i82557.c revision 1.34.2.4 1 /* $NetBSD: i82557.c,v 1.34.2.4 2002/06/06 19:41:07 he Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice unmodified, this list of conditions, and the following
50 * disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
68 */
69
70 /*
71 * Device driver for the Intel i82557 fast Ethernet controller,
72 * and its successors, the i82558 and i82559.
73 */
74
75 #include "opt_inet.h"
76 #include "opt_ns.h"
77 #include "bpfilter.h"
78 #include "rnd.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90
91 #include <machine/endian.h>
92
93 #include <vm/vm.h> /* for PAGE_SIZE */
94
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/if_inarp.h>
111 #endif
112
113 #ifdef NS
114 #include <netns/ns.h>
115 #include <netns/ns_if.h>
116 #endif
117
118 #include <machine/bus.h>
119 #include <machine/intr.h>
120
121 #include <dev/mii/miivar.h>
122
123 #include <dev/ic/i82557reg.h>
124 #include <dev/ic/i82557var.h>
125
126 /*
127 * NOTE! On the Alpha, we have an alignment constraint. The
128 * card DMAs the packet immediately following the RFA. However,
129 * the first thing in the packet is a 14-byte Ethernet header.
130 * This means that the packet is misaligned. To compensate,
131 * we actually offset the RFA 2 bytes into the cluster. This
132 * alignes the packet after the Ethernet header at a 32-bit
133 * boundary. HOWEVER! This means that the RFA is misaligned!
134 */
135 #define RFA_ALIGNMENT_FUDGE 2
136
137 /*
138 * The configuration byte map has several undefined fields which
139 * must be one or must be zero. Set up a template for these bits
140 * only (assuming an i82557 chip), leaving the actual configuration
141 * for fxp_init().
142 *
143 * See the definition of struct fxp_cb_config for the bit definitions.
144 */
145 const u_int8_t fxp_cb_config_template[] = {
146 0x0, 0x0, /* cb_status */
147 0x0, 0x0, /* cb_command */
148 0x0, 0x0, 0x0, 0x0, /* link_addr */
149 0x0, /* 0 */
150 0x0, /* 1 */
151 0x0, /* 2 */
152 0x0, /* 3 */
153 0x0, /* 4 */
154 0x0, /* 5 */
155 0x32, /* 6 */
156 0x0, /* 7 */
157 0x0, /* 8 */
158 0x0, /* 9 */
159 0x6, /* 10 */
160 0x0, /* 11 */
161 0x0, /* 12 */
162 0x0, /* 13 */
163 0xf2, /* 14 */
164 0x48, /* 15 */
165 0x0, /* 16 */
166 0x40, /* 17 */
167 0xf0, /* 18 */
168 0x0, /* 19 */
169 0x3f, /* 20 */
170 0x5, /* 21 */
171 0x0, /* 22 */
172 0x0, /* 23 */
173 0x0, /* 24 */
174 0x0, /* 25 */
175 0x0, /* 26 */
176 0x0, /* 27 */
177 0x0, /* 28 */
178 0x0, /* 29 */
179 0x0, /* 30 */
180 0x0, /* 31 */
181 };
182
183 void fxp_mii_initmedia(struct fxp_softc *);
184 int fxp_mii_mediachange(struct ifnet *);
185 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
186
187 void fxp_80c24_initmedia(struct fxp_softc *);
188 int fxp_80c24_mediachange(struct ifnet *);
189 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
190
191 void fxp_start(struct ifnet *);
192 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
193 void fxp_watchdog(struct ifnet *);
194 int fxp_init(struct fxp_softc *);
195 void fxp_stop(struct fxp_softc *, int);
196
197 void fxp_txintr(struct fxp_softc *);
198 void fxp_rxintr(struct fxp_softc *);
199
200 void fxp_rxdrain(struct fxp_softc *);
201 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
202 int fxp_mdi_read(struct device *, int, int);
203 void fxp_statchg(struct device *);
204 void fxp_mdi_write(struct device *, int, int, int);
205 void fxp_autosize_eeprom(struct fxp_softc*);
206 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
207 void fxp_write_eeprom(struct fxp_softc *, u_int16_t *, int, int);
208 void fxp_eeprom_update_cksum(struct fxp_softc *);
209 void fxp_get_info(struct fxp_softc *, u_int8_t *);
210 void fxp_tick(void *);
211 void fxp_mc_setup(struct fxp_softc *);
212
213 void fxp_shutdown(void *);
214 void fxp_power(int, void *);
215
216 int fxp_copy_small = 0;
217
218 struct fxp_phytype {
219 int fp_phy; /* type of PHY, -1 for MII at the end. */
220 void (*fp_init)(struct fxp_softc *);
221 } fxp_phytype_table[] = {
222 { FXP_PHY_80C24, fxp_80c24_initmedia },
223 { -1, fxp_mii_initmedia },
224 };
225
226 /*
227 * Set initial transmit threshold at 64 (512 bytes). This is
228 * increased by 64 (512 bytes) at a time, to maximum of 192
229 * (1536 bytes), if an underrun occurs.
230 */
231 static int tx_threshold = 64;
232
233 /*
234 * Wait for the previous command to be accepted (but not necessarily
235 * completed).
236 */
237 static __inline void
238 fxp_scb_wait(struct fxp_softc *sc)
239 {
240 int i = 10000;
241
242 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
243 delay(2);
244 if (i == 0)
245 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
246 }
247
248 /*
249 * Submit a command to the i82557.
250 */
251 static __inline void
252 fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd)
253 {
254
255 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
256 }
257
258 /*
259 * Finish attaching an i82557 interface. Called by bus-specific front-end.
260 */
261 void
262 fxp_attach(struct fxp_softc *sc)
263 {
264 u_int8_t enaddr[6];
265 struct ifnet *ifp;
266 bus_dma_segment_t seg;
267 int rseg, i, error;
268 struct fxp_phytype *fp;
269
270 callout_init(&sc->sc_callout);
271
272 /* Start out using the standard RFA. */
273 sc->sc_rfa_size = RFA_SIZE;
274
275 /*
276 * Enable some good stuff on i82558 and later.
277 */
278 if (sc->sc_rev >= FXP_REV_82558_A4) {
279 /* Enable the extended TxCB. */
280 sc->sc_flags |= FXPF_EXT_TXCB;
281 }
282
283 /*
284 * Allocate the control data structures, and create and load the
285 * DMA map for it.
286 */
287 if ((error = bus_dmamem_alloc(sc->sc_dmat,
288 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
289 0)) != 0) {
290 printf("%s: unable to allocate control data, error = %d\n",
291 sc->sc_dev.dv_xname, error);
292 goto fail_0;
293 }
294
295 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
296 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
297 BUS_DMA_COHERENT)) != 0) {
298 printf("%s: unable to map control data, error = %d\n",
299 sc->sc_dev.dv_xname, error);
300 goto fail_1;
301 }
302 sc->sc_cdseg = seg;
303 sc->sc_cdnseg = rseg;
304
305 memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
306
307 if ((error = bus_dmamap_create(sc->sc_dmat,
308 sizeof(struct fxp_control_data), 1,
309 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
310 printf("%s: unable to create control data DMA map, "
311 "error = %d\n", sc->sc_dev.dv_xname, error);
312 goto fail_2;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
316 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
317 0)) != 0) {
318 printf("%s: can't load control data DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail_3;
321 }
322
323 /*
324 * Create the transmit buffer DMA maps.
325 */
326 for (i = 0; i < FXP_NTXCB; i++) {
327 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
328 FXP_NTXSEG, MCLBYTES, 0, 0,
329 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
330 printf("%s: unable to create tx DMA map %d, "
331 "error = %d\n", sc->sc_dev.dv_xname, i, error);
332 goto fail_4;
333 }
334 }
335
336 /*
337 * Create the receive buffer DMA maps.
