Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.34.2.3
      1 /*	$NetBSD: i82557.c,v 1.34.2.3 2001/05/06 15:04:55 he Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice unmodified, this list of conditions, and the following
     49  *    disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
     67  */
     68 
     69 /*
     70  * Device driver for the Intel i82557 fast Ethernet controller,
     71  * and its successors, the i82558 and i82559.
     72  */
     73 
     74 #include "opt_inet.h"
     75 #include "opt_ns.h"
     76 #include "bpfilter.h"
     77 #include "rnd.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/callout.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/kernel.h>
     85 #include <sys/socket.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/errno.h>
     88 #include <sys/device.h>
     89 
     90 #include <machine/endian.h>
     91 
     92 #include <vm/vm.h>		/* for PAGE_SIZE */
     93 
     94 #if NRND > 0
     95 #include <sys/rnd.h>
     96 #endif
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #if NBPFILTER > 0
    104 #include <net/bpf.h>
    105 #endif
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/if_inarp.h>
    110 #endif
    111 
    112 #ifdef NS
    113 #include <netns/ns.h>
    114 #include <netns/ns_if.h>
    115 #endif
    116 
    117 #include <machine/bus.h>
    118 #include <machine/intr.h>
    119 
    120 #include <dev/mii/miivar.h>
    121 
    122 #include <dev/ic/i82557reg.h>
    123 #include <dev/ic/i82557var.h>
    124 
    125 /*
    126  * NOTE!  On the Alpha, we have an alignment constraint.  The
    127  * card DMAs the packet immediately following the RFA.  However,
    128  * the first thing in the packet is a 14-byte Ethernet header.
    129  * This means that the packet is misaligned.  To compensate,
    130  * we actually offset the RFA 2 bytes into the cluster.  This
    131  * alignes the packet after the Ethernet header at a 32-bit
    132  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    133  */
    134 #define	RFA_ALIGNMENT_FUDGE	2
    135 
    136 /*
    137  * Template for default configuration parameters.
    138  * See struct fxp_cb_config for the bit definitions.
    139  */
    140 u_int8_t fxp_cb_config_template[] = {
    141 	0x0, 0x0,		/* cb_status */
    142 	0x80, 0x2,		/* cb_command */
    143 	0xff, 0xff, 0xff, 0xff,	/* link_addr */
    144 	0x16,	/*  0 */
    145 	0x8,	/*  1 */
    146 	0x0,	/*  2 */
    147 	0x0,	/*  3 */
    148 	0x0,	/*  4 */
    149 	0x80,	/*  5 */
    150 	0xb2,	/*  6 */
    151 	0x3,	/*  7 */
    152 	0x1,	/*  8 */
    153 	0x0,	/*  9 */
    154 	0x26,	/* 10 */
    155 	0x0,	/* 11 */
    156 	0x60,	/* 12 */
    157 	0x0,	/* 13 */
    158 	0xf2,	/* 14 */
    159 	0x48,	/* 15 */
    160 	0x0,	/* 16 */
    161 	0x40,	/* 17 */
    162 	0xf3,	/* 18 */
    163 	0x0,	/* 19 */
    164 	0x3f,	/* 20 */
    165 	0x5	/* 21 */
    166 };
    167 
    168 void	fxp_mii_initmedia __P((struct fxp_softc *));
    169 int	fxp_mii_mediachange __P((struct ifnet *));
    170 void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
    171 
    172 void	fxp_80c24_initmedia __P((struct fxp_softc *));
    173 int	fxp_80c24_mediachange __P((struct ifnet *));
    174 void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
    175 
    176 inline void fxp_scb_wait __P((struct fxp_softc *));
    177 
    178 void	fxp_start __P((struct ifnet *));
    179 int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
    180 int	fxp_init __P((struct fxp_softc *));
    181 void	fxp_rxdrain __P((struct fxp_softc *));
    182 void	fxp_stop __P((struct fxp_softc *, int));
    183 void	fxp_watchdog __P((struct ifnet *));
    184 int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
    185 int	fxp_mdi_read __P((struct device *, int, int));
    186 void	fxp_statchg __P((struct device *));
    187 void	fxp_mdi_write __P((struct device *, int, int, int));
    188 void	fxp_autosize_eeprom __P((struct fxp_softc*));
    189 void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
    190 void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
    191 void	fxp_tick __P((void *));
    192 void	fxp_mc_setup __P((struct fxp_softc *));
    193 
    194 void	fxp_shutdown __P((void *));
    195 void	fxp_power __P((int, void *));
    196 
    197 int	fxp_copy_small = 0;
    198 
    199 struct fxp_phytype {
    200 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    201 	void	(*fp_init) __P((struct fxp_softc *));
    202 } fxp_phytype_table[] = {
    203 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    204 	{ -1,				fxp_mii_initmedia },
    205 };
    206 
    207 /*
    208  * Set initial transmit threshold at 64 (512 bytes). This is
    209  * increased by 64 (512 bytes) at a time, to maximum of 192
    210  * (1536 bytes), if an underrun occurs.
    211  */
    212 static int tx_threshold = 64;
    213 
    214 /*
    215  * Wait for the previous command to be accepted (but not necessarily
    216  * completed).
    217  */
    218 inline void
    219 fxp_scb_wait(sc)
    220 	struct fxp_softc *sc;
    221 {
    222 	int i = 10000;
    223 
    224 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    225 		delay(2);
    226 	if (i == 0)
    227 		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    228 }
    229 
    230 /*
    231  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    232  */
    233 void
    234 fxp_attach(sc)
    235 	struct fxp_softc *sc;
    236 {
    237 	u_int8_t enaddr[6];
    238 	struct ifnet *ifp;
    239 	bus_dma_segment_t seg;
    240 	int rseg, i, error;
    241 	struct fxp_phytype *fp;
    242 
    243 	callout_init(&sc->sc_callout);
    244 
    245 	/*
    246 	 * Allocate the control data structures, and create and load the
    247 	 * DMA map for it.
    248 	 */
    249 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    250 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    251 	    0)) != 0) {
    252 		printf("%s: unable to allocate control data, error = %d\n",
    253 		    sc->sc_dev.dv_xname, error);
    254 		goto fail_0;
    255 	}
    256 
    257 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    258 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
    259 	    BUS_DMA_COHERENT)) != 0) {
    260 		printf("%s: unable to map control data, error = %d\n",
    261 		    sc->sc_dev.dv_xname, error);
    262 		goto fail_1;
    263 	}
    264 	sc->sc_cdseg = seg;
    265 	sc->sc_cdnseg = rseg;
    266 
    267 	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
    268 
    269 	if ((error = bus_dmamap_create(sc->sc_dmat,
    270 	    sizeof(struct fxp_control_data), 1,
    271 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    272 		printf("%s: unable to create control data DMA map, "
    273 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    274 		goto fail_2;
    275 	}
    276 
    277 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    278 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    279 	    0)) != 0) {
    280 		printf("%s: can't load control data DMA map, error = %d\n",
    281 		    sc->sc_dev.dv_xname, error);
    282 		goto fail_3;
    283 	}
    284 
    285 	/*
    286 	 * Create the transmit buffer DMA maps.
    287 	 */
    288 	for (i = 0; i < FXP_NTXCB; i++) {
    289 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    290 		    FXP_NTXSEG, MCLBYTES, 0, 0,
    291 		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    292 			printf("%s: unable to create tx DMA map %d, "
    293 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    294 			goto fail_4;
    295 		}
    296 	}
    297 
    298 	/*
    299 	 * Create the receive buffer DMA maps.
