i82557.c revision 1.35 1 /* $NetBSD: i82557.c,v 1.35 2000/06/28 17:12:57 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 int fxp_init __P((struct fxp_softc *));
181 void fxp_rxdrain __P((struct fxp_softc *));
182 void fxp_stop __P((struct fxp_softc *, int));
183 void fxp_watchdog __P((struct ifnet *));
184 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185 int fxp_mdi_read __P((struct device *, int, int));
186 void fxp_statchg __P((struct device *));
187 void fxp_mdi_write __P((struct device *, int, int, int));
188 void fxp_autosize_eeprom __P((struct fxp_softc*));
189 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191 void fxp_tick __P((void *));
192 void fxp_mc_setup __P((struct fxp_softc *));
193
194 void fxp_shutdown __P((void *));
195 void fxp_power __P((int, void *));
196
197 int fxp_copy_small = 0;
198
199 struct fxp_phytype {
200 int fp_phy; /* type of PHY, -1 for MII at the end. */
201 void (*fp_init) __P((struct fxp_softc *));
202 } fxp_phytype_table[] = {
203 { FXP_PHY_80C24, fxp_80c24_initmedia },
204 { -1, fxp_mii_initmedia },
205 };
206
207 /*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212 static int tx_threshold = 64;
213
214 /*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218 inline void
219 fxp_scb_wait(sc)
220 struct fxp_softc *sc;
221 {
222 int i = 10000;
223
224 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225 delay(2);
226 if (i == 0)
227 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228 }
229
230 /*
231 * Finish attaching an i82557 interface. Called by bus-specific front-end.
232 */
233 void
234 fxp_attach(sc)
235 struct fxp_softc *sc;
236 {
237 u_int8_t enaddr[6];
238 struct ifnet *ifp;
239 bus_dma_segment_t seg;
240 int rseg, i, error;
241 struct fxp_phytype *fp;
242
243 callout_init(&sc->sc_callout);
244
245 /*
246 * Allocate the control data structures, and create and load the
247 * DMA map for it.
248 */
249 if ((error = bus_dmamem_alloc(sc->sc_dmat,
250 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251 0)) != 0) {
252 printf("%s: unable to allocate control data, error = %d\n",
253 sc->sc_dev.dv_xname, error);
254 goto fail_0;
255 }
256
257 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259 BUS_DMA_COHERENT)) != 0) {
260 printf("%s: unable to map control data, error = %d\n",
261 sc->sc_dev.dv_xname, error);
262 goto fail_1;
263 }
264 sc->sc_cdseg = seg;
265 sc->sc_cdnseg = rseg;
266
267 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269 if ((error = bus_dmamap_create(sc->sc_dmat,
270 sizeof(struct fxp_control_data), 1,
271 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272 printf("%s: unable to create control data DMA map, "
273 "error = %d\n", sc->sc_dev.dv_xname, error);
274 goto fail_2;
275 }
276
277 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279 0)) != 0) {
280 printf("%s: can't load control data DMA map, error = %d\n",
281 sc->sc_dev.dv_xname, error);
282 goto fail_3;
283 }
284
285 /*
286 * Create the transmit buffer DMA maps.
287 */
288 for (i = 0; i < FXP_NTXCB; i++) {
289 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290 FXP_NTXSEG, MCLBYTES, 0, 0,
291 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292 printf("%s: unable to create tx DMA map %d, "
293 "error = %d\n", sc->sc_dev.dv_xname, i, error);
294 goto fail_4;
295 }
296 }
297
298 /*
299 * Create the receive buffer DMA maps.
300 */
301 for (i = 0; i < FXP_NRFABUFS; i++) {
302 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304 printf("%s: unable to create rx DMA map %d, "
305 "error = %d\n", sc->sc_dev.dv_xname, i, error);
306 goto fail_5;
307 }
308 }
309
310 /* Initialize MAC address and media structures. */
311 fxp_get_info(sc, enaddr);
312
313 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316 ifp = &sc->sc_ethercom.ec_if;
317
318 /*
319 * Get info about our media interface, and initialize it. Note
320 * the table terminates itself with a phy of -1, indicating
321 * that we're using MII.
322 */
323 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324 if (fp->fp_phy == sc->phy_primary_device)
325 break;
326 (*fp->fp_init)(sc);
327
328 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329 ifp->if_softc = sc;
330 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331 ifp->if_ioctl = fxp_ioctl;
332 ifp->if_start = fxp_start;
333 ifp->if_watchdog = fxp_watchdog;
334
335 /*
336 * Attach the interface.
337 */
338 if_attach(ifp);
339 ether_ifattach(ifp, enaddr);
340 #if NBPFILTER > 0
341 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
342 sizeof(struct ether_header));
343 #endif
344 #if NRND > 0
345 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346 RND_TYPE_NET, 0);
347 #endif
348
349 /*
350 * Add shutdown hook so that DMA is disabled prior to reboot. Not
351 * doing do could allow DMA to corrupt kernel memory during the
352 * reboot before the driver initializes.
353 */
354 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
355 if (sc->sc_sdhook == NULL)
356 printf("%s: WARNING: unable to establish shutdown hook\n",
357 sc->sc_dev.dv_xname);
358 /*
359 * Add suspend hook, for similar reasons..
360 */
361 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
362 if (sc->sc_powerhook == NULL)
363 printf("%s: WARNING: unable to establish power hook\n",
364 sc->sc_dev.dv_xname);
365
366 /* The attach is successful. */
367 sc->sc_flags |= FXPF_ATTACHED;
368
369 return;
370
371 /*
372 * Free any resources we've allocated during the failed attach
373 * attempt. Do this in reverse order and fall though.
374 */
375 fail_5:
376 for (i = 0; i < FXP_NRFABUFS; i++) {
377 if (sc->sc_rxmaps[i] != NULL)
378 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
379 }
380 fail_4:
381 for (i = 0; i < FXP_NTXCB; i++) {
382 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
383 bus_dmamap_destroy(sc->sc_dmat,
384 FXP_DSTX(sc, i)->txs_dmamap);
385 }
386 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
387 fail_3:
388 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
389 fail_2:
390 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
391 sizeof(struct fxp_control_data));
392 fail_1:
393 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
394 fail_0:
395 return;
396 }
397
398 void
399 fxp_mii_initmedia(sc)
400 struct fxp_softc *sc;
401 {
402
403 sc->sc_flags |= FXPF_MII;
404
405 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
406 sc->sc_mii.mii_readreg = fxp_mdi_read;
407 sc->sc_mii.mii_writereg = fxp_mdi_write;
408 sc->sc_mii.mii_statchg = fxp_statchg;
409 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
410 fxp_mii_mediastatus);
411 /*
412 * The i82557 wedges if all of its PHYs are isolated!