338 */
339 for (i = 0; i < FXP_NRFABUFS; i++) {
340 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
341 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
342 printf("%s: unable to create rx DMA map %d, "
343 "error = %d\n", sc->sc_dev.dv_xname, i, error);
344 goto fail_5;
345 }
346 }
347
348 /* Initialize MAC address and media structures. */
349 fxp_get_info(sc, enaddr);
350
351 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
352 ether_sprintf(enaddr));
353
354 ifp = &sc->sc_ethercom.ec_if;
355
356 /*
357 * Get info about our media interface, and initialize it. Note
358 * the table terminates itself with a phy of -1, indicating
359 * that we're using MII.
360 */
361 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
362 if (fp->fp_phy == sc->phy_primary_device)
363 break;
364 (*fp->fp_init)(sc);
365
366 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
367 ifp->if_softc = sc;
368 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 ifp->if_ioctl = fxp_ioctl;
370 ifp->if_start = fxp_start;
371 ifp->if_watchdog = fxp_watchdog;
372
373 /*
374 * We can support 802.1Q VLAN-sized frames.
375 */
376 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
377
378 /*
379 * Attach the interface.
380 */
381 if_attach(ifp);
382 ether_ifattach(ifp, enaddr);
383 #if NBPFILTER > 0
384 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
385 sizeof(struct ether_header));
386 #endif
387 #if NRND > 0
388 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
389 RND_TYPE_NET, 0);
390 #endif
391
392 #ifdef FXP_EVENT_COUNTERS
393 evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
394 NULL, sc->sc_dev.dv_xname, "txstall");
395 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
396 NULL, sc->sc_dev.dv_xname, "txintr");
397 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
398 NULL, sc->sc_dev.dv_xname, "rxintr");
399 #endif /* FXP_EVENT_COUNTERS */
400
401 /*
402 * Add shutdown hook so that DMA is disabled prior to reboot. Not
403 * doing do could allow DMA to corrupt kernel memory during the
404 * reboot before the driver initializes.
405 */
406 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
407 if (sc->sc_sdhook == NULL)
408 printf("%s: WARNING: unable to establish shutdown hook\n",
409 sc->sc_dev.dv_xname);
410 /*
411 * Add suspend hook, for similar reasons..
412 */
413 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
414 if (sc->sc_powerhook == NULL)
415 printf("%s: WARNING: unable to establish power hook\n",
416 sc->sc_dev.dv_xname);
417
418 /* The attach is successful. */
419 sc->sc_flags |= FXPF_ATTACHED;
420
421 return;
422
423 /*
424 * Free any resources we've allocated during the failed attach
425 * attempt. Do this in reverse order and fall though.
426 */
427 fail_5:
428 for (i = 0; i < FXP_NRFABUFS; i++) {
429 if (sc->sc_rxmaps[i] != NULL)
430 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
431 }
432 fail_4:
433 for (i = 0; i < FXP_NTXCB; i++) {
434 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
435 bus_dmamap_destroy(sc->sc_dmat,
436 FXP_DSTX(sc, i)->txs_dmamap);
437 }
438 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
439 fail_3:
440 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
441 fail_2:
442 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
443 sizeof(struct fxp_control_data));
444 fail_1:
445 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
446 fail_0:
447 return;
448 }
449
450 void
451 fxp_mii_initmedia(struct fxp_softc *sc)
452 {
453
454 sc->sc_flags |= FXPF_MII;
455
456 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
457 sc->sc_mii.mii_readreg = fxp_mdi_read;
458 sc->sc_mii.mii_writereg = fxp_mdi_write;
459 sc->sc_mii.mii_statchg = fxp_statchg;
460 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
461 fxp_mii_mediastatus);
462 /*
463 * The i82557 wedges if all of its PHYs are isolated!
464 */
465 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
466 MII_OFFSET_ANY, MIIF_NOISOLATE);
467 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
468 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
469 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
470 } else
471 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
472 }
473
474 void
475 fxp_80c24_initmedia(struct fxp_softc *sc)
476 {
477
478 /*
479 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
480 * doesn't have a programming interface of any sort. The
481 * media is sensed automatically based on how the link partner
482 * is configured. This is, in essence, manual configuration.
483 */
484 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
485 sc->sc_dev.dv_xname);
486 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
487 fxp_80c24_mediastatus);
488 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
489 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
490 }
491
492 /*
493 * Device shutdown routine. Called at system shutdown after sync. The
494 * main purpose of this routine is to shut off receiver DMA so that
495 * kernel memory doesn't get clobbered during warmboot.
496 */
497 void
498 fxp_shutdown(void *arg)
499 {
500 struct fxp_softc *sc = arg;
501
502 /*
503 * Since the system's going to halt shortly, don't bother
504 * freeing mbufs.
505 */
506 fxp_stop(sc, 0);
507 }
508 /*
509 * Power handler routine. Called when the system is transitioning
510 * into/out of power save modes. As with fxp_shutdown, the main
511 * purpose of this routine is to shut off receiver DMA so it doesn't
512 * clobber kernel memory at the wrong time.
513 */
514 void
515 fxp_power(int why, void *arg)
516 {
517 struct fxp_softc *sc = arg;
518 struct ifnet *ifp;
519 int s;
520
521 s = splnet();
522 switch (why) {
523 case PWR_SUSPEND:
524 case PWR_STANDBY:
525 fxp_stop(sc, 0);
526 break;
527 case PWR_RESUME:
528 ifp = &sc->sc_ethercom.ec_if;
529 if (ifp->if_flags & IFF_UP)
530 fxp_init(sc);
531 break;
532 case PWR_SOFTSUSPEND:
533 case PWR_SOFTSTANDBY:
534 case PWR_SOFTRESUME:
535 break;
536 }
537 splx(s);
538 }
539
540 /*
541 * Initialize the interface media.
542 */
543 void
544 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
545 {
546 u_int16_t data, myea[3];
547
548 /*
549 * Reset to a stable state.
550 */
551 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
552 DELAY(10);
553
554 sc->sc_eeprom_size = 0;
555 fxp_autosize_eeprom(sc);
556 if(sc->sc_eeprom_size == 0) {
557 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
558 sc->sc_eeprom_size = 6; /* XXX panic here? */
559 }
560 #ifdef DEBUG
561 printf("%s: detected %d word EEPROM\n",
562 sc->sc_dev.dv_xname,
563 1 << sc->sc_eeprom_size);
564 #endif
565
566 /*
567 * Get info about the primary PHY
568 */
569 fxp_read_eeprom(sc, &data, 6, 1);
570 sc->phy_primary_device =
571 (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
572
573 /*
574 * Read MAC address.
575 */
576 fxp_read_eeprom(sc, myea, 0, 3);
577 enaddr[0] = myea[0] & 0xff;
578 enaddr[1] = myea[0] >> 8;
579 enaddr[2] = myea[1] & 0xff;
580 enaddr[3] = myea[1] >> 8;
581 enaddr[4] = myea[2] & 0xff;
582 enaddr[5] = myea[2] >> 8;
583
584 /*
585 * Systems based on the ICH2/ICH2-M chip from Intel, as well
586 * as some i82559 designs, have a defect where the chip can
587 * cause a PCI protocol violation if it receives a CU_RESUME
588 * command when it is entering the IDLE state.
589 *
590 * The work-around is to disable Dynamic Standby Mode, so that
591 * the chip never deasserts #CLKRUN, and always remains in the
592 * active state.
593 *
594 * Unfortunately, the only way to disable Dynamic Standby is
595 * to frob an EEPROM setting and reboot (the EEPROM setting
596 * is only consulted when the PCI bus comes out of reset).