    300 	 */
    301 	for (i = 0; i < FXP_NRFABUFS; i++) {
    302 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    303 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    304 			printf("%s: unable to create rx DMA map %d, "
    305 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    306 			goto fail_5;
    307 		}
    308 	}
    309 
    310 	/* Initialize MAC address and media structures. */
    311 	fxp_get_info(sc, enaddr);
    312 
    313 	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
    314 	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
    315 
    316 	ifp = &sc->sc_ethercom.ec_if;
    317 
    318 	/*
    319 	 * Get info about our media interface, and initialize it.  Note
    320 	 * the table terminates itself with a phy of -1, indicating
    321 	 * that we're using MII.
    322 	 */
    323 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    324 		if (fp->fp_phy == sc->phy_primary_device)
    325 			break;
    326 	(*fp->fp_init)(sc);
    327 
    328 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    329 	ifp->if_softc = sc;
    330 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    331 	ifp->if_ioctl = fxp_ioctl;
    332 	ifp->if_start = fxp_start;
    333 	ifp->if_watchdog = fxp_watchdog;
    334 
    335 	/*
    336 	 * We can support 802.1Q VLAN-sized frames.
    337 	 */
    338 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    339 
    340 	/*
    341 	 * Attach the interface.
    342 	 */
    343 	if_attach(ifp);
    344 	ether_ifattach(ifp, enaddr);
    345 #if NBPFILTER > 0
    346 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    347 	    sizeof(struct ether_header));
    348 #endif
    349 #if NRND > 0
    350 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    351 	    RND_TYPE_NET, 0);
    352 #endif
    353 
    354 	/*
    355 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    356 	 * doing do could allow DMA to corrupt kernel memory during the
    357 	 * reboot before the driver initializes.
    358 	 */
    359 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    360 	if (sc->sc_sdhook == NULL)
    361 		printf("%s: WARNING: unable to establish shutdown hook\n",
    362 		    sc->sc_dev.dv_xname);
    363 	/*
    364   	 * Add suspend hook, for similar reasons..
    365 	 */
    366 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
    367 	if (sc->sc_powerhook == NULL)
    368 		printf("%s: WARNING: unable to establish power hook\n",
    369 		    sc->sc_dev.dv_xname);
    370 
    371 	/* The attach is successful. */
    372 	sc->sc_flags |= FXPF_ATTACHED;
    373 
    374 	return;
    375 
    376 	/*
    377 	 * Free any resources we've allocated during the failed attach
    378 	 * attempt.  Do this in reverse order and fall though.
    379 	 */
    380  fail_5:
    381 	for (i = 0; i < FXP_NRFABUFS; i++) {
    382 		if (sc->sc_rxmaps[i] != NULL)
    383 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    384 	}
    385  fail_4:
    386 	for (i = 0; i < FXP_NTXCB; i++) {
    387 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    388 			bus_dmamap_destroy(sc->sc_dmat,
    389 			    FXP_DSTX(sc, i)->txs_dmamap);
    390 	}
    391 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    392  fail_3:
    393 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    394  fail_2:
    395 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    396 	    sizeof(struct fxp_control_data));
    397  fail_1:
    398 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    399  fail_0:
    400 	return;
    401 }
    402 
    403 void
    404 fxp_mii_initmedia(sc)
    405 	struct fxp_softc *sc;
    406 {
    407 
    408 	sc->sc_flags |= FXPF_MII;
    409 
    410 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    411 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    412 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    413 	sc->sc_mii.mii_statchg = fxp_statchg;
    414 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
    415 	    fxp_mii_mediastatus);
    416 	/*
    417 	 * The i82557 wedges if all of its PHYs are isolated!
    418 	 */
    419 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    420 	    MII_OFFSET_ANY, MIIF_NOISOLATE);
    421 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    422 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    423 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    424 	} else
    425 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    426 }
    427 
    428 void
    429 fxp_80c24_initmedia(sc)
    430 	struct fxp_softc *sc;
    431 {
    432 
    433 	/*
    434 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    435 	 * doesn't have a programming interface of any sort.  The
    436 	 * media is sensed automatically based on how the link partner
    437 	 * is configured.  This is, in essence, manual configuration.
    438 	 */
    439 	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    440 	    sc->sc_dev.dv_xname);
    441 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    442 	    fxp_80c24_mediastatus);
    443 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    444 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    445 }
    446 
    447 /*
    448  * Device shutdown routine. Called at system shutdown after sync. The
    449  * main purpose of this routine is to shut off receiver DMA so that
    450  * kernel memory doesn't get clobbered during warmboot.
    451  */
    452 void
    453 fxp_shutdown(arg)
    454 	void *arg;
    455 {
    456 	struct fxp_softc *sc = arg;
    457 
    458 	/*
    459 	 * Since the system's going to halt shortly, don't bother
    460 	 * freeing mbufs.
    461 	 */
    462 	fxp_stop(sc, 0);
    463 }
    464 /*
    465  * Power handler routine. Called when the system is transitioning
    466  * into/out of power save modes.  As with fxp_shutdown, the main
    467  * purpose of this routine is to shut off receiver DMA so it doesn't
    468  * clobber kernel memory at the wrong time.
    469  */
    470 void
    471 fxp_power(why, arg)
    472 	int why;
    473 	void *arg;
    474 {
    475 	struct fxp_softc *sc = arg;
    476 	struct ifnet *ifp;
    477 	int s;
    478 
    479 	s = splnet();
    480 	switch (why) {
    481 	case PWR_SUSPEND:
    482 	case PWR_STANDBY:
    483 		fxp_stop(sc, 0);
    484 		break;
    485 	case PWR_RESUME:
    486 		ifp = &sc->sc_ethercom.ec_if;
    487 		if (ifp->if_flags & IFF_UP)
    488 			fxp_init(sc);
    489 		break;
    490 	case PWR_SOFTSUSPEND:
    491 	case PWR_SOFTSTANDBY:
    492 	case PWR_SOFTRESUME:
    493 		break;
    494 	}
    495 	splx(s);
    496 }
    497 
    498 /*
    499  * Initialize the interface media.
    500  */
    501 void
    502 fxp_get_info(sc, enaddr)
    503 	struct fxp_softc *sc;
    504 	u_int8_t *enaddr;
    505 {
    506 	u_int16_t data, myea[3];
    507 
    508 	/*
    509 	 * Reset to a stable state.
    510 	 */
    511 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    512 	DELAY(10);
    513 
    514 	sc->sc_eeprom_size = 0;
    515 	fxp_autosize_eeprom(sc);
    516 	if(sc->sc_eeprom_size == 0) {
    517 	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
    518 	    sc->sc_eeprom_size = 6; /* XXX panic here? */
    519 	}
    520 #ifdef DEBUG
    521 	printf("%s: detected %d word EEPROM\n",
    522 	       sc->sc_dev.dv_xname,
    523 	       1 << sc->sc_eeprom_size);
    524 #endif
    525 
    526 	/*
    527 	 * Get info about the primary PHY
    528 	 */
    529 	fxp_read_eeprom(sc, &data, 6, 1);
    530 	sc->phy_primary_addr = data & 0xff;
    531 	sc->phy_primary_device = (data >> 8) & 0x3f;
    532 	sc->phy_10Mbps_only = data >> 15;
    533 
    534 	/*
    535 	 * Read MAC address.
    536 	 */
    537 	fxp_read_eeprom(sc, myea, 0, 3);
    538 	enaddr[0] = myea[0] & 0xff;
    539 	enaddr[1] = myea[0] >> 8;
    540 	enaddr[2] = myea[1] & 0xff;
    541 	enaddr[3] = myea[1] >> 8;
    542 	enaddr[4] = myea[2] & 0xff;
    543 	enaddr[5] = myea[2] >> 8;
    544 }
    545 
    546 /*
    547  * Figure out EEPROM size.
    548  *
    549  * 559's can have either 64-word or 256-word EEPROMs, the 558
    550  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    551  * talks about the existance of 16 to 256 word EEPROMs.
    552  *
    553  * The only known sizes are 64 and 256, where the 256 version is used
    554  * by CardBus cards to store CIS information.
