->sc_rxq.ifq_head;
927 rfa = FXP_MTORFA(m);
928 rxmap = M_GETCTX(m, bus_dmamap_t);
929
930 FXP_RFASYNC(sc, m,
931 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
932
933 rxstat = le16toh(rfa->rfa_status);
934
935 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
936 /*
937 * We have processed all of the
938 * receive buffers.
939 */
940 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
941 goto do_transmit;
942 }
943
944 IF_DEQUEUE(&sc->sc_rxq, m);
945
946 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
947
948 len = le16toh(rfa->actual_size) &
949 (m->m_ext.ext_size - 1);
950
951 if (len < sizeof(struct ether_header)) {
952 /*
953 * Runt packet; drop it now.
954 */
955 FXP_INIT_RFABUF(sc, m);
956 goto rcvloop;
957 }
958
959 /*
960 * If support for 802.1Q VLAN sized frames is
961 * enabled, we need to do some additional error
962 * checking (as we are saving bad frames, in
963 * order to receive the larger ones).
964 */
965 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
966 (rxstat & (FXP_RFA_STATUS_OVERRUN|
967 FXP_RFA_STATUS_RNR|
968 FXP_RFA_STATUS_ALIGN|
969 FXP_RFA_STATUS_CRC)) != 0) {
970 FXP_INIT_RFABUF(sc, m);
971 goto rcvloop;
972 }
973
974 /*
975 * If the packet is small enough to fit in a
976 * single header mbuf, allocate one and copy
977 * the data into it. This greatly reduces
978 * memory consumption when we receive lots
979 * of small packets.
980 *
981 * Otherwise, we add a new buffer to the receive
982 * chain. If this fails, we drop the packet and
983 * recycle the old buffer.
984 */
985 if (fxp_copy_small != 0 && len <= MHLEN) {
986 MGETHDR(m0, M_DONTWAIT, MT_DATA);
987 if (m == NULL)
988 goto dropit;
989 memcpy(mtod(m0, caddr_t),
990 mtod(m, caddr_t), len);
991 FXP_INIT_RFABUF(sc, m);
992 m = m0;
993 } else {
994 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
995 dropit:
996 ifp->if_ierrors++;
997 FXP_INIT_RFABUF(sc, m);
998 goto rcvloop;
999 }
1000 }
1001
1002 m->m_pkthdr.rcvif = ifp;
1003 m->m_pkthdr.len = m->m_len = len;
1004 eh = mtod(m, struct ether_header *);
1005
1006 #if NBPFILTER > 0
1007 /*
1008 * Pass this up to any BPF listeners, but only
1009 * pass it up the stack it its for us.
1010 */
1011 if (ifp->if_bpf) {
1012 bpf_mtap(ifp->if_bpf, m);
1013
1014 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1015 (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
1016 (eh->ether_dhost[0] & 1) == 0) {
1017 m_freem(m);
1018 goto rcvloop;
1019 }
1020 }
1021 #endif /* NBPFILTER > 0 */
1022
1023 /* Pass it on. */
1024 (*ifp->if_input)(ifp, m);
1025 goto rcvloop;
1026 }
1027
1028 do_transmit:
1029 if (statack & FXP_SCB_STATACK_RNR) {
1030 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1031 fxp_scb_wait(sc);
1032 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1033 rxmap->dm_segs[0].ds_addr +
1034 RFA_ALIGNMENT_FUDGE);
1035 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1036 FXP_SCB_COMMAND_RU_START);
1037 }
1038
1039 /*
1040 * Free any finished transmit mbuf chains.
1041 */
1042 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1043 ifp->if_flags &= ~IFF_OACTIVE;
1044 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1045 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1046 txd = FXP_CDTX(sc, i);
1047 txs = FXP_DSTX(sc, i);
1048
1049 FXP_CDTXSYNC(sc, i,
1050 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1051
1052 txstat = le16toh(txd->cb_status);
1053
1054 if ((txstat & FXP_CB_STATUS_C) == 0)
1055 break;
1056
1057 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1058
1059 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1060 0, txs->txs_dmamap->dm_mapsize,
1061 BUS_DMASYNC_POSTWRITE);
1062 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1063 m_freem(txs->txs_mbuf);
1064 txs->txs_mbuf = NULL;
1065 }
1066
1067 /* Update the dirty transmit buffer pointer. */
1068 sc->sc_txdirty = i;
1069
1070 /*
1071 * Cancel the watchdog timer if there are no pending
1072 * transmissions.