597 *
598 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
599 */
600 if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
601 fxp_read_eeprom(sc, &data, 10, 1);
602 if (data & 0x02) { /* STB enable */
603 printf("%s: WARNING: Disabling dynamic standby mode in EEPROM to work around a\n", sc->sc_dev.dv_xname);
604 printf("%s: WARNING: hardware bug. You must reset the system before using this\n", sc->sc_dev.dv_xname);
605 printf("%s: WARNING: interface.\n", sc->sc_dev.dv_xname);
606 data &= ~0x02;
607 fxp_write_eeprom(sc, &data, 10, 1);
608 printf("%s: new EEPROM ID: 0x%04x\n",
609 sc->sc_dev.dv_xname, data);
610 fxp_eeprom_update_cksum(sc);
611 }
612 }
613 }
614
615 static void
616 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
617 {
618 uint16_t reg;
619 int x;
620
621 for (x = 1 << (len - 1); x != 0; x >>= 1) {
622 if (data & x)
623 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
624 else
625 reg = FXP_EEPROM_EECS;
626 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
627 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
628 reg | FXP_EEPROM_EESK);
629 DELAY(4);
630 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
631 DELAY(4);
632 }
633 }
634
635 /*
636 * Figure out EEPROM size.
637 *
638 * 559's can have either 64-word or 256-word EEPROMs, the 558
639 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
640 * talks about the existance of 16 to 256 word EEPROMs.
641 *
642 * The only known sizes are 64 and 256, where the 256 version is used
643 * by CardBus cards to store CIS information.
644 *
645 * The address is shifted in msb-to-lsb, and after the last
646 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
647 * after which follows the actual data. We try to detect this zero, by
648 * probing the data-out bit in the EEPROM control register just after
649 * having shifted in a bit. If the bit is zero, we assume we've
650 * shifted enough address bits. The data-out should be tri-state,
651 * before this, which should translate to a logical one.
652 *
653 * Other ways to do this would be to try to read a register with known
654 * contents with a varying number of address bits, but no such
655 * register seem to be available. The high bits of register 10 are 01
656 * on the 558 and 559, but apparently not on the 557.
657 *
658 * The Linux driver computes a checksum on the EEPROM data, but the
659 * value of this checksum is not very well documented.
660 */
661
662 void
663 fxp_autosize_eeprom(struct fxp_softc *sc)
664 {
665 int x;
666
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
668
669 /* Shift in read opcode. */
670 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
671
672 /*
673 * Shift in address, wait for the dummy zero following a correct
674 * address shift.
675 */
676 for (x = 1; x <= 8; x++) {
677 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
678 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
679 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
680 DELAY(4);
681 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
682 FXP_EEPROM_EEDO) == 0)
683 break;
684 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
685 DELAY(4);
686 }
687 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
688 DELAY(4);
689 if(x != 6 && x != 8) {
690 #ifdef DEBUG
691 printf("%s: strange EEPROM size (%d)\n",
692 sc->sc_dev.dv_xname, 1 << x);
693 #endif
694 } else
695 sc->sc_eeprom_size = x;
696 }
697
698 /*
699 * Read from the serial EEPROM. Basically, you manually shift in
700 * the read opcode (one bit at a time) and then shift in the address,
701 * and then you shift out the data (all of this one bit at a time).
702 * The word size is 16 bits, so you have to provide the address for
703 * every 16 bits of data.
704 */
705 void
706 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
707 {
708 u_int16_t reg;
709 int i, x;
710
711 for (i = 0; i < words; i++) {
712 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
713
714 /* Shift in read opcode. */
715 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
716
717 /* Shift in address. */
718 fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
719
720 reg = FXP_EEPROM_EECS;
721 data[i] = 0;
722
723 /* Shift out data. */
724 for (x = 16; x > 0; x--) {
725 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
726 reg | FXP_EEPROM_EESK);
727 DELAY(4);
728 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
729 FXP_EEPROM_EEDO)
730 data[i] |= (1 << (x - 1));
731 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
732 DELAY(4);
733 }
734 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
735 DELAY(4);
736 }
737 }
738
739 /*
740 * Write data to the serial EEPROM.
741 */
742 void
743 fxp_write_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
744 {
745 int i, j;
746
747 for (i = 0; i < words; i++) {
748 /* Erase/write enable. */
749 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
750 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
751 fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
752 sc->sc_eeprom_size);
753 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
754 DELAY(4);
755
756 /* Shift in write opcode, address, data. */
757 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
758 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
759 fxp_eeprom_shiftin(sc, offset, sc->sc_eeprom_size);
760 fxp_eeprom_shiftin(sc, data[i], 16);
761 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
762 DELAY(4);
763
764 /* Wait for the EEPROM to finish up. */
765 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
766 DELAY(4);
767 for (j = 0; j < 1000; j++) {
768 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
769 FXP_EEPROM_EEDO)
770 break;
771 DELAY(50);
772 }
773 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
774 DELAY(4);
775
776 /* Erase/write disable. */
777 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
778 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
779 fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
780 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
781 DELAY(4);
782 }
783 }
784
785 /*
786 * Update the checksum of the EEPROM.
787 */
788 void
789 fxp_eeprom_update_cksum(struct fxp_softc *sc)
790 {
791 int i;
792 uint16_t data, cksum;
793
794 cksum = 0;
795 for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
796 fxp_read_eeprom(sc, &data, i, 1);
797 cksum += data;
798 }
799 i = (1 << sc->sc_eeprom_size) - 1;
800 cksum = 0xbaba - cksum;
801 fxp_read_eeprom(sc, &data, i, 1);
802 fxp_write_eeprom(sc, &cksum, i, 1);
803 printf("%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
804 sc->sc_dev.dv_xname, i, data, cksum);
805 }
806
807 /*
808 * Start packet transmission on the interface.
809 */
810 void
811 fxp_start(struct ifnet *ifp)
812 {
813 struct fxp_softc *sc = ifp->if_softc;
814 struct mbuf *m0, *m;
815 struct fxp_txdesc *txd;
816 struct fxp_txsoft *txs;
817 bus_dmamap_t dmamap;
818 int error, lasttx, nexttx, opending, seg;
819
820 /*
821 * If we want a re-init, bail out now.
822 */
823 if (sc->sc_flags & FXPF_WANTINIT) {
824 ifp->if_flags |= IFF_OACTIVE;
825 return;
826 }
827
828 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
829 return;
830
831 /*
832 * Remember the previous txpending and the current lasttx.
833 */
834 opending = sc->sc_txpending;
835 lasttx = sc->sc_txlast;
836
837 /*
838 * Loop through the send queue, setting up transmit descriptors
839 * until we drain the queue, or use up all available transmit
840 * descriptors.
841 */
842 for (;;) {
843 /*
844 * Grab a packet off the queue.
845 */
846 IF_DEQUEUE(&ifp->if_snd, m0);
847 if (m0 == NULL)
848 break;
849
850 if (sc->sc_txpending == FXP_NTXCB) {
851 FXP_EVCNT_INCR(&sc->sc_ev_txstall);
852 break;
853 }
854
855 /*
856 * Get the next available transmit descriptor.
857 */
858 nexttx = FXP_NEXTTX(sc->sc_txlast);
859 txd = FXP_CDTX(sc, nexttx);
860 txs = FXP_DSTX(sc, nexttx);
861 dmamap = txs->txs_dmamap;
862
863 /*
864 * Load the DMA map. If this fails, the packet either
865 * didn't fit in the allotted number of frags, or we were
866 * short on resources. In this case, we'll copy and try
867 * again.
