Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.39
      1 /*	$NetBSD: i82557.c,v 1.39 2000/10/03 23:35:02 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice unmodified, this list of conditions, and the following
     49  *    disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
     67  */
     68 
     69 /*
     70  * Device driver for the Intel i82557 fast Ethernet controller,
     71  * and its successors, the i82558 and i82559.
     72  */
     73 
     74 #include "opt_inet.h"
     75 #include "opt_ns.h"
     76 #include "bpfilter.h"
     77 #include "rnd.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/callout.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/kernel.h>
     85 #include <sys/socket.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/errno.h>
     88 #include <sys/device.h>
     89 
     90 #include <machine/endian.h>
     91 
     92 #include <uvm/uvm_extern.h>
     93 
     94 #if NRND > 0
     95 #include <sys/rnd.h>
     96 #endif
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #if NBPFILTER > 0
    104 #include <net/bpf.h>
    105 #endif
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/if_inarp.h>
    110 #endif
    111 
    112 #ifdef NS
    113 #include <netns/ns.h>
    114 #include <netns/ns_if.h>
    115 #endif
    116 
    117 #include <machine/bus.h>
    118 #include <machine/intr.h>
    119 
    120 #include <dev/mii/miivar.h>
    121 
    122 #include <dev/ic/i82557reg.h>
    123 #include <dev/ic/i82557var.h>
    124 
    125 /*
    126  * NOTE!  On the Alpha, we have an alignment constraint.  The
    127  * card DMAs the packet immediately following the RFA.  However,
    128  * the first thing in the packet is a 14-byte Ethernet header.
    129  * This means that the packet is misaligned.  To compensate,
    130  * we actually offset the RFA 2 bytes into the cluster.  This
    131  * alignes the packet after the Ethernet header at a 32-bit
    132  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    133  */
    134 #define	RFA_ALIGNMENT_FUDGE	2
    135 
    136 /*
    137  * Template for default configuration parameters.
    138  * See struct fxp_cb_config for the bit definitions.
    139  */
    140 u_int8_t fxp_cb_config_template[] = {
    141 	0x0, 0x0,		/* cb_status */
    142 	0x80, 0x2,		/* cb_command */
    143 	0xff, 0xff, 0xff, 0xff,	/* link_addr */
    144 	0x16,	/*  0 */
    145 	0x8,	/*  1 */
    146 	0x0,	/*  2 */
    147 	0x0,	/*  3 */
    148 	0x0,	/*  4 */
    149 	0x80,	/*  5 */
    150 	0xb2,	/*  6 */
    151 	0x3,	/*  7 */
    152 	0x1,	/*  8 */
    153 	0x0,	/*  9 */
    154 	0x26,	/* 10 */
    155 	0x0,	/* 11 */
    156 	0x60,	/* 12 */
    157 	0x0,	/* 13 */
    158 	0xf2,	/* 14 */
    159 	0x48,	/* 15 */
    160 	0x0,	/* 16 */
    161 	0x40,	/* 17 */
    162 	0xf3,	/* 18 */
    163 	0x0,	/* 19 */
    164 	0x3f,	/* 20 */
    165 	0x5	/* 21 */
    166 };
    167 
    168 void	fxp_mii_initmedia __P((struct fxp_softc *));
    169 int	fxp_mii_mediachange __P((struct ifnet *));
    170 void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
    171 
    172 void	fxp_80c24_initmedia __P((struct fxp_softc *));
    173 int	fxp_80c24_mediachange __P((struct ifnet *));
    174 void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
    175 
    176 inline void fxp_scb_wait __P((struct fxp_softc *));
    177 
    178 void	fxp_start __P((struct ifnet *));
    179 int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
    180 int	fxp_init __P((struct fxp_softc *));
    181 void	fxp_rxdrain __P((struct fxp_softc *));
    182 void	fxp_stop __P((struct fxp_softc *, int));
    183 void	fxp_watchdog __P((struct ifnet *));
    184 int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
    185 int	fxp_mdi_read __P((struct device *, int, int));
    186 void	fxp_statchg __P((struct device *));
    187 void	fxp_mdi_write __P((struct device *, int, int, int));
    188 void	fxp_autosize_eeprom __P((struct fxp_softc*));
    189 void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
    190 void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
    191 void	fxp_tick __P((void *));
    192 void	fxp_mc_setup __P((struct fxp_softc *));
    193 
    194 void	fxp_shutdown __P((void *));
    195 void	fxp_power __P((int, void *));
    196 
    197 int	fxp_copy_small = 0;
    198 
    199 struct fxp_phytype {
    200 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    201 	void	(*fp_init) __P((struct fxp_softc *));
    202 } fxp_phytype_table[] = {
    203 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    204 	{ -1,				fxp_mii_initmedia },
    205 };
    206 
    207 /*
    208  * Set initial transmit threshold at 64 (512 bytes). This is
    209  * increased by 64 (512 bytes) at a time, to maximum of 192
    210  * (1536 bytes), if an underrun occurs.
    211  */
    212 static int tx_threshold = 64;
    213 
    214 /*
    215  * Wait for the previous command to be accepted (but not necessarily
    216  * completed).
    217  */
    218 inline void
    219 fxp_scb_wait(sc)
    220 	struct fxp_softc *sc;
    221 {
    222 	int i = 10000;
    223 
    224 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    225 		delay(2);
    226 	if (i == 0)
    227 		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    228 }
    229 
    230 /*
    231  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    232  */
    233 void
    234 fxp_attach(sc)
    235 	struct fxp_softc *sc;
    236 {
    237 	u_int8_t enaddr[ETHER_ADDR_LEN];
    238 	struct ifnet *ifp;
    239 	bus_dma_segment_t seg;
    240 	int rseg, i, error;
    241 	struct fxp_phytype *fp;
    242 
    243 	callout_init(&sc->sc_callout);
    244 
    245 	/*
    246 	 * Allocate the control data structures, and create and load the
    247 	 * DMA map for it.
    248 	 */
    249 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    250 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    251 	    0)) != 0) {
    252 		printf("%s: unable to allocate control data, error = %d\n",
    253 		    sc->sc_dev.dv_xname, error);
    254 		goto fail_0;
    255 	}
    256 
    257 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    258 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
    259 	    BUS_DMA_COHERENT)) != 0) {
    260 		printf("%s: unable to map control data, error = %d\n",
    261 		    sc->sc_dev.dv_xname, error);
    262 		goto fail_1;
    263 	}
    264 	sc->sc_cdseg = seg;
    265 	sc->sc_cdnseg = rseg;
    266 
    267 	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
    268 
    269 	if ((error = bus_dmamap_create(sc->sc_dmat,
    270 	    sizeof(struct fxp_control_data), 1,
    271 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    272 		printf("%s: unable to create control data DMA map, "
    273 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    274 		goto fail_2;
    275 	}
    276 
    277 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    278 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    279 	    0)) != 0) {
    280 		printf("%s: can't load control data DMA map, error = %d\n",
    281 		    sc->sc_dev.dv_xname, error);
    282 		goto fail_3;
    283 	}
    284 
    285 	/*
    286 	 * Create the transmit buffer DMA maps.
    287 	 */
    288 	for (i = 0; i < FXP_NTXCB; i++) {
    289 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    290 		    FXP_NTXSEG, MCLBYTES, 0, 0,
    291 		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    292 			printf("%s: unable to create tx DMA map %d, "
    293 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    294 			goto fail_4;
    295 		}
    296 	}
    297 
    298 	/*
    299 	 * Create the receive buffer DMA maps.
