i82557.c revision 1.39 1 /* $NetBSD: i82557.c,v 1.39 2000/10/03 23:35:02 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 int fxp_init __P((struct fxp_softc *));
181 void fxp_rxdrain __P((struct fxp_softc *));
182 void fxp_stop __P((struct fxp_softc *, int));
183 void fxp_watchdog __P((struct ifnet *));
184 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
185 int fxp_mdi_read __P((struct device *, int, int));
186 void fxp_statchg __P((struct device *));
187 void fxp_mdi_write __P((struct device *, int, int, int));
188 void fxp_autosize_eeprom __P((struct fxp_softc*));
189 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
190 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
191 void fxp_tick __P((void *));
192 void fxp_mc_setup __P((struct fxp_softc *));
193
194 void fxp_shutdown __P((void *));
195 void fxp_power __P((int, void *));
196
197 int fxp_copy_small = 0;
198
199 struct fxp_phytype {
200 int fp_phy; /* type of PHY, -1 for MII at the end. */
201 void (*fp_init) __P((struct fxp_softc *));
202 } fxp_phytype_table[] = {
203 { FXP_PHY_80C24, fxp_80c24_initmedia },
204 { -1, fxp_mii_initmedia },
205 };
206
207 /*
208 * Set initial transmit threshold at 64 (512 bytes). This is
209 * increased by 64 (512 bytes) at a time, to maximum of 192
210 * (1536 bytes), if an underrun occurs.
211 */
212 static int tx_threshold = 64;
213
214 /*
215 * Wait for the previous command to be accepted (but not necessarily
216 * completed).
217 */
218 inline void
219 fxp_scb_wait(sc)
220 struct fxp_softc *sc;
221 {
222 int i = 10000;
223
224 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
225 delay(2);
226 if (i == 0)
227 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
228 }
229
230 /*
231 * Finish attaching an i82557 interface. Called by bus-specific front-end.
232 */
233 void
234 fxp_attach(sc)
235 struct fxp_softc *sc;
236 {
237 u_int8_t enaddr[ETHER_ADDR_LEN];
238 struct ifnet *ifp;
239 bus_dma_segment_t seg;
240 int rseg, i, error;
241 struct fxp_phytype *fp;
242
243 callout_init(&sc->sc_callout);
244
245 /*
246 * Allocate the control data structures, and create and load the
247 * DMA map for it.
248 */
249 if ((error = bus_dmamem_alloc(sc->sc_dmat,
250 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
251 0)) != 0) {
252 printf("%s: unable to allocate control data, error = %d\n",
253 sc->sc_dev.dv_xname, error);
254 goto fail_0;
255 }
256
257 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
258 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
259 BUS_DMA_COHERENT)) != 0) {
260 printf("%s: unable to map control data, error = %d\n",
261 sc->sc_dev.dv_xname, error);
262 goto fail_1;
263 }
264 sc->sc_cdseg = seg;
265 sc->sc_cdnseg = rseg;
266
267 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
268
269 if ((error = bus_dmamap_create(sc->sc_dmat,
270 sizeof(struct fxp_control_data), 1,
271 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
272 printf("%s: unable to create control data DMA map, "
273 "error = %d\n", sc->sc_dev.dv_xname, error);
274 goto fail_2;
275 }
276
277 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
278 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
279 0)) != 0) {
280 printf("%s: can't load control data DMA map, error = %d\n",
281 sc->sc_dev.dv_xname, error);
282 goto fail_3;
283 }
284
285 /*
286 * Create the transmit buffer DMA maps.
287 */
288 for (i = 0; i < FXP_NTXCB; i++) {
289 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
290 FXP_NTXSEG, MCLBYTES, 0, 0,
291 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
292 printf("%s: unable to create tx DMA map %d, "
293 "error = %d\n", sc->sc_dev.dv_xname, i, error);
294 goto fail_4;
295 }
296 }
297
298 /*
299 * Create the receive buffer DMA maps.
300 */
301 for (i = 0; i < FXP_NRFABUFS; i++) {
302 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
303 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
304 printf("%s: unable to create rx DMA map %d, "
305 "error = %d\n", sc->sc_dev.dv_xname, i, error);
306 goto fail_5;
307 }
308 }
309
310 /* Initialize MAC address and media structures. */
311 fxp_get_info(sc, enaddr);
312
313 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
314 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
315
316 ifp = &sc->sc_ethercom.ec_if;
317
318 /*
319 * Get info about our media interface, and initialize it. Note
320 * the table terminates itself with a phy of -1, indicating
321 * that we're using MII.
322 */
323 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
324 if (fp->fp_phy == sc->phy_primary_device)
325 break;
326 (*fp->fp_init)(sc);
327
328 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
329 ifp->if_softc = sc;
330 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331 ifp->if_ioctl = fxp_ioctl;
332 ifp->if_start = fxp_start;
333 ifp->if_watchdog = fxp_watchdog;
334
335 /*
336 * We can support 802.1Q VLAN-sized frames.
337 */
338 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
339
340 /*
341 * Attach the interface.
342 */
343 if_attach(ifp);
344 ether_ifattach(ifp, enaddr);
345 #if NBPFILTER > 0
346 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
347 sizeof(struct ether_header));
348 #endif
349 #if NRND > 0
350 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
351 RND_TYPE_NET, 0);
352 #endif
353
354 /*
355 * Add shutdown hook so that DMA is disabled prior to reboot. Not
356 * doing do could allow DMA to corrupt kernel memory during the
357 * reboot before the driver initializes.
358 */
359 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
360 if (sc->sc_sdhook == NULL)
361 printf("%s: WARNING: unable to establish shutdown hook\n",
362 sc->sc_dev.dv_xname);
363 /*
364 * Add suspend hook, for similar reasons..
365 */
366 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
367 if (sc->sc_powerhook == NULL)
368 printf("%s: WARNING: unable to establish power hook\n",
369 sc->sc_dev.dv_xname);
370
371 /* The attach is successful. */
372 sc->sc_flags |= FXPF_ATTACHED;
373
374 return;
375
376 /*
377 * Free any resources we've allocated during the failed attach
378 * attempt. Do this in reverse order and fall though.