    555  *
    556  * The address is shifted in msb-to-lsb, and after the last
    557  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    558  * after which follows the actual data. We try to detect this zero, by
    559  * probing the data-out bit in the EEPROM control register just after
    560  * having shifted in a bit. If the bit is zero, we assume we've
    561  * shifted enough address bits. The data-out should be tri-state,
    562  * before this, which should translate to a logical one.
    563  *
    564  * Other ways to do this would be to try to read a register with known
    565  * contents with a varying number of address bits, but no such
    566  * register seem to be available. The high bits of register 10 are 01
    567  * on the 558 and 559, but apparently not on the 557.
    568  *
    569  * The Linux driver computes a checksum on the EEPROM data, but the
    570  * value of this checksum is not very well documented.
    571  */
    572 
    573 void
    574 fxp_autosize_eeprom(sc)
    575 	struct fxp_softc *sc;
    576 {
    577 	u_int16_t reg;
    578 	int x;
    579 
    580 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    581 	/*
    582 	 * Shift in read opcode.
    583 	 */
    584 	for (x = 3; x > 0; x--) {
    585 		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    586 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    587 		} else {
    588 			reg = FXP_EEPROM_EECS;
    589 		}
    590 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    591 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    592 			    reg | FXP_EEPROM_EESK);
    593 		DELAY(4);
    594 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    595 		DELAY(4);
    596 	}
    597 	/*
    598 	 * Shift in address, wait for the dummy zero following a correct
    599 	 * address shift.
    600 	 */
    601 	for (x = 1; x <=  8; x++) {
    602 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    603 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    604 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    605 		DELAY(4);
    606 		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    607 		    FXP_EEPROM_EEDO) == 0)
    608 			break;
    609 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    610 		DELAY(4);
    611 	}
    612 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    613 	DELAY(4);
    614 	if(x != 6 && x != 8) {
    615 #ifdef DEBUG
    616 		printf("%s: strange EEPROM size (%d)\n",
    617 		       sc->sc_dev.dv_xname, 1 << x);
    618 #endif
    619 	} else
    620 		sc->sc_eeprom_size = x;
    621 }
    622 
    623 /*
    624  * Read from the serial EEPROM. Basically, you manually shift in
    625  * the read opcode (one bit at a time) and then shift in the address,
    626  * and then you shift out the data (all of this one bit at a time).
    627  * The word size is 16 bits, so you have to provide the address for
    628  * every 16 bits of data.
    629  */
    630 void
    631 fxp_read_eeprom(sc, data, offset, words)
    632 	struct fxp_softc *sc;
    633 	u_int16_t *data;
    634 	int offset;
    635 	int words;
    636 {
    637 	u_int16_t reg;
    638 	int i, x;
    639 
    640 	for (i = 0; i < words; i++) {
    641 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    642 		/*
    643 		 * Shift in read opcode.
    644 		 */
    645 		for (x = 3; x > 0; x--) {
    646 			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    647 				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    648 			} else {
    649 				reg = FXP_EEPROM_EECS;
    650 			}
    651 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    652 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    653 			    reg | FXP_EEPROM_EESK);
    654 			DELAY(4);
    655 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    656 			DELAY(4);
    657 		}
    658 		/*
    659 		 * Shift in address.
    660 		 */
    661 		for (x = sc->sc_eeprom_size; x > 0; x--) {
    662 			if ((i + offset) & (1 << (x - 1))) {
    663 			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    664 			} else {
    665 			    reg = FXP_EEPROM_EECS;
    666 			}
    667 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    668 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    669 			    reg | FXP_EEPROM_EESK);
    670 			DELAY(4);
    671 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    672 			DELAY(4);
    673 		}
    674 		reg = FXP_EEPROM_EECS;
    675 		data[i] = 0;
    676 		/*
    677 		 * Shift out data.
    678 		 */
    679 		for (x = 16; x > 0; x--) {
    680 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    681 			    reg | FXP_EEPROM_EESK);
    682 			DELAY(4);
    683 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    684 			    FXP_EEPROM_EEDO)
    685 				data[i] |= (1 << (x - 1));
    686 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    687 			DELAY(4);
    688 		}
    689 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    690 		DELAY(4);
    691 	}
    692 }
    693 
    694 /*
    695  * Start packet transmission on the interface.
    696  */
    697 void
    698 fxp_start(ifp)
    699 	struct ifnet *ifp;
    700 {
    701 	struct fxp_softc *sc = ifp->if_softc;
    702 	struct mbuf *m0, *m;
    703 	struct fxp_cb_tx *txd;
    704 	struct fxp_txsoft *txs;
    705 	struct fxp_tbdlist *tbd;
    706 	bus_dmamap_t dmamap;
    707 	int error, lasttx, nexttx, opending, seg;
    708 
    709 	/*
    710 	 * If we want a re-init, bail out now.
    711 	 */
    712 	if (sc->sc_flags & FXPF_WANTINIT) {
    713 		ifp->if_flags |= IFF_OACTIVE;
    714 		return;
    715 	}
    716 
    717 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    718 		return;
    719 
    720 	/*
    721 	 * Remember the previous txpending and the current lasttx.
    722 	 */
    723 	opending = sc->sc_txpending;
    724 	lasttx = sc->sc_txlast;
    725 
    726 	/*
    727 	 * Loop through the send queue, setting up transmit descriptors
    728 	 * until we drain the queue, or use up all available transmit
    729 	 * descriptors.
    730 	 */
    731 	while (sc->sc_txpending < FXP_NTXCB) {
    732 		/*
    733 		 * Grab a packet off the queue.
    734 		 */
    735 		IF_DEQUEUE(&ifp->if_snd, m0);
    736 		if (m0 == NULL)
    737 			break;
    738 
    739 		/*
    740 		 * Get the next available transmit descriptor.
    741 		 */
    742 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    743 		txd = FXP_CDTX(sc, nexttx);
    744 		tbd = FXP_CDTBD(sc, nexttx);
    745 		txs = FXP_DSTX(sc, nexttx);
    746 		dmamap = txs->txs_dmamap;
    747 
    748 		/*
    749 		 * Load the DMA map.  If this fails, the packet either
    750 		 * didn't fit in the allotted number of frags, or we were
    751 		 * short on resources.  In this case, we'll copy and try
    752 		 * again.
    753 		 */
    754 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    755 		    BUS_DMA_NOWAIT) != 0) {
    756 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    757 			if (m == NULL) {
    758 				printf("%s: unable to allocate Tx mbuf\n",
    759 				    sc->sc_dev.dv_xname);
    760 				IF_PREPEND(&ifp->if_snd, m0);
    761 				break;
    762 			}
    763 			if (m0->m_pkthdr.len > MHLEN) {
    764 				MCLGET(m, M_DONTWAIT);
    765 				if ((m->m_flags & M_EXT) == 0) {
    766 					printf("%s: unable to allocate Tx "
    767 					    "cluster\n", sc->sc_dev.dv_xname);
    768 					m_freem(m);
    769 					IF_PREPEND(&ifp->if_snd, m0);
    770 					break;
    771 				}
    772 			}
    773 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    774 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    775 			m_freem(m0);
    776 			m0 = m;
    777 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    778 			    m0, BUS_DMA_NOWAIT);
    779 			if (error) {
    780 				printf("%s: unable to load Tx buffer, "
    781 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    782 				IF_PREPEND(&ifp->if_snd, m0);
    783 				break;
    784 			}
    785 		}
    786 
    787 		/* Initialize the fraglist. */
    788 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    789 			tbd->tbd_d[seg].tb_addr =
    790 			    htole32(dmamap->dm_segs[seg].ds_addr);
    791 			tbd->tbd_d[seg].tb_size =
    792 			    htole32(dmamap->dm_segs[seg].ds_len);
    793 		}
    794 
    795 		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
    796 
    797 		/* Sync the DMA map. */
    798 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    799 		    BUS_DMASYNC_PREWRITE);
    800 
    801 		/*
    802 		 * Store a pointer to the packet so we can free it later.
