i82557.c revision 1.38 1 /* $NetBSD: i82557.c,v 1.38 2000/10/01 23:32:42 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 int fxp_init __P((struct fxp_softc *));
181 void fxp_rxdrain __P((struct fxp_softc *));
182 void fxp_stop __P((struct fxp_softc *, int));
183 void fxp_watchdog __P((struct ifnet *));
184 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185 int fxp_mdi_read __P((struct device *, int, int));
186 void fxp_statchg __P((struct device *));
187 void fxp_mdi_write __P((struct device *, int, int, int));
188 void fxp_autosize_eeprom __P((struct fxp_softc*));
189 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191 void fxp_tick __P((void *));
192 void fxp_mc_setup __P((struct fxp_softc *));
193
194 void fxp_shutdown __P((void *));
195 void fxp_power __P((int, void *));
196
197 int fxp_copy_small = 0;
198
199 struct fxp_phytype {
200 int fp_phy; /* type of PHY, -1 for MII at the end. */
201 void (*fp_init) __P((struct fxp_softc *));
202 } fxp_phytype_table[] = {
203 { FXP_PHY_80C24, fxp_80c24_initmedia },
204 { -1, fxp_mii_initmedia },
205 };
206
207 /*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212 static int tx_threshold = 64;
213
214 /*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218 inline void
219 fxp_scb_wait(sc)
220 struct fxp_softc *sc;
221 {
222 int i = 10000;
223
224 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225 delay(2);
226 if (i == 0)
227 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228 }
229
230 /*
231 * Finish attaching an i82557 interface. Called by bus-specific front-end.
232 */
233 void
234 fxp_attach(sc)
235 struct fxp_softc *sc;
236 {
237 u_int8_t enaddr[ETHER_ADDR_LEN];
238 struct ifnet *ifp;
239 bus_dma_segment_t seg;
240 int rseg, i, error;
241 struct fxp_phytype *fp;
242
243 callout_init(&sc->sc_callout);
244
245 /*
246 * Allocate the control data structures, and create and load the
247 * DMA map for it.
248 */
249 if ((error = bus_dmamem_alloc(sc->sc_dmat,
250 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251 0)) != 0) {
252 printf("%s: unable to allocate control data, error = %d\n",
253 sc->sc_dev.dv_xname, error);
254 goto fail_0;
255 }
256
257 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259 BUS_DMA_COHERENT)) != 0) {
260 printf("%s: unable to map control data, error = %d\n",
261 sc->sc_dev.dv_xname, error);
262 goto fail_1;
263 }
264 sc->sc_cdseg = seg;
265 sc->sc_cdnseg = rseg;
266
267 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269 if ((error = bus_dmamap_create(sc->sc_dmat,
270 sizeof(struct fxp_control_data), 1,
271 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272 printf("%s: unable to create control data DMA map, "
273 "error = %d\n", sc->sc_dev.dv_xname, error);
274 goto fail_2;
275 }
276
277 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279 0)) != 0) {
280 printf("%s: can't load control data DMA map, error = %d\n",
281 sc->sc_dev.dv_xname, error);
282 goto fail_3;
283 }
284
285 /*
286 * Create the transmit buffer DMA maps.
287 */
288 for (i = 0; i < FXP_NTXCB; i++) {
289 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290 FXP_NTXSEG, MCLBYTES, 0, 0,
291 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292 printf("%s: unable to create tx DMA map %d, "
293 "error = %d\n", sc->sc_dev.dv_xname, i, error);
294 goto fail_4;
295 }
296 }
297
298 /*
299 * Create the receive buffer DMA maps.
300 */
301 for (i = 0; i < FXP_NRFABUFS; i++) {
302 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304 printf("%s: unable to create rx DMA map %d, "
305 "error = %d\n", sc->sc_dev.dv_xname, i, error);
306 goto fail_5;
307 }
308 }
309
310 /* Initialize MAC address and media structures. */
311 fxp_get_info(sc, enaddr);
312
313 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316 ifp = &sc->sc_ethercom.ec_if;
317
318 /*
319 * Get info about our media interface, and initialize it. Note
320 * the table terminates itself with a phy of -1, indicating
321 * that we're using MII.
322 */
323 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324 if (fp->fp_phy == sc->phy_primary_device)
325 break;
326 (*fp->fp_init)(sc);
327
328 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329 ifp->if_softc = sc;
330 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331 ifp->if_ioctl = fxp_ioctl;
332 ifp->if_start = fxp_start;
333 ifp->if_watchdog = fxp_watchdog;
334
335 /*
336 * Attach the interface.
337 */
338 if_attach(ifp);
339 ether_ifattach(ifp, enaddr);
340 #if NBPFILTER > 0
341 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
342 sizeof(struct ether_header));
343 #endif
344 #if NRND > 0
345 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346 RND_TYPE_NET, 0);
347 #endif
348
349 /*
350 * Add shutdown hook so that DMA is disabled prior to reboot. Not
351 * doing do could allow DMA to corrupt kernel memory during the
352 * reboot before the driver initializes.
353 */
354 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
355 if (sc->sc_sdhook == NULL)
356 printf("%s: WARNING: unable to establish shutdown hook\n",
357 sc->sc_dev.dv_xname);
358 /*
359 * Add suspend hook, for similar reasons..
360 */
361 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
362 if (sc->sc_powerhook == NULL)
363 printf("%s: WARNING: unable to establish power hook\n",
364 sc->sc_dev.dv_xname);
365
366 /* The attach is successful. */
367 sc->sc_flags |= FXPF_ATTACHED;
368
369 return;
370
371 /*
372 * Free any resources we've allocated during the failed attach
373 * attempt. Do this in reverse order and fall though.
374 */
375 fail_5:
376 for (i = 0; i < FXP_NRFABUFS; i++) {
377 if (sc->sc_rxmaps[i] != NULL)
378 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
379 }
380 fail_4:
381 for (i = 0; i < FXP_NTXCB; i++) {
382 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
383 bus_dmamap_destroy(sc->sc_dmat,
384 FXP_DSTX(sc, i)->txs_dmamap);
385 }
386 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
387 fail_3:
388 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
389 fail_2:
390 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
391 sizeof(struct fxp_control_data));
392 fail_1:
393 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
394 fail_0:
395 return;
396 }
397
398 void
399 fxp_mii_initmedia(sc)
400 struct fxp_softc *sc;
401 {
402
403 sc->sc_flags |= FXPF_MII;
404
405 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
406 sc->sc_mii.mii_readreg = fxp_mdi_read;
407 sc->sc_mii.mii_writereg = fxp_mdi_write;
408 sc->sc_mii.mii_statchg = fxp_statchg;
409 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
410 fxp_mii_mediastatus);
411 /*
412 * The i82557 wedges if all of its PHYs are isolated!