379 */
380 fail_5:
381 for (i = 0; i < FXP_NRFABUFS; i++) {
382 if (sc->sc_rxmaps[i] != NULL)
383 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
384 }
385 fail_4:
386 for (i = 0; i < FXP_NTXCB; i++) {
387 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
388 bus_dmamap_destroy(sc->sc_dmat,
389 FXP_DSTX(sc, i)->txs_dmamap);
390 }
391 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
392 fail_3:
393 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
394 fail_2:
395 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
396 sizeof(struct fxp_control_data));
397 fail_1:
398 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
399 fail_0:
400 return;
401 }
402
403 void
404 fxp_mii_initmedia(sc)
405 struct fxp_softc *sc;
406 {
407
408 sc->sc_flags |= FXPF_MII;
409
410 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
411 sc->sc_mii.mii_readreg = fxp_mdi_read;
412 sc->sc_mii.mii_writereg = fxp_mdi_write;
413 sc->sc_mii.mii_statchg = fxp_statchg;
414 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
415 fxp_mii_mediastatus);
416 /*
417 * The i82557 wedges if all of its PHYs are isolated!
418 */
419 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
420 MII_OFFSET_ANY, MIIF_NOISOLATE);
421 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
422 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
423 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
424 } else
425 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
426 }
427
428 void
429 fxp_80c24_initmedia(sc)
430 struct fxp_softc *sc;
431 {
432
433 /*
434 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
435 * doesn't have a programming interface of any sort. The
436 * media is sensed automatically based on how the link partner
437 * is configured. This is, in essence, manual configuration.
438 */
439 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
440 sc->sc_dev.dv_xname);
441 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
442 fxp_80c24_mediastatus);
443 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
444 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
445 }
446
447 /*
448 * Device shutdown routine. Called at system shutdown after sync. The
449 * main purpose of this routine is to shut off receiver DMA so that
450 * kernel memory doesn't get clobbered during warmboot.
451 */
452 void
453 fxp_shutdown(arg)
454 void *arg;
455 {
456 struct fxp_softc *sc = arg;
457
458 /*
459 * Since the system's going to halt shortly, don't bother
460 * freeing mbufs.
461 */
462 fxp_stop(sc, 0);
463 }
464 /*
465 * Power handler routine. Called when the system is transitioning
466 * into/out of power save modes. As with fxp_shutdown, the main
467 * purpose of this routine is to shut off receiver DMA so it doesn't
468 * clobber kernel memory at the wrong time.
469 */
470 void
471 fxp_power(why, arg)
472 int why;
473 void *arg;
474 {
475 struct fxp_softc *sc = arg;
476 struct ifnet *ifp;
477 int s;
478
479 s = splnet();
480 if (why != PWR_RESUME)
481 fxp_stop(sc, 0);
482 else {
483 ifp = &sc->sc_ethercom.ec_if;
484 if (ifp->if_flags & IFF_UP)
485 fxp_init(sc);
486 }
487 splx(s);
488 }
489
490 /*
491 * Initialize the interface media.
492 */
493 void
494 fxp_get_info(sc, enaddr)
495 struct fxp_softc *sc;
496 u_int8_t *enaddr;
497 {
498 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
499
500 /*
501 * Reset to a stable state.
502 */
503 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
504 DELAY(10);
505
506 sc->sc_eeprom_size = 0;
507 fxp_autosize_eeprom(sc);
508 if(sc->sc_eeprom_size == 0) {
509 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
510 sc->sc_eeprom_size = 6; /* XXX panic here? */
511 }
512 #ifdef DEBUG
513 printf("%s: detected %d word EEPROM\n",
514 sc->sc_dev.dv_xname,
515 1 << sc->sc_eeprom_size);
516 #endif
517
518 /*
519 * Get info about the primary PHY
520 */
521 fxp_read_eeprom(sc, &data, 6, 1);
522 sc->phy_primary_addr = data & 0xff;
523 sc->phy_primary_device = (data >> 8) & 0x3f;
524 sc->phy_10Mbps_only = data >> 15;
525
526 /*
527 * Read MAC address.
528 */
529 fxp_read_eeprom(sc, myea, 0, 3);
530 enaddr[0] = myea[0] & 0xff;
531 enaddr[1] = myea[0] >> 8;
532 enaddr[2] = myea[1] & 0xff;
533 enaddr[3] = myea[1] >> 8;
534 enaddr[4] = myea[2] & 0xff;
535 enaddr[5] = myea[2] >> 8;
536 }
537
538 /*
539 * Figure out EEPROM size.
540 *
541 * 559's can have either 64-word or 256-word EEPROMs, the 558
542 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
543 * talks about the existance of 16 to 256 word EEPROMs.
544 *
545 * The only known sizes are 64 and 256, where the 256 version is used
546 * by CardBus cards to store CIS information.
547 *
548 * The address is shifted in msb-to-lsb, and after the last
549 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
550 * after which follows the actual data. We try to detect this zero, by
551 * probing the data-out bit in the EEPROM control register just after
552 * having shifted in a bit. If the bit is zero, we assume we've
553 * shifted enough address bits. The data-out should be tri-state,
554 * before this, which should translate to a logical one.
555 *
556 * Other ways to do this would be to try to read a register with known
557 * contents with a varying number of address bits, but no such
558 * register seem to be available. The high bits of register 10 are 01
559 * on the 558 and 559, but apparently not on the 557.
560 *
561 * The Linux driver computes a checksum on the EEPROM data, but the
562 * value of this checksum is not very well documented.
563 */
564
565 void
566 fxp_autosize_eeprom(sc)
567 struct fxp_softc *sc;
568 {
569 u_int16_t reg;
570 int x;
571
572 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
573 /*
574 * Shift in read opcode.
575 */
576 for (x = 3; x > 0; x--) {
577 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
578 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
579 } else {
580 reg = FXP_EEPROM_EECS;
581 }
582 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
583 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
584 reg | FXP_EEPROM_EESK);
585 DELAY(4);
586 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
587 DELAY(4);
588 }
589 /*
590 * Shift in address, wait for the dummy zero following a correct
591 * address shift.
592 */
593 for (x = 1; x <= 8; x++) {
594 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
595 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
596 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
597 DELAY(4);
598 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
599 FXP_EEPROM_EEDO) == 0)
600 break;
601 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
602 DELAY(4);
603 }
604 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
605 DELAY(4);
606 if(x != 6 && x != 8) {
607 #ifdef DEBUG
608 printf("%s: strange EEPROM size (%d)\n",
609 sc->sc_dev.dv_xname, 1 << x);
610 #endif
611 } else
612 sc->sc_eeprom_size = x;
613 }
614
615 /*
616 * Read from the serial EEPROM. Basically, you manually shift in
617 * the read opcode (one bit at a time) and then shift in the address,
618 * and then you shift out the data (all of this one bit at a time).
619 * The word size is 16 bits, so you have to provide the address for
620 * every 16 bits of data.
621 */
622 void
623 fxp_read_eeprom(sc, data, offset, words)
624 struct fxp_softc *sc;
625 u_int16_t *data;
626 int offset;
627 int words;
628 {
629 u_int16_t reg;
630 int i, x;
631
632 for (i = 0; i < words; i++) {
633 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
634 /*
635 * Shift in read opcode.