    300 	 */
    301 	for (i = 0; i < FXP_NRFABUFS; i++) {
    302 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    303 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    304 			printf("%s: unable to create rx DMA map %d, "
    305 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    306 			goto fail_5;
    307 		}
    308 	}
    309 
    310 	/* Initialize MAC address and media structures. */
    311 	fxp_get_info(sc, enaddr);
    312 
    313 	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
    314 	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
    315 
    316 	ifp = &sc->sc_ethercom.ec_if;
    317 
    318 	/*
    319 	 * Get info about our media interface, and initialize it.  Note
    320 	 * the table terminates itself with a phy of -1, indicating
    321 	 * that we're using MII.
    322 	 */
    323 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    324 		if (fp->fp_phy == sc->phy_primary_device)
    325 			break;
    326 	(*fp->fp_init)(sc);
    327 
    328 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    329 	ifp->if_softc = sc;
    330 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    331 	ifp->if_ioctl = fxp_ioctl;
    332 	ifp->if_start = fxp_start;
    333 	ifp->if_watchdog = fxp_watchdog;
    334 
    335 	/*
    336 	 * We can support 802.1Q VLAN-sized frames.
    337 	 */
    338 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    339 
    340 	/*
    341 	 * Attach the interface.
    342 	 */
    343 	if_attach(ifp);
    344 	ether_ifattach(ifp, enaddr);
    345 #if NBPFILTER > 0
    346 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    347 	    sizeof(struct ether_header));
    348 #endif
    349 #if NRND > 0
    350 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    351 	    RND_TYPE_NET, 0);
    352 #endif
    353 
    354 	/*
    355 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    356 	 * doing do could allow DMA to corrupt kernel memory during the
    357 	 * reboot before the driver initializes.
    358 	 */
    359 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    360 	if (sc->sc_sdhook == NULL)
    361 		printf("%s: WARNING: unable to establish shutdown hook\n",
    362 		    sc->sc_dev.dv_xname);
    363 	/*
    364   	 * Add suspend hook, for similar reasons..
    365 	 */
    366 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
    367 	if (sc->sc_powerhook == NULL)
    368 		printf("%s: WARNING: unable to establish power hook\n",
    369 		    sc->sc_dev.dv_xname);
    370 
    371 	/* The attach is successful. */
    372 	sc->sc_flags |= FXPF_ATTACHED;
    373 
    374 	return;
    375 
    376 	/*
    377 	 * Free any resources we've allocated during the failed attach
    378 	 * attempt.  Do this in reverse order and fall though.
    379 	 */
    380  fail_5:
    381 	for (i = 0; i < FXP_NRFABUFS; i++) {
    382 		if (sc->sc_rxmaps[i] != NULL)
    383 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    384 	}
    385  fail_4:
    386 	for (i = 0; i < FXP_NTXCB; i++) {
    387 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    388 			bus_dmamap_destroy(sc->sc_dmat,
    389 			    FXP_DSTX(sc, i)->txs_dmamap);
    390 	}
    391 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    392  fail_3:
    393 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    394  fail_2:
    395 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    396 	    sizeof(struct fxp_control_data));
    397  fail_1:
    398 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    399  fail_0:
    400 	return;
    401 }
    402 
    403 void
    404 fxp_mii_initmedia(sc)
    405 	struct fxp_softc *sc;
    406 {
    407 
    408 	sc->sc_flags |= FXPF_MII;
    409 
    410 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    411 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    412 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    413 	sc->sc_mii.mii_statchg = fxp_statchg;
    414 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
    415 	    fxp_mii_mediastatus);
    416 	/*
    417 	 * The i82557 wedges if all of its PHYs are isolated!
    418 	 */
    419 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    420 	    MII_OFFSET_ANY, MIIF_NOISOLATE);
    421 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    422 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    423 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    424 	} else
    425 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    426 }
    427 
    428 void
    429 fxp_80c24_initmedia(sc)
    430 	struct fxp_softc *sc;
    431 {
    432 
    433 	/*
    434 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    435 	 * doesn't have a programming interface of any sort.  The
    436 	 * media is sensed automatically based on how the link partner
    437 	 * is configured.  This is, in essence, manual configuration.
    438 	 */
    439 	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    440 	    sc->sc_dev.dv_xname);
    441 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    442 	    fxp_80c24_mediastatus);
    443 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    444 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    445 }
    446 
    447 /*
    448  * Device shutdown routine. Called at system shutdown after sync. The
    449  * main purpose of this routine is to shut off receiver DMA so that
    450  * kernel memory doesn't get clobbered during warmboot.
    451  */
    452 void
    453 fxp_shutdown(arg)
    454 	void *arg;
    455 {
    456 	struct fxp_softc *sc = arg;
    457 
    458 	/*
    459 	 * Since the system's going to halt shortly, don't bother
    460 	 * freeing mbufs.
    461 	 */
    462 	fxp_stop(sc, 0);
    463 }
    464 /*
    465  * Power handler routine. Called when the system is transitioning
    466  * into/out of power save modes.  As with fxp_shutdown, the main
    467  * purpose of this routine is to shut off receiver DMA so it doesn't
    468  * clobber kernel memory at the wrong time.
    469  */
    470 void
    471 fxp_power(why, arg)
    472 	int why;
    473 	void *arg;
    474 {
    475 	struct fxp_softc *sc = arg;
    476 	struct ifnet *ifp;
    477 	int s;
    478 
    479 	s = splnet();
    480 	if (why != PWR_RESUME)
    481 		fxp_stop(sc, 0);
    482 	else {
    483 		ifp = &sc->sc_ethercom.ec_if;
    484 		if (ifp->if_flags & IFF_UP)
    485 			fxp_init(sc);
    486 	}
    487 	splx(s);
    488 }
    489 
    490 /*
    491  * Initialize the interface media.
    492  */
    493 void
    494 fxp_get_info(sc, enaddr)
    495 	struct fxp_softc *sc;
    496 	u_int8_t *enaddr;
    497 {
    498 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
    499 
    500 	/*
    501 	 * Reset to a stable state.
    502 	 */
    503 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    504 	DELAY(10);
    505 
    506 	sc->sc_eeprom_size = 0;
    507 	fxp_autosize_eeprom(sc);
    508 	if(sc->sc_eeprom_size == 0) {
    509 	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
    510 	    sc->sc_eeprom_size = 6; /* XXX panic here? */
    511 	}
    512 #ifdef DEBUG
    513 	printf("%s: detected %d word EEPROM\n",
    514 	       sc->sc_dev.dv_xname,
    515 	       1 << sc->sc_eeprom_size);
    516 #endif
    517 
    518 	/*
    519 	 * Get info about the primary PHY
    520 	 */
    521 	fxp_read_eeprom(sc, &data, 6, 1);
    522 	sc->phy_primary_addr = data & 0xff;
    523 	sc->phy_primary_device = (data >> 8) & 0x3f;
    524 	sc->phy_10Mbps_only = data >> 15;
    525 
    526 	/*
    527 	 * Read MAC address.
    528 	 */
    529 	fxp_read_eeprom(sc, myea, 0, 3);
    530 	enaddr[0] = myea[0] & 0xff;
    531 	enaddr[1] = myea[0] >> 8;
    532 	enaddr[2] = myea[1] & 0xff;
    533 	enaddr[3] = myea[1] >> 8;
    534 	enaddr[4] = myea[2] & 0xff;
    535 	enaddr[5] = myea[2] >> 8;
    536 }
    537 
    538 /*
    539  * Figure out EEPROM size.
    540  *
    541  * 559's can have either 64-word or 256-word EEPROMs, the 558
    542  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    543  * talks about the existance of 16 to 256 word EEPROMs.
    544  *
    545  * The only known sizes are 64 and 256, where the 256 version is used
    546  * by CardBus cards to store CIS information.