413 */
414 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
415 MII_OFFSET_ANY, MIIF_NOISOLATE);
416 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
417 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
418 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
419 } else
420 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
421 }
422
423 void
424 fxp_80c24_initmedia(sc)
425 struct fxp_softc *sc;
426 {
427
428 /*
429 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
430 * doesn't have a programming interface of any sort. The
431 * media is sensed automatically based on how the link partner
432 * is configured. This is, in essence, manual configuration.
433 */
434 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
435 sc->sc_dev.dv_xname);
436 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
437 fxp_80c24_mediastatus);
438 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
439 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
440 }
441
442 /*
443 * Device shutdown routine. Called at system shutdown after sync. The
444 * main purpose of this routine is to shut off receiver DMA so that
445 * kernel memory doesn't get clobbered during warmboot.
446 */
447 void
448 fxp_shutdown(arg)
449 void *arg;
450 {
451 struct fxp_softc *sc = arg;
452
453 /*
454 * Since the system's going to halt shortly, don't bother
455 * freeing mbufs.
456 */
457 fxp_stop(sc, 0);
458 }
459 /*
460 * Power handler routine. Called when the system is transitioning
461 * into/out of power save modes. As with fxp_shutdown, the main
462 * purpose of this routine is to shut off receiver DMA so it doesn't
463 * clobber kernel memory at the wrong time.
464 */
465 void
466 fxp_power(why, arg)
467 int why;
468 void *arg;
469 {
470 struct fxp_softc *sc = arg;
471 struct ifnet *ifp;
472 int s;
473
474 s = splnet();
475 if (why != PWR_RESUME)
476 fxp_stop(sc, 0);
477 else {
478 ifp = &sc->sc_ethercom.ec_if;
479 if (ifp->if_flags & IFF_UP)
480 fxp_init(sc);
481 }
482 splx(s);
483 }
484
485 /*
486 * Initialize the interface media.
487 */
488 void
489 fxp_get_info(sc, enaddr)
490 struct fxp_softc *sc;
491 u_int8_t *enaddr;
492 {
493 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
494
495 /*
496 * Reset to a stable state.
497 */
498 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
499 DELAY(10);
500
501 sc->sc_eeprom_size = 0;
502 fxp_autosize_eeprom(sc);
503 if(sc->sc_eeprom_size == 0) {
504 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
505 sc->sc_eeprom_size = 6; /* XXX panic here? */
506 }
507 #ifdef DEBUG
508 printf("%s: detected %d word EEPROM\n",
509 sc->sc_dev.dv_xname,
510 1 << sc->sc_eeprom_size);
511 #endif
512
513 /*
514 * Get info about the primary PHY
515 */
516 fxp_read_eeprom(sc, &data, 6, 1);
517 sc->phy_primary_addr = data & 0xff;
518 sc->phy_primary_device = (data >> 8) & 0x3f;
519 sc->phy_10Mbps_only = data >> 15;
520
521 /*
522 * Read MAC address.
523 */
524 fxp_read_eeprom(sc, myea, 0, 3);
525 enaddr[0] = myea[0] & 0xff;
526 enaddr[1] = myea[0] >> 8;
527 enaddr[2] = myea[1] & 0xff;
528 enaddr[3] = myea[1] >> 8;
529 enaddr[4] = myea[2] & 0xff;
530 enaddr[5] = myea[2] >> 8;
531 }
532
533 /*
534 * Figure out EEPROM size.
535 *
536 * 559's can have either 64-word or 256-word EEPROMs, the 558
537 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
538 * talks about the existance of 16 to 256 word EEPROMs.
539 *
540 * The only known sizes are 64 and 256, where the 256 version is used
541 * by CardBus cards to store CIS information.
542 *
543 * The address is shifted in msb-to-lsb, and after the last
544 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
545 * after which follows the actual data. We try to detect this zero, by
546 * probing the data-out bit in the EEPROM control register just after
547 * having shifted in a bit. If the bit is zero, we assume we've
548 * shifted enough address bits. The data-out should be tri-state,
549 * before this, which should translate to a logical one.
550 *
551 * Other ways to do this would be to try to read a register with known
552 * contents with a varying number of address bits, but no such
553 * register seem to be available. The high bits of register 10 are 01
554 * on the 558 and 559, but apparently not on the 557.
555 *
556 * The Linux driver computes a checksum on the EEPROM data, but the
557 * value of this checksum is not very well documented.
558 */
559
560 void
561 fxp_autosize_eeprom(sc)
562 struct fxp_softc *sc;
563 {
564 u_int16_t reg;
565 int x;
566
567 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
568 /*
569 * Shift in read opcode.
570 */
571 for (x = 3; x > 0; x--) {
572 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
573 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
574 } else {
575 reg = FXP_EEPROM_EECS;
576 }
577 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
578 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
579 reg | FXP_EEPROM_EESK);
580 DELAY(4);
581 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
582 DELAY(4);
583 }
584 /*
585 * Shift in address, wait for the dummy zero following a correct
586 * address shift.
587 */
588 for (x = 1; x <= 8; x++) {
589 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
590 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
591 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
592 DELAY(4);
593 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
594 FXP_EEPROM_EEDO) == 0)
595 break;
596 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
597 DELAY(4);
598 }
599 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
600 DELAY(4);
601 if(x != 6 && x != 8) {
602 #ifdef DEBUG
603 printf("%s: strange EEPROM size (%d)\n",
604 sc->sc_dev.dv_xname, 1 << x);
605 #endif
606 } else
607 sc->sc_eeprom_size = x;
608 }
609
610 /*
611 * Read from the serial EEPROM. Basically, you manually shift in
612 * the read opcode (one bit at a time) and then shift in the address,
613 * and then you shift out the data (all of this one bit at a time).
614 * The word size is 16 bits, so you have to provide the address for
615 * every 16 bits of data.
616 */
617 void
618 fxp_read_eeprom(sc, data, offset, words)
619 struct fxp_softc *sc;
620 u_int16_t *data;
621 int offset;
622 int words;
623 {
624 u_int16_t reg;
625 int i, x;
626
627 for (i = 0; i < words; i++) {
628 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
629 /*
630 * Shift in read opcode.