413 */
414 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
415 MII_OFFSET_ANY, MIIF_NOISOLATE);
416 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
417 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
418 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
419 } else
420 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
421 }
422
423 void
424 fxp_80c24_initmedia(sc)
425 struct fxp_softc *sc;
426 {
427
428 /*
429 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
430 * doesn't have a programming interface of any sort. The
431 * media is sensed automatically based on how the link partner
432 * is configured. This is, in essence, manual configuration.
433 */
434 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
435 sc->sc_dev.dv_xname);
436 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
437 fxp_80c24_mediastatus);
438 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
439 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
440 }
441
442 /*
443 * Device shutdown routine. Called at system shutdown after sync. The
444 * main purpose of this routine is to shut off receiver DMA so that
445 * kernel memory doesn't get clobbered during warmboot.
446 */
447 void
448 fxp_shutdown(arg)
449 void *arg;
450 {
451 struct fxp_softc *sc = arg;
452
453 /*
454 * Since the system's going to halt shortly, don't bother
455 * freeing mbufs.
456 */
457 fxp_stop(sc, 0);
458 }
459 /*
460 * Power handler routine. Called when the system is transitioning
461 * into/out of power save modes. As with fxp_shutdown, the main
462 * purpose of this routine is to shut off receiver DMA so it doesn't
463 * clobber kernel memory at the wrong time.
464 */
465 void
466 fxp_power(why, arg)
467 int why;
468 void *arg;
469 {
470 struct fxp_softc *sc = arg;
471 struct ifnet *ifp;
472 int s;
473
474 s = splnet();
475 if (why != PWR_RESUME)
476 fxp_stop(sc, 0);
477 else {
478 ifp = &sc->sc_ethercom.ec_if;
479 if (ifp->if_flags & IFF_UP)
480 fxp_init(sc);
481 }
482 splx(s);
483 }
484
485 /*
486 * Initialize the interface media.
487 */
488 void
489 fxp_get_info(sc, enaddr)
490 struct fxp_softc *sc;
491 u_int8_t *enaddr;
492 {
493 u_int16_t data, myea[3];
494
495 /*
496 * Reset to a stable state.
497 */
498 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
499 DELAY(10);
500
501 sc->sc_eeprom_size = 0;
502 fxp_autosize_eeprom(sc);
503 if(sc->sc_eeprom_size == 0) {
504 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
505 sc->sc_eeprom_size = 6; /* XXX panic here? */
506 }
507 #ifdef DEBUG
508 printf("%s: detected %d word EEPROM\n",
509 sc->sc_dev.dv_xname,
510 1 << sc->sc_eeprom_size);
511 #endif
512
513 /*
514 * Get info about the primary PHY
515 */
516 fxp_read_eeprom(sc, &data, 6, 1);
517 sc->phy_primary_addr = data & 0xff;
518 sc->phy_primary_device = (data >> 8) & 0x3f;
519 sc->phy_10Mbps_only = data >> 15;
520
521 /*
522 * Read MAC address.
523 */
524 fxp_read_eeprom(sc, myea, 0, 3);
525 enaddr[0] = myea[0] & 0xff;
526 enaddr[1] = myea[0] >> 8;
527 enaddr[2] = myea[1] & 0xff;
528 enaddr[3] = myea[1] >> 8;
529 enaddr[4] = myea[2] & 0xff;
530 enaddr[5] = myea[2] >> 8;
531 }
532
533 /*
534 * Figure out EEPROM size.
535 *
536 * 559's can have either 64-word or 256-word EEPROMs, the 558
537 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
538 * talks about the existance of 16 to 256 word EEPROMs.
539 *
540 * The only known sizes are 64 and 256, where the 256 version is used
541 * by CardBus cards to store CIS information.
542 *
543 * The address is shifted in msb-to-lsb, and after the last
544 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
545 * after which follows the actual data. We try to detect this zero, by
546 * probing the data-out bit in the EEPROM control register just after
547 * having shifted in a bit. If the bit is zero, we assume we've
548 * shifted enough address bits. The data-out should be tri-state,
549 * before this, which should translate to a logical one.
550 *
551 * Other ways to do this would be to try to read a register with known
552 * contents with a varying number of address bits, but no such
553 * register seem to be available. The high bits of register 10 are 01
554 * on the 558 and 559, but apparently not on the 557.
555 *
556 * The Linux driver computes a checksum on the EEPROM data, but the
557 * value of this checksum is not very well documented.
558 */
559
560 void
561 fxp_autosize_eeprom(sc)
562 struct fxp_softc *sc;
563 {
564 u_int16_t reg;
565 int x;
566
567 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
568 /*
569 * Shift in read opcode.
570 */
571 for (x = 3; x > 0; x--) {
572 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
573 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
574 } else {
575 reg = FXP_EEPROM_EECS;
576 }
577 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
578 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
579 reg | FXP_EEPROM_EESK);
580 DELAY(4);
581 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
582 DELAY(4);
583 }
584 /*
585 * Shift in address, wait for the dummy zero following a correct
586 * address shift.
587 */
588 for (x = 1; x <= 8; x++) {
589 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
590 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
591 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
592 DELAY(4);
593 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
594 FXP_EEPROM_EEDO) == 0)
595 break;
596 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
597 DELAY(4);
598 }
599 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
600 DELAY(4);
601 if(x != 6 && x != 8) {
602 #ifdef DEBUG
603 printf("%s: strange EEPROM size (%d)\n",
604 sc->sc_dev.dv_xname, 1 << x);
605 #endif
606 } else
607 sc->sc_eeprom_size = x;
608 }
609
610 /*
611 * Read from the serial EEPROM. Basically, you manually shift in
612 * the read opcode (one bit at a time) and then shift in the address,
613 * and then you shift out the data (all of this one bit at a time).
614 * The word size is 16 bits, so you have to provide the address for
615 * every 16 bits of data.
616 */
617 void
618 fxp_read_eeprom(sc, data, offset, words)
619 struct fxp_softc *sc;
620 u_int16_t *data;
621 int offset;
622 int words;
623 {
624 u_int16_t reg;
625 int i, x;
626
627 for (i = 0; i < words; i++) {
628 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
629 /*
630 * Shift in read opcode.