636 */
637 for (x = 3; x > 0; x--) {
638 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
639 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
640 } else {
641 reg = FXP_EEPROM_EECS;
642 }
643 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
644 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
645 reg | FXP_EEPROM_EESK);
646 DELAY(4);
647 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
648 DELAY(4);
649 }
650 /*
651 * Shift in address.
652 */
653 for (x = sc->sc_eeprom_size; x > 0; x--) {
654 if ((i + offset) & (1 << (x - 1))) {
655 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
656 } else {
657 reg = FXP_EEPROM_EECS;
658 }
659 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
660 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
661 reg | FXP_EEPROM_EESK);
662 DELAY(4);
663 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
664 DELAY(4);
665 }
666 reg = FXP_EEPROM_EECS;
667 data[i] = 0;
668 /*
669 * Shift out data.
670 */
671 for (x = 16; x > 0; x--) {
672 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
673 reg | FXP_EEPROM_EESK);
674 DELAY(4);
675 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
676 FXP_EEPROM_EEDO)
677 data[i] |= (1 << (x - 1));
678 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
679 DELAY(4);
680 }
681 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
682 DELAY(4);
683 }
684 }
685
686 /*
687 * Start packet transmission on the interface.
688 */
689 void
690 fxp_start(ifp)
691 struct ifnet *ifp;
692 {
693 struct fxp_softc *sc = ifp->if_softc;
694 struct mbuf *m0, *m;
695 struct fxp_cb_tx *txd;
696 struct fxp_txsoft *txs;
697 struct fxp_tbdlist *tbd;
698 bus_dmamap_t dmamap;
699 int error, lasttx, nexttx, opending, seg;
700
701 /*
702 * If we want a re-init, bail out now.
703 */
704 if (sc->sc_flags & FXPF_WANTINIT) {
705 ifp->if_flags |= IFF_OACTIVE;
706 return;
707 }
708
709 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
710 return;
711
712 /*
713 * Remember the previous txpending and the current lasttx.
714 */
715 opending = sc->sc_txpending;
716 lasttx = sc->sc_txlast;
717
718 /*
719 * Loop through the send queue, setting up transmit descriptors
720 * until we drain the queue, or use up all available transmit
721 * descriptors.
722 */
723 while (sc->sc_txpending < FXP_NTXCB) {
724 /*
725 * Grab a packet off the queue.
726 */
727 IF_DEQUEUE(&ifp->if_snd, m0);
728 if (m0 == NULL)
729 break;
730
731 /*
732 * Get the next available transmit descriptor.
733 */
734 nexttx = FXP_NEXTTX(sc->sc_txlast);
735 txd = FXP_CDTX(sc, nexttx);
736 tbd = FXP_CDTBD(sc, nexttx);
737 txs = FXP_DSTX(sc, nexttx);
738 dmamap = txs->txs_dmamap;
739
740 /*
741 * Load the DMA map. If this fails, the packet either
742 * didn't fit in the allotted number of frags, or we were
743 * short on resources. In this case, we'll copy and try
744 * again.
745 */
746 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
747 BUS_DMA_NOWAIT) != 0) {
748 MGETHDR(m, M_DONTWAIT, MT_DATA);
749 if (m == NULL) {
750 printf("%s: unable to allocate Tx mbuf\n",
751 sc->sc_dev.dv_xname);
752 IF_PREPEND(&ifp->if_snd, m0);
753 break;
754 }
755 if (m0->m_pkthdr.len > MHLEN) {
756 MCLGET(m, M_DONTWAIT);
757 if ((m->m_flags & M_EXT) == 0) {
758 printf("%s: unable to allocate Tx "
759 "cluster\n", sc->sc_dev.dv_xname);
760 m_freem(m);
761 IF_PREPEND(&ifp->if_snd, m0);
762 break;
763 }
764 }
765 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
766 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
767 m_freem(m0);
768 m0 = m;
769 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
770 m0, BUS_DMA_NOWAIT);
771 if (error) {
772 printf("%s: unable to load Tx buffer, "
773 "error = %d\n", sc->sc_dev.dv_xname, error);
774 IF_PREPEND(&ifp->if_snd, m0);
775 break;
776 }
777 }
778
779 /* Initialize the fraglist. */
780 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
781 tbd->tbd_d[seg].tb_addr =
782 htole32(dmamap->dm_segs[seg].ds_addr);
783 tbd->tbd_d[seg].tb_size =
784 htole32(dmamap->dm_segs[seg].ds_len);
785 }
786
787 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
788
789 /* Sync the DMA map. */
790 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
791 BUS_DMASYNC_PREWRITE);
792
793 /*
794 * Store a pointer to the packet so we can free it later.
795 */
796 txs->txs_mbuf = m0;
797
798 /*
799 * Initialize the transmit descriptor.
800 */
801 /* BIG_ENDIAN: no need to swap to store 0 */
802 txd->cb_status = 0;
803 txd->cb_command =
804 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
805 txd->tx_threshold = tx_threshold;
806 txd->tbd_number = dmamap->dm_nsegs;
807
808 FXP_CDTXSYNC(sc, nexttx,
809 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
810
811 /* Advance the tx pointer. */
812 sc->sc_txpending++;
813 sc->sc_txlast = nexttx;
814
815 #if NBPFILTER > 0
816 /*
817 * Pass packet to bpf if there is a listener.
818 */
819 if (ifp->if_bpf)
820 bpf_mtap(ifp->if_bpf, m0);
821 #endif
822 }
823
824 if (sc->sc_txpending == FXP_NTXCB) {
825 /* No more slots; notify upper layer. */
826 ifp->if_flags |= IFF_OACTIVE;
827 }
828
829 if (sc->sc_txpending != opending) {
830 /*
831 * We enqueued packets. If the transmitter was idle,
832 * reset the txdirty pointer.
833 */
834 if (opending == 0)
835 sc->sc_txdirty = FXP_NEXTTX(lasttx);
836
837 /*
838 * Cause the chip to interrupt and suspend command
839 * processing once the last packet we've enqueued
840 * has been transmitted.
841 */
842 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
843 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
844 FXP_CDTXSYNC(sc, sc->sc_txlast,
845 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
846
847 /*
848 * The entire packet chain is set up. Clear the suspend bit
849 * on the command prior to the first packet we set up.
850 */
851 FXP_CDTXSYNC(sc, lasttx,
852 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
853 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
854 FXP_CDTXSYNC(sc, lasttx,
855 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
856
857 /*
858 * Issue a Resume command in case the chip was suspended.