1073 */
1074 if (sc->sc_txpending == 0) {
1075 ifp->if_timer = 0;
1076
1077 /*
1078 * If we want a re-init, do that now.
1079 */
1080 if (sc->sc_flags & FXPF_WANTINIT)
1081 (void) fxp_init(sc);
1082 }
1083
1084 /*
1085 * Try to get more packets going.
1086 */
1087 fxp_start(ifp);
1088 }
1089 }
1090
1091 #if NRND > 0
1092 if (claimed)
1093 rnd_add_uint32(&sc->rnd_source, statack);
1094 #endif
1095 return (claimed);
1096 }
1097
1098 /*
1099 * Update packet in/out/collision statistics. The i82557 doesn't
1100 * allow you to access these counters without doing a fairly
1101 * expensive DMA to get _all_ of the statistics it maintains, so
1102 * we do this operation here only once per second. The statistics
1103 * counters in the kernel are updated from the previous dump-stats
1104 * DMA and then a new dump-stats DMA is started. The on-chip
1105 * counters are zeroed when the DMA completes. If we can't start
1106 * the DMA immediately, we don't wait - we just prepare to read
1107 * them again next time.
1108 */
1109 void
1110 fxp_tick(arg)
1111 void *arg;
1112 {
1113 struct fxp_softc *sc = arg;
1114 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1115 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1116 int s;
1117
1118 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1119 return;
1120
1121 s = splnet();
1122
1123 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1124
1125 ifp->if_opackets += le32toh(sp->tx_good);
1126 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1127 if (sp->rx_good) {
1128 ifp->if_ipackets += le32toh(sp->rx_good);
1129 sc->sc_rxidle = 0;
1130 } else {
1131 sc->sc_rxidle++;
1132 }
1133 ifp->if_ierrors +=
1134 le32toh(sp->rx_crc_errors) +
1135 le32toh(sp->rx_alignment_errors) +
1136 le32toh(sp->rx_rnr_errors) +
1137 le32toh(sp->rx_overrun_errors);
1138 /*
1139 * If any transmit underruns occured, bump up the transmit
1140 * threshold by another 512 bytes (64 * 8).
1141 */
1142 if (sp->tx_underruns) {
1143 ifp->if_oerrors += le32toh(sp->tx_underruns);
1144 if (tx_threshold < 192)
1145 tx_threshold += 64;
1146 }
1147
1148 /*
1149 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1150 * then assume the receiver has locked up and attempt to clear
1151 * the condition by reprogramming the multicast filter (actually,
1152 * resetting the interface). This is a work-around for a bug in
1153 * the 82557 where the receiver locks up if it gets certain types
1154 * of garbage in the syncronization bits prior to the packet header.
1155 * This bug is supposed to only occur in 10Mbps mode, but has been
1156 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1157 * speed transition).
1158 */
1159 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1160 (void) fxp_init(sc);
1161 splx(s);
1162 return;
1163 }
1164 /*
1165 * If there is no pending command, start another stats
1166 * dump. Otherwise punt for now.
1167 */
1168 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1169 /*
1170 * Start another stats dump.
1171 */
1172 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1173 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1174 FXP_SCB_COMMAND_CU_DUMPRESET);
1175 } else {
1176 /*
1177 * A previous command is still waiting to be accepted.
1178 * Just zero our copy of the stats and wait for the
1179 * next timer event to update them.