631 */
632 for (x = 3; x > 0; x--) {
633 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
634 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
635 } else {
636 reg = FXP_EEPROM_EECS;
637 }
638 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
639 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
640 reg | FXP_EEPROM_EESK);
641 DELAY(4);
642 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
643 DELAY(4);
644 }
645 /*
646 * Shift in address.
647 */
648 for (x = sc->sc_eeprom_size; x > 0; x--) {
649 if ((i + offset) & (1 << (x - 1))) {
650 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
651 } else {
652 reg = FXP_EEPROM_EECS;
653 }
654 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
655 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
656 reg | FXP_EEPROM_EESK);
657 DELAY(4);
658 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
659 DELAY(4);
660 }
661 reg = FXP_EEPROM_EECS;
662 data[i] = 0;
663 /*
664 * Shift out data.
665 */
666 for (x = 16; x > 0; x--) {
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
668 reg | FXP_EEPROM_EESK);
669 DELAY(4);
670 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
671 FXP_EEPROM_EEDO)
672 data[i] |= (1 << (x - 1));
673 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
674 DELAY(4);
675 }
676 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
677 DELAY(4);
678 }
679 }
680
681 /*
682 * Start packet transmission on the interface.
683 */
684 void
685 fxp_start(ifp)
686 struct ifnet *ifp;
687 {
688 struct fxp_softc *sc = ifp->if_softc;
689 struct mbuf *m0, *m;
690 struct fxp_cb_tx *txd;
691 struct fxp_txsoft *txs;
692 struct fxp_tbdlist *tbd;
693 bus_dmamap_t dmamap;
694 int error, lasttx, nexttx, opending, seg;
695
696 /*
697 * If we want a re-init, bail out now.
698 */
699 if (sc->sc_flags & FXPF_WANTINIT) {
700 ifp->if_flags |= IFF_OACTIVE;
701 return;
702 }
703
704 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
705 return;
706
707 /*
708 * Remember the previous txpending and the current lasttx.
709 */
710 opending = sc->sc_txpending;
711 lasttx = sc->sc_txlast;
712
713 /*
714 * Loop through the send queue, setting up transmit descriptors
715 * until we drain the queue, or use up all available transmit
716 * descriptors.
717 */
718 while (sc->sc_txpending < FXP_NTXCB) {
719 /*
720 * Grab a packet off the queue.
721 */
722 IF_DEQUEUE(&ifp->if_snd, m0);
723 if (m0 == NULL)
724 break;
725
726 /*
727 * Get the next available transmit descriptor.
728 */
729 nexttx = FXP_NEXTTX(sc->sc_txlast);
730 txd = FXP_CDTX(sc, nexttx);
731 tbd = FXP_CDTBD(sc, nexttx);
732 txs = FXP_DSTX(sc, nexttx);
733 dmamap = txs->txs_dmamap;
734
735 /*
736 * Load the DMA map. If this fails, the packet either
737 * didn't fit in the allotted number of frags, or we were
738 * short on resources. In this case, we'll copy and try
739 * again.
740 */
741 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
742 BUS_DMA_NOWAIT) != 0) {
743 MGETHDR(m, M_DONTWAIT, MT_DATA);
744 if (m == NULL) {
745 printf("%s: unable to allocate Tx mbuf\n",
746 sc->sc_dev.dv_xname);
747 IF_PREPEND(&ifp->if_snd, m0);
748 break;
749 }
750 if (m0->m_pkthdr.len > MHLEN) {
751 MCLGET(m, M_DONTWAIT);
752 if ((m->m_flags & M_EXT) == 0) {
753 printf("%s: unable to allocate Tx "
754 "cluster\n", sc->sc_dev.dv_xname);
755 m_freem(m);
756 IF_PREPEND(&ifp->if_snd, m0);
757 break;
758 }
759 }
760 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
761 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
762 m_freem(m0);
763 m0 = m;
764 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
765 m0, BUS_DMA_NOWAIT);
766 if (error) {
767 printf("%s: unable to load Tx buffer, "
768 "error = %d\n", sc->sc_dev.dv_xname, error);
769 IF_PREPEND(&ifp->if_snd, m0);
770 break;
771 }
772 }
773
774 /* Initialize the fraglist. */
775 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
776 tbd->tbd_d[seg].tb_addr =
777 htole32(dmamap->dm_segs[seg].ds_addr);
778 tbd->tbd_d[seg].tb_size =
779 htole32(dmamap->dm_segs[seg].ds_len);
780 }
781
782 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
783
784 /* Sync the DMA map. */
785 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
786 BUS_DMASYNC_PREWRITE);
787
788 /*
789 * Store a pointer to the packet so we can free it later.
790 */
791 txs->txs_mbuf = m0;
792
793 /*
794 * Initialize the transmit descriptor.
795 */
796 /* BIG_ENDIAN: no need to swap to store 0 */
797 txd->cb_status = 0;
798 txd->cb_command =
799 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
800 txd->tx_threshold = tx_threshold;
801 txd->tbd_number = dmamap->dm_nsegs;
802
803 FXP_CDTXSYNC(sc, nexttx,
804 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
805
806 /* Advance the tx pointer. */
807 sc->sc_txpending++;
808 sc->sc_txlast = nexttx;
809
810 #if NBPFILTER > 0
811 /*
812 * Pass packet to bpf if there is a listener.
813 */
814 if (ifp->if_bpf)
815 bpf_mtap(ifp->if_bpf, m0);
816 #endif
817 }
818
819 if (sc->sc_txpending == FXP_NTXCB) {
820 /* No more slots; notify upper layer. */
821 ifp->if_flags |= IFF_OACTIVE;
822 }
823
824 if (sc->sc_txpending != opending) {
825 /*
826 * We enqueued packets. If the transmitter was idle,
827 * reset the txdirty pointer.
828 */
829 if (opending == 0)
830 sc->sc_txdirty = FXP_NEXTTX(lasttx);
831
832 /*
833 * Cause the chip to interrupt and suspend command
834 * processing once the last packet we've enqueued
835 * has been transmitted.
836 */
837 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
838 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
839 FXP_CDTXSYNC(sc, sc->sc_txlast,
840 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
841
842 /*
843 * The entire packet chain is set up. Clear the suspend bit
844 * on the command prior to the first packet we set up.
845 */
846 FXP_CDTXSYNC(sc, lasttx,
847 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
848 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
849 FXP_CDTXSYNC(sc, lasttx,
850 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
851
852 /*
853 * Issue a Resume command in case the chip was suspended.