859 */
860 fxp_scb_wait(sc);
861 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
862
863 /* Set a watchdog timer in case the chip flakes out. */
864 ifp->if_timer = 5;
865 }
866 }
867
868 /*
869 * Process interface interrupts.
870 */
871 int
872 fxp_intr(arg)
873 void *arg;
874 {
875 struct fxp_softc *sc = arg;
876 struct ethercom *ec = &sc->sc_ethercom;
877 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
878 struct fxp_cb_tx *txd;
879 struct fxp_txsoft *txs;
880 struct mbuf *m, *m0;
881 bus_dmamap_t rxmap;
882 struct fxp_rfa *rfa;
883 int i, claimed = 0;
884 u_int16_t len, rxstat, txstat;
885 u_int8_t statack;
886
887 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
888 return (0);
889 /*
890 * If the interface isn't running, don't try to
891 * service the interrupt.. just ack it and bail.
892 */
893 if ((ifp->if_flags & IFF_RUNNING) == 0) {
894 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
895 if (statack) {
896 claimed = 1;
897 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
898 }
899 return (claimed);
900 }
901
902 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
903 claimed = 1;
904
905 /*
906 * First ACK all the interrupts in this pass.
907 */
908 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
909
910 /*
911 * Process receiver interrupts. If a no-resource (RNR)
912 * condition exists, get whatever packets we can and
913 * re-start the receiver.
914 */
915 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
916 rcvloop:
917 m = sc->sc_rxq.ifq_head;
918 rfa = FXP_MTORFA(m);
919 rxmap = M_GETCTX(m, bus_dmamap_t);
920
921 FXP_RFASYNC(sc, m,
922 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
923
924 rxstat = le16toh(rfa->rfa_status);
925
926 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
927 /*
928 * We have processed all of the
929 * receive buffers.
930 */
931 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
932 goto do_transmit;
933 }
934
935 IF_DEQUEUE(&sc->sc_rxq, m);
936
937 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
938
939 len = le16toh(rfa->actual_size) &
940 (m->m_ext.ext_size - 1);
941
942 if (len < sizeof(struct ether_header)) {
943 /*
944 * Runt packet; drop it now.
945 */
946 FXP_INIT_RFABUF(sc, m);
947 goto rcvloop;
948 }
949
950 /*
951 * If support for 802.1Q VLAN sized frames is
952 * enabled, we need to do some additional error
953 * checking (as we are saving bad frames, in
954 * order to receive the larger ones).
955 */
956 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
957 (rxstat & (FXP_RFA_STATUS_OVERRUN|
958 FXP_RFA_STATUS_RNR|
959 FXP_RFA_STATUS_ALIGN|
960 FXP_RFA_STATUS_CRC)) != 0) {
961 FXP_INIT_RFABUF(sc, m);
962 goto rcvloop;
963 }
964
965 /*
966 * If the packet is small enough to fit in a
967 * single header mbuf, allocate one and copy
968 * the data into it. This greatly reduces
969 * memory consumption when we receive lots
970 * of small packets.
971 *
972 * Otherwise, we add a new buffer to the receive
973 * chain. If this fails, we drop the packet and
974 * recycle the old buffer.
975 */
976 if (fxp_copy_small != 0 && len <= MHLEN) {
977 MGETHDR(m0, M_DONTWAIT, MT_DATA);
978 if (m == NULL)
979 goto dropit;
980 memcpy(mtod(m0, caddr_t),
981 mtod(m, caddr_t), len);
982 FXP_INIT_RFABUF(sc, m);
983 m = m0;
984 } else {
985 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
986 dropit:
987 ifp->if_ierrors++;
988 FXP_INIT_RFABUF(sc, m);
989 goto rcvloop;
990 }
991 }
992
993 m->m_pkthdr.rcvif = ifp;
994 m->m_pkthdr.len = m->m_len = len;
995
996 #if NBPFILTER > 0
997 /*
998 * Pass this up to any BPF listeners, but only
999 * pass it up the stack it its for us.
1000 */
1001 if (ifp->if_bpf)
1002 bpf_mtap(ifp->if_bpf, m);
1003 #endif
1004
1005 /* Pass it on. */
1006 (*ifp->if_input)(ifp, m);
1007 goto rcvloop;
1008 }
1009
1010 do_transmit:
1011 if (statack & FXP_SCB_STATACK_RNR) {
1012 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1013 fxp_scb_wait(sc);
1014 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1015 rxmap->dm_segs[0].ds_addr +
1016 RFA_ALIGNMENT_FUDGE);
1017 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1018 FXP_SCB_COMMAND_RU_START);
1019 }
1020
1021 /*
1022 * Free any finished transmit mbuf chains.
1023 */
1024 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1025 ifp->if_flags &= ~IFF_OACTIVE;
1026 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1027 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1028 txd = FXP_CDTX(sc, i);
1029 txs = FXP_DSTX(sc, i);
1030
1031 FXP_CDTXSYNC(sc, i,
1032 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1033
1034 txstat = le16toh(txd->cb_status);
1035
1036 if ((txstat & FXP_CB_STATUS_C) == 0)
1037 break;
1038
1039 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1040
1041 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1042 0, txs->txs_dmamap->dm_mapsize,
1043 BUS_DMASYNC_POSTWRITE);
1044 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1045 m_freem(txs->txs_mbuf);
1046 txs->txs_mbuf = NULL;
1047 }
1048
1049 /* Update the dirty transmit buffer pointer. */
1050 sc->sc_txdirty = i;
1051
1052 /*
1053 * Cancel the watchdog timer if there are no pending
1054 * transmissions.
1055 */
1056 if (sc->sc_txpending == 0) {
1057 ifp->if_timer = 0;
1058
1059 /*
1060 * If we want a re-init, do that now.
1061 */
1062 if (sc->sc_flags & FXPF_WANTINIT)
1063 (void) fxp_init(sc);
1064 }
1065
1066 /*
1067 * Try to get more packets going.
1068 */
1069 fxp_start(ifp);
1070 }
1071 }
1072
1073 #if NRND > 0
1074 if (claimed)
1075 rnd_add_uint32(&sc->rnd_source, statack);
1076 #endif
1077 return (claimed);
1078 }
1079
1080 /*
1081 * Update packet in/out/collision statistics. The i82557 doesn't
1082 * allow you to access these counters without doing a fairly
1083 * expensive DMA to get _all_ of the statistics it maintains, so
1084 * we do this operation here only once per second. The statistics
1085 * counters in the kernel are updated from the previous dump-stats
1086 * DMA and then a new dump-stats DMA is started. The on-chip
1087 * counters are zeroed when the DMA completes. If we can't start
1088 * the DMA immediately, we don't wait - we just prepare to read
1089 * them again next time.