    803 		 */
    804 		txs->txs_mbuf = m0;
    805 
    806 		/*
    807 		 * Initialize the transmit descriptor.
    808 		 */
    809 		/* BIG_ENDIAN: no need to swap to store 0 */
    810 		txd->cb_status = 0;
    811 		txd->cb_command =
    812 		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
    813 		txd->tx_threshold = tx_threshold;
    814 		txd->tbd_number = dmamap->dm_nsegs;
    815 
    816 		FXP_CDTXSYNC(sc, nexttx,
    817 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    818 
    819 		/* Advance the tx pointer. */
    820 		sc->sc_txpending++;
    821 		sc->sc_txlast = nexttx;
    822 
    823 #if NBPFILTER > 0
    824 		/*
    825 		 * Pass packet to bpf if there is a listener.
    826 		 */
    827 		if (ifp->if_bpf)
    828 			bpf_mtap(ifp->if_bpf, m0);
    829 #endif
    830 	}
    831 
    832 	if (sc->sc_txpending == FXP_NTXCB) {
    833 		/* No more slots; notify upper layer. */
    834 		ifp->if_flags |= IFF_OACTIVE;
    835 	}
    836 
    837 	if (sc->sc_txpending != opending) {
    838 		/*
    839 		 * We enqueued packets.  If the transmitter was idle,
    840 		 * reset the txdirty pointer.
    841 		 */
    842 		if (opending == 0)
    843 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
    844 
    845 		/*
    846 		 * Cause the chip to interrupt and suspend command
    847 		 * processing once the last packet we've enqueued
    848 		 * has been transmitted.
    849 		 */
    850 		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
    851 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
    852 		FXP_CDTXSYNC(sc, sc->sc_txlast,
    853 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    854 
    855 		/*
    856 		 * The entire packet chain is set up.  Clear the suspend bit
    857 		 * on the command prior to the first packet we set up.
    858 		 */
    859 		FXP_CDTXSYNC(sc, lasttx,
    860 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    861 		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
    862 		FXP_CDTXSYNC(sc, lasttx,
    863 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    864 
    865 		/*
    866 		 * Issue a Resume command in case the chip was suspended.
    867 		 */
    868 		fxp_scb_wait(sc);
    869 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
    870 
    871 		/* Set a watchdog timer in case the chip flakes out. */
    872 		ifp->if_timer = 5;
    873 	}
    874 }
    875 
    876 /*
    877  * Process interface interrupts.
    878  */
    879 int
    880 fxp_intr(arg)
    881 	void *arg;
    882 {
    883 	struct fxp_softc *sc = arg;
    884 	struct ethercom *ec = &sc->sc_ethercom;
    885 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    886 	struct fxp_cb_tx *txd;
    887 	struct fxp_txsoft *txs;
    888 	struct mbuf *m, *m0;
    889 	bus_dmamap_t rxmap;
    890 	struct fxp_rfa *rfa;
    891 	struct ether_header *eh;
    892 	int i, claimed = 0;
    893 	u_int16_t len, rxstat, txstat;
    894 	u_int8_t statack;
    895 
    896 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
    897 		return (0);
    898 	/*
    899 	 * If the interface isn't running, don't try to
    900 	 * service the interrupt.. just ack it and bail.
    901 	 */
    902 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
    903 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
    904 		if (statack) {
    905 			claimed = 1;
    906 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    907 		}
    908 		return (claimed);
    909 	}
    910 
    911 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
    912 		claimed = 1;
    913 
    914 		/*
    915 		 * First ACK all the interrupts in this pass.
    916 		 */
    917 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    918 
    919 		/*
    920 		 * Process receiver interrupts. If a no-resource (RNR)
    921 		 * condition exists, get whatever packets we can and
    922 		 * re-start the receiver.
    923 		 */
    924 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
    925  rcvloop:
    926 			m = sc->sc_rxq.ifq_head;
    927 			rfa = FXP_MTORFA(m);
    928 			rxmap = M_GETCTX(m, bus_dmamap_t);
    929 
    930 			FXP_RFASYNC(sc, m,
    931 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    932 
    933 			rxstat = le16toh(rfa->rfa_status);
    934 
    935 			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
    936 				/*
    937 				 * We have processed all of the
    938 				 * receive buffers.
    939 				 */
    940 				FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
    941 				goto do_transmit;
    942 			}
    943 
    944 			IF_DEQUEUE(&sc->sc_rxq, m);
    945 
    946 			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
    947 
    948 			len = le16toh(rfa->actual_size) &
    949 			    (m->m_ext.ext_size - 1);
    950 
    951 			if (len < sizeof(struct ether_header)) {
    952 				/*
    953 				 * Runt packet; drop it now.
    954 				 */
    955 				FXP_INIT_RFABUF(sc, m);
    956 				goto rcvloop;
    957 			}
    958 
    959 			/*
    960 			 * If support for 802.1Q VLAN sized frames is
    961 			 * enabled, we need to do some additional error
    962 			 * checking (as we are saving bad frames, in
    963 			 * order to receive the larger ones).
    964 			 */
    965 			if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
    966 			    (rxstat & (FXP_RFA_STATUS_OVERRUN|
    967 				       FXP_RFA_STATUS_RNR|
    968 				       FXP_RFA_STATUS_ALIGN|
    969 				       FXP_RFA_STATUS_CRC)) != 0) {
    970 				FXP_INIT_RFABUF(sc, m);
    971 				goto rcvloop;
    972 			}
    973 
    974 			/*
    975 			 * If the packet is small enough to fit in a
    976 			 * single header mbuf, allocate one and copy
    977 			 * the data into it.  This greatly reduces
    978 			 * memory consumption when we receive lots
    979 			 * of small packets.
    980 			 *
    981 			 * Otherwise, we add a new buffer to the receive
    982 			 * chain.  If this fails, we drop the packet and
    983 			 * recycle the old buffer.
    984 			 */
    985 			if (fxp_copy_small != 0 && len <= MHLEN) {
    986 				MGETHDR(m0, M_DONTWAIT, MT_DATA);
    987 				if (m == NULL)
    988 					goto dropit;
    989 				memcpy(mtod(m0, caddr_t),
    990 				    mtod(m, caddr_t), len);
    991 				FXP_INIT_RFABUF(sc, m);
    992 				m = m0;
    993 			} else {
    994 				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
    995  dropit:
    996 					ifp->if_ierrors++;
    997 					FXP_INIT_RFABUF(sc, m);
    998 					goto rcvloop;
    999 				}
   1000 			}
   1001 
   1002 			m->m_pkthdr.rcvif = ifp;
   1003 			m->m_pkthdr.len = m->m_len = len;
   1004 			eh = mtod(m, struct ether_header *);
   1005 
   1006 #if NBPFILTER > 0
   1007 			/*
   1008 			 * Pass this up to any BPF listeners, but only
   1009 			 * pass it up the stack it its for us.
   1010 			 */
   1011 			if (ifp->if_bpf) {
   1012 				bpf_mtap(ifp->if_bpf, m);
   1013 
   1014 				if ((ifp->if_flags & IFF_PROMISC) != 0 &&
   1015 				    (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
   1016 				    (eh->ether_dhost[0] & 1) == 0) {
   1017 					m_freem(m);
   1018 					goto rcvloop;
   1019 				}
   1020 			}
   1021 #endif /* NBPFILTER > 0 */
   1022 
   1023 			/* Pass it on. */
   1024 			(*ifp->if_input)(ifp, m);
   1025 			goto rcvloop;
   1026 		}
   1027 
   1028  do_transmit:
   1029 		if (statack & FXP_SCB_STATACK_RNR) {
   1030 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1031 			fxp_scb_wait(sc);
   1032 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1033 			    rxmap->dm_segs[0].ds_addr +
   1034 			    RFA_ALIGNMENT_FUDGE);
   1035 			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
   1036 			    FXP_SCB_COMMAND_RU_START);
   1037 		}
   1038 
   1039 		/*
   1040 		 * Free any finished transmit mbuf chains.