1180 */
1181 /* BIG_ENDIAN: no swap required to store 0 */
1182 sp->tx_good = 0;
1183 sp->tx_underruns = 0;
1184 sp->tx_total_collisions = 0;
1185
1186 sp->rx_good = 0;
1187 sp->rx_crc_errors = 0;
1188 sp->rx_alignment_errors = 0;
1189 sp->rx_rnr_errors = 0;
1190 sp->rx_overrun_errors = 0;
1191 }
1192
1193 if (sc->sc_flags & FXPF_MII) {
1194 /* Tick the MII clock. */
1195 mii_tick(&sc->sc_mii);
1196 }
1197
1198 splx(s);
1199
1200 /*
1201 * Schedule another timeout one second from now.
1202 */
1203 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1204 }
1205
1206 /*
1207 * Drain the receive queue.
1208 */
1209 void
1210 fxp_rxdrain(sc)
1211 struct fxp_softc *sc;
1212 {
1213 bus_dmamap_t rxmap;
1214 struct mbuf *m;
1215
1216 for (;;) {
1217 IF_DEQUEUE(&sc->sc_rxq, m);
1218 if (m == NULL)
1219 break;
1220 rxmap = M_GETCTX(m, bus_dmamap_t);
1221 bus_dmamap_unload(sc->sc_dmat, rxmap);
1222 FXP_RXMAP_PUT(sc, rxmap);
1223 m_freem(m);
1224 }
1225 }
1226
1227 /*
1228 * Stop the interface. Cancels the statistics updater and resets
1229 * the interface.
1230 */
1231 void
1232 fxp_stop(sc, drain)
1233 struct fxp_softc *sc;
1234 int drain;
1235 {
1236 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1237 struct fxp_txsoft *txs;
1238 int i;
1239
1240 /*
1241 * Turn down interface (done early to avoid bad interactions
1242 * between panics, shutdown hooks, and the watchdog timer)
1243 */
1244 ifp->if_timer = 0;
1245 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1246
1247 /*
1248 * Cancel stats updater.
1249 */
1250 callout_stop(&sc->sc_callout);
1251 if (sc->sc_flags & FXPF_MII) {
1252 /* Down the MII. */
1253 mii_down(&sc->sc_mii);
1254 }
1255
1256 /*
1257 * Issue software reset
1258 */
1259 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1260 DELAY(10);
1261
1262 /*
1263 * Release any xmit buffers.
1264 */
1265 for (i = 0; i < FXP_NTXCB; i++) {
1266 txs = FXP_DSTX(sc, i);
1267 if (txs->txs_mbuf != NULL) {
1268 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1269 m_freem(txs->txs_mbuf);
1270 txs->txs_mbuf = NULL;
1271 }
1272 }
1273 sc->sc_txpending = 0;
1274
1275 if (drain) {
1276 /*
1277 * Release the receive buffers.
1278 */
1279 fxp_rxdrain(sc);
1280 }
1281
1282 }
1283
1284 /*
1285 * Watchdog/transmission transmit timeout handler. Called when a
1286 * transmission is started on the interface, but no interrupt is
1287 * received before the timeout. This usually indicates that the
1288 * card has wedged for some reason.
1289 */
1290 void
1291 fxp_watchdog(ifp)
1292 struct ifnet *ifp;
1293 {
1294 struct fxp_softc *sc = ifp->if_softc;
1295
1296 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1297 ifp->if_oerrors++;
1298
1299 (void) fxp_init(sc);
1300 }
1301
1302 /*
1303 * Initialize the interface. Must be called at splnet().
1304 */
1305 int
1306 fxp_init(sc)
1307 struct fxp_softc *sc;
1308 {
1309 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1310 struct fxp_cb_config *cbp;
1311 struct fxp_cb_ias *cb_ias;
1312 struct fxp_cb_tx *txd;
1313 bus_dmamap_t rxmap;
1314 int i, prm, save_bf, allm, error = 0;
1315
1316 /*
1317 * Cancel any pending I/O
1318 */
1319 fxp_stop(sc, 0);
1320
1321 /*
1322 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1323 * flag, and this prevents the MII from detaching resulting in
1324 * a panic. The flags field should perhaps be split in runtime
1325 * flags and more static information. For now, just clear the
1326 * only other flag set.