631 */
632 for (x = 3; x > 0; x--) {
633 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
634 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
635 } else {
636 reg = FXP_EEPROM_EECS;
637 }
638 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
639 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
640 reg | FXP_EEPROM_EESK);
641 DELAY(4);
642 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
643 DELAY(4);
644 }
645 /*
646 * Shift in address.
647 */
648 for (x = sc->sc_eeprom_size; x > 0; x--) {
649 if ((i + offset) & (1 << (x - 1))) {
650 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
651 } else {
652 reg = FXP_EEPROM_EECS;
653 }
654 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
655 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
656 reg | FXP_EEPROM_EESK);
657 DELAY(4);
658 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
659 DELAY(4);
660 }
661 reg = FXP_EEPROM_EECS;
662 data[i] = 0;
663 /*
664 * Shift out data.
665 */
666 for (x = 16; x > 0; x--) {
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
668 reg | FXP_EEPROM_EESK);
669 DELAY(4);
670 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
671 FXP_EEPROM_EEDO)
672 data[i] |= (1 << (x - 1));
673 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
674 DELAY(4);
675 }
676 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
677 DELAY(4);
678 }
679 }
680
681 /*
682 * Start packet transmission on the interface.
683 */
684 void
685 fxp_start(ifp)
686 struct ifnet *ifp;
687 {
688 struct fxp_softc *sc = ifp->if_softc;
689 struct mbuf *m0, *m;
690 struct fxp_cb_tx *txd;
691 struct fxp_txsoft *txs;
692 struct fxp_tbdlist *tbd;
693 bus_dmamap_t dmamap;
694 int error, lasttx, nexttx, opending, seg;
695
696 /*
697 * If we want a re-init, bail out now.
698 */
699 if (sc->sc_flags & FXPF_WANTINIT) {
700 ifp->if_flags |= IFF_OACTIVE;
701 return;
702 }
703
704 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
705 return;
706
707 /*
708 * Remember the previous txpending and the current lasttx.
709 */
710 opending = sc->sc_txpending;
711 lasttx = sc->sc_txlast;
712
713 /*
714 * Loop through the send queue, setting up transmit descriptors
715 * until we drain the queue, or use up all available transmit
716 * descriptors.
717 */
718 while (sc->sc_txpending < FXP_NTXCB) {
719 /*
720 * Grab a packet off the queue.
721 */
722 IF_DEQUEUE(&ifp->if_snd, m0);
723 if (m0 == NULL)
724 break;
725
726 /*
727 * Get the next available transmit descriptor.
728 */
729 nexttx = FXP_NEXTTX(sc->sc_txlast);
730 txd = FXP_CDTX(sc, nexttx);
731 tbd = FXP_CDTBD(sc, nexttx);
732 txs = FXP_DSTX(sc, nexttx);
733 dmamap = txs->txs_dmamap;
734
735 /*
736 * Load the DMA map. If this fails, the packet either
737 * didn't fit in the allotted number of frags, or we were
738 * short on resources. In this case, we'll copy and try
739 * again.
740 */
741 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
742 BUS_DMA_NOWAIT) != 0) {
743 MGETHDR(m, M_DONTWAIT, MT_DATA);
744 if (m == NULL) {
745 printf("%s: unable to allocate Tx mbuf\n",
746 sc->sc_dev.dv_xname);
747 IF_PREPEND(&ifp->if_snd, m0);
748 break;
749 }
750 if (m0->m_pkthdr.len > MHLEN) {
751 MCLGET(m, M_DONTWAIT);
752 if ((m->m_flags & M_EXT) == 0) {
753 printf("%s: unable to allocate Tx "
754 "cluster\n", sc->sc_dev.dv_xname);
755 m_freem(m);
756 IF_PREPEND(&ifp->if_snd, m0);
757 break;
758 }
759 }
760 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
761 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
762 m_freem(m0);
763 m0 = m;
764 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
765 m0, BUS_DMA_NOWAIT);
766 if (error) {
767 printf("%s: unable to load Tx buffer, "
768 "error = %d\n", sc->sc_dev.dv_xname, error);
769 IF_PREPEND(&ifp->if_snd, m0);
770 break;
771 }
772 }
773
774 /* Initialize the fraglist. */
775 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
776 tbd->tbd_d[seg].tb_addr =
777 htole32(dmamap->dm_segs[seg].ds_addr);
778 tbd->tbd_d[seg].tb_size =
779 htole32(dmamap->dm_segs[seg].ds_len);
780 }
781
782 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
783
784 /* Sync the DMA map. */
785 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
786 BUS_DMASYNC_PREWRITE);
787
788 /*
789 * Store a pointer to the packet so we can free it later.
790 */
791 txs->txs_mbuf = m0;
792
793 /*
794 * Initialize the transmit descriptor.
795 */
796 /* BIG_ENDIAN: no need to swap to store 0 */
797 txd->cb_status = 0;
798 txd->cb_command =
799 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
800 txd->tx_threshold = tx_threshold;
801 txd->tbd_number = dmamap->dm_nsegs;
802
803 FXP_CDTXSYNC(sc, nexttx,
804 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
805
806 /* Advance the tx pointer. */
807 sc->sc_txpending++;
808 sc->sc_txlast = nexttx;
809
810 #if NBPFILTER > 0
811 /*
812 * Pass packet to bpf if there is a listener.
813 */
814 if (ifp->if_bpf)
815 bpf_mtap(ifp->if_bpf, m0);
816 #endif
817 }
818
819 if (sc->sc_txpending == FXP_NTXCB) {
820 /* No more slots; notify upper layer. */
821 ifp->if_flags |= IFF_OACTIVE;
822 }
823
824 if (sc->sc_txpending != opending) {
825 /*
826 * We enqueued packets. If the transmitter was idle,
827 * reset the txdirty pointer.
828 */
829 if (opending == 0)
830 sc->sc_txdirty = FXP_NEXTTX(lasttx);
831
832 /*
833 * Cause the chip to interrupt and suspend command
834 * processing once the last packet we've enqueued
835 * has been transmitted.
836 */
837 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
838 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
839 FXP_CDTXSYNC(sc, sc->sc_txlast,
840 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
841
842 /*
843 * The entire packet chain is set up. Clear the suspend bit
844 * on the command prior to the first packet we set up.
845 */
846 FXP_CDTXSYNC(sc, lasttx,
847 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
848 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
849 FXP_CDTXSYNC(sc, lasttx,
850 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
851
852 /*
853 * Issue a Resume command in case the chip was suspended.