   1041 		 */
   1042 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1043 			ifp->if_flags &= ~IFF_OACTIVE;
   1044 			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1045 			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1046 				txd = FXP_CDTX(sc, i);
   1047 				txs = FXP_DSTX(sc, i);
   1048 
   1049 				FXP_CDTXSYNC(sc, i,
   1050 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1051 
   1052 				txstat = le16toh(txd->cb_status);
   1053 
   1054 				if ((txstat & FXP_CB_STATUS_C) == 0)
   1055 					break;
   1056 
   1057 				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
   1058 
   1059 				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1060 				    0, txs->txs_dmamap->dm_mapsize,
   1061 				    BUS_DMASYNC_POSTWRITE);
   1062 				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1063 				m_freem(txs->txs_mbuf);
   1064 				txs->txs_mbuf = NULL;
   1065 			}
   1066 
   1067 			/* Update the dirty transmit buffer pointer. */
   1068 			sc->sc_txdirty = i;
   1069 
   1070 			/*
   1071 			 * Cancel the watchdog timer if there are no pending
   1072 			 * transmissions.
   1073 			 */
   1074 			if (sc->sc_txpending == 0) {
   1075 				ifp->if_timer = 0;
   1076 
   1077 				/*
   1078 				 * If we want a re-init, do that now.
   1079 				 */
   1080 				if (sc->sc_flags & FXPF_WANTINIT)
   1081 					(void) fxp_init(sc);
   1082 			}
   1083 
   1084 			/*
   1085 			 * Try to get more packets going.
   1086 			 */
   1087 			fxp_start(ifp);
   1088 		}
   1089 	}
   1090 
   1091 #if NRND > 0
   1092 	if (claimed)
   1093 		rnd_add_uint32(&sc->rnd_source, statack);
   1094 #endif
   1095 	return (claimed);
   1096 }
   1097 
   1098 /*
   1099  * Update packet in/out/collision statistics. The i82557 doesn't
   1100  * allow you to access these counters without doing a fairly
   1101  * expensive DMA to get _all_ of the statistics it maintains, so
   1102  * we do this operation here only once per second. The statistics
   1103  * counters in the kernel are updated from the previous dump-stats
   1104  * DMA and then a new dump-stats DMA is started. The on-chip
   1105  * counters are zeroed when the DMA completes. If we can't start
   1106  * the DMA immediately, we don't wait - we just prepare to read
   1107  * them again next time.
   1108  */
   1109 void
   1110 fxp_tick(arg)
   1111 	void *arg;
   1112 {
   1113 	struct fxp_softc *sc = arg;
   1114 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1115 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1116 	int s;
   1117 
   1118 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1119 		return;
   1120 
   1121 	s = splnet();
   1122 
   1123 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1124 
   1125 	ifp->if_opackets += le32toh(sp->tx_good);
   1126 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1127 	if (sp->rx_good) {
   1128 		ifp->if_ipackets += le32toh(sp->rx_good);
   1129 		sc->sc_rxidle = 0;
   1130 	} else {
   1131 		sc->sc_rxidle++;
   1132 	}
   1133 	ifp->if_ierrors +=
   1134 	    le32toh(sp->rx_crc_errors) +
   1135 	    le32toh(sp->rx_alignment_errors) +
   1136 	    le32toh(sp->rx_rnr_errors) +
   1137 	    le32toh(sp->rx_overrun_errors);
   1138 	/*
   1139 	 * If any transmit underruns occured, bump up the transmit
   1140 	 * threshold by another 512 bytes (64 * 8).
   1141 	 */
   1142 	if (sp->tx_underruns) {
   1143 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1144 		if (tx_threshold < 192)
   1145 			tx_threshold += 64;
   1146 	}
   1147 
   1148 	/*
   1149 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
   1150 	 * then assume the receiver has locked up and attempt to clear
   1151 	 * the condition by reprogramming the multicast filter (actually,
   1152 	 * resetting the interface). This is a work-around for a bug in
   1153 	 * the 82557 where the receiver locks up if it gets certain types
   1154 	 * of garbage in the syncronization bits prior to the packet header.
   1155 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1156 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1157 	 * speed transition).
   1158 	 */
   1159 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1160 		(void) fxp_init(sc);
   1161 		splx(s);
   1162 		return;
   1163 	}
   1164 	/*
   1165 	 * If there is no pending command, start another stats
   1166 	 * dump. Otherwise punt for now.
   1167 	 */
   1168 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1169 		/*
   1170 		 * Start another stats dump.
   1171 		 */
   1172 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1173 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
   1174 		    FXP_SCB_COMMAND_CU_DUMPRESET);
   1175 	} else {
   1176 		/*
   1177 		 * A previous command is still waiting to be accepted.
   1178 		 * Just zero our copy of the stats and wait for the
   1179 		 * next timer event to update them.
   1180 		 */
   1181 		/* BIG_ENDIAN: no swap required to store 0 */
   1182 		sp->tx_good = 0;
   1183 		sp->tx_underruns = 0;
   1184 		sp->tx_total_collisions = 0;
   1185 
   1186 		sp->rx_good = 0;
   1187 		sp->rx_crc_errors = 0;
   1188 		sp->rx_alignment_errors = 0;
   1189 		sp->rx_rnr_errors = 0;
   1190 		sp->rx_overrun_errors = 0;
   1191 	}
   1192 
   1193 	if (sc->sc_flags & FXPF_MII) {
   1194 		/* Tick the MII clock. */
   1195 		mii_tick(&sc->sc_mii);
   1196 	}
   1197 
   1198 	splx(s);
   1199 
   1200 	/*
   1201 	 * Schedule another timeout one second from now.
   1202 	 */
   1203 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1204 }
   1205 
   1206 /*
   1207  * Drain the receive queue.
   1208  */
   1209 void
   1210 fxp_rxdrain(sc)
   1211 	struct fxp_softc *sc;
   1212 {
   1213 	bus_dmamap_t rxmap;
   1214 	struct mbuf *m;
   1215 
   1216 	for (;;) {
   1217 		IF_DEQUEUE(&sc->sc_rxq, m);
   1218 		if (m == NULL)
   1219 			break;
   1220 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1221 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1222 		FXP_RXMAP_PUT(sc, rxmap);
   1223 		m_freem(m);
   1224 	}
   1225 }
   1226 
   1227 /*
   1228  * Stop the interface. Cancels the statistics updater and resets
   1229  * the interface.
   1230  */
   1231 void
   1232 fxp_stop(sc, drain)
   1233 	struct fxp_softc *sc;
   1234 	int drain;
   1235 {
   1236 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1237 	struct fxp_txsoft *txs;
   1238 	int i;
   1239 
   1240 	/*
   1241 	 * Turn down interface (done early to avoid bad interactions
   1242 	 * between panics, shutdown hooks, and the watchdog timer)
   1243 	 */
   1244 	ifp->if_timer = 0;
   1245 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1246 
   1247 	/*
   1248 	 * Cancel stats updater.
   1249 	 */
   1250 	callout_stop(&sc->sc_callout);
   1251 	if (sc->sc_flags & FXPF_MII) {
   1252 		/* Down the MII. */
   1253 		mii_down(&sc->sc_mii);
   1254 	}
   1255 
   1256 	/*
   1257 	 * Issue software reset
   1258 	 */
   1259 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
   1260 	DELAY(10);
   1261 
   1262 	/*
   1263 	 * Release any xmit buffers.