1090 */
1091 void
1092 fxp_tick(arg)
1093 void *arg;
1094 {
1095 struct fxp_softc *sc = arg;
1096 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1097 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1098 int s;
1099
1100 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1101 return;
1102
1103 s = splnet();
1104
1105 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1106
1107 ifp->if_opackets += le32toh(sp->tx_good);
1108 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1109 if (sp->rx_good) {
1110 ifp->if_ipackets += le32toh(sp->rx_good);
1111 sc->sc_rxidle = 0;
1112 } else {
1113 sc->sc_rxidle++;
1114 }
1115 ifp->if_ierrors +=
1116 le32toh(sp->rx_crc_errors) +
1117 le32toh(sp->rx_alignment_errors) +
1118 le32toh(sp->rx_rnr_errors) +
1119 le32toh(sp->rx_overrun_errors);
1120 /*
1121 * If any transmit underruns occured, bump up the transmit
1122 * threshold by another 512 bytes (64 * 8).
1123 */
1124 if (sp->tx_underruns) {
1125 ifp->if_oerrors += le32toh(sp->tx_underruns);
1126 if (tx_threshold < 192)
1127 tx_threshold += 64;
1128 }
1129
1130 /*
1131 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1132 * then assume the receiver has locked up and attempt to clear
1133 * the condition by reprogramming the multicast filter (actually,
1134 * resetting the interface). This is a work-around for a bug in
1135 * the 82557 where the receiver locks up if it gets certain types
1136 * of garbage in the syncronization bits prior to the packet header.
1137 * This bug is supposed to only occur in 10Mbps mode, but has been
1138 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1139 * speed transition).
1140 */
1141 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1142 (void) fxp_init(sc);
1143 splx(s);
1144 return;
1145 }
1146 /*
1147 * If there is no pending command, start another stats
1148 * dump. Otherwise punt for now.
1149 */
1150 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1151 /*
1152 * Start another stats dump.
1153 */
1154 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1155 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1156 FXP_SCB_COMMAND_CU_DUMPRESET);
1157 } else {
1158 /*
1159 * A previous command is still waiting to be accepted.
1160 * Just zero our copy of the stats and wait for the
1161 * next timer event to update them.
1162 */
1163 /* BIG_ENDIAN: no swap required to store 0 */
1164 sp->tx_good = 0;
1165 sp->tx_underruns = 0;
1166 sp->tx_total_collisions = 0;
1167
1168 sp->rx_good = 0;
1169 sp->rx_crc_errors = 0;
1170 sp->rx_alignment_errors = 0;
1171 sp->rx_rnr_errors = 0;
1172 sp->rx_overrun_errors = 0;
1173 }
1174
1175 if (sc->sc_flags & FXPF_MII) {
1176 /* Tick the MII clock. */
1177 mii_tick(&sc->sc_mii);
1178 }
1179
1180 splx(s);
1181
1182 /*
1183 * Schedule another timeout one second from now.
1184 */
1185 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1186 }
1187
1188 /*
1189 * Drain the receive queue.
1190 */
1191 void
1192 fxp_rxdrain(sc)
1193 struct fxp_softc *sc;
1194 {
1195 bus_dmamap_t rxmap;
1196 struct mbuf *m;
1197
1198 for (;;) {
1199 IF_DEQUEUE(&sc->sc_rxq, m);
1200 if (m == NULL)
1201 break;
1202 rxmap = M_GETCTX(m, bus_dmamap_t);
1203 bus_dmamap_unload(sc->sc_dmat, rxmap);
1204 FXP_RXMAP_PUT(sc, rxmap);
1205 m_freem(m);
1206 }
1207 }
1208
1209 /*
1210 * Stop the interface. Cancels the statistics updater and resets
1211 * the interface.
1212 */
1213 void
1214 fxp_stop(sc, drain)
1215 struct fxp_softc *sc;
1216 int drain;
1217 {
1218 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1219 struct fxp_txsoft *txs;
1220 int i;
1221
1222 /*
1223 * Turn down interface (done early to avoid bad interactions
1224 * between panics, shutdown hooks, and the watchdog timer)
1225 */
1226 ifp->if_timer = 0;
1227 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1228
1229 /*
1230 * Cancel stats updater.
1231 */
1232 callout_stop(&sc->sc_callout);
1233 if (sc->sc_flags & FXPF_MII) {
1234 /* Down the MII. */
1235 mii_down(&sc->sc_mii);
1236 }
1237
1238 /*
1239 * Issue software reset
1240 */
1241 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1242 DELAY(10);
1243
1244 /*
1245 * Release any xmit buffers.
1246 */
1247 for (i = 0; i < FXP_NTXCB; i++) {
1248 txs = FXP_DSTX(sc, i);
1249 if (txs->txs_mbuf != NULL) {
1250 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1251 m_freem(txs->txs_mbuf);
1252 txs->txs_mbuf = NULL;
1253 }
1254 }
1255 sc->sc_txpending = 0;
1256
1257 if (drain) {
1258 /*
1259 * Release the receive buffers.
1260 */
1261 fxp_rxdrain(sc);
1262 }
1263
1264 }
1265
1266 /*
1267 * Watchdog/transmission transmit timeout handler. Called when a
1268 * transmission is started on the interface, but no interrupt is
1269 * received before the timeout. This usually indicates that the
1270 * card has wedged for some reason.
1271 */
1272 void
1273 fxp_watchdog(ifp)
1274 struct ifnet *ifp;
1275 {
1276 struct fxp_softc *sc = ifp->if_softc;
1277
1278 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1279 ifp->if_oerrors++;
1280
1281 (void) fxp_init(sc);
1282 }
1283
1284 /*
1285 * Initialize the interface. Must be called at splnet().
1286 */
1287 int
1288 fxp_init(sc)
1289 struct fxp_softc *sc;
1290 {
1291 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1292 struct fxp_cb_config *cbp;
1293 struct fxp_cb_ias *cb_ias;
1294 struct fxp_cb_tx *txd;
1295 bus_dmamap_t rxmap;
1296 int i, prm, save_bf, allm, error = 0;
1297
1298 /*
1299 * Cancel any pending I/O
1300 */
1301 fxp_stop(sc, 0);
1302
1303 /*
1304 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1305 * flag, and this prevents the MII from detaching resulting in
1306 * a panic. The flags field should perhaps be split in runtime
1307 * flags and more static information. For now, just clear the
1308 * only other flag set.
1309 */
1310
1311 sc->sc_flags &= ~FXPF_WANTINIT;
1312
1313 /*
1314 * Initialize base of CBL and RFA memory. Loading with zero
1315 * sets it up for regular linear addressing.