854 */
855 fxp_scb_wait(sc);
856 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
857
858 /* Set a watchdog timer in case the chip flakes out. */
859 ifp->if_timer = 5;
860 }
861 }
862
863 /*
864 * Process interface interrupts.
865 */
866 int
867 fxp_intr(arg)
868 void *arg;
869 {
870 struct fxp_softc *sc = arg;
871 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
872 struct fxp_cb_tx *txd;
873 struct fxp_txsoft *txs;
874 struct mbuf *m, *m0;
875 bus_dmamap_t rxmap;
876 struct fxp_rfa *rfa;
877 int i, claimed = 0;
878 u_int16_t len, rxstat, txstat;
879 u_int8_t statack;
880
881 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
882 return (0);
883 /*
884 * If the interface isn't running, don't try to
885 * service the interrupt.. just ack it and bail.
886 */
887 if ((ifp->if_flags & IFF_RUNNING) == 0) {
888 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
889 if (statack) {
890 claimed = 1;
891 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
892 }
893 return (claimed);
894 }
895
896 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
897 claimed = 1;
898
899 /*
900 * First ACK all the interrupts in this pass.
901 */
902 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
903
904 /*
905 * Process receiver interrupts. If a no-resource (RNR)
906 * condition exists, get whatever packets we can and
907 * re-start the receiver.
908 */
909 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
910 rcvloop:
911 m = sc->sc_rxq.ifq_head;
912 rfa = FXP_MTORFA(m);
913 rxmap = M_GETCTX(m, bus_dmamap_t);
914
915 FXP_RFASYNC(sc, m,
916 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
917
918 rxstat = le16toh(rfa->rfa_status);
919
920 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
921 /*
922 * We have processed all of the
923 * receive buffers.
924 */
925 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
926 goto do_transmit;
927 }
928
929 IF_DEQUEUE(&sc->sc_rxq, m);
930
931 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
932
933 len = le16toh(rfa->actual_size) &
934 (m->m_ext.ext_size - 1);
935
936 if (len < sizeof(struct ether_header)) {
937 /*
938 * Runt packet; drop it now.
939 */
940 FXP_INIT_RFABUF(sc, m);
941 goto rcvloop;
942 }
943
944 /*
945 * If the packet is small enough to fit in a
946 * single header mbuf, allocate one and copy
947 * the data into it. This greatly reduces
948 * memory consumption when we receive lots
949 * of small packets.
950 *
951 * Otherwise, we add a new buffer to the receive
952 * chain. If this fails, we drop the packet and
953 * recycle the old buffer.
954 */
955 if (fxp_copy_small != 0 && len <= MHLEN) {
956 MGETHDR(m0, M_DONTWAIT, MT_DATA);
957 if (m == NULL)
958 goto dropit;
959 memcpy(mtod(m0, caddr_t),
960 mtod(m, caddr_t), len);
961 FXP_INIT_RFABUF(sc, m);
962 m = m0;
963 } else {
964 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
965 dropit:
966 ifp->if_ierrors++;
967 FXP_INIT_RFABUF(sc, m);
968 goto rcvloop;
969 }
970 }
971
972 m->m_pkthdr.rcvif = ifp;
973 m->m_pkthdr.len = m->m_len = len;
974
975 #if NBPFILTER > 0
976 /*
977 * Pass this up to any BPF listeners, but only
978 * pass it up the stack it its for us.
979 */
980 if (ifp->if_bpf)
981 bpf_mtap(ifp->if_bpf, m);
982 #endif
983
984 /* Pass it on. */
985 (*ifp->if_input)(ifp, m);
986 goto rcvloop;
987 }
988
989 do_transmit:
990 if (statack & FXP_SCB_STATACK_RNR) {
991 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
992 fxp_scb_wait(sc);
993 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
994 rxmap->dm_segs[0].ds_addr +
995 RFA_ALIGNMENT_FUDGE);
996 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
997 FXP_SCB_COMMAND_RU_START);
998 }
999
1000 /*
1001 * Free any finished transmit mbuf chains.
1002 */
1003 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1004 ifp->if_flags &= ~IFF_OACTIVE;
1005 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1006 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1007 txd = FXP_CDTX(sc, i);
1008 txs = FXP_DSTX(sc, i);
1009
1010 FXP_CDTXSYNC(sc, i,
1011 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1012
1013 txstat = le16toh(txd->cb_status);
1014
1015 if ((txstat & FXP_CB_STATUS_C) == 0)
1016 break;
1017
1018 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1019
1020 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1021 0, txs->txs_dmamap->dm_mapsize,
1022 BUS_DMASYNC_POSTWRITE);
1023 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1024 m_freem(txs->txs_mbuf);
1025 txs->txs_mbuf = NULL;
1026 }
1027
1028 /* Update the dirty transmit buffer pointer. */
1029 sc->sc_txdirty = i;
1030
1031 /*
1032 * Cancel the watchdog timer if there are no pending
1033 * transmissions.
1034 */
1035 if (sc->sc_txpending == 0) {
1036 ifp->if_timer = 0;
1037
1038 /*
1039 * If we want a re-init, do that now.
1040 */
1041 if (sc->sc_flags & FXPF_WANTINIT)
1042 (void) fxp_init(sc);
1043 }
1044
1045 /*
1046 * Try to get more packets going.
1047 */
1048 fxp_start(ifp);
1049 }
1050 }
1051
1052 #if NRND > 0
1053 if (claimed)
1054 rnd_add_uint32(&sc->rnd_source, statack);
1055 #endif
1056 return (claimed);
1057 }
1058
1059 /*
1060 * Update packet in/out/collision statistics. The i82557 doesn't
1061 * allow you to access these counters without doing a fairly
1062 * expensive DMA to get _all_ of the statistics it maintains, so
1063 * we do this operation here only once per second. The statistics
1064 * counters in the kernel are updated from the previous dump-stats
1065 * DMA and then a new dump-stats DMA is started. The on-chip
1066 * counters are zeroed when the DMA completes. If we can't start
1067 * the DMA immediately, we don't wait - we just prepare to read
1068 * them again next time.