   1264 	 */
   1265 	for (i = 0; i < FXP_NTXCB; i++) {
   1266 		txs = FXP_DSTX(sc, i);
   1267 		if (txs->txs_mbuf != NULL) {
   1268 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1269 			m_freem(txs->txs_mbuf);
   1270 			txs->txs_mbuf = NULL;
   1271 		}
   1272 	}
   1273 	sc->sc_txpending = 0;
   1274 
   1275 	if (drain) {
   1276 		/*
   1277 		 * Release the receive buffers.
   1278 		 */
   1279 		fxp_rxdrain(sc);
   1280 	}
   1281 
   1282 }
   1283 
   1284 /*
   1285  * Watchdog/transmission transmit timeout handler. Called when a
   1286  * transmission is started on the interface, but no interrupt is
   1287  * received before the timeout. This usually indicates that the
   1288  * card has wedged for some reason.
   1289  */
   1290 void
   1291 fxp_watchdog(ifp)
   1292 	struct ifnet *ifp;
   1293 {
   1294 	struct fxp_softc *sc = ifp->if_softc;
   1295 
   1296 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1297 	ifp->if_oerrors++;
   1298 
   1299 	(void) fxp_init(sc);
   1300 }
   1301 
   1302 /*
   1303  * Initialize the interface.  Must be called at splnet().
   1304  */
   1305 int
   1306 fxp_init(sc)
   1307 	struct fxp_softc *sc;
   1308 {
   1309 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1310 	struct fxp_cb_config *cbp;
   1311 	struct fxp_cb_ias *cb_ias;
   1312 	struct fxp_cb_tx *txd;
   1313 	bus_dmamap_t rxmap;
   1314 	int i, prm, save_bf, allm, error = 0;
   1315 
   1316 	/*
   1317 	 * Cancel any pending I/O
   1318 	 */
   1319 	fxp_stop(sc, 0);
   1320 
   1321 	/*
   1322 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1323 	 * flag, and this prevents the MII from detaching resulting in
   1324 	 * a panic. The flags field should perhaps be split in runtime
   1325 	 * flags and more static information. For now, just clear the
   1326 	 * only other flag set.
   1327 	 */
   1328 
   1329 	sc->sc_flags &= ~FXPF_WANTINIT;
   1330 
   1331 	/*
   1332 	 * Initialize base of CBL and RFA memory. Loading with zero
   1333 	 * sets it up for regular linear addressing.
   1334 	 */
   1335 	fxp_scb_wait(sc);
   1336 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1337 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
   1338 
   1339 	fxp_scb_wait(sc);
   1340 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
   1341 
   1342 	/*
   1343 	 * Initialize the multicast filter.  Do this now, since we might
   1344 	 * have to setup the config block differently.
   1345 	 */
   1346 	fxp_mc_setup(sc);
   1347 
   1348 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1349 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1350 
   1351 	/*
   1352 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1353 	 * enable "save bad frames", since they are 4 bytes larger than
   1354 	 * the normal Ethernet maximum frame length.
   1355 	 */
   1356 	save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
   1357 
   1358 	/*
   1359 	 * Initialize base of dump-stats buffer.
   1360 	 */
   1361 	fxp_scb_wait(sc);
   1362 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1363 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1364 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1365 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1366 
   1367 	cbp = &sc->sc_control_data->fcd_configcb;
   1368 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1369 
   1370 	/*
   1371 	 * This copy is kind of disgusting, but there are a bunch of must be
   1372 	 * zero and must be one bits in this structure and this is the easiest
   1373 	 * way to initialize them all to proper values.
   1374 	 */
   1375 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1376 
   1377 	/* BIG_ENDIAN: no need to swap to store 0 */
   1378 	cbp->cb_status =	0;
   1379 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1380 				    FXP_CB_COMMAND_EL);
   1381 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1382 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1383 	cbp->byte_count =	22;	/* (22) bytes to config */
   1384 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1385 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1386 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1387 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1388 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1389 	cbp->dma_bce =		0;	/* (disable) dma max counters */
   1390 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1391 	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
   1392 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1393 	cbp->save_bf =		save_bf;/* save bad frames */
   1394 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1395 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1396 	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
   1397 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1398 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1399 	cbp->loopback =		0;	/* (don't) loopback */
   1400 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1401 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1402 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1403 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1404 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1405 	cbp->crscdt =		0;	/* (CRS only) */
   1406 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1407 	cbp->padding =		1;	/* (do) pad short tx packets */
   1408 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1409 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1410 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1411 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1412 	cbp->mc_all =		allm;	/* accept all multicasts */
   1413 
   1414 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1415 
   1416 	/*
   1417 	 * Start the config command/DMA.
   1418 	 */
   1419 	fxp_scb_wait(sc);
   1420 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1421 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1422 	/* ...and wait for it to complete. */
   1423 	i = 1000;
   1424 	do {
   1425 		FXP_CDCONFIGSYNC(sc,
   1426 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1427 		DELAY(1);
   1428 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1429 	if (i == 0) {
   1430 		printf("%s at line %d: dmasync timeout\n",
   1431 		    sc->sc_dev.dv_xname, __LINE__);
   1432 		return ETIMEDOUT;
   1433 	}
   1434 
   1435 	/*
   1436 	 * Initialize the station address.
   1437 	 */
   1438 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1439 	/* BIG_ENDIAN: no need to swap to store 0 */
   1440 	cb_ias->cb_status = 0;
   1441 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1442 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1443 	cb_ias->link_addr = 0xffffffff;
   1444 	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1445 
   1446 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1447 
   1448 	/*
   1449 	 * Start the IAS (Individual Address Setup) command/DMA.
   1450 	 */
   1451 	fxp_scb_wait(sc);
   1452 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1453 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1454 	/* ...and wait for it to complete. */
   1455 	i = 1000;
   1456 	do {
   1457 		FXP_CDIASSYNC(sc,
   1458 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1459 		DELAY(1);
   1460 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1461 	if (i == 0) {
   1462 		printf("%s at line %d: dmasync timeout\n",
   1463 		    sc->sc_dev.dv_xname, __LINE__);
   1464 		return ETIMEDOUT;
   1465 	}
   1466 
   1467 	/*
   1468 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1469 	 * to the end of the list so that it will wrap around to the first
   1470 	 * descriptor when the first packet is transmitted.
   1471 	 */
   1472 	for (i = 0; i < FXP_NTXCB; i++) {
   1473 		txd = FXP_CDTX(sc, i);
   1474 		memset(txd, 0, sizeof(struct fxp_cb_tx));
   1475 		txd->cb_command =
   1476 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1477 		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
   1478 		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1479 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1480 	}
   1481 	sc->sc_txpending = 0;
   1482 	sc->sc_txdirty = 0;
   1483 	sc->sc_txlast = FXP_NTXCB - 1;
   1484 
   1485 	/*
   1486 	 * Initialize the receive buffer list.
   1487 	 */
   1488 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1489 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1490 		rxmap = FXP_RXMAP_GET(sc);
   1491 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1492 			printf("%s: unable to allocate or map rx "
   1493 			    "buffer %d, error = %d\n",
   1494 			    sc->sc_dev.dv_xname,
   1495 			    sc->sc_rxq.ifq_len, error);
   1496 			/*
   1497 			 * XXX Should attempt to run with fewer receive
   1498 			 * XXX buffers instead of just failing.
   1499 			 */
   1500 			FXP_RXMAP_PUT(sc, rxmap);
   1501 			fxp_rxdrain(sc);
   1502 			goto out;
   1503 		}
   1504 	}
   1505 	sc->sc_rxidle = 0;
   1506 
   1507 	/*
   1508 	 * Give the transmit ring to the chip.  We do this by pointing
   1509 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1510 	 * issuing a start command.  It will execute the NOP and then
   1511 	 * suspend, pointing at the first descriptor.
   1512 	 */
   1513 	fxp_scb_wait(sc);
   1514 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1515 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1516 
   1517 	/*
   1518 	 * Initialize receiver buffer area - RFA.