1316 */
1317 fxp_scb_wait(sc);
1318 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1319 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1320
1321 fxp_scb_wait(sc);
1322 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1323
1324 /*
1325 * Initialize the multicast filter. Do this now, since we might
1326 * have to setup the config block differently.
1327 */
1328 fxp_mc_setup(sc);
1329
1330 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1331 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1332
1333 /*
1334 * In order to support receiving 802.1Q VLAN frames, we have to
1335 * enable "save bad frames", since they are 4 bytes larger than
1336 * the normal Ethernet maximum frame length.
1337 */
1338 save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
1339
1340 /*
1341 * Initialize base of dump-stats buffer.
1342 */
1343 fxp_scb_wait(sc);
1344 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1345 sc->sc_cddma + FXP_CDSTATSOFF);
1346 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1347 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1348
1349 cbp = &sc->sc_control_data->fcd_configcb;
1350 memset(cbp, 0, sizeof(struct fxp_cb_config));
1351
1352 /*
1353 * This copy is kind of disgusting, but there are a bunch of must be
1354 * zero and must be one bits in this structure and this is the easiest
1355 * way to initialize them all to proper values.
1356 */
1357 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1358
1359 /* BIG_ENDIAN: no need to swap to store 0 */
1360 cbp->cb_status = 0;
1361 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1362 FXP_CB_COMMAND_EL);
1363 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1364 cbp->link_addr = 0xffffffff; /* (no) next command */
1365 cbp->byte_count = 22; /* (22) bytes to config */
1366 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1367 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1368 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1369 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1370 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1371 cbp->dma_bce = 0; /* (disable) dma max counters */
1372 cbp->late_scb = 0; /* (don't) defer SCB update */
1373 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1374 cbp->ci_int = 1; /* interrupt on CU idle */
1375 cbp->save_bf = save_bf;/* save bad frames */
1376 cbp->disc_short_rx = !prm; /* discard short packets */
1377 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1378 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1379 cbp->nsai = 1; /* (don't) disable source addr insert */
1380 cbp->preamble_length = 2; /* (7 byte) preamble */
1381 cbp->loopback = 0; /* (don't) loopback */
1382 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1383 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1384 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1385 cbp->promiscuous = prm; /* promiscuous mode */
1386 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1387 cbp->crscdt = 0; /* (CRS only) */
1388 cbp->stripping = !prm; /* truncate rx packet to byte count */
1389 cbp->padding = 1; /* (do) pad short tx packets */
1390 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1391 cbp->force_fdx = 0; /* (don't) force full duplex */
1392 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1393 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1394 cbp->mc_all = allm; /* accept all multicasts */
1395
1396 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1397
1398 /*
1399 * Start the config command/DMA.
1400 */
1401 fxp_scb_wait(sc);
1402 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1403 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1404 /* ...and wait for it to complete. */
1405 i = 1000;
1406 do {
1407 FXP_CDCONFIGSYNC(sc,
1408 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1409 DELAY(1);
1410 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1411 if (i == 0) {
1412 printf("%s at line %d: dmasync timeout\n",
1413 sc->sc_dev.dv_xname, __LINE__);
1414 return ETIMEDOUT;
1415 }
1416
1417 /*
1418 * Initialize the station address.
1419 */
1420 cb_ias = &sc->sc_control_data->fcd_iascb;
1421 /* BIG_ENDIAN: no need to swap to store 0 */
1422 cb_ias->cb_status = 0;
1423 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1424 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1425 cb_ias->link_addr = 0xffffffff;
1426 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1427
1428 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1429
1430 /*
1431 * Start the IAS (Individual Address Setup) command/DMA.
1432 */
1433 fxp_scb_wait(sc);
1434 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1435 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1436 /* ...and wait for it to complete. */
1437 i = 1000;
1438 do {
1439 FXP_CDIASSYNC(sc,
1440 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1441 DELAY(1);
1442 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1443 if (i == 0) {
1444 printf("%s at line %d: dmasync timeout\n",
1445 sc->sc_dev.dv_xname, __LINE__);
1446 return ETIMEDOUT;
1447 }
1448
1449 /*
1450 * Initialize the transmit descriptor ring. txlast is initialized
1451 * to the end of the list so that it will wrap around to the first
1452 * descriptor when the first packet is transmitted.
1453 */
1454 for (i = 0; i < FXP_NTXCB; i++) {
1455 txd = FXP_CDTX(sc, i);
1456 memset(txd, 0, sizeof(struct fxp_cb_tx));
1457 txd->cb_command =
1458 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1459 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1460 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1461 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1462 }
1463 sc->sc_txpending = 0;
1464 sc->sc_txdirty = 0;
1465 sc->sc_txlast = FXP_NTXCB - 1;
1466
1467 /*
1468 * Initialize the receive buffer list.
1469 */
1470 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1471 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1472 rxmap = FXP_RXMAP_GET(sc);
1473 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1474 printf("%s: unable to allocate or map rx "
1475 "buffer %d, error = %d\n",
1476 sc->sc_dev.dv_xname,
1477 sc->sc_rxq.ifq_len, error);
1478 /*
1479 * XXX Should attempt to run with fewer receive
1480 * XXX buffers instead of just failing.
1481 */
1482 FXP_RXMAP_PUT(sc, rxmap);
1483 fxp_rxdrain(sc);
1484 goto out;
1485 }
1486 }
1487 sc->sc_rxidle = 0;
1488
1489 /*
1490 * Give the transmit ring to the chip. We do this by pointing
1491 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1492 * issuing a start command. It will execute the NOP and then
1493 * suspend, pointing at the first descriptor.
1494 */
1495 fxp_scb_wait(sc);
1496 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1497 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1498
1499 /*
1500 * Initialize receiver buffer area - RFA.
1501 */
1502 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1503 fxp_scb_wait(sc);
1504 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1505 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1506 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1507
1508 if (sc->sc_flags & FXPF_MII) {
1509 /*
1510 * Set current media.
1511 */
1512 mii_mediachg(&sc->sc_mii);
1513 }
1514
1515 /*
1516 * ...all done!
1517 */
1518 ifp->if_flags |= IFF_RUNNING;
1519 ifp->if_flags &= ~IFF_OACTIVE;
1520
1521 /*
1522 * Start the one second timer.
1523 */
1524 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1525
1526 /*
1527 * Attempt to start output on the interface.
1528 */
1529 fxp_start(ifp);
1530
1531 out:
1532 if (error)
1533 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1534 return (error);
1535 }
1536
1537 /*
1538 * Change media according to request.