854 */
855 fxp_scb_wait(sc);
856 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
857
858 /* Set a watchdog timer in case the chip flakes out. */
859 ifp->if_timer = 5;
860 }
861 }
862
863 /*
864 * Process interface interrupts.
865 */
866 int
867 fxp_intr(arg)
868 void *arg;
869 {
870 struct fxp_softc *sc = arg;
871 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
872 struct fxp_cb_tx *txd;
873 struct fxp_txsoft *txs;
874 struct mbuf *m, *m0;
875 bus_dmamap_t rxmap;
876 struct fxp_rfa *rfa;
877 struct ether_header *eh;
878 int i, claimed = 0;
879 u_int16_t len, rxstat, txstat;
880 u_int8_t statack;
881
882 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
883 return (0);
884 /*
885 * If the interface isn't running, don't try to
886 * service the interrupt.. just ack it and bail.
887 */
888 if ((ifp->if_flags & IFF_RUNNING) == 0) {
889 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
890 if (statack) {
891 claimed = 1;
892 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
893 }
894 return (claimed);
895 }
896
897 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
898 claimed = 1;
899
900 /*
901 * First ACK all the interrupts in this pass.
902 */
903 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
904
905 /*
906 * Process receiver interrupts. If a no-resource (RNR)
907 * condition exists, get whatever packets we can and
908 * re-start the receiver.
909 */
910 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
911 rcvloop:
912 m = sc->sc_rxq.ifq_head;
913 rfa = FXP_MTORFA(m);
914 rxmap = M_GETCTX(m, bus_dmamap_t);
915
916 FXP_RFASYNC(sc, m,
917 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
918
919 rxstat = le16toh(rfa->rfa_status);
920
921 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
922 /*
923 * We have processed all of the
924 * receive buffers.
925 */
926 goto do_transmit;
927 }
928
929 IF_DEQUEUE(&sc->sc_rxq, m);
930
931 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
932
933 len = le16toh(rfa->actual_size) &
934 (m->m_ext.ext_size - 1);
935
936 if (len < sizeof(struct ether_header)) {
937 /*
938 * Runt packet; drop it now.
939 */
940 FXP_INIT_RFABUF(sc, m);
941 goto rcvloop;
942 }
943
944 /*
945 * If the packet is small enough to fit in a
946 * single header mbuf, allocate one and copy
947 * the data into it. This greatly reduces
948 * memory consumption when we receive lots
949 * of small packets.
950 *
951 * Otherwise, we add a new buffer to the receive
952 * chain. If this fails, we drop the packet and
953 * recycle the old buffer.
954 */
955 if (fxp_copy_small != 0 && len <= MHLEN) {
956 MGETHDR(m0, M_DONTWAIT, MT_DATA);
957 if (m == NULL)
958 goto dropit;
959 memcpy(mtod(m0, caddr_t),
960 mtod(m, caddr_t), len);
961 FXP_INIT_RFABUF(sc, m);
962 m = m0;
963 } else {
964 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
965 dropit:
966 ifp->if_ierrors++;
967 FXP_INIT_RFABUF(sc, m);
968 goto rcvloop;
969 }
970 }
971
972 m->m_pkthdr.rcvif = ifp;
973 m->m_pkthdr.len = m->m_len = len;
974 eh = mtod(m, struct ether_header *);
975
976 #if NBPFILTER > 0
977 /*
978 * Pass this up to any BPF listeners, but only
979 * pass it up the stack it its for us.
980 */
981 if (ifp->if_bpf) {
982 bpf_mtap(ifp->if_bpf, m);
983
984 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
985 (rxstat & FXP_RFA_STATUS_IAMATCH) != 0 &&
986 (eh->ether_dhost[0] & 1) == 0) {
987 m_freem(m);
988 goto rcvloop;
989 }
990 }
991 #endif /* NBPFILTER > 0 */
992
993 /* Pass it on. */
994 (*ifp->if_input)(ifp, m);
995 goto rcvloop;
996 }
997
998 do_transmit:
999 if (statack & FXP_SCB_STATACK_RNR) {
1000 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1001 fxp_scb_wait(sc);
1002 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1003 rxmap->dm_segs[0].ds_addr +
1004 RFA_ALIGNMENT_FUDGE);
1005 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1006 FXP_SCB_COMMAND_RU_START);
1007 }
1008
1009 /*
1010 * Free any finished transmit mbuf chains.
1011 */
1012 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1013 ifp->if_flags &= ~IFF_OACTIVE;
1014 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1015 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1016 txd = FXP_CDTX(sc, i);
1017 txs = FXP_DSTX(sc, i);
1018
1019 FXP_CDTXSYNC(sc, i,
1020 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1021
1022 txstat = le16toh(txd->cb_status);
1023
1024 if ((txstat & FXP_CB_STATUS_C) == 0)
1025 break;
1026
1027 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1028
1029 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1030 0, txs->txs_dmamap->dm_mapsize,
1031 BUS_DMASYNC_POSTWRITE);
1032 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1033 m_freem(txs->txs_mbuf);
1034 txs->txs_mbuf = NULL;
1035 }
1036
1037 /* Update the dirty transmit buffer pointer. */
1038 sc->sc_txdirty = i;
1039
1040 /*
1041 * Cancel the watchdog timer if there are no pending
1042 * transmissions.
1043 */
1044 if (sc->sc_txpending == 0) {
1045 ifp->if_timer = 0;
1046
1047 /*
1048 * If we want a re-init, do that now.
1049 */
1050 if (sc->sc_flags & FXPF_WANTINIT)
1051 (void) fxp_init(sc);
1052 }
1053
1054 /*
1055 * Try to get more packets going.
1056 */
1057 fxp_start(ifp);
1058 }
1059 }
1060
1061 #if NRND > 0
1062 if (claimed)
1063 rnd_add_uint32(&sc->rnd_source, statack);
1064 #endif
1065 return (claimed);
1066 }
1067
1068 /*
1069 * Update packet in/out/collision statistics. The i82557 doesn't
1070 * allow you to access these counters without doing a fairly
1071 * expensive DMA to get _all_ of the statistics it maintains, so
1072 * we do this operation here only once per second. The statistics
1073 * counters in the kernel are updated from the previous dump-stats
1074 * DMA and then a new dump-stats DMA is started. The on-chip
1075 * counters are zeroed when the DMA completes. If we can't start
1076 * the DMA immediately, we don't wait - we just prepare to read
1077 * them again next time.