    547  *
    548  * The address is shifted in msb-to-lsb, and after the last
    549  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    550  * after which follows the actual data. We try to detect this zero, by
    551  * probing the data-out bit in the EEPROM control register just after
    552  * having shifted in a bit. If the bit is zero, we assume we've
    553  * shifted enough address bits. The data-out should be tri-state,
    554  * before this, which should translate to a logical one.
    555  *
    556  * Other ways to do this would be to try to read a register with known
    557  * contents with a varying number of address bits, but no such
    558  * register seem to be available. The high bits of register 10 are 01
    559  * on the 558 and 559, but apparently not on the 557.
    560  *
    561  * The Linux driver computes a checksum on the EEPROM data, but the
    562  * value of this checksum is not very well documented.
    563  */
    564 
    565 void
    566 fxp_autosize_eeprom(sc)
    567 	struct fxp_softc *sc;
    568 {
    569 	u_int16_t reg;
    570 	int x;
    571 
    572 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    573 	/*
    574 	 * Shift in read opcode.
    575 	 */
    576 	for (x = 3; x > 0; x--) {
    577 		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    578 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    579 		} else {
    580 			reg = FXP_EEPROM_EECS;
    581 		}
    582 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    583 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    584 			    reg | FXP_EEPROM_EESK);
    585 		DELAY(4);
    586 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    587 		DELAY(4);
    588 	}
    589 	/*
    590 	 * Shift in address, wait for the dummy zero following a correct
    591 	 * address shift.
    592 	 */
    593 	for (x = 1; x <=  8; x++) {
    594 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    595 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    596 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    597 		DELAY(4);
    598 		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    599 		    FXP_EEPROM_EEDO) == 0)
    600 			break;
    601 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    602 		DELAY(4);
    603 	}
    604 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    605 	DELAY(4);
    606 	if(x != 6 && x != 8) {
    607 #ifdef DEBUG
    608 		printf("%s: strange EEPROM size (%d)\n",
    609 		       sc->sc_dev.dv_xname, 1 << x);
    610 #endif
    611 	} else
    612 		sc->sc_eeprom_size = x;
    613 }
    614 
    615 /*
    616  * Read from the serial EEPROM. Basically, you manually shift in
    617  * the read opcode (one bit at a time) and then shift in the address,
    618  * and then you shift out the data (all of this one bit at a time).
    619  * The word size is 16 bits, so you have to provide the address for
    620  * every 16 bits of data.
    621  */
    622 void
    623 fxp_read_eeprom(sc, data, offset, words)
    624 	struct fxp_softc *sc;
    625 	u_int16_t *data;
    626 	int offset;
    627 	int words;
    628 {
    629 	u_int16_t reg;
    630 	int i, x;
    631 
    632 	for (i = 0; i < words; i++) {
    633 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    634 		/*
    635 		 * Shift in read opcode.
    636 		 */
    637 		for (x = 3; x > 0; x--) {
    638 			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    639 				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    640 			} else {
    641 				reg = FXP_EEPROM_EECS;
    642 			}
    643 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    644 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    645 			    reg | FXP_EEPROM_EESK);
    646 			DELAY(4);
    647 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    648 			DELAY(4);
    649 		}
    650 		/*
    651 		 * Shift in address.
    652 		 */
    653 		for (x = sc->sc_eeprom_size; x > 0; x--) {
    654 			if ((i + offset) & (1 << (x - 1))) {
    655 			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    656 			} else {
    657 			    reg = FXP_EEPROM_EECS;
    658 			}
    659 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    660 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    661 			    reg | FXP_EEPROM_EESK);
    662 			DELAY(4);
    663 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    664 			DELAY(4);
    665 		}
    666 		reg = FXP_EEPROM_EECS;
    667 		data[i] = 0;
    668 		/*
    669 		 * Shift out data.
    670 		 */
    671 		for (x = 16; x > 0; x--) {
    672 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    673 			    reg | FXP_EEPROM_EESK);
    674 			DELAY(4);
    675 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    676 			    FXP_EEPROM_EEDO)
    677 				data[i] |= (1 << (x - 1));
    678 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    679 			DELAY(4);
    680 		}
    681 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    682 		DELAY(4);
    683 	}
    684 }
    685 
    686 /*
    687  * Start packet transmission on the interface.
    688  */
    689 void
    690 fxp_start(ifp)
    691 	struct ifnet *ifp;
    692 {
    693 	struct fxp_softc *sc = ifp->if_softc;
    694 	struct mbuf *m0, *m;
    695 	struct fxp_cb_tx *txd;
    696 	struct fxp_txsoft *txs;
    697 	struct fxp_tbdlist *tbd;
    698 	bus_dmamap_t dmamap;
    699 	int error, lasttx, nexttx, opending, seg;
    700 
    701 	/*
    702 	 * If we want a re-init, bail out now.
    703 	 */
    704 	if (sc->sc_flags & FXPF_WANTINIT) {
    705 		ifp->if_flags |= IFF_OACTIVE;
    706 		return;
    707 	}
    708 
    709 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    710 		return;
    711 
    712 	/*
    713 	 * Remember the previous txpending and the current lasttx.
    714 	 */
    715 	opending = sc->sc_txpending;
    716 	lasttx = sc->sc_txlast;
    717 
    718 	/*
    719 	 * Loop through the send queue, setting up transmit descriptors
    720 	 * until we drain the queue, or use up all available transmit
    721 	 * descriptors.
    722 	 */
    723 	while (sc->sc_txpending < FXP_NTXCB) {
    724 		/*
    725 		 * Grab a packet off the queue.
    726 		 */
    727 		IF_DEQUEUE(&ifp->if_snd, m0);
    728 		if (m0 == NULL)
    729 			break;
    730 
    731 		/*
    732 		 * Get the next available transmit descriptor.
    733 		 */
    734 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    735 		txd = FXP_CDTX(sc, nexttx);
    736 		tbd = FXP_CDTBD(sc, nexttx);
    737 		txs = FXP_DSTX(sc, nexttx);
    738 		dmamap = txs->txs_dmamap;
    739 
    740 		/*
    741 		 * Load the DMA map.  If this fails, the packet either
    742 		 * didn't fit in the allotted number of frags, or we were
    743 		 * short on resources.  In this case, we'll copy and try
    744 		 * again.
    745 		 */
    746 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    747 		    BUS_DMA_NOWAIT) != 0) {
    748 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    749 			if (m == NULL) {
    750 				printf("%s: unable to allocate Tx mbuf\n",
    751 				    sc->sc_dev.dv_xname);
    752 				IF_PREPEND(&ifp->if_snd, m0);
    753 				break;
    754 			}
    755 			if (m0->m_pkthdr.len > MHLEN) {
    756 				MCLGET(m, M_DONTWAIT);
    757 				if ((m->m_flags & M_EXT) == 0) {
    758 					printf("%s: unable to allocate Tx "
    759 					    "cluster\n", sc->sc_dev.dv_xname);
    760 					m_freem(m);
    761 					IF_PREPEND(&ifp->if_snd, m0);
    762 					break;
    763 				}
    764 			}
    765 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    766 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    767 			m_freem(m0);
    768 			m0 = m;
    769 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    770 			    m0, BUS_DMA_NOWAIT);
    771 			if (error) {
    772 				printf("%s: unable to load Tx buffer, "
    773 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    774 				IF_PREPEND(&ifp->if_snd, m0);
    775 				break;
    776 			}
    777 		}
    778 
    779 		/* Initialize the fraglist. */
    780 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    781 			tbd->tbd_d[seg].tb_addr =
    782 			    htole32(dmamap->dm_segs[seg].ds_addr);
    783 			tbd->tbd_d[seg].tb_size =
    784 			    htole32(dmamap->dm_segs[seg].ds_len);
    785 		}
    786 
    787 		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
    788 
    789 		/* Sync the DMA map. */
    790 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    791 		    BUS_DMASYNC_PREWRITE);
    792 
    793 		/*
    794 		 * Store a pointer to the packet so we can free it later.