1069 */
1070 void
1071 fxp_tick(arg)
1072 void *arg;
1073 {
1074 struct fxp_softc *sc = arg;
1075 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1076 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1077 int s;
1078
1079 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1080 return;
1081
1082 s = splnet();
1083
1084 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1085
1086 ifp->if_opackets += le32toh(sp->tx_good);
1087 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1088 if (sp->rx_good) {
1089 ifp->if_ipackets += le32toh(sp->rx_good);
1090 sc->sc_rxidle = 0;
1091 } else {
1092 sc->sc_rxidle++;
1093 }
1094 ifp->if_ierrors +=
1095 le32toh(sp->rx_crc_errors) +
1096 le32toh(sp->rx_alignment_errors) +
1097 le32toh(sp->rx_rnr_errors) +
1098 le32toh(sp->rx_overrun_errors);
1099 /*
1100 * If any transmit underruns occured, bump up the transmit
1101 * threshold by another 512 bytes (64 * 8).
1102 */
1103 if (sp->tx_underruns) {
1104 ifp->if_oerrors += le32toh(sp->tx_underruns);
1105 if (tx_threshold < 192)
1106 tx_threshold += 64;
1107 }
1108
1109 /*
1110 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1111 * then assume the receiver has locked up and attempt to clear
1112 * the condition by reprogramming the multicast filter (actually,
1113 * resetting the interface). This is a work-around for a bug in
1114 * the 82557 where the receiver locks up if it gets certain types
1115 * of garbage in the syncronization bits prior to the packet header.
1116 * This bug is supposed to only occur in 10Mbps mode, but has been
1117 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1118 * speed transition).
1119 */
1120 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1121 (void) fxp_init(sc);
1122 splx(s);
1123 return;
1124 }
1125 /*
1126 * If there is no pending command, start another stats
1127 * dump. Otherwise punt for now.
1128 */
1129 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1130 /*
1131 * Start another stats dump.
1132 */
1133 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1134 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1135 FXP_SCB_COMMAND_CU_DUMPRESET);
1136 } else {
1137 /*
1138 * A previous command is still waiting to be accepted.
1139 * Just zero our copy of the stats and wait for the
1140 * next timer event to update them.
1141 */
1142 /* BIG_ENDIAN: no swap required to store 0 */
1143 sp->tx_good = 0;
1144 sp->tx_underruns = 0;
1145 sp->tx_total_collisions = 0;
1146
1147 sp->rx_good = 0;
1148 sp->rx_crc_errors = 0;
1149 sp->rx_alignment_errors = 0;
1150 sp->rx_rnr_errors = 0;
1151 sp->rx_overrun_errors = 0;
1152 }
1153
1154 if (sc->sc_flags & FXPF_MII) {
1155 /* Tick the MII clock. */
1156 mii_tick(&sc->sc_mii);
1157 }
1158
1159 splx(s);
1160
1161 /*
1162 * Schedule another timeout one second from now.
1163 */
1164 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1165 }
1166
1167 /*
1168 * Drain the receive queue.
1169 */
1170 void
1171 fxp_rxdrain(sc)
1172 struct fxp_softc *sc;
1173 {
1174 bus_dmamap_t rxmap;
1175 struct mbuf *m;
1176
1177 for (;;) {
1178 IF_DEQUEUE(&sc->sc_rxq, m);
1179 if (m == NULL)
1180 break;
1181 rxmap = M_GETCTX(m, bus_dmamap_t);
1182 bus_dmamap_unload(sc->sc_dmat, rxmap);
1183 FXP_RXMAP_PUT(sc, rxmap);
1184 m_freem(m);
1185 }
1186 }
1187
1188 /*
1189 * Stop the interface. Cancels the statistics updater and resets
1190 * the interface.
1191 */
1192 void
1193 fxp_stop(sc, drain)
1194 struct fxp_softc *sc;
1195 int drain;
1196 {
1197 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1198 struct fxp_txsoft *txs;
1199 int i;
1200
1201 /*
1202 * Turn down interface (done early to avoid bad interactions
1203 * between panics, shutdown hooks, and the watchdog timer)
1204 */
1205 ifp->if_timer = 0;
1206 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1207
1208 /*
1209 * Cancel stats updater.
1210 */
1211 callout_stop(&sc->sc_callout);
1212 if (sc->sc_flags & FXPF_MII) {
1213 /* Down the MII. */
1214 mii_down(&sc->sc_mii);
1215 }
1216
1217 /*
1218 * Issue software reset
1219 */
1220 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1221 DELAY(10);
1222
1223 /*
1224 * Release any xmit buffers.
1225 */
1226 for (i = 0; i < FXP_NTXCB; i++) {
1227 txs = FXP_DSTX(sc, i);
1228 if (txs->txs_mbuf != NULL) {
1229 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1230 m_freem(txs->txs_mbuf);
1231 txs->txs_mbuf = NULL;
1232 }
1233 }
1234 sc->sc_txpending = 0;
1235
1236 if (drain) {
1237 /*
1238 * Release the receive buffers.
1239 */
1240 fxp_rxdrain(sc);
1241 }
1242
1243 }
1244
1245 /*
1246 * Watchdog/transmission transmit timeout handler. Called when a
1247 * transmission is started on the interface, but no interrupt is
1248 * received before the timeout. This usually indicates that the
1249 * card has wedged for some reason.
1250 */
1251 void
1252 fxp_watchdog(ifp)
1253 struct ifnet *ifp;
1254 {
1255 struct fxp_softc *sc = ifp->if_softc;
1256
1257 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1258 ifp->if_oerrors++;
1259
1260 (void) fxp_init(sc);
1261 }
1262
1263 /*
1264 * Initialize the interface. Must be called at splnet().
1265 */
1266 int
1267 fxp_init(sc)
1268 struct fxp_softc *sc;
1269 {
1270 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1271 struct fxp_cb_config *cbp;
1272 struct fxp_cb_ias *cb_ias;
1273 struct fxp_cb_tx *txd;
1274 bus_dmamap_t rxmap;
1275 int i, prm, allm, error = 0;
1276
1277 /*
1278 * Cancel any pending I/O
1279 */
1280 fxp_stop(sc, 0);
1281
1282 /*
1283 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1284 * flag, and this prevents the MII from detaching resulting in
1285 * a panic. The flags field should perhaps be split in runtime
1286 * flags and more static information. For now, just clear the
1287 * only other flag set.
1288 */
1289
1290 sc->sc_flags &= ~FXPF_WANTINIT;
1291
1292 /*
1293 * Initialize base of CBL and RFA memory. Loading with zero
1294 * sets it up for regular linear addressing.
1295 */
1296 fxp_scb_wait(sc);
1297 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1298 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1299
1300 fxp_scb_wait(sc);
1301 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1302
1303 /*
1304 * Initialize the multicast filter. Do this now, since we might
1305 * have to setup the config block differently.