1327 */
1328
1329 sc->sc_flags &= ~FXPF_WANTINIT;
1330
1331 /*
1332 * Initialize base of CBL and RFA memory. Loading with zero
1333 * sets it up for regular linear addressing.
1334 */
1335 fxp_scb_wait(sc);
1336 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1337 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1338
1339 fxp_scb_wait(sc);
1340 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1341
1342 /*
1343 * Initialize the multicast filter. Do this now, since we might
1344 * have to setup the config block differently.
1345 */
1346 fxp_mc_setup(sc);
1347
1348 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1349 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1350
1351 /*
1352 * In order to support receiving 802.1Q VLAN frames, we have to
1353 * enable "save bad frames", since they are 4 bytes larger than
1354 * the normal Ethernet maximum frame length.
1355 */
1356 save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
1357
1358 /*
1359 * Initialize base of dump-stats buffer.
1360 */
1361 fxp_scb_wait(sc);
1362 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1363 sc->sc_cddma + FXP_CDSTATSOFF);
1364 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1365 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1366
1367 cbp = &sc->sc_control_data->fcd_configcb;
1368 memset(cbp, 0, sizeof(struct fxp_cb_config));
1369
1370 /*
1371 * This copy is kind of disgusting, but there are a bunch of must be
1372 * zero and must be one bits in this structure and this is the easiest
1373 * way to initialize them all to proper values.
1374 */
1375 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1376
1377 /* BIG_ENDIAN: no need to swap to store 0 */
1378 cbp->cb_status = 0;
1379 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1380 FXP_CB_COMMAND_EL);
1381 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1382 cbp->link_addr = 0xffffffff; /* (no) next command */
1383 cbp->byte_count = 22; /* (22) bytes to config */
1384 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1385 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1386 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1387 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1388 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1389 cbp->dma_bce = 0; /* (disable) dma max counters */
1390 cbp->late_scb = 0; /* (don't) defer SCB update */
1391 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1392 cbp->ci_int = 1; /* interrupt on CU idle */
1393 cbp->save_bf = save_bf;/* save bad frames */
1394 cbp->disc_short_rx = !prm; /* discard short packets */
1395 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1396 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1397 cbp->nsai = 1; /* (don't) disable source addr insert */
1398 cbp->preamble_length = 2; /* (7 byte) preamble */
1399 cbp->loopback = 0; /* (don't) loopback */
1400 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1401 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1402 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1403 cbp->promiscuous = prm; /* promiscuous mode */
1404 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1405 cbp->crscdt = 0; /* (CRS only) */
1406 cbp->stripping = !prm; /* truncate rx packet to byte count */
1407 cbp->padding = 1; /* (do) pad short tx packets */
1408 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1409 cbp->force_fdx = 0; /* (don't) force full duplex */
1410 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1411 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1412 cbp->mc_all = allm; /* accept all multicasts */
1413
1414 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1415
1416 /*
1417 * Start the config command/DMA.
1418 */
1419 fxp_scb_wait(sc);
1420 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1421 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1422 /* ...and wait for it to complete. */
1423 i = 1000;
1424 do {
1425 FXP_CDCONFIGSYNC(sc,
1426 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1427 DELAY(1);
1428 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1429 if (i == 0) {
1430 printf("%s at line %d: dmasync timeout\n",
1431 sc->sc_dev.dv_xname, __LINE__);
1432 return ETIMEDOUT;
1433 }
1434
1435 /*
1436 * Initialize the station address.
1437 */
1438 cb_ias = &sc->sc_control_data->fcd_iascb;
1439 /* BIG_ENDIAN: no need to swap to store 0 */
1440 cb_ias->cb_status = 0;
1441 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1442 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1443 cb_ias->link_addr = 0xffffffff;
1444 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1445
1446 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1447
1448 /*
1449 * Start the IAS (Individual Address Setup) command/DMA.