    795 		 */
    796 		txs->txs_mbuf = m0;
    797 
    798 		/*
    799 		 * Initialize the transmit descriptor.
    800 		 */
    801 		/* BIG_ENDIAN: no need to swap to store 0 */
    802 		txd->cb_status = 0;
    803 		txd->cb_command =
    804 		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
    805 		txd->tx_threshold = tx_threshold;
    806 		txd->tbd_number = dmamap->dm_nsegs;
    807 
    808 		FXP_CDTXSYNC(sc, nexttx,
    809 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    810 
    811 		/* Advance the tx pointer. */
    812 		sc->sc_txpending++;
    813 		sc->sc_txlast = nexttx;
    814 
    815 #if NBPFILTER > 0
    816 		/*
    817 		 * Pass packet to bpf if there is a listener.
    818 		 */
    819 		if (ifp->if_bpf)
    820 			bpf_mtap(ifp->if_bpf, m0);
    821 #endif
    822 	}
    823 
    824 	if (sc->sc_txpending == FXP_NTXCB) {
    825 		/* No more slots; notify upper layer. */
    826 		ifp->if_flags |= IFF_OACTIVE;
    827 	}
    828 
    829 	if (sc->sc_txpending != opending) {
    830 		/*
    831 		 * We enqueued packets.  If the transmitter was idle,
    832 		 * reset the txdirty pointer.
    833 		 */
    834 		if (opending == 0)
    835 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
    836 
    837 		/*
    838 		 * Cause the chip to interrupt and suspend command
    839 		 * processing once the last packet we've enqueued
    840 		 * has been transmitted.
    841 		 */
    842 		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
    843 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
    844 		FXP_CDTXSYNC(sc, sc->sc_txlast,
    845 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    846 
    847 		/*
    848 		 * The entire packet chain is set up.  Clear the suspend bit
    849 		 * on the command prior to the first packet we set up.
    850 		 */
    851 		FXP_CDTXSYNC(sc, lasttx,
    852 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    853 		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
    854 		FXP_CDTXSYNC(sc, lasttx,
    855 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    856 
    857 		/*
    858 		 * Issue a Resume command in case the chip was suspended.
    859 		 */
    860 		fxp_scb_wait(sc);
    861 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
    862 
    863 		/* Set a watchdog timer in case the chip flakes out. */
    864 		ifp->if_timer = 5;
    865 	}
    866 }
    867 
    868 /*
    869  * Process interface interrupts.
    870  */
    871 int
    872 fxp_intr(arg)
    873 	void *arg;
    874 {
    875 	struct fxp_softc *sc = arg;
    876 	struct ethercom *ec = &sc->sc_ethercom;
    877 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    878 	struct fxp_cb_tx *txd;
    879 	struct fxp_txsoft *txs;
    880 	struct mbuf *m, *m0;
    881 	bus_dmamap_t rxmap;
    882 	struct fxp_rfa *rfa;
    883 	int i, claimed = 0;
    884 	u_int16_t len, rxstat, txstat;
    885 	u_int8_t statack;
    886 
    887 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
    888 		return (0);
    889 	/*
    890 	 * If the interface isn't running, don't try to
    891 	 * service the interrupt.. just ack it and bail.
    892 	 */
    893 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
    894 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
    895 		if (statack) {
    896 			claimed = 1;
    897 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    898 		}
    899 		return (claimed);
    900 	}
    901 
    902 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
    903 		claimed = 1;
    904 
    905 		/*
    906 		 * First ACK all the interrupts in this pass.
    907 		 */
    908 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    909 
    910 		/*
    911 		 * Process receiver interrupts. If a no-resource (RNR)
    912 		 * condition exists, get whatever packets we can and
    913 		 * re-start the receiver.
    914 		 */
    915 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
    916  rcvloop:
    917 			m = sc->sc_rxq.ifq_head;
    918 			rfa = FXP_MTORFA(m);
    919 			rxmap = M_GETCTX(m, bus_dmamap_t);
    920 
    921 			FXP_RFASYNC(sc, m,
    922 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    923 
    924 			rxstat = le16toh(rfa->rfa_status);
    925 
    926 			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
    927 				/*
    928 				 * We have processed all of the
    929 				 * receive buffers.
    930 				 */
    931 				FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
    932 				goto do_transmit;
    933 			}
    934 
    935 			IF_DEQUEUE(&sc->sc_rxq, m);
    936 
    937 			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
    938 
    939 			len = le16toh(rfa->actual_size) &
    940 			    (m->m_ext.ext_size - 1);
    941 
    942 			if (len < sizeof(struct ether_header)) {
    943 				/*
    944 				 * Runt packet; drop it now.
    945 				 */
    946 				FXP_INIT_RFABUF(sc, m);
    947 				goto rcvloop;
    948 			}
    949 
    950 			/*
    951 			 * If support for 802.1Q VLAN sized frames is
    952 			 * enabled, we need to do some additional error
    953 			 * checking (as we are saving bad frames, in
    954 			 * order to receive the larger ones).
    955 			 */
    956 			if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
    957 			    (rxstat & (FXP_RFA_STATUS_OVERRUN|
    958 				       FXP_RFA_STATUS_RNR|
    959 				       FXP_RFA_STATUS_ALIGN|
    960 				       FXP_RFA_STATUS_CRC)) != 0) {
    961 				FXP_INIT_RFABUF(sc, m);
    962 				goto rcvloop;
    963 			}
    964 
    965 			/*
    966 			 * If the packet is small enough to fit in a
    967 			 * single header mbuf, allocate one and copy
    968 			 * the data into it.  This greatly reduces
    969 			 * memory consumption when we receive lots
    970 			 * of small packets.
    971 			 *
    972 			 * Otherwise, we add a new buffer to the receive
    973 			 * chain.  If this fails, we drop the packet and
    974 			 * recycle the old buffer.
    975 			 */
    976 			if (fxp_copy_small != 0 && len <= MHLEN) {
    977 				MGETHDR(m0, M_DONTWAIT, MT_DATA);
    978 				if (m == NULL)
    979 					goto dropit;
    980 				memcpy(mtod(m0, caddr_t),
    981 				    mtod(m, caddr_t), len);
    982 				FXP_INIT_RFABUF(sc, m);
    983 				m = m0;
    984 			} else {
    985 				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
    986  dropit:
    987 					ifp->if_ierrors++;
    988 					FXP_INIT_RFABUF(sc, m);
    989 					goto rcvloop;
    990 				}
    991 			}
    992 
    993 			m->m_pkthdr.rcvif = ifp;
    994 			m->m_pkthdr.len = m->m_len = len;
    995 
    996 #if NBPFILTER > 0
    997 			/*
    998 			 * Pass this up to any BPF listeners, but only
    999 			 * pass it up the stack it its for us.
   1000 			 */
   1001 			if (ifp->if_bpf)
   1002 				bpf_mtap(ifp->if_bpf, m);
   1003 #endif
   1004 
   1005 			/* Pass it on. */
   1006 			(*ifp->if_input)(ifp, m);
   1007 			goto rcvloop;
   1008 		}
   1009 
   1010  do_transmit:
   1011 		if (statack & FXP_SCB_STATACK_RNR) {
   1012 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1013 			fxp_scb_wait(sc);
   1014 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1015 			    rxmap->dm_segs[0].ds_addr +
   1016 			    RFA_ALIGNMENT_FUDGE);
   1017 			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
   1018 			    FXP_SCB_COMMAND_RU_START);
   1019 		}
   1020 
   1021 		/*
   1022 		 * Free any finished transmit mbuf chains.