1078 */
1079 void
1080 fxp_tick(arg)
1081 void *arg;
1082 {
1083 struct fxp_softc *sc = arg;
1084 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1085 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1086 int s;
1087
1088 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1089 return;
1090
1091 s = splnet();
1092
1093 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1094
1095 ifp->if_opackets += le32toh(sp->tx_good);
1096 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1097 if (sp->rx_good) {
1098 ifp->if_ipackets += le32toh(sp->rx_good);
1099 sc->sc_rxidle = 0;
1100 } else {
1101 sc->sc_rxidle++;
1102 }
1103 ifp->if_ierrors +=
1104 le32toh(sp->rx_crc_errors) +
1105 le32toh(sp->rx_alignment_errors) +
1106 le32toh(sp->rx_rnr_errors) +
1107 le32toh(sp->rx_overrun_errors);
1108 /*
1109 * If any transmit underruns occured, bump up the transmit
1110 * threshold by another 512 bytes (64 * 8).
1111 */
1112 if (sp->tx_underruns) {
1113 ifp->if_oerrors += le32toh(sp->tx_underruns);
1114 if (tx_threshold < 192)
1115 tx_threshold += 64;
1116 }
1117
1118 /*
1119 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1120 * then assume the receiver has locked up and attempt to clear
1121 * the condition by reprogramming the multicast filter (actually,
1122 * resetting the interface). This is a work-around for a bug in
1123 * the 82557 where the receiver locks up if it gets certain types
1124 * of garbage in the syncronization bits prior to the packet header.
1125 * This bug is supposed to only occur in 10Mbps mode, but has been
1126 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1127 * speed transition).
1128 */
1129 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1130 (void) fxp_init(sc);
1131 splx(s);
1132 return;
1133 }
1134 /*
1135 * If there is no pending command, start another stats
1136 * dump. Otherwise punt for now.
1137 */
1138 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1139 /*
1140 * Start another stats dump.
1141 */
1142 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1143 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1144 FXP_SCB_COMMAND_CU_DUMPRESET);
1145 } else {
1146 /*
1147 * A previous command is still waiting to be accepted.
1148 * Just zero our copy of the stats and wait for the
1149 * next timer event to update them.
1150 */
1151 /* BIG_ENDIAN: no swap required to store 0 */
1152 sp->tx_good = 0;
1153 sp->tx_underruns = 0;
1154 sp->tx_total_collisions = 0;
1155
1156 sp->rx_good = 0;
1157 sp->rx_crc_errors = 0;
1158 sp->rx_alignment_errors = 0;
1159 sp->rx_rnr_errors = 0;
1160 sp->rx_overrun_errors = 0;
1161 }
1162
1163 if (sc->sc_flags & FXPF_MII) {
1164 /* Tick the MII clock. */
1165 mii_tick(&sc->sc_mii);
1166 }
1167
1168 splx(s);
1169
1170 /*
1171 * Schedule another timeout one second from now.
1172 */
1173 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1174 }
1175
1176 /*
1177 * Drain the receive queue.
1178 */
1179 void
1180 fxp_rxdrain(sc)
1181 struct fxp_softc *sc;
1182 {
1183 bus_dmamap_t rxmap;
1184 struct mbuf *m;
1185
1186 for (;;) {
1187 IF_DEQUEUE(&sc->sc_rxq, m);
1188 if (m == NULL)
1189 break;
1190 rxmap = M_GETCTX(m, bus_dmamap_t);
1191 bus_dmamap_unload(sc->sc_dmat, rxmap);
1192 FXP_RXMAP_PUT(sc, rxmap);
1193 m_freem(m);
1194 }
1195 }
1196
1197 /*
1198 * Stop the interface. Cancels the statistics updater and resets
1199 * the interface.
1200 */
1201 void
1202 fxp_stop(sc, drain)
1203 struct fxp_softc *sc;
1204 int drain;
1205 {
1206 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1207 struct fxp_txsoft *txs;
1208 int i;
1209
1210 /*
1211 * Turn down interface (done early to avoid bad interactions
1212 * between panics, shutdown hooks, and the watchdog timer)
1213 */
1214 ifp->if_timer = 0;
1215 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1216
1217 /*
1218 * Cancel stats updater.
1219 */
1220 callout_stop(&sc->sc_callout);
1221 if (sc->sc_flags & FXPF_MII) {
1222 /* Down the MII. */
1223 mii_down(&sc->sc_mii);
1224 }
1225
1226 /*
1227 * Issue software reset
1228 */
1229 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1230 DELAY(10);
1231
1232 /*
1233 * Release any xmit buffers.
1234 */
1235 for (i = 0; i < FXP_NTXCB; i++) {
1236 txs = FXP_DSTX(sc, i);
1237 if (txs->txs_mbuf != NULL) {
1238 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1239 m_freem(txs->txs_mbuf);
1240 txs->txs_mbuf = NULL;
1241 }
1242 }
1243 sc->sc_txpending = 0;
1244
1245 if (drain) {
1246 /*
1247 * Release the receive buffers.
1248 */
1249 fxp_rxdrain(sc);
1250 }
1251
1252 }
1253
1254 /*
1255 * Watchdog/transmission transmit timeout handler. Called when a
1256 * transmission is started on the interface, but no interrupt is
1257 * received before the timeout. This usually indicates that the
1258 * card has wedged for some reason.
1259 */
1260 void
1261 fxp_watchdog(ifp)
1262 struct ifnet *ifp;
1263 {
1264 struct fxp_softc *sc = ifp->if_softc;
1265
1266 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1267 ifp->if_oerrors++;
1268
1269 (void) fxp_init(sc);
1270 }
1271
1272 /*
1273 * Initialize the interface. Must be called at splnet().
1274 */
1275 int
1276 fxp_init(sc)
1277 struct fxp_softc *sc;
1278 {
1279 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1280 struct fxp_cb_config *cbp;
1281 struct fxp_cb_ias *cb_ias;
1282 struct fxp_cb_tx *txd;
1283 bus_dmamap_t rxmap;
1284 int i, prm, allm, error = 0;
1285
1286 /*
1287 * Cancel any pending I/O
1288 */
1289 fxp_stop(sc, 0);
1290
1291 /*
1292 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1293 * flag, and this prevents the MII from detaching resulting in
1294 * a panic. The flags field should perhaps be split in runtime
1295 * flags and more static information. For now, just clear the
1296 * only other flag set.
1297 */
1298
1299 sc->sc_flags &= ~FXPF_WANTINIT;
1300
1301 /*
1302 * Initialize base of CBL and RFA memory. Loading with zero
1303 * sets it up for regular linear addressing.