1450 */
1451 fxp_scb_wait(sc);
1452 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1453 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1454 /* ...and wait for it to complete. */
1455 i = 1000;
1456 do {
1457 FXP_CDIASSYNC(sc,
1458 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1459 DELAY(1);
1460 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1461 if (i == 0) {
1462 printf("%s at line %d: dmasync timeout\n",
1463 sc->sc_dev.dv_xname, __LINE__);
1464 return ETIMEDOUT;
1465 }
1466
1467 /*
1468 * Initialize the transmit descriptor ring. txlast is initialized
1469 * to the end of the list so that it will wrap around to the first
1470 * descriptor when the first packet is transmitted.
1471 */
1472 for (i = 0; i < FXP_NTXCB; i++) {
1473 txd = FXP_CDTX(sc, i);
1474 memset(txd, 0, sizeof(struct fxp_cb_tx));
1475 txd->cb_command =
1476 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1477 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1478 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1479 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1480 }
1481 sc->sc_txpending = 0;
1482 sc->sc_txdirty = 0;
1483 sc->sc_txlast = FXP_NTXCB - 1;
1484
1485 /*
1486 * Initialize the receive buffer list.
1487 */
1488 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1489 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1490 rxmap = FXP_RXMAP_GET(sc);
1491 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1492 printf("%s: unable to allocate or map rx "
1493 "buffer %d, error = %d\n",
1494 sc->sc_dev.dv_xname,
1495 sc->sc_rxq.ifq_len, error);
1496 /*
1497 * XXX Should attempt to run with fewer receive
1498 * XXX buffers instead of just failing.
1499 */
1500 FXP_RXMAP_PUT(sc, rxmap);
1501 fxp_rxdrain(sc);
1502 goto out;
1503 }
1504 }
1505 sc->sc_rxidle = 0;
1506
1507 /*
1508 * Give the transmit ring to the chip. We do this by pointing
1509 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1510 * issuing a start command. It will execute the NOP and then
1511 * suspend, pointing at the first descriptor.
1512 */
1513 fxp_scb_wait(sc);
1514 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1515 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1516
1517 /*
1518 * Initialize receiver buffer area - RFA.
1519 */
1520 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1521 fxp_scb_wait(sc);
1522 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1523 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1524 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1525
1526 if (sc->sc_flags & FXPF_MII) {
1527 /*
1528 * Set current media.
1529 */
1530 mii_mediachg(&sc->sc_mii);
1531 }
1532
1533 /*
1534 * ...all done!
1535 */
1536 ifp->if_flags |= IFF_RUNNING;
1537 ifp->if_flags &= ~IFF_OACTIVE;
1538
1539 /*
1540 * Start the one second timer.
1541 */
1542 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1543
1544 /*
1545 * Attempt to start output on the interface.
1546 */
1547 fxp_start(ifp);
1548
1549 out:
1550 if (error)
1551 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1552 return (error);
1553 }
1554
1555 /*
1556 * Change media according to request.
1557 */
1558 int
1559 fxp_mii_mediachange(ifp)
1560 struct ifnet *ifp;
1561 {
1562 struct fxp_softc *sc = ifp->if_softc;
1563
1564 if (ifp->if_flags & IFF_UP)
1565 mii_mediachg(&sc->sc_mii);
1566 return (0);
1567 }
1568
1569 /*
1570 * Notify the world which media we're using.
1571 */
1572 void
1573 fxp_mii_mediastatus(ifp, ifmr)
1574 struct ifnet *ifp;
1575 struct ifmediareq *ifmr;
1576 {
1577 struct fxp_softc *sc = ifp->if_softc;
1578
1579 if(sc->sc_enabled == 0) {
1580 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1581 ifmr->ifm_status = 0;
1582 return;
1583 }
1584
1585 mii_pollstat(&sc->sc_mii);
1586 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1587 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1588 }
1589
1590 int
1591 fxp_80c24_mediachange(ifp)
1592 struct ifnet *ifp;
1593 {
1594
1595 /* Nothing to do here. */
1596 return (0);
1597 }
1598
1599 void
1600 fxp_80c24_mediastatus(ifp, ifmr)
1601 struct ifnet *ifp;
1602 struct ifmediareq *ifmr;
1603 {
1604 struct fxp_softc *sc = ifp->if_softc;
1605
1606 /*
1607 * Media is currently-selected media. We cannot determine
1608 * the link status.