868 */
869 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
870 BUS_DMA_NOWAIT) != 0) {
871 MGETHDR(m, M_DONTWAIT, MT_DATA);
872 if (m == NULL) {
873 printf("%s: unable to allocate Tx mbuf\n",
874 sc->sc_dev.dv_xname);
875 IF_PREPEND(&ifp->if_snd, m0);
876 break;
877 }
878 if (m0->m_pkthdr.len > MHLEN) {
879 MCLGET(m, M_DONTWAIT);
880 if ((m->m_flags & M_EXT) == 0) {
881 printf("%s: unable to allocate Tx "
882 "cluster\n", sc->sc_dev.dv_xname);
883 m_freem(m);
884 IF_PREPEND(&ifp->if_snd, m0);
885 break;
886 }
887 }
888 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
889 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
890 m_freem(m0);
891 m0 = m;
892 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
893 m0, BUS_DMA_NOWAIT);
894 if (error) {
895 printf("%s: unable to load Tx buffer, "
896 "error = %d\n", sc->sc_dev.dv_xname, error);
897 IF_PREPEND(&ifp->if_snd, m0);
898 break;
899 }
900 }
901
902 /* Initialize the fraglist. */
903 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
904 txd->txd_tbd[seg].tb_addr =
905 htole32(dmamap->dm_segs[seg].ds_addr);
906 txd->txd_tbd[seg].tb_size =
907 htole32(dmamap->dm_segs[seg].ds_len);
908 }
909
910 /* Sync the DMA map. */
911 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
912 BUS_DMASYNC_PREWRITE);
913
914 /*
915 * Store a pointer to the packet so we can free it later.
916 */
917 txs->txs_mbuf = m0;
918
919 /*
920 * Initialize the transmit descriptor.
921 */
922 /* BIG_ENDIAN: no need to swap to store 0 */
923 txd->txd_txcb.cb_status = 0;
924 txd->txd_txcb.cb_command =
925 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
926 txd->txd_txcb.tx_threshold = tx_threshold;
927 txd->txd_txcb.tbd_number = dmamap->dm_nsegs;
928
929 FXP_CDTXSYNC(sc, nexttx,
930 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
931
932 /* Advance the tx pointer. */
933 sc->sc_txpending++;
934 sc->sc_txlast = nexttx;
935
936 #if NBPFILTER > 0
937 /*
938 * Pass packet to bpf if there is a listener.
939 */
940 if (ifp->if_bpf)
941 bpf_mtap(ifp->if_bpf, m0);
942 #endif
943 }
944
945 if (sc->sc_txpending == FXP_NTXCB) {
946 /* No more slots; notify upper layer. */
947 ifp->if_flags |= IFF_OACTIVE;
948 }
949
950 if (sc->sc_txpending != opending) {
951 /*
952 * We enqueued packets. If the transmitter was idle,
953 * reset the txdirty pointer.
954 */
955 if (opending == 0)
956 sc->sc_txdirty = FXP_NEXTTX(lasttx);
957
958 /*
959 * Cause the chip to interrupt and suspend command
960 * processing once the last packet we've enqueued
961 * has been transmitted.
962 */
963 FXP_CDTX(sc, sc->sc_txlast)->txd_txcb.cb_command |=
964 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
965 FXP_CDTXSYNC(sc, sc->sc_txlast,
966 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
967
968 /*
969 * The entire packet chain is set up. Clear the suspend bit
970 * on the command prior to the first packet we set up.
971 */
972 FXP_CDTXSYNC(sc, lasttx,
973 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
974 FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
975 htole16(~FXP_CB_COMMAND_S);
976 FXP_CDTXSYNC(sc, lasttx,
977 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
978
979 /*
980 * Issue a Resume command in case the chip was suspended.
981 */
982 fxp_scb_wait(sc);
983 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
984
985 /* Set a watchdog timer in case the chip flakes out. */
986 ifp->if_timer = 5;
987 }
988 }
989
990 /*
991 * Process interface interrupts.
992 */
993 int
994 fxp_intr(void *arg)
995 {
996 struct fxp_softc *sc = arg;
997 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
998 bus_dmamap_t rxmap;
999 int claimed = 0;
1000 u_int8_t statack;
1001
1002 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1003 return (0);
1004 /*
1005 * If the interface isn't running, don't try to
1006 * service the interrupt.. just ack it and bail.
1007 */
1008 if ((ifp->if_flags & IFF_RUNNING) == 0) {
1009 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1010 if (statack) {
1011 claimed = 1;
1012 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1013 }
1014 return (claimed);
1015 }
1016
1017 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1018 claimed = 1;
1019
1020 /*
1021 * First ACK all the interrupts in this pass.
1022 */
1023 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1024
1025 /*
1026 * Process receiver interrupts. If a no-resource (RNR)
1027 * condition exists, get whatever packets we can and
1028 * re-start the receiver.
1029 */
1030 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1031 FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
1032 fxp_rxintr(sc);
1033 }
1034
1035 if (statack & FXP_SCB_STATACK_RNR) {
1036 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1037 fxp_scb_wait(sc);
1038 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1039 rxmap->dm_segs[0].ds_addr +
1040 RFA_ALIGNMENT_FUDGE);
1041 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1042 }
1043
1044 /*
1045 * Free any finished transmit mbuf chains.
1046 */
1047 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1048 FXP_EVCNT_INCR(&sc->sc_ev_txintr);
1049 fxp_txintr(sc);
1050
1051 /*
1052 * Try to get more packets going.
1053 */
1054 fxp_start(ifp);
1055
1056 if (sc->sc_txpending == 0) {
1057 /*
1058 * If we want a re-init, do that now.
1059 */
1060 if (sc->sc_flags & FXPF_WANTINIT)
1061 (void) fxp_init(sc);
1062 }
1063 }
1064 }
1065
1066 #if NRND > 0
1067 if (claimed)
1068 rnd_add_uint32(&sc->rnd_source, statack);
1069 #endif
1070 return (claimed);
1071 }
1072
1073 /*
1074 * Handle transmit completion interrupts.
1075 */
1076 void
1077 fxp_txintr(struct fxp_softc *sc)
1078 {
1079 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1080 struct fxp_txdesc *txd;
1081 struct fxp_txsoft *txs;
1082 int i;
1083 u_int16_t txstat;
1084
1085 ifp->if_flags &= ~IFF_OACTIVE;
1086 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1087 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1088 txd = FXP_CDTX(sc, i);
1089 txs = FXP_DSTX(sc, i);
1090
1091 FXP_CDTXSYNC(sc, i,
1092 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1093
1094 txstat = le16toh(txd->txd_txcb.cb_status);
1095
1096 if ((txstat & FXP_CB_STATUS_C) == 0)
1097 break;
1098
1099 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1100 0, txs->txs_dmamap->dm_mapsize,
1101 BUS_DMASYNC_POSTWRITE);
1102 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1103 m_freem(txs->txs_mbuf);
1104 txs->txs_mbuf = NULL;
1105 }
1106
1107 /* Update the dirty transmit buffer pointer. */
1108 sc->sc_txdirty = i;
1109
1110 /*
1111 * Cancel the watchdog timer if there are no pending
1112 * transmissions.
1113 */
1114 if (sc->sc_txpending == 0)
1115 ifp->if_timer = 0;
1116 }
1117
1118 /*
1119 * Handle receive interrupts.
1120 */
1121 void
1122 fxp_rxintr(struct fxp_softc *sc)
1123 {
1124 struct ethercom *ec = &sc->sc_ethercom;
1125 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1126 struct mbuf *m, *m0;
1127 bus_dmamap_t rxmap;
1128 struct fxp_rfa *rfa;
1129 struct ether_header *eh;
1130 u_int16_t len, rxstat;
1131
1132 for (;;) {
1133 m = sc->sc_rxq.ifq_head;
1134 rfa = FXP_MTORFA(m);
1135 rxmap = M_GETCTX(m, bus_dmamap_t);
1136
1137 FXP_RFASYNC(sc, m,
1138 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1139
1140 rxstat = le16toh(rfa->rfa_status);
1141
1142 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
1143 /*
1144 * We have processed all of the
1145 * receive buffers.