   1023 		 */
   1024 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1025 			ifp->if_flags &= ~IFF_OACTIVE;
   1026 			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1027 			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1028 				txd = FXP_CDTX(sc, i);
   1029 				txs = FXP_DSTX(sc, i);
   1030 
   1031 				FXP_CDTXSYNC(sc, i,
   1032 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1033 
   1034 				txstat = le16toh(txd->cb_status);
   1035 
   1036 				if ((txstat & FXP_CB_STATUS_C) == 0)
   1037 					break;
   1038 
   1039 				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
   1040 
   1041 				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1042 				    0, txs->txs_dmamap->dm_mapsize,
   1043 				    BUS_DMASYNC_POSTWRITE);
   1044 				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1045 				m_freem(txs->txs_mbuf);
   1046 				txs->txs_mbuf = NULL;
   1047 			}
   1048 
   1049 			/* Update the dirty transmit buffer pointer. */
   1050 			sc->sc_txdirty = i;
   1051 
   1052 			/*
   1053 			 * Cancel the watchdog timer if there are no pending
   1054 			 * transmissions.
   1055 			 */
   1056 			if (sc->sc_txpending == 0) {
   1057 				ifp->if_timer = 0;
   1058 
   1059 				/*
   1060 				 * If we want a re-init, do that now.
   1061 				 */
   1062 				if (sc->sc_flags & FXPF_WANTINIT)
   1063 					(void) fxp_init(sc);
   1064 			}
   1065 
   1066 			/*
   1067 			 * Try to get more packets going.
   1068 			 */
   1069 			fxp_start(ifp);
   1070 		}
   1071 	}
   1072 
   1073 #if NRND > 0
   1074 	if (claimed)
   1075 		rnd_add_uint32(&sc->rnd_source, statack);
   1076 #endif
   1077 	return (claimed);
   1078 }
   1079 
   1080 /*
   1081  * Update packet in/out/collision statistics. The i82557 doesn't
   1082  * allow you to access these counters without doing a fairly
   1083  * expensive DMA to get _all_ of the statistics it maintains, so
   1084  * we do this operation here only once per second. The statistics
   1085  * counters in the kernel are updated from the previous dump-stats
   1086  * DMA and then a new dump-stats DMA is started. The on-chip
   1087  * counters are zeroed when the DMA completes. If we can't start
   1088  * the DMA immediately, we don't wait - we just prepare to read
   1089  * them again next time.
   1090  */
   1091 void
   1092 fxp_tick(arg)
   1093 	void *arg;
   1094 {
   1095 	struct fxp_softc *sc = arg;
   1096 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1097 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1098 	int s;
   1099 
   1100 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1101 		return;
   1102 
   1103 	s = splnet();
   1104 
   1105 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1106 
   1107 	ifp->if_opackets += le32toh(sp->tx_good);
   1108 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1109 	if (sp->rx_good) {
   1110 		ifp->if_ipackets += le32toh(sp->rx_good);
   1111 		sc->sc_rxidle = 0;
   1112 	} else {
   1113 		sc->sc_rxidle++;
   1114 	}
   1115 	ifp->if_ierrors +=
   1116 	    le32toh(sp->rx_crc_errors) +
   1117 	    le32toh(sp->rx_alignment_errors) +
   1118 	    le32toh(sp->rx_rnr_errors) +
   1119 	    le32toh(sp->rx_overrun_errors);
   1120 	/*
   1121 	 * If any transmit underruns occured, bump up the transmit
   1122 	 * threshold by another 512 bytes (64 * 8).
   1123 	 */
   1124 	if (sp->tx_underruns) {
   1125 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1126 		if (tx_threshold < 192)
   1127 			tx_threshold += 64;
   1128 	}
   1129 
   1130 	/*
   1131 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
   1132 	 * then assume the receiver has locked up and attempt to clear
   1133 	 * the condition by reprogramming the multicast filter (actually,
   1134 	 * resetting the interface). This is a work-around for a bug in
   1135 	 * the 82557 where the receiver locks up if it gets certain types
   1136 	 * of garbage in the syncronization bits prior to the packet header.
   1137 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1138 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1139 	 * speed transition).
   1140 	 */
   1141 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1142 		(void) fxp_init(sc);
   1143 		splx(s);
   1144 		return;
   1145 	}
   1146 	/*
   1147 	 * If there is no pending command, start another stats
   1148 	 * dump. Otherwise punt for now.
   1149 	 */
   1150 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1151 		/*
   1152 		 * Start another stats dump.
   1153 		 */
   1154 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1155 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
   1156 		    FXP_SCB_COMMAND_CU_DUMPRESET);
   1157 	} else {
   1158 		/*
   1159 		 * A previous command is still waiting to be accepted.
   1160 		 * Just zero our copy of the stats and wait for the
   1161 		 * next timer event to update them.
   1162 		 */
   1163 		/* BIG_ENDIAN: no swap required to store 0 */
   1164 		sp->tx_good = 0;
   1165 		sp->tx_underruns = 0;
   1166 		sp->tx_total_collisions = 0;
   1167 
   1168 		sp->rx_good = 0;
   1169 		sp->rx_crc_errors = 0;
   1170 		sp->rx_alignment_errors = 0;
   1171 		sp->rx_rnr_errors = 0;
   1172 		sp->rx_overrun_errors = 0;
   1173 	}
   1174 
   1175 	if (sc->sc_flags & FXPF_MII) {
   1176 		/* Tick the MII clock. */
   1177 		mii_tick(&sc->sc_mii);
   1178 	}
   1179 
   1180 	splx(s);
   1181 
   1182 	/*
   1183 	 * Schedule another timeout one second from now.
   1184 	 */
   1185 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1186 }
   1187 
   1188 /*
   1189  * Drain the receive queue.
   1190  */
   1191 void
   1192 fxp_rxdrain(sc)
   1193 	struct fxp_softc *sc;
   1194 {
   1195 	bus_dmamap_t rxmap;
   1196 	struct mbuf *m;
   1197 
   1198 	for (;;) {
   1199 		IF_DEQUEUE(&sc->sc_rxq, m);
   1200 		if (m == NULL)
   1201 			break;
   1202 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1203 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1204 		FXP_RXMAP_PUT(sc, rxmap);
   1205 		m_freem(m);
   1206 	}
   1207 }
   1208 
   1209 /*
   1210  * Stop the interface. Cancels the statistics updater and resets
   1211  * the interface.
   1212  */
   1213 void
   1214 fxp_stop(sc, drain)
   1215 	struct fxp_softc *sc;
   1216 	int drain;
   1217 {
   1218 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1219 	struct fxp_txsoft *txs;
   1220 	int i;
   1221 
   1222 	/*
   1223 	 * Turn down interface (done early to avoid bad interactions
   1224 	 * between panics, shutdown hooks, and the watchdog timer)
   1225 	 */
   1226 	ifp->if_timer = 0;
   1227 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1228 
   1229 	/*
   1230 	 * Cancel stats updater.
   1231 	 */
   1232 	callout_stop(&sc->sc_callout);
   1233 	if (sc->sc_flags & FXPF_MII) {
   1234 		/* Down the MII. */
   1235 		mii_down(&sc->sc_mii);
   1236 	}
   1237 
   1238 	/*
   1239 	 * Issue software reset
   1240 	 */
   1241 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
   1242 	DELAY(10);
   1243 
   1244 	/*
   1245 	 * Release any xmit buffers.
   1246 	 */
   1247 	for (i = 0; i < FXP_NTXCB; i++) {
   1248 		txs = FXP_DSTX(sc, i);
   1249 		if (txs->txs_mbuf != NULL) {
   1250 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1251 			m_freem(txs->txs_mbuf);
   1252 			txs->txs_mbuf = NULL;
   1253 		}
   1254 	}
   1255 	sc->sc_txpending = 0;
   1256 
   1257 	if (drain) {
   1258 		/*
   1259 		 * Release the receive buffers.