   1519 	 */
   1520 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1521 	fxp_scb_wait(sc);
   1522 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1523 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1524 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
   1525 
   1526 	if (sc->sc_flags & FXPF_MII) {
   1527 		/*
   1528 		 * Set current media.
   1529 		 */
   1530 		mii_mediachg(&sc->sc_mii);
   1531 	}
   1532 
   1533 	/*
   1534 	 * ...all done!
   1535 	 */
   1536 	ifp->if_flags |= IFF_RUNNING;
   1537 	ifp->if_flags &= ~IFF_OACTIVE;
   1538 
   1539 	/*
   1540 	 * Start the one second timer.
   1541 	 */
   1542 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1543 
   1544 	/*
   1545 	 * Attempt to start output on the interface.
   1546 	 */
   1547 	fxp_start(ifp);
   1548 
   1549  out:
   1550 	if (error)
   1551 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1552 	return (error);
   1553 }
   1554 
   1555 /*
   1556  * Change media according to request.
   1557  */
   1558 int
   1559 fxp_mii_mediachange(ifp)
   1560 	struct ifnet *ifp;
   1561 {
   1562 	struct fxp_softc *sc = ifp->if_softc;
   1563 
   1564 	if (ifp->if_flags & IFF_UP)
   1565 		mii_mediachg(&sc->sc_mii);
   1566 	return (0);
   1567 }
   1568 
   1569 /*
   1570  * Notify the world which media we're using.
   1571  */
   1572 void
   1573 fxp_mii_mediastatus(ifp, ifmr)
   1574 	struct ifnet *ifp;
   1575 	struct ifmediareq *ifmr;
   1576 {
   1577 	struct fxp_softc *sc = ifp->if_softc;
   1578 
   1579 	if(sc->sc_enabled == 0) {
   1580 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1581 		ifmr->ifm_status = 0;
   1582 		return;
   1583 	}
   1584 
   1585 	mii_pollstat(&sc->sc_mii);
   1586 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1587 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1588 }
   1589 
   1590 int
   1591 fxp_80c24_mediachange(ifp)
   1592 	struct ifnet *ifp;
   1593 {
   1594 
   1595 	/* Nothing to do here. */
   1596 	return (0);
   1597 }
   1598 
   1599 void
   1600 fxp_80c24_mediastatus(ifp, ifmr)
   1601 	struct ifnet *ifp;
   1602 	struct ifmediareq *ifmr;
   1603 {
   1604 	struct fxp_softc *sc = ifp->if_softc;
   1605 
   1606 	/*
   1607 	 * Media is currently-selected media.  We cannot determine
   1608 	 * the link status.
   1609 	 */
   1610 	ifmr->ifm_status = 0;
   1611 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1612 }
   1613 
   1614 /*
   1615  * Add a buffer to the end of the RFA buffer list.
   1616  * Return 0 if successful, error code on failure.
   1617  *
   1618  * The RFA struct is stuck at the beginning of mbuf cluster and the
   1619  * data pointer is fixed up to point just past it.
   1620  */
   1621 int
   1622 fxp_add_rfabuf(sc, rxmap, unload)
   1623 	struct fxp_softc *sc;
   1624 	bus_dmamap_t rxmap;
   1625 	int unload;
   1626 {
   1627 	struct mbuf *m;
   1628 	int error;
   1629 
   1630 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1631 	if (m == NULL)
   1632 		return (ENOBUFS);
   1633 
   1634 	MCLGET(m, M_DONTWAIT);
   1635 	if ((m->m_flags & M_EXT) == 0) {
   1636 		m_freem(m);
   1637 		return (ENOBUFS);
   1638 	}
   1639 
   1640 	if (unload)
   1641 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1642 
   1643 	M_SETCTX(m, rxmap);
   1644 
   1645 	error = bus_dmamap_load(sc->sc_dmat, rxmap,
   1646 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1647 	if (error) {
   1648 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1649 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   1650 		panic("fxp_add_rfabuf");		/* XXX */
   1651 	}
   1652 
   1653 	FXP_INIT_RFABUF(sc, m);
   1654 
   1655 	return (0);
   1656 }
   1657 
   1658 volatile int
   1659 fxp_mdi_read(self, phy, reg)
   1660 	struct device *self;
   1661 	int phy;
   1662 	int reg;
   1663 {
   1664 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1665 	int count = 10000;
   1666 	int value;
   1667 
   1668 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1669 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   1670 
   1671 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
   1672 	    && count--)
   1673 		DELAY(10);
   1674 
   1675 	if (count <= 0)
   1676 		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   1677 
   1678 	return (value & 0xffff);
   1679 }
   1680 
   1681 void
   1682 fxp_statchg(self)
   1683 	struct device *self;
   1684 {
   1685 
   1686 	/* Nothing to do. */
   1687 }
   1688 
   1689 void
   1690 fxp_mdi_write(self, phy, reg, value)
   1691 	struct device *self;
   1692 	int phy;
   1693 	int reg;
   1694 	int value;
   1695 {
   1696 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1697 	int count = 10000;
   1698 
   1699 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1700 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   1701 	    (value & 0xffff));
   1702 
   1703 	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   1704 	    count--)
   1705 		DELAY(10);
   1706 
   1707 	if (count <= 0)
   1708 		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   1709 }
   1710 
   1711 int
   1712 fxp_ioctl(ifp, command, data)
   1713 	struct ifnet *ifp;
   1714 	u_long command;
   1715 	caddr_t data;
   1716 {
   1717 	struct fxp_softc *sc = ifp->if_softc;
   1718 	struct ifreq *ifr = (struct ifreq *)data;
   1719 	struct ifaddr *ifa = (struct ifaddr *)data;
   1720 	int s, error = 0;
   1721 
   1722 	s = splnet();
   1723 
   1724 	switch (command) {
   1725 	case SIOCSIFADDR:
   1726 		if ((error = fxp_enable(sc)) != 0)
   1727 			break;
   1728 		ifp->if_flags |= IFF_UP;
   1729 
   1730 		switch (ifa->ifa_addr->sa_family) {
   1731 #ifdef INET
   1732 		case AF_INET:
   1733 			if ((error = fxp_init(sc)) != 0)
   1734 				break;
   1735 			arp_ifinit(ifp, ifa);
   1736 			break;
   1737 #endif /* INET */
   1738 #ifdef NS
   1739 		case AF_NS:
   1740 		    {
   1741 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1742 
   1743 			 if (ns_nullhost(*ina))
   1744 				ina->x_host = *(union ns_host *)
   1745 				    LLADDR(ifp->if_sadl);
   1746 			 else
   1747 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
   1748 				    ifp->if_addrlen);
   1749 			 /* Set new address. */
   1750 			 error = fxp_init(sc);
   1751 			 break;
   1752 		    }
   1753 #endif /* NS */
   1754 		default:
   1755 			error = fxp_init(sc);
   1756 			break;
   1757 		}
   1758 		break;
   1759 
   1760 	case SIOCSIFMTU:
   1761 		if (ifr->ifr_mtu > ETHERMTU)
   1762 			error = EINVAL;
   1763 		else
   1764 			ifp->if_mtu = ifr->ifr_mtu;
   1765 		break;
   1766 
   1767 	case SIOCSIFFLAGS:
   1768 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1769 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1770 			/*
   1771 			 * If interface is marked down and it is running, then
   1772 			 * stop it.
   1773 			 */
   1774 			fxp_stop(sc, 1);
   1775 			fxp_disable(sc);
   1776 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1777 		    (ifp->if_flags & IFF_RUNNING) == 0) {
   1778 			/*
   1779 			 * If interface is marked up and it is stopped, then
   1780 			 * start it.
   1781 			 */
   1782 			if((error = fxp_enable(sc)) != 0)
   1783 				break;
   1784 			error = fxp_init(sc);
   1785 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1786 			/*
   1787 			 * Reset the interface to pick up change in any other
   1788 			 * flags that affect the hardware state.