1146 */
1147 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
1148 return;
1149 }
1150
1151 IF_DEQUEUE(&sc->sc_rxq, m);
1152
1153 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
1154
1155 len = le16toh(rfa->actual_size) &
1156 (m->m_ext.ext_size - 1);
1157
1158 if (len < sizeof(struct ether_header)) {
1159 /*
1160 * Runt packet; drop it now.
1161 */
1162 FXP_INIT_RFABUF(sc, m);
1163 continue;
1164 }
1165
1166 /*
1167 * If support for 802.1Q VLAN sized frames is
1168 * enabled, we need to do some additional error
1169 * checking (as we are saving bad frames, in
1170 * order to receive the larger ones).
1171 */
1172 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
1173 (rxstat & (FXP_RFA_STATUS_OVERRUN|
1174 FXP_RFA_STATUS_RNR|
1175 FXP_RFA_STATUS_ALIGN|
1176 FXP_RFA_STATUS_CRC)) != 0) {
1177 FXP_INIT_RFABUF(sc, m);
1178 continue;
1179 }
1180
1181 /*
1182 * If the packet is small enough to fit in a
1183 * single header mbuf, allocate one and copy
1184 * the data into it. This greatly reduces
1185 * memory consumption when we receive lots
1186 * of small packets.
1187 *
1188 * Otherwise, we add a new buffer to the receive
1189 * chain. If this fails, we drop the packet and
1190 * recycle the old buffer.
1191 */
1192 if (fxp_copy_small != 0 && len <= MHLEN) {
1193 MGETHDR(m0, M_DONTWAIT, MT_DATA);
1194 if (m == NULL)
1195 goto dropit;
1196 memcpy(mtod(m0, caddr_t),
1197 mtod(m, caddr_t), len);
1198 FXP_INIT_RFABUF(sc, m);
1199 m = m0;
1200 } else {
1201 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
1202 dropit:
1203 ifp->if_ierrors++;
1204 FXP_INIT_RFABUF(sc, m);
1205 continue;
1206 }
1207 }
1208
1209 m->m_pkthdr.rcvif = ifp;
1210 m->m_pkthdr.len = m->m_len = len;
1211 eh = mtod(m, struct ether_header *);
1212
1213 #if NBPFILTER > 0
1214 /*
1215 * Pass this up to any BPF listeners, but only
1216 * pass it up the stack it its for us.
1217 */
1218 if (ifp->if_bpf) {
1219 bpf_mtap(ifp->if_bpf, m);
1220
1221 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1222 (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
1223 (eh->ether_dhost[0] & 1) == 0) {
1224 m_freem(m);
1225 continue;
1226 }
1227 }
1228 #endif
1229
1230 /* Pass it on. */
1231 (*ifp->if_input)(ifp, m);
1232 }
1233 }
1234
1235 /*
1236 * Update packet in/out/collision statistics. The i82557 doesn't
1237 * allow you to access these counters without doing a fairly
1238 * expensive DMA to get _all_ of the statistics it maintains, so
1239 * we do this operation here only once per second. The statistics
1240 * counters in the kernel are updated from the previous dump-stats
1241 * DMA and then a new dump-stats DMA is started. The on-chip
1242 * counters are zeroed when the DMA completes. If we can't start
1243 * the DMA immediately, we don't wait - we just prepare to read
1244 * them again next time.
1245 */
1246 void
1247 fxp_tick(void *arg)
1248 {
1249 struct fxp_softc *sc = arg;
1250 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1251 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1252 int s;
1253
1254 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1255 return;
1256
1257 s = splnet();
1258
1259 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1260
1261 ifp->if_opackets += le32toh(sp->tx_good);
1262 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1263 if (sp->rx_good) {
1264 ifp->if_ipackets += le32toh(sp->rx_good);
1265 sc->sc_rxidle = 0;
1266 } else {
1267 sc->sc_rxidle++;
1268 }
1269 ifp->if_ierrors +=
1270 le32toh(sp->rx_crc_errors) +
1271 le32toh(sp->rx_alignment_errors) +
1272 le32toh(sp->rx_rnr_errors) +
1273 le32toh(sp->rx_overrun_errors);
1274 /*
1275 * If any transmit underruns occurred, bump up the transmit
1276 * threshold by another 512 bytes (64 * 8).
1277 */
1278 if (sp->tx_underruns) {
1279 ifp->if_oerrors += le32toh(sp->tx_underruns);
1280 if (tx_threshold < 192)
1281 tx_threshold += 64;
1282 }
1283
1284 /*
1285 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1286 * then assume the receiver has locked up and attempt to clear
1287 * the condition by reprogramming the multicast filter (actually,
1288 * resetting the interface). This is a work-around for a bug in
1289 * the 82557 where the receiver locks up if it gets certain types
1290 * of garbage in the syncronization bits prior to the packet header.
1291 * This bug is supposed to only occur in 10Mbps mode, but has been
1292 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1293 * speed transition).
1294 */
1295 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1296 (void) fxp_init(sc);
1297 splx(s);
1298 return;
1299 }
1300 /*
1301 * If there is no pending command, start another stats
1302 * dump. Otherwise punt for now.
1303 */
1304 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1305 /*
1306 * Start another stats dump.
1307 */
1308 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1309 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1310 } else {
1311 /*
1312 * A previous command is still waiting to be accepted.
1313 * Just zero our copy of the stats and wait for the
1314 * next timer event to update them.
1315 */
1316 /* BIG_ENDIAN: no swap required to store 0 */
1317 sp->tx_good = 0;
1318 sp->tx_underruns = 0;
1319 sp->tx_total_collisions = 0;
1320
1321 sp->rx_good = 0;
1322 sp->rx_crc_errors = 0;
1323 sp->rx_alignment_errors = 0;
1324 sp->rx_rnr_errors = 0;
1325 sp->rx_overrun_errors = 0;
1326 }
1327
1328 if (sc->sc_flags & FXPF_MII) {
1329 /* Tick the MII clock. */
1330 mii_tick(&sc->sc_mii);
1331 }
1332
1333 splx(s);
1334
1335 /*
1336 * Schedule another timeout one second from now.
1337 */
1338 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1339 }
1340
1341 /*
1342 * Drain the receive queue.
1343 */
1344 void
1345 fxp_rxdrain(struct fxp_softc *sc)
1346 {
1347 bus_dmamap_t rxmap;
1348 struct mbuf *m;
1349
1350 for (;;) {
1351 IF_DEQUEUE(&sc->sc_rxq, m);
1352 if (m == NULL)
1353 break;
1354 rxmap = M_GETCTX(m, bus_dmamap_t);
1355 bus_dmamap_unload(sc->sc_dmat, rxmap);
1356 FXP_RXMAP_PUT(sc, rxmap);
1357 m_freem(m);
1358 }
1359 }
1360
1361 /*
1362 * Stop the interface. Cancels the statistics updater and resets
1363 * the interface.
1364 */
1365 void
1366 fxp_stop(struct fxp_softc *sc, int drain)
1367 {
1368 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1369 struct fxp_txsoft *txs;
1370 int i;
1371
1372 /*
1373 * Turn down interface (done early to avoid bad interactions
1374 * between panics, shutdown hooks, and the watchdog timer)
1375 */
1376 ifp->if_timer = 0;
1377 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1378
1379 /*
1380 * Cancel stats updater.
1381 */
1382 callout_stop(&sc->sc_callout);
1383 if (sc->sc_flags & FXPF_MII) {
1384 /* Down the MII. */
1385 mii_down(&sc->sc_mii);
1386 }
1387
1388 /*
1389 * Issue software reset
1390 */
1391 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1392 DELAY(10);
1393
1394 /*
1395 * Release any xmit buffers.