1539 */
1540 int
1541 fxp_mii_mediachange(ifp)
1542 struct ifnet *ifp;
1543 {
1544 struct fxp_softc *sc = ifp->if_softc;
1545
1546 if (ifp->if_flags & IFF_UP)
1547 mii_mediachg(&sc->sc_mii);
1548 return (0);
1549 }
1550
1551 /*
1552 * Notify the world which media we're using.
1553 */
1554 void
1555 fxp_mii_mediastatus(ifp, ifmr)
1556 struct ifnet *ifp;
1557 struct ifmediareq *ifmr;
1558 {
1559 struct fxp_softc *sc = ifp->if_softc;
1560
1561 if(sc->sc_enabled == 0) {
1562 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1563 ifmr->ifm_status = 0;
1564 return;
1565 }
1566
1567 mii_pollstat(&sc->sc_mii);
1568 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1569 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1570 }
1571
1572 int
1573 fxp_80c24_mediachange(ifp)
1574 struct ifnet *ifp;
1575 {
1576
1577 /* Nothing to do here. */
1578 return (0);
1579 }
1580
1581 void
1582 fxp_80c24_mediastatus(ifp, ifmr)
1583 struct ifnet *ifp;
1584 struct ifmediareq *ifmr;
1585 {
1586 struct fxp_softc *sc = ifp->if_softc;
1587
1588 /*
1589 * Media is currently-selected media. We cannot determine
1590 * the link status.
1591 */
1592 ifmr->ifm_status = 0;
1593 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1594 }
1595
1596 /*
1597 * Add a buffer to the end of the RFA buffer list.
1598 * Return 0 if successful, error code on failure.
1599 *
1600 * The RFA struct is stuck at the beginning of mbuf cluster and the
1601 * data pointer is fixed up to point just past it.
1602 */
1603 int
1604 fxp_add_rfabuf(sc, rxmap, unload)
1605 struct fxp_softc *sc;
1606 bus_dmamap_t rxmap;
1607 int unload;
1608 {
1609 struct mbuf *m;
1610 int error;
1611
1612 MGETHDR(m, M_DONTWAIT, MT_DATA);
1613 if (m == NULL)
1614 return (ENOBUFS);
1615
1616 MCLGET(m, M_DONTWAIT);
1617 if ((m->m_flags & M_EXT) == 0) {
1618 m_freem(m);
1619 return (ENOBUFS);
1620 }
1621
1622 if (unload)
1623 bus_dmamap_unload(sc->sc_dmat, rxmap);
1624
1625 M_SETCTX(m, rxmap);
1626
1627 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1628 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1629 if (error) {
1630 printf("%s: can't load rx DMA map %d, error = %d\n",
1631 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1632 panic("fxp_add_rfabuf"); /* XXX */
1633 }
1634
1635 FXP_INIT_RFABUF(sc, m);
1636
1637 return (0);
1638 }
1639
1640 volatile int
1641 fxp_mdi_read(self, phy, reg)
1642 struct device *self;
1643 int phy;
1644 int reg;
1645 {
1646 struct fxp_softc *sc = (struct fxp_softc *)self;
1647 int count = 10000;
1648 int value;
1649
1650 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1651 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1652
1653 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1654 && count--)
1655 DELAY(10);
1656
1657 if (count <= 0)
1658 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1659
1660 return (value & 0xffff);
1661 }
1662
1663 void
1664 fxp_statchg(self)
1665 struct device *self;
1666 {
1667
1668 /* Nothing to do. */
1669 }
1670
1671 void
1672 fxp_mdi_write(self, phy, reg, value)
1673 struct device *self;
1674 int phy;
1675 int reg;
1676 int value;
1677 {
1678 struct fxp_softc *sc = (struct fxp_softc *)self;
1679 int count = 10000;
1680
1681 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1682 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1683 (value & 0xffff));
1684
1685 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1686 count--)
1687 DELAY(10);
1688
1689 if (count <= 0)
1690 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1691 }
1692
1693 int
1694 fxp_ioctl(ifp, command, data)
1695 struct ifnet *ifp;
1696 u_long command;
1697 caddr_t data;
1698 {
1699 struct fxp_softc *sc = ifp->if_softc;
1700 struct ifreq *ifr = (struct ifreq *)data;
1701 struct ifaddr *ifa = (struct ifaddr *)data;
1702 int s, error = 0;
1703
1704 s = splnet();
1705
1706 switch (command) {
1707 case SIOCSIFADDR:
1708 if ((error = fxp_enable(sc)) != 0)
1709 break;
1710 ifp->if_flags |= IFF_UP;
1711
1712 switch (ifa->ifa_addr->sa_family) {
1713 #ifdef INET
1714 case AF_INET:
1715 if ((error = fxp_init(sc)) != 0)
1716 break;
1717 arp_ifinit(ifp, ifa);
1718 break;
1719 #endif /* INET */
1720 #ifdef NS
1721 case AF_NS:
1722 {
1723 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1724
1725 if (ns_nullhost(*ina))
1726 ina->x_host = *(union ns_host *)
1727 LLADDR(ifp->if_sadl);
1728 else
1729 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1730 ifp->if_addrlen);
1731 /* Set new address. */
1732 error = fxp_init(sc);
1733 break;
1734 }
1735 #endif /* NS */
1736 default:
1737 error = fxp_init(sc);
1738 break;
1739 }
1740 break;
1741
1742 case SIOCSIFMTU:
1743 if (ifr->ifr_mtu > ETHERMTU)
1744 error = EINVAL;
1745 else
1746 ifp->if_mtu = ifr->ifr_mtu;
1747 break;
1748
1749 case SIOCSIFFLAGS:
1750 if ((ifp->if_flags & IFF_UP) == 0 &&
1751 (ifp->if_flags & IFF_RUNNING) != 0) {
1752 /*
1753 * If interface is marked down and it is running, then
1754 * stop it.
1755 */
1756 fxp_stop(sc, 1);
1757 fxp_disable(sc);
1758 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1759 (ifp->if_flags & IFF_RUNNING) == 0) {
1760 /*
1761 * If interface is marked up and it is stopped, then
1762 * start it.
1763 */
1764 if((error = fxp_enable(sc)) != 0)
1765 break;
1766 error = fxp_init(sc);
1767 } else if ((ifp->if_flags & IFF_UP) != 0) {
1768 /*
1769 * Reset the interface to pick up change in any other
1770 * flags that affect the hardware state.
1771 */
1772 if((error = fxp_enable(sc)) != 0)
1773 break;
1774 error = fxp_init(sc);
1775 }
1776 break;
1777
1778 case SIOCADDMULTI:
1779 case SIOCDELMULTI:
1780 if(sc->sc_enabled == 0) {
1781 error = EIO;
1782 break;
1783 }
1784 error = (command == SIOCADDMULTI) ?