   1260 		 */
   1261 		fxp_rxdrain(sc);
   1262 	}
   1263 
   1264 }
   1265 
   1266 /*
   1267  * Watchdog/transmission transmit timeout handler. Called when a
   1268  * transmission is started on the interface, but no interrupt is
   1269  * received before the timeout. This usually indicates that the
   1270  * card has wedged for some reason.
   1271  */
   1272 void
   1273 fxp_watchdog(ifp)
   1274 	struct ifnet *ifp;
   1275 {
   1276 	struct fxp_softc *sc = ifp->if_softc;
   1277 
   1278 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1279 	ifp->if_oerrors++;
   1280 
   1281 	(void) fxp_init(sc);
   1282 }
   1283 
   1284 /*
   1285  * Initialize the interface.  Must be called at splnet().
   1286  */
   1287 int
   1288 fxp_init(sc)
   1289 	struct fxp_softc *sc;
   1290 {
   1291 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1292 	struct fxp_cb_config *cbp;
   1293 	struct fxp_cb_ias *cb_ias;
   1294 	struct fxp_cb_tx *txd;
   1295 	bus_dmamap_t rxmap;
   1296 	int i, prm, save_bf, allm, error = 0;
   1297 
   1298 	/*
   1299 	 * Cancel any pending I/O
   1300 	 */
   1301 	fxp_stop(sc, 0);
   1302 
   1303 	/*
   1304 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1305 	 * flag, and this prevents the MII from detaching resulting in
   1306 	 * a panic. The flags field should perhaps be split in runtime
   1307 	 * flags and more static information. For now, just clear the
   1308 	 * only other flag set.
   1309 	 */
   1310 
   1311 	sc->sc_flags &= ~FXPF_WANTINIT;
   1312 
   1313 	/*
   1314 	 * Initialize base of CBL and RFA memory. Loading with zero
   1315 	 * sets it up for regular linear addressing.
   1316 	 */
   1317 	fxp_scb_wait(sc);
   1318 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1319 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
   1320 
   1321 	fxp_scb_wait(sc);
   1322 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
   1323 
   1324 	/*
   1325 	 * Initialize the multicast filter.  Do this now, since we might
   1326 	 * have to setup the config block differently.
   1327 	 */
   1328 	fxp_mc_setup(sc);
   1329 
   1330 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1331 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1332 
   1333 	/*
   1334 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1335 	 * enable "save bad frames", since they are 4 bytes larger than
   1336 	 * the normal Ethernet maximum frame length.
   1337 	 */
   1338 	save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
   1339 
   1340 	/*
   1341 	 * Initialize base of dump-stats buffer.
   1342 	 */
   1343 	fxp_scb_wait(sc);
   1344 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1345 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1346 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1347 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1348 
   1349 	cbp = &sc->sc_control_data->fcd_configcb;
   1350 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1351 
   1352 	/*
   1353 	 * This copy is kind of disgusting, but there are a bunch of must be
   1354 	 * zero and must be one bits in this structure and this is the easiest
   1355 	 * way to initialize them all to proper values.
   1356 	 */
   1357 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1358 
   1359 	/* BIG_ENDIAN: no need to swap to store 0 */
   1360 	cbp->cb_status =	0;
   1361 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1362 				    FXP_CB_COMMAND_EL);
   1363 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1364 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1365 	cbp->byte_count =	22;	/* (22) bytes to config */
   1366 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1367 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1368 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1369 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1370 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1371 	cbp->dma_bce =		0;	/* (disable) dma max counters */
   1372 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1373 	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
   1374 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1375 	cbp->save_bf =		save_bf;/* save bad frames */
   1376 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1377 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1378 	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
   1379 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1380 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1381 	cbp->loopback =		0;	/* (don't) loopback */
   1382 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1383 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1384 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1385 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1386 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1387 	cbp->crscdt =		0;	/* (CRS only) */
   1388 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1389 	cbp->padding =		1;	/* (do) pad short tx packets */
   1390 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1391 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1392 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1393 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1394 	cbp->mc_all =		allm;	/* accept all multicasts */
   1395 
   1396 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1397 
   1398 	/*
   1399 	 * Start the config command/DMA.
   1400 	 */
   1401 	fxp_scb_wait(sc);
   1402 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1403 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1404 	/* ...and wait for it to complete. */
   1405 	i = 1000;
   1406 	do {
   1407 		FXP_CDCONFIGSYNC(sc,
   1408 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1409 		DELAY(1);
   1410 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1411 	if (i == 0) {
   1412 		printf("%s at line %d: dmasync timeout\n",
   1413 		    sc->sc_dev.dv_xname, __LINE__);
   1414 		return ETIMEDOUT;
   1415 	}
   1416 
   1417 	/*
   1418 	 * Initialize the station address.
   1419 	 */
   1420 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1421 	/* BIG_ENDIAN: no need to swap to store 0 */
   1422 	cb_ias->cb_status = 0;
   1423 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1424 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1425 	cb_ias->link_addr = 0xffffffff;
   1426 	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1427 
   1428 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1429 
   1430 	/*
   1431 	 * Start the IAS (Individual Address Setup) command/DMA.
   1432 	 */
   1433 	fxp_scb_wait(sc);
   1434 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1435 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1436 	/* ...and wait for it to complete. */
   1437 	i = 1000;
   1438 	do {
   1439 		FXP_CDIASSYNC(sc,
   1440 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1441 		DELAY(1);
   1442 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1443 	if (i == 0) {
   1444 		printf("%s at line %d: dmasync timeout\n",
   1445 		    sc->sc_dev.dv_xname, __LINE__);
   1446 		return ETIMEDOUT;
   1447 	}
   1448 
   1449 	/*
   1450 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1451 	 * to the end of the list so that it will wrap around to the first
   1452 	 * descriptor when the first packet is transmitted.
   1453 	 */
   1454 	for (i = 0; i < FXP_NTXCB; i++) {
   1455 		txd = FXP_CDTX(sc, i);
   1456 		memset(txd, 0, sizeof(struct fxp_cb_tx));
   1457 		txd->cb_command =
   1458 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1459 		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
   1460 		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1461 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1462 	}
   1463 	sc->sc_txpending = 0;
   1464 	sc->sc_txdirty = 0;
   1465 	sc->sc_txlast = FXP_NTXCB - 1;
   1466 
   1467 	/*
   1468 	 * Initialize the receive buffer list.
   1469 	 */
   1470 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1471 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1472 		rxmap = FXP_RXMAP_GET(sc);
   1473 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1474 			printf("%s: unable to allocate or map rx "
   1475 			    "buffer %d, error = %d\n",
   1476 			    sc->sc_dev.dv_xname,
   1477 			    sc->sc_rxq.ifq_len, error);
   1478 			/*
   1479 			 * XXX Should attempt to run with fewer receive
   1480 			 * XXX buffers instead of just failing.
   1481 			 */
   1482 			FXP_RXMAP_PUT(sc, rxmap);
   1483 			fxp_rxdrain(sc);
   1484 			goto out;
   1485 		}
   1486 	}
   1487 	sc->sc_rxidle = 0;
   1488 
   1489 	/*
   1490 	 * Give the transmit ring to the chip.  We do this by pointing
   1491 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1492 	 * issuing a start command.  It will execute the NOP and then
   1493 	 * suspend, pointing at the first descriptor.
   1494 	 */
   1495 	fxp_scb_wait(sc);
   1496 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1497 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1498 
   1499 	/*
   1500 	 * Initialize receiver buffer area - RFA.
   1501 	 */
   1502 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1503 	fxp_scb_wait(sc);
   1504 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1505 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1506 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
   1507 
   1508 	if (sc->sc_flags & FXPF_MII) {
   1509 		/*
   1510 		 * Set current media.