1396 */
1397 for (i = 0; i < FXP_NTXCB; i++) {
1398 txs = FXP_DSTX(sc, i);
1399 if (txs->txs_mbuf != NULL) {
1400 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1401 m_freem(txs->txs_mbuf);
1402 txs->txs_mbuf = NULL;
1403 }
1404 }
1405 sc->sc_txpending = 0;
1406
1407 if (drain) {
1408 /*
1409 * Release the receive buffers.
1410 */
1411 fxp_rxdrain(sc);
1412 }
1413
1414 }
1415
1416 /*
1417 * Watchdog/transmission transmit timeout handler. Called when a
1418 * transmission is started on the interface, but no interrupt is
1419 * received before the timeout. This usually indicates that the
1420 * card has wedged for some reason.
1421 */
1422 void
1423 fxp_watchdog(struct ifnet *ifp)
1424 {
1425 struct fxp_softc *sc = ifp->if_softc;
1426
1427 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1428 ifp->if_oerrors++;
1429
1430 (void) fxp_init(sc);
1431 }
1432
1433 /*
1434 * Initialize the interface. Must be called at splnet().
1435 */
1436 int
1437 fxp_init(struct fxp_softc *sc)
1438 {
1439 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1440 struct fxp_cb_config *cbp;
1441 struct fxp_cb_ias *cb_ias;
1442 struct fxp_txdesc *txd;
1443 bus_dmamap_t rxmap;
1444 int i, prm, save_bf, lrxen, allm, error = 0;
1445
1446 /*
1447 * Cancel any pending I/O
1448 */
1449 fxp_stop(sc, 0);
1450
1451 /*
1452 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1453 * flag, and this prevents the MII from detaching resulting in
1454 * a panic. The flags field should perhaps be split in runtime
1455 * flags and more static information. For now, just clear the
1456 * only other flag set.
1457 */
1458
1459 sc->sc_flags &= ~FXPF_WANTINIT;
1460
1461 /*
1462 * Initialize base of CBL and RFA memory. Loading with zero
1463 * sets it up for regular linear addressing.
1464 */
1465 fxp_scb_wait(sc);
1466 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1467 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1468
1469 fxp_scb_wait(sc);
1470 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1471
1472 /*
1473 * Initialize the multicast filter. Do this now, since we might
1474 * have to setup the config block differently.
1475 */
1476 fxp_mc_setup(sc);
1477
1478 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1479 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1480
1481 /*
1482 * In order to support receiving 802.1Q VLAN frames, we have to
1483 * enable "save bad frames", since they are 4 bytes larger than
1484 * the normal Ethernet maximum frame length. On i82558 and later,
1485 * we have a better mechanism for this.
1486 */
1487 save_bf = 0;
1488 lrxen = 0;
1489 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1490 if (sc->sc_rev < FXP_REV_82558_A4)
1491 save_bf = 1;
1492 else
1493 lrxen = 1;
1494 }
1495
1496 /*
1497 * Initialize base of dump-stats buffer.
1498 */
1499 fxp_scb_wait(sc);
1500 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1501 sc->sc_cddma + FXP_CDSTATSOFF);
1502 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1503 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1504
1505 cbp = &sc->sc_control_data->fcd_configcb;
1506 memset(cbp, 0, sizeof(struct fxp_cb_config));
1507
1508 /*
1509 * This copy is kind of disgusting, but there are a bunch of must be
1510 * zero and must be one bits in this structure and this is the easiest
1511 * way to initialize them all to proper values.
1512 */
1513 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1514
1515 /* BIG_ENDIAN: no need to swap to store 0 */
1516 cbp->cb_status = 0;
1517 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1518 FXP_CB_COMMAND_EL);
1519 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1520 cbp->link_addr = 0xffffffff; /* (no) next command */
1521 /* bytes in config block */
1522 cbp->byte_count = FXP_CONFIG_LEN;
1523 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1524 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1525 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1526 cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
1527 cbp->type_enable = 0; /* actually reserved */
1528 cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
1529 cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
1530 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1531 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1532 cbp->dma_mbce = 0; /* (disable) dma max counters */
1533 cbp->late_scb = 0; /* (don't) defer SCB update */
1534 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1535 cbp->ci_int = 1; /* interrupt on CU idle */
1536 cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
1537 cbp->ext_stats_dis = 1; /* disable extended counters */
1538 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1539 cbp->save_bf = save_bf;/* save bad frames */
1540 cbp->disc_short_rx = !prm; /* discard short packets */
1541 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1542 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1543 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1544 /* interface mode */
1545 cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
1546 cbp->csma_dis = 0; /* (don't) disable link */
1547 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1548 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1549 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1550 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1551 cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
1552 cbp->nsai = 1; /* (don't) disable source addr insert */
1553 cbp->preamble_length = 2; /* (7 byte) preamble */
1554 cbp->loopback = 0; /* (don't) loopback */
1555 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1556 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1557 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1558 cbp->promiscuous = prm; /* promiscuous mode */
1559 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1560 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1561 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1562 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1563 cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
1564 cbp->stripping = !prm; /* truncate rx packet to byte count */
1565 cbp->padding = 1; /* (do) pad short tx packets */
1566 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1567 cbp->long_rx_en = lrxen; /* long packet receive enable */
1568 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1569 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1570 /* must set wake_en in PMCSR also */
1571 cbp->force_fdx = 0; /* (don't) force full duplex */
1572 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1573 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1574 cbp->mc_all = allm; /* accept all multicasts */
1575
1576 if (sc->sc_rev < FXP_REV_82558_A4) {
1577 /*
1578 * The i82557 has no hardware flow control, the values
1579 * here are the defaults for the chip.
1580 */
1581 cbp->fc_delay_lsb = 0;
1582 cbp->fc_delay_msb = 0x40;
1583 cbp->pri_fc_thresh = 3;
1584 cbp->tx_fc_dis = 0;
1585 cbp->rx_fc_restop = 0;
1586 cbp->rx_fc_restart = 0;
1587 cbp->fc_filter = 0;
1588 cbp->pri_fc_loc = 1;
1589 } else {
1590 cbp->fc_delay_lsb = 0x1f;
1591 cbp->fc_delay_msb = 0x01;
1592 cbp->pri_fc_thresh = 3;
1593 cbp->tx_fc_dis = 0; /* enable transmit FC */
1594 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1595 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1596 cbp->fc_filter = !prm; /* drop FC frames to host */
1597 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1598 }
1599
1600 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1601
1602 /*
1603 * Start the config command/DMA.
1604 */
1605 fxp_scb_wait(sc);
1606 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1607 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1608 /* ...and wait for it to complete. */
1609 i = 1000;
1610 do {
1611 FXP_CDCONFIGSYNC(sc,
1612 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1613 DELAY(1);
1614 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1615 if (i == 0) {
1616 printf("%s at line %d: dmasync timeout\n",
1617 sc->sc_dev.dv_xname, __LINE__);
1618 return ETIMEDOUT;
1619 }
1620
1621 /*
1622 * Initialize the station address.
1623 */
1624 cb_ias = &sc->sc_control_data->fcd_iascb;
1625 /* BIG_ENDIAN: no need to swap to store 0 */
1626 cb_ias->cb_status = 0;
1627 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1628 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1629 cb_ias->link_addr = 0xffffffff;
1630 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1631
1632 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1633
1634 /*
1635 * Start the IAS (Individual Address Setup) command/DMA.