1609 */
1610 ifmr->ifm_status = 0;
1611 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1612 }
1613
1614 /*
1615 * Add a buffer to the end of the RFA buffer list.
1616 * Return 0 if successful, error code on failure.
1617 *
1618 * The RFA struct is stuck at the beginning of mbuf cluster and the
1619 * data pointer is fixed up to point just past it.
1620 */
1621 int
1622 fxp_add_rfabuf(sc, rxmap, unload)
1623 struct fxp_softc *sc;
1624 bus_dmamap_t rxmap;
1625 int unload;
1626 {
1627 struct mbuf *m;
1628 int error;
1629
1630 MGETHDR(m, M_DONTWAIT, MT_DATA);
1631 if (m == NULL)
1632 return (ENOBUFS);
1633
1634 MCLGET(m, M_DONTWAIT);
1635 if ((m->m_flags & M_EXT) == 0) {
1636 m_freem(m);
1637 return (ENOBUFS);
1638 }
1639
1640 if (unload)
1641 bus_dmamap_unload(sc->sc_dmat, rxmap);
1642
1643 M_SETCTX(m, rxmap);
1644
1645 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1646 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1647 if (error) {
1648 printf("%s: can't load rx DMA map %d, error = %d\n",
1649 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1650 panic("fxp_add_rfabuf"); /* XXX */
1651 }
1652
1653 FXP_INIT_RFABUF(sc, m);
1654
1655 return (0);
1656 }
1657
1658 volatile int
1659 fxp_mdi_read(self, phy, reg)
1660 struct device *self;
1661 int phy;
1662 int reg;
1663 {
1664 struct fxp_softc *sc = (struct fxp_softc *)self;
1665 int count = 10000;
1666 int value;
1667
1668 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1669 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1670
1671 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1672 && count--)
1673 DELAY(10);
1674
1675 if (count <= 0)
1676 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1677
1678 return (value & 0xffff);
1679 }
1680
1681 void
1682 fxp_statchg(self)
1683 struct device *self;
1684 {
1685
1686 /* Nothing to do. */
1687 }
1688
1689 void
1690 fxp_mdi_write(self, phy, reg, value)
1691 struct device *self;
1692 int phy;
1693 int reg;
1694 int value;
1695 {
1696 struct fxp_softc *sc = (struct fxp_softc *)self;
1697 int count = 10000;
1698
1699 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1700 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1701 (value & 0xffff));
1702
1703 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1704 count--)
1705 DELAY(10);
1706
1707 if (count <= 0)
1708 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1709 }
1710
1711 int
1712 fxp_ioctl(ifp, command, data)
1713 struct ifnet *ifp;
1714 u_long command;
1715 caddr_t data;
1716 {
1717 struct fxp_softc *sc = ifp->if_softc;
1718 struct ifreq *ifr = (struct ifreq *)data;
1719 struct ifaddr *ifa = (struct ifaddr *)data;
1720 int s, error = 0;
1721
1722 s = splnet();
1723
1724 switch (command) {
1725 case SIOCSIFADDR:
1726 if ((error = fxp_enable(sc)) != 0)
1727 break;
1728 ifp->if_flags |= IFF_UP;
1729
1730 switch (ifa->ifa_addr->sa_family) {
1731 #ifdef INET
1732 case AF_INET:
1733 if ((error = fxp_init(sc)) != 0)
1734 break;
1735 arp_ifinit(ifp, ifa);
1736 break;
1737 #endif /* INET */
1738 #ifdef NS
1739 case AF_NS:
1740 {
1741 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1742
1743 if (ns_nullhost(*ina))
1744 ina->x_host = *(union ns_host *)
1745 LLADDR(ifp->if_sadl);
1746 else
1747 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1748 ifp->if_addrlen);
1749 /* Set new address. */
1750 error = fxp_init(sc);
1751 break;
1752 }
1753 #endif /* NS */
1754 default:
1755 error = fxp_init(sc);
1756 break;
1757 }
1758 break;
1759
1760 case SIOCSIFMTU:
1761 if (ifr->ifr_mtu > ETHERMTU)
1762 error = EINVAL;
1763 else
1764 ifp->if_mtu = ifr->ifr_mtu;
1765 break;
1766
1767 case SIOCSIFFLAGS:
1768 if ((ifp->if_flags & IFF_UP) == 0 &&
1769 (ifp->if_flags & IFF_RUNNING) != 0) {
1770 /*
1771 * If interface is marked down and it is running, then
1772 * stop it.