   1511 		 */
   1512 		mii_mediachg(&sc->sc_mii);
   1513 	}
   1514 
   1515 	/*
   1516 	 * ...all done!
   1517 	 */
   1518 	ifp->if_flags |= IFF_RUNNING;
   1519 	ifp->if_flags &= ~IFF_OACTIVE;
   1520 
   1521 	/*
   1522 	 * Start the one second timer.
   1523 	 */
   1524 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1525 
   1526 	/*
   1527 	 * Attempt to start output on the interface.
   1528 	 */
   1529 	fxp_start(ifp);
   1530 
   1531  out:
   1532 	if (error)
   1533 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1534 	return (error);
   1535 }
   1536 
   1537 /*
   1538  * Change media according to request.
   1539  */
   1540 int
   1541 fxp_mii_mediachange(ifp)
   1542 	struct ifnet *ifp;
   1543 {
   1544 	struct fxp_softc *sc = ifp->if_softc;
   1545 
   1546 	if (ifp->if_flags & IFF_UP)
   1547 		mii_mediachg(&sc->sc_mii);
   1548 	return (0);
   1549 }
   1550 
   1551 /*
   1552  * Notify the world which media we're using.
   1553  */
   1554 void
   1555 fxp_mii_mediastatus(ifp, ifmr)
   1556 	struct ifnet *ifp;
   1557 	struct ifmediareq *ifmr;
   1558 {
   1559 	struct fxp_softc *sc = ifp->if_softc;
   1560 
   1561 	if(sc->sc_enabled == 0) {
   1562 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1563 		ifmr->ifm_status = 0;
   1564 		return;
   1565 	}
   1566 
   1567 	mii_pollstat(&sc->sc_mii);
   1568 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1569 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1570 }
   1571 
   1572 int
   1573 fxp_80c24_mediachange(ifp)
   1574 	struct ifnet *ifp;
   1575 {
   1576 
   1577 	/* Nothing to do here. */
   1578 	return (0);
   1579 }
   1580 
   1581 void
   1582 fxp_80c24_mediastatus(ifp, ifmr)
   1583 	struct ifnet *ifp;
   1584 	struct ifmediareq *ifmr;
   1585 {
   1586 	struct fxp_softc *sc = ifp->if_softc;
   1587 
   1588 	/*
   1589 	 * Media is currently-selected media.  We cannot determine
   1590 	 * the link status.
   1591 	 */
   1592 	ifmr->ifm_status = 0;
   1593 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1594 }
   1595 
   1596 /*
   1597  * Add a buffer to the end of the RFA buffer list.
   1598  * Return 0 if successful, error code on failure.
   1599  *
   1600  * The RFA struct is stuck at the beginning of mbuf cluster and the
   1601  * data pointer is fixed up to point just past it.
   1602  */
   1603 int
   1604 fxp_add_rfabuf(sc, rxmap, unload)
   1605 	struct fxp_softc *sc;
   1606 	bus_dmamap_t rxmap;
   1607 	int unload;
   1608 {
   1609 	struct mbuf *m;
   1610 	int error;
   1611 
   1612 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1613 	if (m == NULL)
   1614 		return (ENOBUFS);
   1615 
   1616 	MCLGET(m, M_DONTWAIT);
   1617 	if ((m->m_flags & M_EXT) == 0) {
   1618 		m_freem(m);
   1619 		return (ENOBUFS);
   1620 	}
   1621 
   1622 	if (unload)
   1623 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1624 
   1625 	M_SETCTX(m, rxmap);
   1626 
   1627 	error = bus_dmamap_load(sc->sc_dmat, rxmap,
   1628 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1629 	if (error) {
   1630 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1631 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   1632 		panic("fxp_add_rfabuf");		/* XXX */
   1633 	}
   1634 
   1635 	FXP_INIT_RFABUF(sc, m);
   1636 
   1637 	return (0);
   1638 }
   1639 
   1640 volatile int
   1641 fxp_mdi_read(self, phy, reg)
   1642 	struct device *self;
   1643 	int phy;
   1644 	int reg;
   1645 {
   1646 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1647 	int count = 10000;
   1648 	int value;
   1649 
   1650 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1651 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   1652 
   1653 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
   1654 	    && count--)
   1655 		DELAY(10);
   1656 
   1657 	if (count <= 0)
   1658 		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   1659 
   1660 	return (value & 0xffff);
   1661 }
   1662 
   1663 void
   1664 fxp_statchg(self)
   1665 	struct device *self;
   1666 {
   1667 
   1668 	/* Nothing to do. */
   1669 }
   1670 
   1671 void
   1672 fxp_mdi_write(self, phy, reg, value)
   1673 	struct device *self;
   1674 	int phy;
   1675 	int reg;
   1676 	int value;
   1677 {
   1678 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1679 	int count = 10000;
   1680 
   1681 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1682 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   1683 	    (value & 0xffff));
   1684 
   1685 	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   1686 	    count--)
   1687 		DELAY(10);
   1688 
   1689 	if (count <= 0)
   1690 		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   1691 }
   1692 
   1693 int
   1694 fxp_ioctl(ifp, command, data)
   1695 	struct ifnet *ifp;
   1696 	u_long command;
   1697 	caddr_t data;
   1698 {
   1699 	struct fxp_softc *sc = ifp->if_softc;
   1700 	struct ifreq *ifr = (struct ifreq *)data;
   1701 	struct ifaddr *ifa = (struct ifaddr *)data;
   1702 	int s, error = 0;
   1703 
   1704 	s = splnet();
   1705 
   1706 	switch (command) {
   1707 	case SIOCSIFADDR:
   1708 		if ((error = fxp_enable(sc)) != 0)
   1709 			break;
   1710 		ifp->if_flags |= IFF_UP;
   1711 
   1712 		switch (ifa->ifa_addr->sa_family) {
   1713 #ifdef INET
   1714 		case AF_INET:
   1715 			if ((error = fxp_init(sc)) != 0)
   1716 				break;
   1717 			arp_ifinit(ifp, ifa);
   1718 			break;
   1719 #endif /* INET */
   1720 #ifdef NS
   1721 		case AF_NS:
   1722 		    {
   1723 			 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1724 
   1725 			 if (ns_nullhost(*ina))
   1726 				ina->x_host = *(union ns_host *)
   1727 				    LLADDR(ifp->if_sadl);
   1728 			 else
   1729 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
   1730 				    ifp->if_addrlen);
   1731 			 /* Set new address. */
   1732 			 error = fxp_init(sc);
   1733 			 break;
   1734 		    }
   1735 #endif /* NS */
   1736 		default:
   1737 			error = fxp_init(sc);
   1738 			break;
   1739 		}
   1740 		break;
   1741 
   1742 	case SIOCSIFMTU:
   1743 		if (ifr->ifr_mtu > ETHERMTU)
   1744 			error = EINVAL;
   1745 		else
   1746 			ifp->if_mtu = ifr->ifr_mtu;
   1747 		break;
   1748 
   1749 	case SIOCSIFFLAGS:
   1750 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1751 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1752 			/*
   1753 			 * If interface is marked down and it is running, then
   1754 			 * stop it.
   1755 			 */
   1756 			fxp_stop(sc, 1);
   1757 			fxp_disable(sc);
   1758 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1759 		    (ifp->if_flags & IFF_RUNNING) == 0) {
   1760 			/*
   1761 			 * If interface is marked up and it is stopped, then
   1762 			 * start it.
   1763 			 */
   1764 			if((error = fxp_enable(sc)) != 0)
   1765 				break;
   1766 			error = fxp_init(sc);
   1767 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1768 			/*
   1769 			 * Reset the interface to pick up change in any other
   1770 			 * flags that affect the hardware state.