1304 */
1305 fxp_scb_wait(sc);
1306 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1307 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1308
1309 fxp_scb_wait(sc);
1310 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1311
1312 /*
1313 * Initialize the multicast filter. Do this now, since we might
1314 * have to setup the config block differently.
1315 */
1316 fxp_mc_setup(sc);
1317
1318 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1319 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1320
1321 /*
1322 * Initialize base of dump-stats buffer.
1323 */
1324 fxp_scb_wait(sc);
1325 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1326 sc->sc_cddma + FXP_CDSTATSOFF);
1327 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1328 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1329
1330 cbp = &sc->sc_control_data->fcd_configcb;
1331 memset(cbp, 0, sizeof(struct fxp_cb_config));
1332
1333 /*
1334 * This copy is kind of disgusting, but there are a bunch of must be
1335 * zero and must be one bits in this structure and this is the easiest
1336 * way to initialize them all to proper values.
1337 */
1338 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1339
1340 /* BIG_ENDIAN: no need to swap to store 0 */
1341 cbp->cb_status = 0;
1342 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1343 FXP_CB_COMMAND_EL);
1344 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1345 cbp->link_addr = 0xffffffff; /* (no) next command */
1346 cbp->byte_count = 22; /* (22) bytes to config */
1347 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1348 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1349 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1350 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1351 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1352 cbp->dma_bce = 0; /* (disable) dma max counters */
1353 cbp->late_scb = 0; /* (don't) defer SCB update */
1354 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1355 cbp->ci_int = 1; /* interrupt on CU idle */
1356 cbp->save_bf = prm; /* save bad frames */
1357 cbp->disc_short_rx = !prm; /* discard short packets */
1358 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1359 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1360 cbp->nsai = 1; /* (don't) disable source addr insert */
1361 cbp->preamble_length = 2; /* (7 byte) preamble */
1362 cbp->loopback = 0; /* (don't) loopback */
1363 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1364 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1365 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1366 cbp->promiscuous = prm; /* promiscuous mode */
1367 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1368 cbp->crscdt = 0; /* (CRS only) */
1369 cbp->stripping = !prm; /* truncate rx packet to byte count */
1370 cbp->padding = 1; /* (do) pad short tx packets */
1371 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1372 cbp->force_fdx = 0; /* (don't) force full duplex */
1373 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1374 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1375 cbp->mc_all = allm; /* accept all multicasts */
1376
1377 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1378
1379 /*
1380 * Start the config command/DMA.
1381 */
1382 fxp_scb_wait(sc);
1383 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1384 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1385 /* ...and wait for it to complete. */
1386 i = 1000;
1387 do {
1388 FXP_CDCONFIGSYNC(sc,
1389 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1390 DELAY(1);
1391 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1392 if (i == 0) {
1393 printf("%s at line %d: dmasync timeout\n",
1394 sc->sc_dev.dv_xname, __LINE__);
1395 return ETIMEDOUT;
1396 }
1397
1398 /*
1399 * Initialize the station address.
1400 */
1401 cb_ias = &sc->sc_control_data->fcd_iascb;
1402 /* BIG_ENDIAN: no need to swap to store 0 */
1403 cb_ias->cb_status = 0;
1404 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1405 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1406 cb_ias->link_addr = 0xffffffff;
1407 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1408
1409 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1410
1411 /*
1412 * Start the IAS (Individual Address Setup) command/DMA.
1413 */
1414 fxp_scb_wait(sc);
1415 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1416 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1417 /* ...and wait for it to complete. */
1418 i = 1000;
1419 do {
1420 FXP_CDIASSYNC(sc,
1421 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1422 DELAY(1);
1423 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1424 if (i == 0) {
1425 printf("%s at line %d: dmasync timeout\n",
1426 sc->sc_dev.dv_xname, __LINE__);
1427 return ETIMEDOUT;
1428 }
1429
1430 /*
1431 * Initialize the transmit descriptor ring. txlast is initialized
1432 * to the end of the list so that it will wrap around to the first
1433 * descriptor when the first packet is transmitted.
1434 */
1435 for (i = 0; i < FXP_NTXCB; i++) {
1436 txd = FXP_CDTX(sc, i);
1437 memset(txd, 0, sizeof(struct fxp_cb_tx));
1438 txd->cb_command =
1439 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1440 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1441 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1442 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1443 }
1444 sc->sc_txpending = 0;
1445 sc->sc_txdirty = 0;
1446 sc->sc_txlast = FXP_NTXCB - 1;
1447
1448 /*
1449 * Initialize the receive buffer list.
1450 */
1451 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1452 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1453 rxmap = FXP_RXMAP_GET(sc);
1454 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1455 printf("%s: unable to allocate or map rx "
1456 "buffer %d, error = %d\n",
1457 sc->sc_dev.dv_xname,
1458 sc->sc_rxq.ifq_len, error);
1459 /*
1460 * XXX Should attempt to run with fewer receive
1461 * XXX buffers instead of just failing.
1462 */
1463 FXP_RXMAP_PUT(sc, rxmap);
1464 fxp_rxdrain(sc);
1465 goto out;
1466 }
1467 }
1468 sc->sc_rxidle = 0;
1469
1470 /*
1471 * Give the transmit ring to the chip. We do this by pointing
1472 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1473 * issuing a start command. It will execute the NOP and then
1474 * suspend, pointing at the first descriptor.
1475 */
1476 fxp_scb_wait(sc);
1477 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1478 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1479
1480 /*
1481 * Initialize receiver buffer area - RFA.
1482 */
1483 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1484 fxp_scb_wait(sc);
1485 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1486 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1487 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1488
1489 if (sc->sc_flags & FXPF_MII) {
1490 /*
1491 * Set current media.
1492 */
1493 mii_mediachg(&sc->sc_mii);
1494 }
1495
1496 /*
1497 * ...all done!
1498 */
1499 ifp->if_flags |= IFF_RUNNING;
1500 ifp->if_flags &= ~IFF_OACTIVE;
1501
1502 /*
1503 * Start the one second timer.
1504 */
1505 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1506
1507 /*
1508 * Attempt to start output on the interface.
1509 */
1510 fxp_start(ifp);
1511
1512 out:
1513 if (error)
1514 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1515 return (error);
1516 }
1517
1518 /*
1519 * Change media according to request.
1520 */
1521 int
1522 fxp_mii_mediachange(ifp)
1523 struct ifnet *ifp;
1524 {
1525 struct fxp_softc *sc = ifp->if_softc;
1526
1527 if (ifp->if_flags & IFF_UP)
1528 mii_mediachg(&sc->sc_mii);
1529 return (0);
1530 }
1531
1532 /*
1533 * Notify the world which media we're using.