1306 */
1307 fxp_mc_setup(sc);
1308
1309 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1310 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1311
1312 /*
1313 * Initialize base of dump-stats buffer.
1314 */
1315 fxp_scb_wait(sc);
1316 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1317 sc->sc_cddma + FXP_CDSTATSOFF);
1318 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1319 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1320
1321 cbp = &sc->sc_control_data->fcd_configcb;
1322 memset(cbp, 0, sizeof(struct fxp_cb_config));
1323
1324 /*
1325 * This copy is kind of disgusting, but there are a bunch of must be
1326 * zero and must be one bits in this structure and this is the easiest
1327 * way to initialize them all to proper values.
1328 */
1329 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1330
1331 /* BIG_ENDIAN: no need to swap to store 0 */
1332 cbp->cb_status = 0;
1333 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1334 FXP_CB_COMMAND_EL);
1335 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1336 cbp->link_addr = 0xffffffff; /* (no) next command */
1337 cbp->byte_count = 22; /* (22) bytes to config */
1338 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1339 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1340 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1341 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1342 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1343 cbp->dma_bce = 0; /* (disable) dma max counters */
1344 cbp->late_scb = 0; /* (don't) defer SCB update */
1345 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1346 cbp->ci_int = 1; /* interrupt on CU idle */
1347 cbp->save_bf = prm; /* save bad frames */
1348 cbp->disc_short_rx = !prm; /* discard short packets */
1349 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1350 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1351 cbp->nsai = 1; /* (don't) disable source addr insert */
1352 cbp->preamble_length = 2; /* (7 byte) preamble */
1353 cbp->loopback = 0; /* (don't) loopback */
1354 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1355 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1356 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1357 cbp->promiscuous = prm; /* promiscuous mode */
1358 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1359 cbp->crscdt = 0; /* (CRS only) */
1360 cbp->stripping = !prm; /* truncate rx packet to byte count */
1361 cbp->padding = 1; /* (do) pad short tx packets */
1362 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1363 cbp->force_fdx = 0; /* (don't) force full duplex */
1364 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1365 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1366 cbp->mc_all = allm; /* accept all multicasts */
1367
1368 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1369
1370 /*
1371 * Start the config command/DMA.
1372 */
1373 fxp_scb_wait(sc);
1374 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1375 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1376 /* ...and wait for it to complete. */
1377 i = 1000;
1378 do {
1379 FXP_CDCONFIGSYNC(sc,
1380 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1381 DELAY(1);
1382 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1383 if (i == 0) {
1384 printf("%s at line %d: dmasync timeout\n",
1385 sc->sc_dev.dv_xname, __LINE__);
1386 return ETIMEDOUT;
1387 }
1388
1389 /*
1390 * Initialize the station address.
1391 */
1392 cb_ias = &sc->sc_control_data->fcd_iascb;
1393 /* BIG_ENDIAN: no need to swap to store 0 */
1394 cb_ias->cb_status = 0;
1395 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1396 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1397 cb_ias->link_addr = 0xffffffff;
1398 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1399
1400 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1401
1402 /*
1403 * Start the IAS (Individual Address Setup) command/DMA.
1404 */
1405 fxp_scb_wait(sc);
1406 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1407 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1408 /* ...and wait for it to complete. */
1409 i = 1000;
1410 do {
1411 FXP_CDIASSYNC(sc,
1412 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1413 DELAY(1);
1414 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1415 if (i == 0) {
1416 printf("%s at line %d: dmasync timeout\n",
1417 sc->sc_dev.dv_xname, __LINE__);
1418 return ETIMEDOUT;
1419 }
1420
1421 /*
1422 * Initialize the transmit descriptor ring. txlast is initialized
1423 * to the end of the list so that it will wrap around to the first
1424 * descriptor when the first packet is transmitted.
1425 */
1426 for (i = 0; i < FXP_NTXCB; i++) {
1427 txd = FXP_CDTX(sc, i);
1428 memset(txd, 0, sizeof(struct fxp_cb_tx));
1429 txd->cb_command =
1430 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1431 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1432 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1433 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1434 }
1435 sc->sc_txpending = 0;
1436 sc->sc_txdirty = 0;
1437 sc->sc_txlast = FXP_NTXCB - 1;
1438
1439 /*
1440 * Initialize the receive buffer list.
1441 */
1442 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1443 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1444 rxmap = FXP_RXMAP_GET(sc);
1445 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1446 printf("%s: unable to allocate or map rx "
1447 "buffer %d, error = %d\n",
1448 sc->sc_dev.dv_xname,
1449 sc->sc_rxq.ifq_len, error);
1450 /*
1451 * XXX Should attempt to run with fewer receive
1452 * XXX buffers instead of just failing.
1453 */
1454 FXP_RXMAP_PUT(sc, rxmap);
1455 fxp_rxdrain(sc);
1456 goto out;
1457 }
1458 }
1459 sc->sc_rxidle = 0;
1460
1461 /*
1462 * Give the transmit ring to the chip. We do this by pointing
1463 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1464 * issuing a start command. It will execute the NOP and then
1465 * suspend, pointing at the first descriptor.
1466 */
1467 fxp_scb_wait(sc);
1468 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1469 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1470
1471 /*
1472 * Initialize receiver buffer area - RFA.
1473 */
1474 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1475 fxp_scb_wait(sc);
1476 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1477 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1478 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1479
1480 if (sc->sc_flags & FXPF_MII) {
1481 /*
1482 * Set current media.
1483 */
1484 mii_mediachg(&sc->sc_mii);
1485 }
1486
1487 /*
1488 * ...all done!
1489 */
1490 ifp->if_flags |= IFF_RUNNING;
1491 ifp->if_flags &= ~IFF_OACTIVE;
1492
1493 /*
1494 * Start the one second timer.
1495 */
1496 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1497
1498 /*
1499 * Attempt to start output on the interface.
1500 */
1501 fxp_start(ifp);
1502
1503 out:
1504 if (error)
1505 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1506 return (error);
1507 }
1508
1509 /*
1510 * Change media according to request.
1511 */
1512 int
1513 fxp_mii_mediachange(ifp)
1514 struct ifnet *ifp;
1515 {
1516 struct fxp_softc *sc = ifp->if_softc;
1517
1518 if (ifp->if_flags & IFF_UP)
1519 mii_mediachg(&sc->sc_mii);
1520 return (0);
1521 }
1522
1523 /*
1524 * Notify the world which media we're using.