   1789 			 */
   1790 			if((error = fxp_enable(sc)) != 0)
   1791 				break;
   1792 			error = fxp_init(sc);
   1793 		}
   1794 		break;
   1795 
   1796 	case SIOCADDMULTI:
   1797 	case SIOCDELMULTI:
   1798 		if(sc->sc_enabled == 0) {
   1799 			error = EIO;
   1800 			break;
   1801 		}
   1802 		error = (command == SIOCADDMULTI) ?
   1803 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1804 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1805 
   1806 		if (error == ENETRESET) {
   1807 			/*
   1808 			 * Multicast list has changed; set the hardware
   1809 			 * filter accordingly.
   1810 			 */
   1811 			if (sc->sc_txpending) {
   1812 				sc->sc_flags |= FXPF_WANTINIT;
   1813 				error = 0;
   1814 			} else
   1815 				error = fxp_init(sc);
   1816 		}
   1817 		break;
   1818 
   1819 	case SIOCSIFMEDIA:
   1820 	case SIOCGIFMEDIA:
   1821 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
   1822 		break;
   1823 
   1824 	default:
   1825 		error = EINVAL;
   1826 		break;
   1827 	}
   1828 
   1829 	splx(s);
   1830 	return (error);
   1831 }
   1832 
   1833 /*
   1834  * Program the multicast filter.
   1835  *
   1836  * This function must be called at splnet().
   1837  */
   1838 void
   1839 fxp_mc_setup(sc)
   1840 	struct fxp_softc *sc;
   1841 {
   1842 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   1843 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1844 	struct ethercom *ec = &sc->sc_ethercom;
   1845 	struct ether_multi *enm;
   1846 	struct ether_multistep step;
   1847 	int count, nmcasts;
   1848 
   1849 #ifdef DIAGNOSTIC
   1850 	if (sc->sc_txpending)
   1851 		panic("fxp_mc_setup: pending transmissions");
   1852 #endif
   1853 
   1854 	ifp->if_flags &= ~IFF_ALLMULTI;
   1855 
   1856 	/*
   1857 	 * Initialize multicast setup descriptor.
   1858 	 */
   1859 	nmcasts = 0;
   1860 	ETHER_FIRST_MULTI(step, ec, enm);
   1861 	while (enm != NULL) {
   1862 		/*
   1863 		 * Check for too many multicast addresses or if we're
   1864 		 * listening to a range.  Either way, we simply have
   1865 		 * to accept all multicasts.
   1866 		 */
   1867 		if (nmcasts >= MAXMCADDR ||
   1868 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1869 		    ETHER_ADDR_LEN) != 0) {
   1870 			/*
   1871 			 * Callers of this function must do the
   1872 			 * right thing with this.  If we're called
   1873 			 * from outside fxp_init(), the caller must
   1874 			 * detect if the state if IFF_ALLMULTI changes.
   1875 			 * If it does, the caller must then call
   1876 			 * fxp_init(), since allmulti is handled by
   1877 			 * the config block.
   1878 			 */
   1879 			ifp->if_flags |= IFF_ALLMULTI;
   1880 			return;
   1881 		}
   1882 		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   1883 		    ETHER_ADDR_LEN);
   1884 		nmcasts++;
   1885 		ETHER_NEXT_MULTI(step, enm);
   1886 	}
   1887 
   1888 	/* BIG_ENDIAN: no need to swap to store 0 */
   1889 	mcsp->cb_status = 0;
   1890 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   1891 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   1892 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   1893 
   1894 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1895 
   1896 	/*
   1897 	 * Wait until the command unit is not active.  This should never
   1898 	 * happen since nothing is queued, but make sure anyway.
   1899 	 */
   1900 	count = 100;
   1901 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   1902 	    FXP_SCB_CUS_ACTIVE && --count)
   1903 		DELAY(1);
   1904 	if (count == 0) {
   1905 		printf("%s at line %d: command queue timeout\n",
   1906 		    sc->sc_dev.dv_xname, __LINE__);
   1907 		return;
   1908 	}
   1909 
   1910 	/*
   1911 	 * Start the multicast setup command/DMA.
   1912 	 */
   1913 	fxp_scb_wait(sc);
   1914 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   1915 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1916 
   1917 	/* ...and wait for it to complete. */
   1918 	count = 1000;
   1919 	do {
   1920 		FXP_CDMCSSYNC(sc,
   1921 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1922 		DELAY(1);
   1923 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   1924 	if (count == 0) {
   1925 		printf("%s at line %d: dmasync timeout\n",
   1926 		    sc->sc_dev.dv_xname, __LINE__);
   1927 		return;
   1928 	}
   1929 }
   1930 
   1931 int
   1932 fxp_enable(sc)
   1933 	struct fxp_softc *sc;
   1934 {
   1935 
   1936 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   1937 		if ((*sc->sc_enable)(sc) != 0) {
   1938 			printf("%s: device enable failed\n",
   1939 			    sc->sc_dev.dv_xname);
   1940 			return (EIO);
   1941 		}
   1942 	}
   1943 
   1944 	sc->sc_enabled = 1;
   1945 	return (0);
   1946 }
   1947 
   1948 void
   1949 fxp_disable(sc)
   1950 	struct fxp_softc *sc;
   1951 {
   1952 
   1953 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   1954 		(*sc->sc_disable)(sc);
   1955 		sc->sc_enabled = 0;
   1956 	}
   1957 }
   1958 
   1959 /*
   1960  * fxp_activate:
   1961  *
   1962  *	Handle device activation/deactivation requests.
   1963  */
   1964 int
   1965 fxp_activate(self, act)
   1966 	struct device *self;
   1967 	enum devact act;
   1968 {
   1969 	struct fxp_softc *sc = (void *) self;
   1970 	int s, error = 0;
   1971 
   1972 	s = splnet();
   1973 	switch (act) {
   1974 	case DVACT_ACTIVATE:
   1975 		error = EOPNOTSUPP;
   1976 		break;
   1977 
   1978 	case DVACT_DEACTIVATE:
   1979 		if (sc->sc_flags & FXPF_MII)
   1980 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   1981 			    MII_OFFSET_ANY);
   1982 		if_deactivate(&sc->sc_ethercom.ec_if);
   1983 		break;
   1984 	}
   1985 	splx(s);
   1986 
   1987 	return (error);
   1988 }
   1989 
   1990 /*
   1991  * fxp_detach:
   1992  *
   1993  *	Detach an i82557 interface.
   1994  */
   1995 int
   1996 fxp_detach(sc)
   1997 	struct fxp_softc *sc;
   1998 {
   1999 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2000 	int i;
   2001 
   2002 	/* Succeed now if there's no work to do. */
   2003 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2004 		return (0);
   2005 
   2006 	/* Unhook our tick handler. */
   2007 	callout_stop(&sc->sc_callout);
   2008 
   2009 	if (sc->sc_flags & FXPF_MII) {
   2010 		/* Detach all PHYs */
   2011 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2012 	}
   2013 
   2014 	/* Delete all remaining media. */
   2015 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2016 
   2017 #if NRND > 0
   2018 	rnd_detach_source(&sc->rnd_source);
   2019 #endif
   2020 #if NBPFILTER > 0
   2021 	bpfdetach(ifp);
   2022 #endif
   2023 	ether_ifdetach(ifp);
   2024 	if_detach(ifp);
   2025 
   2026 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2027 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2028 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2029 	}
   2030 
   2031 	for (i = 0; i < FXP_NTXCB; i++) {
   2032 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2033 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2034 	}
   2035 
   2036 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2037 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2038 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2039 	    sizeof(struct fxp_control_data));
   2040 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2041 
   2042 	shutdownhook_disestablish(sc->sc_sdhook);
   2043 	powerhook_disestablish(sc->sc_powerhook);
   2044 
   2045 	return (0);
   2046 }
   2047