1534 */
1535 void
1536 fxp_mii_mediastatus(ifp, ifmr)
1537 struct ifnet *ifp;
1538 struct ifmediareq *ifmr;
1539 {
1540 struct fxp_softc *sc = ifp->if_softc;
1541
1542 if(sc->sc_enabled == 0) {
1543 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1544 ifmr->ifm_status = 0;
1545 return;
1546 }
1547
1548 mii_pollstat(&sc->sc_mii);
1549 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1550 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1551 }
1552
1553 int
1554 fxp_80c24_mediachange(ifp)
1555 struct ifnet *ifp;
1556 {
1557
1558 /* Nothing to do here. */
1559 return (0);
1560 }
1561
1562 void
1563 fxp_80c24_mediastatus(ifp, ifmr)
1564 struct ifnet *ifp;
1565 struct ifmediareq *ifmr;
1566 {
1567 struct fxp_softc *sc = ifp->if_softc;
1568
1569 /*
1570 * Media is currently-selected media. We cannot determine
1571 * the link status.
1572 */
1573 ifmr->ifm_status = 0;
1574 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1575 }
1576
1577 /*
1578 * Add a buffer to the end of the RFA buffer list.
1579 * Return 0 if successful, error code on failure.
1580 *
1581 * The RFA struct is stuck at the beginning of mbuf cluster and the
1582 * data pointer is fixed up to point just past it.
1583 */
1584 int
1585 fxp_add_rfabuf(sc, rxmap, unload)
1586 struct fxp_softc *sc;
1587 bus_dmamap_t rxmap;
1588 int unload;
1589 {
1590 struct mbuf *m;
1591 int error;
1592
1593 MGETHDR(m, M_DONTWAIT, MT_DATA);
1594 if (m == NULL)
1595 return (ENOBUFS);
1596
1597 MCLGET(m, M_DONTWAIT);
1598 if ((m->m_flags & M_EXT) == 0) {
1599 m_freem(m);
1600 return (ENOBUFS);
1601 }
1602
1603 if (unload)
1604 bus_dmamap_unload(sc->sc_dmat, rxmap);
1605
1606 M_SETCTX(m, rxmap);
1607
1608 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1609 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1610 if (error) {
1611 printf("%s: can't load rx DMA map %d, error = %d\n",
1612 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1613 panic("fxp_add_rfabuf"); /* XXX */
1614 }
1615
1616 FXP_INIT_RFABUF(sc, m);
1617
1618 return (0);
1619 }
1620
1621 volatile int
1622 fxp_mdi_read(self, phy, reg)
1623 struct device *self;
1624 int phy;
1625 int reg;
1626 {
1627 struct fxp_softc *sc = (struct fxp_softc *)self;
1628 int count = 10000;
1629 int value;
1630
1631 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1632 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1633
1634 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1635 && count--)
1636 DELAY(10);
1637
1638 if (count <= 0)
1639 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1640
1641 return (value & 0xffff);
1642 }
1643
1644 void
1645 fxp_statchg(self)
1646 struct device *self;
1647 {
1648
1649 /* Nothing to do. */
1650 }
1651
1652 void
1653 fxp_mdi_write(self, phy, reg, value)
1654 struct device *self;
1655 int phy;
1656 int reg;
1657 int value;
1658 {
1659 struct fxp_softc *sc = (struct fxp_softc *)self;
1660 int count = 10000;
1661
1662 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1663 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1664 (value & 0xffff));
1665
1666 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1667 count--)
1668 DELAY(10);
1669
1670 if (count <= 0)
1671 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1672 }
1673
1674 int
1675 fxp_ioctl(ifp, command, data)
1676 struct ifnet *ifp;
1677 u_long command;
1678 caddr_t data;
1679 {
1680 struct fxp_softc *sc = ifp->if_softc;
1681 struct ifreq *ifr = (struct ifreq *)data;
1682 struct ifaddr *ifa = (struct ifaddr *)data;
1683 int s, error = 0;
1684
1685 s = splnet();
1686
1687 switch (command) {
1688 case SIOCSIFADDR:
1689 if ((error = fxp_enable(sc)) != 0)
1690 break;
1691 ifp->if_flags |= IFF_UP;
1692
1693 switch (ifa->ifa_addr->sa_family) {
1694 #ifdef INET
1695 case AF_INET:
1696 if ((error = fxp_init(sc)) != 0)
1697 break;
1698 arp_ifinit(ifp, ifa);
1699 break;
1700 #endif /* INET */
1701 #ifdef NS
1702 case AF_NS:
1703 {
1704 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1705
1706 if (ns_nullhost(*ina))
1707 ina->x_host = *(union ns_host *)
1708 LLADDR(ifp->if_sadl);
1709 else
1710 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1711 ifp->if_addrlen);
1712 /* Set new address. */
1713 error = fxp_init(sc);
1714 break;
1715 }
1716 #endif /* NS */
1717 default:
1718 error = fxp_init(sc);
1719 break;
1720 }
1721 break;
1722
1723 case SIOCSIFMTU:
1724 if (ifr->ifr_mtu > ETHERMTU)
1725 error = EINVAL;
1726 else
1727 ifp->if_mtu = ifr->ifr_mtu;
1728 break;
1729
1730 case SIOCSIFFLAGS:
1731 if ((ifp->if_flags & IFF_UP) == 0 &&
1732 (ifp->if_flags & IFF_RUNNING) != 0) {
1733 /*
1734 * If interface is marked down and it is running, then
1735 * stop it.
1736 */
1737 fxp_stop(sc, 1);
1738 fxp_disable(sc);
1739 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1740 (ifp->if_flags & IFF_RUNNING) == 0) {
1741 /*
1742 * If interface is marked up and it is stopped, then
1743 * start it.
1744 */
1745 if((error = fxp_enable(sc)) != 0)
1746 break;
1747 error = fxp_init(sc);
1748 } else if ((ifp->if_flags & IFF_UP) != 0) {
1749 /*
1750 * Reset the interface to pick up change in any other
1751 * flags that affect the hardware state.
1752 */
1753 if((error = fxp_enable(sc)) != 0)
1754 break;
1755 error = fxp_init(sc);
1756 }
1757 break;
1758
1759 case SIOCADDMULTI:
1760 case SIOCDELMULTI:
1761 if(sc->sc_enabled == 0) {
1762 error = EIO;
1763 break;
1764 }
1765 error = (command == SIOCADDMULTI) ?