1525 */
1526 void
1527 fxp_mii_mediastatus(ifp, ifmr)
1528 struct ifnet *ifp;
1529 struct ifmediareq *ifmr;
1530 {
1531 struct fxp_softc *sc = ifp->if_softc;
1532
1533 if(sc->sc_enabled == 0) {
1534 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1535 ifmr->ifm_status = 0;
1536 return;
1537 }
1538
1539 mii_pollstat(&sc->sc_mii);
1540 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1541 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1542 }
1543
1544 int
1545 fxp_80c24_mediachange(ifp)
1546 struct ifnet *ifp;
1547 {
1548
1549 /* Nothing to do here. */
1550 return (0);
1551 }
1552
1553 void
1554 fxp_80c24_mediastatus(ifp, ifmr)
1555 struct ifnet *ifp;
1556 struct ifmediareq *ifmr;
1557 {
1558 struct fxp_softc *sc = ifp->if_softc;
1559
1560 /*
1561 * Media is currently-selected media. We cannot determine
1562 * the link status.
1563 */
1564 ifmr->ifm_status = 0;
1565 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1566 }
1567
1568 /*
1569 * Add a buffer to the end of the RFA buffer list.
1570 * Return 0 if successful, error code on failure.
1571 *
1572 * The RFA struct is stuck at the beginning of mbuf cluster and the
1573 * data pointer is fixed up to point just past it.
1574 */
1575 int
1576 fxp_add_rfabuf(sc, rxmap, unload)
1577 struct fxp_softc *sc;
1578 bus_dmamap_t rxmap;
1579 int unload;
1580 {
1581 struct mbuf *m;
1582 int error;
1583
1584 MGETHDR(m, M_DONTWAIT, MT_DATA);
1585 if (m == NULL)
1586 return (ENOBUFS);
1587
1588 MCLGET(m, M_DONTWAIT);
1589 if ((m->m_flags & M_EXT) == 0) {
1590 m_freem(m);
1591 return (ENOBUFS);
1592 }
1593
1594 if (unload)
1595 bus_dmamap_unload(sc->sc_dmat, rxmap);
1596
1597 M_SETCTX(m, rxmap);
1598
1599 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1600 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1601 if (error) {
1602 printf("%s: can't load rx DMA map %d, error = %d\n",
1603 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1604 panic("fxp_add_rfabuf"); /* XXX */
1605 }
1606
1607 FXP_INIT_RFABUF(sc, m);
1608
1609 return (0);
1610 }
1611
1612 volatile int
1613 fxp_mdi_read(self, phy, reg)
1614 struct device *self;
1615 int phy;
1616 int reg;
1617 {
1618 struct fxp_softc *sc = (struct fxp_softc *)self;
1619 int count = 10000;
1620 int value;
1621
1622 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1623 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1624
1625 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1626 && count--)
1627 DELAY(10);
1628
1629 if (count <= 0)
1630 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1631
1632 return (value & 0xffff);
1633 }
1634
1635 void
1636 fxp_statchg(self)
1637 struct device *self;
1638 {
1639
1640 /* Nothing to do. */
1641 }
1642
1643 void
1644 fxp_mdi_write(self, phy, reg, value)
1645 struct device *self;
1646 int phy;
1647 int reg;
1648 int value;
1649 {
1650 struct fxp_softc *sc = (struct fxp_softc *)self;
1651 int count = 10000;
1652
1653 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1654 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1655 (value & 0xffff));
1656
1657 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1658 count--)
1659 DELAY(10);
1660
1661 if (count <= 0)
1662 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1663 }
1664
1665 int
1666 fxp_ioctl(ifp, command, data)
1667 struct ifnet *ifp;
1668 u_long command;
1669 caddr_t data;
1670 {
1671 struct fxp_softc *sc = ifp->if_softc;
1672 struct ifreq *ifr = (struct ifreq *)data;
1673 struct ifaddr *ifa = (struct ifaddr *)data;
1674 int s, error = 0;
1675
1676 s = splnet();
1677
1678 switch (command) {
1679 case SIOCSIFADDR:
1680 if ((error = fxp_enable(sc)) != 0)
1681 break;
1682 ifp->if_flags |= IFF_UP;
1683
1684 switch (ifa->ifa_addr->sa_family) {
1685 #ifdef INET
1686 case AF_INET:
1687 if ((error = fxp_init(sc)) != 0)
1688 break;
1689 arp_ifinit(ifp, ifa);
1690 break;
1691 #endif /* INET */
1692 #ifdef NS
1693 case AF_NS:
1694 {
1695 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1696
1697 if (ns_nullhost(*ina))
1698 ina->x_host = *(union ns_host *)
1699 LLADDR(ifp->if_sadl);
1700 else
1701 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1702 ifp->if_addrlen);
1703 /* Set new address. */
1704 error = fxp_init(sc);
1705 break;
1706 }
1707 #endif /* NS */
1708 default:
1709 error = fxp_init(sc);
1710 break;
1711 }
1712 break;
1713
1714 case SIOCSIFMTU:
1715 if (ifr->ifr_mtu > ETHERMTU)
1716 error = EINVAL;
1717 else
1718 ifp->if_mtu = ifr->ifr_mtu;
1719 break;
1720
1721 case SIOCSIFFLAGS:
1722 if ((ifp->if_flags & IFF_UP) == 0 &&
1723 (ifp->if_flags & IFF_RUNNING) != 0) {
1724 /*
1725 * If interface is marked down and it is running, then
1726 * stop it.
1727 */
1728 fxp_stop(sc, 1);
1729 fxp_disable(sc);
1730 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1731 (ifp->if_flags & IFF_RUNNING) == 0) {
1732 /*
1733 * If interface is marked up and it is stopped, then
1734 * start it.
1735 */
1736 if((error = fxp_enable(sc)) != 0)
1737 break;
1738 error = fxp_init(sc);
1739 } else if ((ifp->if_flags & IFF_UP) != 0) {
1740 /*
1741 * Reset the interface to pick up change in any other
1742 * flags that affect the hardware state.
1743 */
1744 if((error = fxp_enable(sc)) != 0)
1745 break;
1746 error = fxp_init(sc);
1747 }
1748 break;
1749
1750 case SIOCADDMULTI:
1751 case SIOCDELMULTI:
1752 if(sc->sc_enabled == 0) {
1753 error = EIO;
1754 break;
1755 }
1756 error = (command == SIOCADDMULTI) ?