1636 */
1637 fxp_scb_wait(sc);
1638 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1639 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1640 /* ...and wait for it to complete. */
1641 i = 1000;
1642 do {
1643 FXP_CDIASSYNC(sc,
1644 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1645 DELAY(1);
1646 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1647 if (i == 0) {
1648 printf("%s at line %d: dmasync timeout\n",
1649 sc->sc_dev.dv_xname, __LINE__);
1650 return ETIMEDOUT;
1651 }
1652
1653 /*
1654 * Initialize the transmit descriptor ring. txlast is initialized
1655 * to the end of the list so that it will wrap around to the first
1656 * descriptor when the first packet is transmitted.
1657 */
1658 for (i = 0; i < FXP_NTXCB; i++) {
1659 txd = FXP_CDTX(sc, i);
1660 memset(txd, 0, sizeof(*txd));
1661 txd->txd_txcb.cb_command =
1662 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1663 txd->txd_txcb.link_addr =
1664 htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1665 if (sc->sc_flags & FXPF_EXT_TXCB)
1666 txd->txd_txcb.tbd_array_addr =
1667 htole32(FXP_CDTBDADDR(sc, i) +
1668 (2 * sizeof(struct fxp_tbd)));
1669 else
1670 txd->txd_txcb.tbd_array_addr =
1671 htole32(FXP_CDTBDADDR(sc, i));
1672 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1673 }
1674 sc->sc_txpending = 0;
1675 sc->sc_txdirty = 0;
1676 sc->sc_txlast = FXP_NTXCB - 1;
1677
1678 /*
1679 * Initialize the receive buffer list.
1680 */
1681 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1682 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1683 rxmap = FXP_RXMAP_GET(sc);
1684 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1685 printf("%s: unable to allocate or map rx "
1686 "buffer %d, error = %d\n",
1687 sc->sc_dev.dv_xname,
1688 sc->sc_rxq.ifq_len, error);
1689 /*
1690 * XXX Should attempt to run with fewer receive
1691 * XXX buffers instead of just failing.
1692 */
1693 FXP_RXMAP_PUT(sc, rxmap);
1694 fxp_rxdrain(sc);
1695 goto out;
1696 }
1697 }
1698 sc->sc_rxidle = 0;
1699
1700 /*
1701 * Give the transmit ring to the chip. We do this by pointing
1702 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1703 * issuing a start command. It will execute the NOP and then
1704 * suspend, pointing at the first descriptor.
1705 */
1706 fxp_scb_wait(sc);
1707 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1708 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1709
1710 /*
1711 * Initialize receiver buffer area - RFA.
1712 */
1713 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1714 fxp_scb_wait(sc);
1715 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1716 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1717 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1718
1719 if (sc->sc_flags & FXPF_MII) {
1720 /*
1721 * Set current media.
1722 */
1723 mii_mediachg(&sc->sc_mii);
1724 }
1725
1726 /*
1727 * ...all done!
1728 */
1729 ifp->if_flags |= IFF_RUNNING;
1730 ifp->if_flags &= ~IFF_OACTIVE;
1731
1732 /*
1733 * Start the one second timer.
1734 */
1735 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1736
1737 /*
1738 * Attempt to start output on the interface.
1739 */
1740 fxp_start(ifp);
1741
1742 out:
1743 if (error)
1744 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1745 return (error);
1746 }
1747
1748 /*
1749 * Change media according to request.
1750 */
1751 int
1752 fxp_mii_mediachange(struct ifnet *ifp)
1753 {
1754 struct fxp_softc *sc = ifp->if_softc;
1755
1756 if (ifp->if_flags & IFF_UP)
1757 mii_mediachg(&sc->sc_mii);
1758 return (0);
1759 }
1760
1761 /*
1762 * Notify the world which media we're using.
1763 */
1764 void
1765 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1766 {
1767 struct fxp_softc *sc = ifp->if_softc;
1768
1769 if(sc->sc_enabled == 0) {
1770 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1771 ifmr->ifm_status = 0;
1772 return;
1773 }
1774
1775 mii_pollstat(&sc->sc_mii);
1776 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1777 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1778 }
1779
1780 int
1781 fxp_80c24_mediachange(struct ifnet *ifp)
1782 {
1783
1784 /* Nothing to do here. */
1785 return (0);
1786 }
1787
1788 void
1789 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1790 {
1791 struct fxp_softc *sc = ifp->if_softc;
1792
1793 /*
1794 * Media is currently-selected media. We cannot determine
1795 * the link status.
1796 */
1797 ifmr->ifm_status = 0;
1798 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1799 }
1800
1801 /*
1802 * Add a buffer to the end of the RFA buffer list.
1803 * Return 0 if successful, error code on failure.
1804 *
1805 * The RFA struct is stuck at the beginning of mbuf cluster and the
1806 * data pointer is fixed up to point just past it.
1807 */
1808 int
1809 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1810 {
1811 struct mbuf *m;
1812 int error;
1813
1814 MGETHDR(m, M_DONTWAIT, MT_DATA);
1815 if (m == NULL)
1816 return (ENOBUFS);
1817
1818 MCLGET(m, M_DONTWAIT);
1819 if ((m->m_flags & M_EXT) == 0) {
1820 m_freem(m);
1821 return (ENOBUFS);
1822 }
1823
1824 if (unload)
1825 bus_dmamap_unload(sc->sc_dmat, rxmap);
1826
1827 M_SETCTX(m, rxmap);
1828
1829 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1830 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1831 if (error) {
1832 printf("%s: can't load rx DMA map %d, error = %d\n",
1833 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1834 panic("fxp_add_rfabuf"); /* XXX */
1835 }
1836
1837 FXP_INIT_RFABUF(sc, m);
1838
1839 return (0);
1840 }
1841
1842 int
1843 fxp_mdi_read(struct device *self, int phy, int reg)
1844 {
1845 struct fxp_softc *sc = (struct fxp_softc *)self;
1846 int count = 10000;
1847 int value;
1848
1849 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1850 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1851
1852 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1853 && count--)
1854 DELAY(10);
1855
1856 if (count <= 0)
1857 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1858
1859 return (value & 0xffff);
1860 }
1861
1862 void
1863 fxp_statchg(struct device *self)
1864 {
1865
1866 /* Nothing to do. */
1867 }
1868
1869 void
1870 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1871 {
1872 struct fxp_softc *sc = (struct fxp_softc *)self;
1873 int count = 10000;
1874
1875 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1876 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1877 (value & 0xffff));
1878
1879 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1880 count--)
1881 DELAY(10);
1882
1883 if (count <= 0)
1884 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1885 }
1886
1887 int
1888 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1889 {
1890 struct fxp_softc *sc = ifp->if_softc;
1891 struct ifreq *ifr = (struct ifreq *)data;
1892 struct ifaddr *ifa = (struct ifaddr *)data;
1893 int s, error = 0;
1894
1895 s = splnet();
1896
1897 switch (command) {
1898 case SIOCSIFADDR:
1899 if ((error = fxp_enable(sc)) != 0)
1900 break;
1901 ifp->if_flags |= IFF_UP;
1902
1903 switch (ifa->ifa_addr->sa_family) {
1904 #ifdef INET
1905 case AF_INET:
1906 if ((error = fxp_init(sc)) != 0)
1907 break;
1908 arp_ifinit(ifp, ifa);
1909 break;
1910 #endif /* INET */
1911 #ifdef NS
1912 case AF_NS:
1913 {
1914 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1915
1916 if (ns_nullhost(*ina))
1917 ina->x_host = *(union ns_host *)
1918 LLADDR(ifp->if_sadl);
1919 else
1920 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1921 ifp->if_addrlen);
1922 /* Set new address. */
1923 error = fxp_init(sc);
1924 break;
1925 }
1926 #endif /* NS */
1927 default:
1928 error = fxp_init(sc);
1929 break;
1930 }
1931 break;
1932
1933 case SIOCSIFMTU:
1934 if (ifr->ifr_mtu > ETHERMTU)
1935 error = EINVAL;
1936 else
1937 ifp->if_mtu = ifr->ifr_mtu;
1938 break;
1939
1940 case SIOCSIFFLAGS:
1941 if ((ifp->if_flags & IFF_UP) == 0 &&
1942 (ifp->if_flags & IFF_RUNNING) != 0) {
1943 /*
1944 * If interface is marked down and it is running, then
1945 * stop it.