1766 ether_addmulti(ifr, &sc->sc_ethercom) :
1767 ether_delmulti(ifr, &sc->sc_ethercom);
1768
1769 if (error == ENETRESET) {
1770 /*
1771 * Multicast list has changed; set the hardware
1772 * filter accordingly.
1773 */
1774 if (sc->sc_txpending) {
1775 sc->sc_flags |= FXPF_WANTINIT;
1776 error = 0;
1777 } else
1778 error = fxp_init(sc);
1779 }
1780 break;
1781
1782 case SIOCSIFMEDIA:
1783 case SIOCGIFMEDIA:
1784 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1785 break;
1786
1787 default:
1788 error = EINVAL;
1789 break;
1790 }
1791
1792 splx(s);
1793 return (error);
1794 }
1795
1796 /*
1797 * Program the multicast filter.
1798 *
1799 * This function must be called at splnet().
1800 */
1801 void
1802 fxp_mc_setup(sc)
1803 struct fxp_softc *sc;
1804 {
1805 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1806 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1807 struct ethercom *ec = &sc->sc_ethercom;
1808 struct ether_multi *enm;
1809 struct ether_multistep step;
1810 int count, nmcasts;
1811
1812 #ifdef DIAGNOSTIC
1813 if (sc->sc_txpending)
1814 panic("fxp_mc_setup: pending transmissions");
1815 #endif
1816
1817 ifp->if_flags &= ~IFF_ALLMULTI;
1818
1819 /*
1820 * Initialize multicast setup descriptor.
1821 */
1822 nmcasts = 0;
1823 ETHER_FIRST_MULTI(step, ec, enm);
1824 while (enm != NULL) {
1825 /*
1826 * Check for too many multicast addresses or if we're
1827 * listening to a range. Either way, we simply have
1828 * to accept all multicasts.
1829 */
1830 if (nmcasts >= MAXMCADDR ||
1831 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1832 ETHER_ADDR_LEN) != 0) {
1833 /*
1834 * Callers of this function must do the
1835 * right thing with this. If we're called
1836 * from outside fxp_init(), the caller must
1837 * detect if the state if IFF_ALLMULTI changes.
1838 * If it does, the caller must then call
1839 * fxp_init(), since allmulti is handled by
1840 * the config block.
1841 */
1842 ifp->if_flags |= IFF_ALLMULTI;
1843 return;
1844 }
1845 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1846 ETHER_ADDR_LEN);
1847 nmcasts++;
1848 ETHER_NEXT_MULTI(step, enm);
1849 }
1850
1851 /* BIG_ENDIAN: no need to swap to store 0 */
1852 mcsp->cb_status = 0;
1853 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1854 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1855 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1856
1857 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1858
1859 /*
1860 * Wait until the command unit is not active. This should never
1861 * happen since nothing is queued, but make sure anyway.
1862 */
1863 count = 100;
1864 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1865 FXP_SCB_CUS_ACTIVE && --count)
1866 DELAY(1);
1867 if (count == 0) {
1868 printf("%s at line %d: command queue timeout\n",
1869 sc->sc_dev.dv_xname, __LINE__);
1870 return;
1871 }
1872
1873 /*
1874 * Start the multicast setup command/DMA.
1875 */
1876 fxp_scb_wait(sc);
1877 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1878 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1879
1880 /* ...and wait for it to complete. */
1881 count = 1000;
1882 do {
1883 FXP_CDMCSSYNC(sc,
1884 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1885 DELAY(1);
1886 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1887 if (count == 0) {
1888 printf("%s at line %d: dmasync timeout\n",
1889 sc->sc_dev.dv_xname, __LINE__);
1890 return;
1891 }
1892 }
1893
1894 int
1895 fxp_enable(sc)
1896 struct fxp_softc *sc;
1897 {
1898
1899 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1900 if ((*sc->sc_enable)(sc) != 0) {
1901 printf("%s: device enable failed\n",
1902 sc->sc_dev.dv_xname);
1903 return (EIO);
1904 }
1905 }
1906
1907 sc->sc_enabled = 1;
1908 return (0);
1909 }
1910
1911 void
1912 fxp_disable(sc)
1913 struct fxp_softc *sc;
1914 {
1915
1916 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1917 (*sc->sc_disable)(sc);
1918 sc->sc_enabled = 0;
1919 }
1920 }
1921
1922 /*
1923 * fxp_activate:
1924 *
1925 * Handle device activation/deactivation requests.
1926 */
1927 int
1928 fxp_activate(self, act)
1929 struct device *self;
1930 enum devact act;
1931 {
1932 struct fxp_softc *sc = (void *) self;
1933 int s, error = 0;
1934
1935 s = splnet();
1936 switch (act) {
1937 case DVACT_ACTIVATE:
1938 error = EOPNOTSUPP;
1939 break;
1940
1941 case DVACT_DEACTIVATE:
1942 if (sc->sc_flags & FXPF_MII)
1943 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1944 MII_OFFSET_ANY);
1945 if_deactivate(&sc->sc_ethercom.ec_if);
1946 break;
1947 }
1948 splx(s);
1949
1950 return (error);
1951 }
1952
1953 /*
1954 * fxp_detach:
1955 *
1956 * Detach an i82557 interface.
1957 */
1958 int
1959 fxp_detach(sc)
1960 struct fxp_softc *sc;
1961 {
1962 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1963 int i;
1964
1965 /* Succeed now if there's no work to do. */
1966 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1967 return (0);
1968
1969 /* Unhook our tick handler. */
1970 callout_stop(&sc->sc_callout);
1971
1972 if (sc->sc_flags & FXPF_MII) {
1973 /* Detach all PHYs */
1974 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1975 }
1976
1977 /* Delete all remaining media. */
1978 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1979
1980 #if NRND > 0
1981 rnd_detach_source(&sc->rnd_source);
1982 #endif
1983 #if NBPFILTER > 0
1984 bpfdetach(ifp);
1985 #endif
1986 ether_ifdetach(ifp);
1987 if_detach(ifp);
1988
1989 for (i = 0; i < FXP_NRFABUFS; i++) {
1990 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1991 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1992 }
1993
1994 for (i = 0; i < FXP_NTXCB; i++) {
1995 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1996 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1997 }
1998
1999 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2000 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2001 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2002 sizeof(struct fxp_control_data));
2003 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2004
2005 shutdownhook_disestablish(sc->sc_sdhook);
2006 powerhook_disestablish(sc->sc_powerhook);
2007
2008 return (0);
2009 }
2010