1773 */
1774 fxp_stop(sc, 1);
1775 fxp_disable(sc);
1776 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1777 (ifp->if_flags & IFF_RUNNING) == 0) {
1778 /*
1779 * If interface is marked up and it is stopped, then
1780 * start it.
1781 */
1782 if((error = fxp_enable(sc)) != 0)
1783 break;
1784 error = fxp_init(sc);
1785 } else if ((ifp->if_flags & IFF_UP) != 0) {
1786 /*
1787 * Reset the interface to pick up change in any other
1788 * flags that affect the hardware state.
1789 */
1790 if((error = fxp_enable(sc)) != 0)
1791 break;
1792 error = fxp_init(sc);
1793 }
1794 break;
1795
1796 case SIOCADDMULTI:
1797 case SIOCDELMULTI:
1798 if(sc->sc_enabled == 0) {
1799 error = EIO;
1800 break;
1801 }
1802 error = (command == SIOCADDMULTI) ?
1803 ether_addmulti(ifr, &sc->sc_ethercom) :
1804 ether_delmulti(ifr, &sc->sc_ethercom);
1805
1806 if (error == ENETRESET) {
1807 /*
1808 * Multicast list has changed; set the hardware
1809 * filter accordingly.
1810 */
1811 if (sc->sc_txpending) {
1812 sc->sc_flags |= FXPF_WANTINIT;
1813 error = 0;
1814 } else
1815 error = fxp_init(sc);
1816 }
1817 break;
1818
1819 case SIOCSIFMEDIA:
1820 case SIOCGIFMEDIA:
1821 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1822 break;
1823
1824 default:
1825 error = EINVAL;
1826 break;
1827 }
1828
1829 splx(s);
1830 return (error);
1831 }
1832
1833 /*
1834 * Program the multicast filter.
1835 *
1836 * This function must be called at splnet().
1837 */
1838 void
1839 fxp_mc_setup(sc)
1840 struct fxp_softc *sc;
1841 {
1842 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1843 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1844 struct ethercom *ec = &sc->sc_ethercom;
1845 struct ether_multi *enm;
1846 struct ether_multistep step;
1847 int count, nmcasts;
1848
1849 #ifdef DIAGNOSTIC
1850 if (sc->sc_txpending)
1851 panic("fxp_mc_setup: pending transmissions");
1852 #endif
1853
1854 ifp->if_flags &= ~IFF_ALLMULTI;
1855
1856 /*
1857 * Initialize multicast setup descriptor.
1858 */
1859 nmcasts = 0;
1860 ETHER_FIRST_MULTI(step, ec, enm);
1861 while (enm != NULL) {
1862 /*
1863 * Check for too many multicast addresses or if we're
1864 * listening to a range. Either way, we simply have
1865 * to accept all multicasts.
1866 */
1867 if (nmcasts >= MAXMCADDR ||
1868 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1869 ETHER_ADDR_LEN) != 0) {
1870 /*
1871 * Callers of this function must do the
1872 * right thing with this. If we're called
1873 * from outside fxp_init(), the caller must
1874 * detect if the state if IFF_ALLMULTI changes.
1875 * If it does, the caller must then call
1876 * fxp_init(), since allmulti is handled by
1877 * the config block.