1946 */
1947 fxp_stop(sc, 1);
1948 fxp_disable(sc);
1949 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1950 (ifp->if_flags & IFF_RUNNING) == 0) {
1951 /*
1952 * If interface is marked up and it is stopped, then
1953 * start it.
1954 */
1955 if((error = fxp_enable(sc)) != 0)
1956 break;
1957 error = fxp_init(sc);
1958 } else if ((ifp->if_flags & IFF_UP) != 0) {
1959 /*
1960 * Reset the interface to pick up change in any other
1961 * flags that affect the hardware state.
1962 */
1963 if((error = fxp_enable(sc)) != 0)
1964 break;
1965 error = fxp_init(sc);
1966 }
1967 break;
1968
1969 case SIOCADDMULTI:
1970 case SIOCDELMULTI:
1971 if(sc->sc_enabled == 0) {
1972 error = EIO;
1973 break;
1974 }
1975 error = (command == SIOCADDMULTI) ?
1976 ether_addmulti(ifr, &sc->sc_ethercom) :
1977 ether_delmulti(ifr, &sc->sc_ethercom);
1978
1979 if (error == ENETRESET) {
1980 /*
1981 * Multicast list has changed; set the hardware
1982 * filter accordingly.
1983 */
1984 if (sc->sc_txpending) {
1985 sc->sc_flags |= FXPF_WANTINIT;
1986 error = 0;
1987 } else
1988 error = fxp_init(sc);
1989 }
1990 break;
1991
1992 case SIOCSIFMEDIA:
1993 case SIOCGIFMEDIA:
1994 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1995 break;
1996
1997 default:
1998 error = EINVAL;
1999 break;
2000 }
2001
2002 splx(s);
2003 return (error);
2004 }
2005
2006 /*
2007 * Program the multicast filter.
2008 *
2009 * This function must be called at splnet().
2010 */
2011 void
2012 fxp_mc_setup(struct fxp_softc *sc)
2013 {
2014 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
2015 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2016 struct ethercom *ec = &sc->sc_ethercom;
2017 struct ether_multi *enm;
2018 struct ether_multistep step;
2019 int count, nmcasts;
2020
2021 #ifdef DIAGNOSTIC
2022 if (sc->sc_txpending)
2023 panic("fxp_mc_setup: pending transmissions");
2024 #endif
2025
2026 ifp->if_flags &= ~IFF_ALLMULTI;
2027
2028 /*
2029 * Initialize multicast setup descriptor.
2030 */
2031 nmcasts = 0;
2032 ETHER_FIRST_MULTI(step, ec, enm);
2033 while (enm != NULL) {
2034 /*
2035 * Check for too many multicast addresses or if we're
2036 * listening to a range. Either way, we simply have
2037 * to accept all multicasts.
2038 */
2039 if (nmcasts >= MAXMCADDR ||
2040 memcmp(enm->enm_addrlo, enm->enm_addrhi,
2041 ETHER_ADDR_LEN) != 0) {
2042 /*
2043 * Callers of this function must do the
2044 * right thing with this. If we're called
2045 * from outside fxp_init(), the caller must
2046 * detect if the state if IFF_ALLMULTI changes.
2047 * If it does, the caller must then call
2048 * fxp_init(), since allmulti is handled by
2049 * the config block.
2050 */
2051 ifp->if_flags |= IFF_ALLMULTI;
2052 return;
2053 }
2054 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
2055 ETHER_ADDR_LEN);
2056 nmcasts++;
2057 ETHER_NEXT_MULTI(step, enm);
2058 }
2059
2060 /* BIG_ENDIAN: no need to swap to store 0 */
2061 mcsp->cb_status = 0;
2062 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
2063 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
2064 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2065
2066 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2067
2068 /*
2069 * Wait until the command unit is not active. This should never
2070 * happen since nothing is queued, but make sure anyway.
2071 */
2072 count = 100;
2073 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2074 FXP_SCB_CUS_ACTIVE && --count)
2075 DELAY(1);
2076 if (count == 0) {
2077 printf("%s at line %d: command queue timeout\n",
2078 sc->sc_dev.dv_xname, __LINE__);
2079 return;
2080 }
2081
2082 /*
2083 * Start the multicast setup command/DMA.
2084 */
2085 fxp_scb_wait(sc);
2086 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
2087 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2088
2089 /* ...and wait for it to complete. */
2090 count = 1000;
2091 do {
2092 FXP_CDMCSSYNC(sc,
2093 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2094 DELAY(1);
2095 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
2096 if (count == 0) {
2097 printf("%s at line %d: dmasync timeout\n",
2098 sc->sc_dev.dv_xname, __LINE__);
2099 return;
2100 }
2101 }
2102
2103 int
2104 fxp_enable(struct fxp_softc *sc)
2105 {
2106
2107 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
2108 if ((*sc->sc_enable)(sc) != 0) {
2109 printf("%s: device enable failed\n",
2110 sc->sc_dev.dv_xname);
2111 return (EIO);
2112 }
2113 }
2114
2115 sc->sc_enabled = 1;
2116 return (0);
2117 }
2118
2119 void
2120 fxp_disable(struct fxp_softc *sc)
2121 {
2122
2123 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
2124 (*sc->sc_disable)(sc);
2125 sc->sc_enabled = 0;
2126 }
2127 }
2128
2129 /*
2130 * fxp_activate:
2131 *
2132 * Handle device activation/deactivation requests.
2133 */
2134 int
2135 fxp_activate(struct device *self, enum devact act)
2136 {
2137 struct fxp_softc *sc = (void *) self;
2138 int s, error = 0;
2139
2140 s = splnet();
2141 switch (act) {
2142 case DVACT_ACTIVATE:
2143 error = EOPNOTSUPP;
2144 break;
2145
2146 case DVACT_DEACTIVATE:
2147 if (sc->sc_flags & FXPF_MII)
2148 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2149 MII_OFFSET_ANY);
2150 if_deactivate(&sc->sc_ethercom.ec_if);
2151 break;
2152 }
2153 splx(s);
2154
2155 return (error);
2156 }
2157
2158 /*
2159 * fxp_detach:
2160 *
2161 * Detach an i82557 interface.
2162 */
2163 int
2164 fxp_detach(struct fxp_softc *sc)
2165 {
2166 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2167 int i;
2168
2169 /* Succeed now if there's no work to do. */
2170 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
2171 return (0);
2172
2173 /* Unhook our tick handler. */
2174 callout_stop(&sc->sc_callout);
2175
2176 if (sc->sc_flags & FXPF_MII) {
2177 /* Detach all PHYs */
2178 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2179 }
2180
2181 /* Delete all remaining media. */
2182 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2183
2184 #if NRND > 0
2185 rnd_detach_source(&sc->rnd_source);
2186 #endif
2187 #if NBPFILTER > 0
2188 bpfdetach(ifp);
2189 #endif
2190 ether_ifdetach(ifp);
2191 if_detach(ifp);
2192
2193 for (i = 0; i < FXP_NRFABUFS; i++) {
2194 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2195 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2196 }
2197
2198 for (i = 0; i < FXP_NTXCB; i++) {
2199 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2200 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2201 }
2202
2203 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2204 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2205 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2206 sizeof(struct fxp_control_data));
2207 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2208
2209 shutdownhook_disestablish(sc->sc_sdhook);
2210 powerhook_disestablish(sc->sc_powerhook);
2211
2212 return (0);
2213 }
2214