1757 ether_addmulti(ifr, &sc->sc_ethercom) :
1758 ether_delmulti(ifr, &sc->sc_ethercom);
1759
1760 if (error == ENETRESET) {
1761 /*
1762 * Multicast list has changed; set the hardware
1763 * filter accordingly.
1764 */
1765 if (sc->sc_txpending) {
1766 sc->sc_flags |= FXPF_WANTINIT;
1767 error = 0;
1768 } else
1769 error = fxp_init(sc);
1770 }
1771 break;
1772
1773 case SIOCSIFMEDIA:
1774 case SIOCGIFMEDIA:
1775 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1776 break;
1777
1778 default:
1779 error = EINVAL;
1780 break;
1781 }
1782
1783 splx(s);
1784 return (error);
1785 }
1786
1787 /*
1788 * Program the multicast filter.
1789 *
1790 * This function must be called at splnet().
1791 */
1792 void
1793 fxp_mc_setup(sc)
1794 struct fxp_softc *sc;
1795 {
1796 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1797 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1798 struct ethercom *ec = &sc->sc_ethercom;
1799 struct ether_multi *enm;
1800 struct ether_multistep step;
1801 int count, nmcasts;
1802
1803 #ifdef DIAGNOSTIC
1804 if (sc->sc_txpending)
1805 panic("fxp_mc_setup: pending transmissions");
1806 #endif
1807
1808 ifp->if_flags &= ~IFF_ALLMULTI;
1809
1810 /*
1811 * Initialize multicast setup descriptor.
1812 */
1813 nmcasts = 0;
1814 ETHER_FIRST_MULTI(step, ec, enm);
1815 while (enm != NULL) {
1816 /*
1817 * Check for too many multicast addresses or if we're
1818 * listening to a range. Either way, we simply have
1819 * to accept all multicasts.
1820 */
1821 if (nmcasts >= MAXMCADDR ||
1822 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1823 ETHER_ADDR_LEN) != 0) {
1824 /*
1825 * Callers of this function must do the
1826 * right thing with this. If we're called
1827 * from outside fxp_init(), the caller must
1828 * detect if the state if IFF_ALLMULTI changes.
1829 * If it does, the caller must then call
1830 * fxp_init(), since allmulti is handled by
1831 * the config block.
1832 */
1833 ifp->if_flags |= IFF_ALLMULTI;
1834 return;
1835 }
1836 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1837 ETHER_ADDR_LEN);
1838 nmcasts++;
1839 ETHER_NEXT_MULTI(step, enm);
1840 }
1841
1842 /* BIG_ENDIAN: no need to swap to store 0 */
1843 mcsp->cb_status = 0;
1844 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1845 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1846 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1847
1848 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1849
1850 /*
1851 * Wait until the command unit is not active. This should never
1852 * happen since nothing is queued, but make sure anyway.
1853 */
1854 count = 100;
1855 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1856 FXP_SCB_CUS_ACTIVE && --count)
1857 DELAY(1);
1858 if (count == 0) {
1859 printf("%s at line %d: command queue timeout\n",
1860 sc->sc_dev.dv_xname, __LINE__);
1861 return;
1862 }
1863
1864 /*
1865 * Start the multicast setup command/DMA.
1866 */
1867 fxp_scb_wait(sc);
1868 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1869 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1870
1871 /* ...and wait for it to complete. */
1872 count = 1000;
1873 do {
1874 FXP_CDMCSSYNC(sc,
1875 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1876 DELAY(1);
1877 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1878 if (count == 0) {
1879 printf("%s at line %d: dmasync timeout\n",
1880 sc->sc_dev.dv_xname, __LINE__);
1881 return;
1882 }
1883 }
1884
1885 int
1886 fxp_enable(sc)
1887 struct fxp_softc *sc;
1888 {
1889
1890 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1891 if ((*sc->sc_enable)(sc) != 0) {
1892 printf("%s: device enable failed\n",
1893 sc->sc_dev.dv_xname);
1894 return (EIO);
1895 }
1896 }
1897
1898 sc->sc_enabled = 1;
1899 return (0);
1900 }
1901
1902 void
1903 fxp_disable(sc)
1904 struct fxp_softc *sc;
1905 {
1906
1907 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1908 (*sc->sc_disable)(sc);
1909 sc->sc_enabled = 0;
1910 }
1911 }
1912
1913 /*
1914 * fxp_activate:
1915 *
1916 * Handle device activation/deactivation requests.
1917 */
1918 int
1919 fxp_activate(self, act)
1920 struct device *self;
1921 enum devact act;
1922 {
1923 struct fxp_softc *sc = (void *) self;
1924 int s, error = 0;
1925
1926 s = splnet();
1927 switch (act) {
1928 case DVACT_ACTIVATE:
1929 error = EOPNOTSUPP;
1930 break;
1931
1932 case DVACT_DEACTIVATE:
1933 if (sc->sc_flags & FXPF_MII)
1934 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1935 MII_OFFSET_ANY);
1936 if_deactivate(&sc->sc_ethercom.ec_if);
1937 break;
1938 }
1939 splx(s);
1940
1941 return (error);
1942 }
1943
1944 /*
1945 * fxp_detach:
1946 *
1947 * Detach an i82557 interface.
1948 */
1949 int
1950 fxp_detach(sc)
1951 struct fxp_softc *sc;
1952 {
1953 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1954 int i;
1955
1956 /* Succeed now if there's no work to do. */
1957 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1958 return (0);
1959
1960 /* Unhook our tick handler. */
1961 callout_stop(&sc->sc_callout);
1962
1963 if (sc->sc_flags & FXPF_MII) {
1964 /* Detach all PHYs */
1965 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1966 }
1967
1968 /* Delete all remaining media. */
1969 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1970
1971 #if NRND > 0
1972 rnd_detach_source(&sc->rnd_source);
1973 #endif
1974 #if NBPFILTER > 0
1975 bpfdetach(ifp);
1976 #endif
1977 ether_ifdetach(ifp);
1978 if_detach(ifp);
1979
1980 for (i = 0; i < FXP_NRFABUFS; i++) {
1981 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1982 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1983 }
1984
1985 for (i = 0; i < FXP_NTXCB; i++) {
1986 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1987 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1988 }
1989
1990 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1991 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1992 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1993 sizeof(struct fxp_control_data));
1994 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1995
1996 shutdownhook_disestablish(sc->sc_sdhook);
1997 powerhook_disestablish(sc->sc_powerhook);
1998
1999 return (0);
2000 }
2001