1878 */
1879 ifp->if_flags |= IFF_ALLMULTI;
1880 return;
1881 }
1882 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1883 ETHER_ADDR_LEN);
1884 nmcasts++;
1885 ETHER_NEXT_MULTI(step, enm);
1886 }
1887
1888 /* BIG_ENDIAN: no need to swap to store 0 */
1889 mcsp->cb_status = 0;
1890 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1891 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1892 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1893
1894 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1895
1896 /*
1897 * Wait until the command unit is not active. This should never
1898 * happen since nothing is queued, but make sure anyway.
1899 */
1900 count = 100;
1901 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1902 FXP_SCB_CUS_ACTIVE && --count)
1903 DELAY(1);
1904 if (count == 0) {
1905 printf("%s at line %d: command queue timeout\n",
1906 sc->sc_dev.dv_xname, __LINE__);
1907 return;
1908 }
1909
1910 /*
1911 * Start the multicast setup command/DMA.
1912 */
1913 fxp_scb_wait(sc);
1914 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1915 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1916
1917 /* ...and wait for it to complete. */
1918 count = 1000;
1919 do {
1920 FXP_CDMCSSYNC(sc,
1921 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1922 DELAY(1);
1923 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1924 if (count == 0) {
1925 printf("%s at line %d: dmasync timeout\n",
1926 sc->sc_dev.dv_xname, __LINE__);
1927 return;
1928 }
1929 }
1930
1931 int
1932 fxp_enable(sc)
1933 struct fxp_softc *sc;
1934 {
1935
1936 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1937 if ((*sc->sc_enable)(sc) != 0) {
1938 printf("%s: device enable failed\n",
1939 sc->sc_dev.dv_xname);
1940 return (EIO);
1941 }
1942 }
1943
1944 sc->sc_enabled = 1;
1945 return (0);
1946 }
1947
1948 void
1949 fxp_disable(sc)
1950 struct fxp_softc *sc;
1951 {
1952
1953 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1954 (*sc->sc_disable)(sc);
1955 sc->sc_enabled = 0;
1956 }
1957 }
1958
1959 /*
1960 * fxp_activate:
1961 *
1962 * Handle device activation/deactivation requests.
1963 */
1964 int
1965 fxp_activate(self, act)
1966 struct device *self;
1967 enum devact act;
1968 {
1969 struct fxp_softc *sc = (void *) self;
1970 int s, error = 0;
1971
1972 s = splnet();
1973 switch (act) {
1974 case DVACT_ACTIVATE:
1975 error = EOPNOTSUPP;
1976 break;
1977
1978 case DVACT_DEACTIVATE:
1979 if (sc->sc_flags & FXPF_MII)
1980 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1981 MII_OFFSET_ANY);
1982 if_deactivate(&sc->sc_ethercom.ec_if);
1983 break;
1984 }
1985 splx(s);
1986
1987 return (error);
1988 }
1989
1990 /*
1991 * fxp_detach:
1992 *
1993 * Detach an i82557 interface.
1994 */
1995 int
1996 fxp_detach(sc)
1997 struct fxp_softc *sc;
1998 {
1999 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2000 int i;
2001
2002 /* Succeed now if there's no work to do. */
2003 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2004 return (0);
2005
2006 /* Unhook our tick handler. */
2007 callout_stop(&sc->sc_callout);
2008
2009 if (sc->sc_flags & FXPF_MII) {
2010 /* Detach all PHYs */
2011 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2012 }
2013
2014 /* Delete all remaining media. */
2015 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2016
2017 #if NRND > 0
2018 rnd_detach_source(&sc->rnd_source);
2019 #endif
2020 #if NBPFILTER > 0
2021 bpfdetach(ifp);
2022 #endif
2023 ether_ifdetach(ifp);
2024 if_detach(ifp);
2025
2026 for (i = 0; i < FXP_NRFABUFS; i++) {
2027 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2028 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2029 }
2030
2031 for (i = 0; i < FXP_NTXCB; i++) {
2032 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2033 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2034 }
2035
2036 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2037 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2038 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2039 sizeof(struct fxp_control_data));
2040 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2041
2042 shutdownhook_disestablish(sc->sc_sdhook);
2043 powerhook_disestablish(sc->sc_powerhook);
2044
2045 return (0);
2046 }
2047