   1771 			 */
   1772 			if((error = fxp_enable(sc)) != 0)
   1773 				break;
   1774 			error = fxp_init(sc);
   1775 		}
   1776 		break;
   1777 
   1778 	case SIOCADDMULTI:
   1779 	case SIOCDELMULTI:
   1780 		if(sc->sc_enabled == 0) {
   1781 			error = EIO;
   1782 			break;
   1783 		}
   1784 		error = (command == SIOCADDMULTI) ?
   1785 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1786 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1787 
   1788 		if (error == ENETRESET) {
   1789 			/*
   1790 			 * Multicast list has changed; set the hardware
   1791 			 * filter accordingly.
   1792 			 */
   1793 			if (sc->sc_txpending) {
   1794 				sc->sc_flags |= FXPF_WANTINIT;
   1795 				error = 0;
   1796 			} else
   1797 				error = fxp_init(sc);
   1798 		}
   1799 		break;
   1800 
   1801 	case SIOCSIFMEDIA:
   1802 	case SIOCGIFMEDIA:
   1803 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
   1804 		break;
   1805 
   1806 	default:
   1807 		error = EINVAL;
   1808 		break;
   1809 	}
   1810 
   1811 	splx(s);
   1812 	return (error);
   1813 }
   1814 
   1815 /*
   1816  * Program the multicast filter.
   1817  *
   1818  * This function must be called at splnet().
   1819  */
   1820 void
   1821 fxp_mc_setup(sc)
   1822 	struct fxp_softc *sc;
   1823 {
   1824 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   1825 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1826 	struct ethercom *ec = &sc->sc_ethercom;
   1827 	struct ether_multi *enm;
   1828 	struct ether_multistep step;
   1829 	int count, nmcasts;
   1830 
   1831 #ifdef DIAGNOSTIC
   1832 	if (sc->sc_txpending)
   1833 		panic("fxp_mc_setup: pending transmissions");
   1834 #endif
   1835 
   1836 	ifp->if_flags &= ~IFF_ALLMULTI;
   1837 
   1838 	/*
   1839 	 * Initialize multicast setup descriptor.
   1840 	 */
   1841 	nmcasts = 0;
   1842 	ETHER_FIRST_MULTI(step, ec, enm);
   1843 	while (enm != NULL) {
   1844 		/*
   1845 		 * Check for too many multicast addresses or if we're
   1846 		 * listening to a range.  Either way, we simply have
   1847 		 * to accept all multicasts.
   1848 		 */
   1849 		if (nmcasts >= MAXMCADDR ||
   1850 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1851 		    ETHER_ADDR_LEN) != 0) {
   1852 			/*
   1853 			 * Callers of this function must do the
   1854 			 * right thing with this.  If we're called
   1855 			 * from outside fxp_init(), the caller must
   1856 			 * detect if the state if IFF_ALLMULTI changes.
   1857 			 * If it does, the caller must then call
   1858 			 * fxp_init(), since allmulti is handled by
   1859 			 * the config block.
   1860 			 */
   1861 			ifp->if_flags |= IFF_ALLMULTI;
   1862 			return;
   1863 		}
   1864 		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   1865 		    ETHER_ADDR_LEN);
   1866 		nmcasts++;
   1867 		ETHER_NEXT_MULTI(step, enm);
   1868 	}
   1869 
   1870 	/* BIG_ENDIAN: no need to swap to store 0 */
   1871 	mcsp->cb_status = 0;
   1872 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   1873 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   1874 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   1875 
   1876 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1877 
   1878 	/*
   1879 	 * Wait until the command unit is not active.  This should never
   1880 	 * happen since nothing is queued, but make sure anyway.
   1881 	 */
   1882 	count = 100;
   1883 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   1884 	    FXP_SCB_CUS_ACTIVE && --count)
   1885 		DELAY(1);
   1886 	if (count == 0) {
   1887 		printf("%s at line %d: command queue timeout\n",
   1888 		    sc->sc_dev.dv_xname, __LINE__);
   1889 		return;
   1890 	}
   1891 
   1892 	/*
   1893 	 * Start the multicast setup command/DMA.
   1894 	 */
   1895 	fxp_scb_wait(sc);
   1896 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   1897 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1898 
   1899 	/* ...and wait for it to complete. */
   1900 	count = 1000;
   1901 	do {
   1902 		FXP_CDMCSSYNC(sc,
   1903 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1904 		DELAY(1);
   1905 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   1906 	if (count == 0) {
   1907 		printf("%s at line %d: dmasync timeout\n",
   1908 		    sc->sc_dev.dv_xname, __LINE__);
   1909 		return;
   1910 	}
   1911 }
   1912 
   1913 int
   1914 fxp_enable(sc)
   1915 	struct fxp_softc *sc;
   1916 {
   1917 
   1918 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   1919 		if ((*sc->sc_enable)(sc) != 0) {
   1920 			printf("%s: device enable failed\n",
   1921 			    sc->sc_dev.dv_xname);
   1922 			return (EIO);
   1923 		}
   1924 	}
   1925 
   1926 	sc->sc_enabled = 1;
   1927 	return (0);
   1928 }
   1929 
   1930 void
   1931 fxp_disable(sc)
   1932 	struct fxp_softc *sc;
   1933 {
   1934 
   1935 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   1936 		(*sc->sc_disable)(sc);
   1937 		sc->sc_enabled = 0;
   1938 	}
   1939 }
   1940 
   1941 /*
   1942  * fxp_activate:
   1943  *
   1944  *	Handle device activation/deactivation requests.
   1945  */
   1946 int
   1947 fxp_activate(self, act)
   1948 	struct device *self;
   1949 	enum devact act;
   1950 {
   1951 	struct fxp_softc *sc = (void *) self;
   1952 	int s, error = 0;
   1953 
   1954 	s = splnet();
   1955 	switch (act) {
   1956 	case DVACT_ACTIVATE:
   1957 		error = EOPNOTSUPP;
   1958 		break;
   1959 
   1960 	case DVACT_DEACTIVATE:
   1961 		if (sc->sc_flags & FXPF_MII)
   1962 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   1963 			    MII_OFFSET_ANY);
   1964 		if_deactivate(&sc->sc_ethercom.ec_if);
   1965 		break;
   1966 	}
   1967 	splx(s);
   1968 
   1969 	return (error);
   1970 }
   1971 
   1972 /*
   1973  * fxp_detach:
   1974  *
   1975  *	Detach an i82557 interface.
   1976  */
   1977 int
   1978 fxp_detach(sc)
   1979 	struct fxp_softc *sc;
   1980 {
   1981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1982 	int i;
   1983 
   1984 	/* Succeed now if there's no work to do. */
   1985 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   1986 		return (0);
   1987 
   1988 	/* Unhook our tick handler. */
   1989 	callout_stop(&sc->sc_callout);
   1990 
   1991 	if (sc->sc_flags & FXPF_MII) {
   1992 		/* Detach all PHYs */
   1993 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   1994 	}
   1995 
   1996 	/* Delete all remaining media. */
   1997 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   1998 
   1999 #if NRND > 0
   2000 	rnd_detach_source(&sc->rnd_source);
   2001 #endif
   2002 #if NBPFILTER > 0
   2003 	bpfdetach(ifp);
   2004 #endif
   2005 	ether_ifdetach(ifp);
   2006 	if_detach(ifp);
   2007 
   2008 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2009 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2010 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2011 	}
   2012 
   2013 	for (i = 0; i < FXP_NTXCB; i++) {
   2014 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2015 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2016 	}
   2017 
   2018 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2019 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2020 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   2021 	    sizeof(struct fxp_control_data));
   2022 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2023 
   2024 	shutdownhook_disestablish(sc->sc_sdhook);
   2025 	powerhook_disestablish(sc->sc_powerhook);
   2026 
   2027 	return (0);
   2028 }
   2029