1785 ether_addmulti(ifr, &sc->sc_ethercom) :
1786 ether_delmulti(ifr, &sc->sc_ethercom);
1787
1788 if (error == ENETRESET) {
1789 /*
1790 * Multicast list has changed; set the hardware
1791 * filter accordingly.
1792 */
1793 if (sc->sc_txpending) {
1794 sc->sc_flags |= FXPF_WANTINIT;
1795 error = 0;
1796 } else
1797 error = fxp_init(sc);
1798 }
1799 break;
1800
1801 case SIOCSIFMEDIA:
1802 case SIOCGIFMEDIA:
1803 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1804 break;
1805
1806 default:
1807 error = EINVAL;
1808 break;
1809 }
1810
1811 splx(s);
1812 return (error);
1813 }
1814
1815 /*
1816 * Program the multicast filter.
1817 *
1818 * This function must be called at splnet().
1819 */
1820 void
1821 fxp_mc_setup(sc)
1822 struct fxp_softc *sc;
1823 {
1824 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1825 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1826 struct ethercom *ec = &sc->sc_ethercom;
1827 struct ether_multi *enm;
1828 struct ether_multistep step;
1829 int count, nmcasts;
1830
1831 #ifdef DIAGNOSTIC
1832 if (sc->sc_txpending)
1833 panic("fxp_mc_setup: pending transmissions");
1834 #endif
1835
1836 ifp->if_flags &= ~IFF_ALLMULTI;
1837
1838 /*
1839 * Initialize multicast setup descriptor.
1840 */
1841 nmcasts = 0;
1842 ETHER_FIRST_MULTI(step, ec, enm);
1843 while (enm != NULL) {
1844 /*
1845 * Check for too many multicast addresses or if we're
1846 * listening to a range. Either way, we simply have
1847 * to accept all multicasts.
1848 */
1849 if (nmcasts >= MAXMCADDR ||
1850 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1851 ETHER_ADDR_LEN) != 0) {
1852 /*
1853 * Callers of this function must do the
1854 * right thing with this. If we're called
1855 * from outside fxp_init(), the caller must
1856 * detect if the state if IFF_ALLMULTI changes.
1857 * If it does, the caller must then call
1858 * fxp_init(), since allmulti is handled by
1859 * the config block.
1860 */
1861 ifp->if_flags |= IFF_ALLMULTI;
1862 return;
1863 }
1864 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1865 ETHER_ADDR_LEN);
1866 nmcasts++;
1867 ETHER_NEXT_MULTI(step, enm);
1868 }
1869
1870 /* BIG_ENDIAN: no need to swap to store 0 */
1871 mcsp->cb_status = 0;
1872 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1873 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1874 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1875
1876 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1877
1878 /*
1879 * Wait until the command unit is not active. This should never
1880 * happen since nothing is queued, but make sure anyway.
1881 */
1882 count = 100;
1883 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1884 FXP_SCB_CUS_ACTIVE && --count)
1885 DELAY(1);
1886 if (count == 0) {
1887 printf("%s at line %d: command queue timeout\n",
1888 sc->sc_dev.dv_xname, __LINE__);
1889 return;
1890 }
1891
1892 /*
1893 * Start the multicast setup command/DMA.
1894 */
1895 fxp_scb_wait(sc);
1896 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1897 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1898
1899 /* ...and wait for it to complete. */
1900 count = 1000;
1901 do {
1902 FXP_CDMCSSYNC(sc,
1903 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1904 DELAY(1);
1905 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1906 if (count == 0) {
1907 printf("%s at line %d: dmasync timeout\n",
1908 sc->sc_dev.dv_xname, __LINE__);
1909 return;
1910 }
1911 }
1912
1913 int
1914 fxp_enable(sc)
1915 struct fxp_softc *sc;
1916 {
1917
1918 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1919 if ((*sc->sc_enable)(sc) != 0) {
1920 printf("%s: device enable failed\n",
1921 sc->sc_dev.dv_xname);
1922 return (EIO);
1923 }
1924 }
1925
1926 sc->sc_enabled = 1;
1927 return (0);
1928 }
1929
1930 void
1931 fxp_disable(sc)
1932 struct fxp_softc *sc;
1933 {
1934
1935 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1936 (*sc->sc_disable)(sc);
1937 sc->sc_enabled = 0;
1938 }
1939 }
1940
1941 /*
1942 * fxp_activate:
1943 *
1944 * Handle device activation/deactivation requests.
1945 */
1946 int
1947 fxp_activate(self, act)
1948 struct device *self;
1949 enum devact act;
1950 {
1951 struct fxp_softc *sc = (void *) self;
1952 int s, error = 0;
1953
1954 s = splnet();
1955 switch (act) {
1956 case DVACT_ACTIVATE:
1957 error = EOPNOTSUPP;
1958 break;
1959
1960 case DVACT_DEACTIVATE:
1961 if (sc->sc_flags & FXPF_MII)
1962 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1963 MII_OFFSET_ANY);
1964 if_deactivate(&sc->sc_ethercom.ec_if);
1965 break;
1966 }
1967 splx(s);
1968
1969 return (error);
1970 }
1971
1972 /*
1973 * fxp_detach:
1974 *
1975 * Detach an i82557 interface.
1976 */
1977 int
1978 fxp_detach(sc)
1979 struct fxp_softc *sc;
1980 {
1981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1982 int i;
1983
1984 /* Succeed now if there's no work to do. */
1985 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1986 return (0);
1987
1988 /* Unhook our tick handler. */
1989 callout_stop(&sc->sc_callout);
1990
1991 if (sc->sc_flags & FXPF_MII) {
1992 /* Detach all PHYs */
1993 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1994 }
1995
1996 /* Delete all remaining media. */
1997 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1998
1999 #if NRND > 0
2000 rnd_detach_source(&sc->rnd_source);
2001 #endif
2002 #if NBPFILTER > 0
2003 bpfdetach(ifp);
2004 #endif
2005 ether_ifdetach(ifp);
2006 if_detach(ifp);
2007
2008 for (i = 0; i < FXP_NRFABUFS; i++) {
2009 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
2010 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
2011 }
2012
2013 for (i = 0; i < FXP_NTXCB; i++) {
2014 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2015 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
2016 }
2017
2018 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
2019 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
2020 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2021 sizeof(struct fxp_control_data));
2022 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2023
2024 shutdownhook_disestablish(sc->sc_sdhook);
2025 powerhook_disestablish(sc->sc_powerhook);
2026
2027 return (0);
2028 }
2029