i82557.c revision 1.40 1 /* $NetBSD: i82557.c,v 1.40 2000/10/11 16:57:46 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 void fxp_watchdog __P((struct ifnet *));
181 int fxp_init __P((struct ifnet *));
182 void fxp_stop __P((struct ifnet *, int));
183
184 void fxp_rxdrain __P((struct fxp_softc *));
185 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
186 int fxp_mdi_read __P((struct device *, int, int));
187 void fxp_statchg __P((struct device *));
188 void fxp_mdi_write __P((struct device *, int, int, int));
189 void fxp_autosize_eeprom __P((struct fxp_softc*));
190 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
191 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
192 void fxp_tick __P((void *));
193 void fxp_mc_setup __P((struct fxp_softc *));
194
195 void fxp_shutdown __P((void *));
196 void fxp_power __P((int, void *));
197
198 int fxp_copy_small = 0;
199
200 struct fxp_phytype {
201 int fp_phy; /* type of PHY, -1 for MII at the end. */
202 void (*fp_init) __P((struct fxp_softc *));
203 } fxp_phytype_table[] = {
204 { FXP_PHY_80C24, fxp_80c24_initmedia },
205 { -1, fxp_mii_initmedia },
206 };
207
208 /*
209 * Set initial transmit threshold at 64 (512 bytes). This is
210 * increased by 64 (512 bytes) at a time, to maximum of 192
211 * (1536 bytes), if an underrun occurs.
212 */
213 static int tx_threshold = 64;
214
215 /*
216 * Wait for the previous command to be accepted (but not necessarily
217 * completed).
218 */
219 inline void
220 fxp_scb_wait(sc)
221 struct fxp_softc *sc;
222 {
223 int i = 10000;
224
225 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
226 delay(2);
227 if (i == 0)
228 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
229 }
230
231 /*
232 * Finish attaching an i82557 interface. Called by bus-specific front-end.
233 */
234 void
235 fxp_attach(sc)
236 struct fxp_softc *sc;
237 {
238 u_int8_t enaddr[ETHER_ADDR_LEN];
239 struct ifnet *ifp;
240 bus_dma_segment_t seg;
241 int rseg, i, error;
242 struct fxp_phytype *fp;
243
244 callout_init(&sc->sc_callout);
245
246 /*
247 * Allocate the control data structures, and create and load the
248 * DMA map for it.
249 */
250 if ((error = bus_dmamem_alloc(sc->sc_dmat,
251 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
252 0)) != 0) {
253 printf("%s: unable to allocate control data, error = %d\n",
254 sc->sc_dev.dv_xname, error);
255 goto fail_0;
256 }
257
258 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
259 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
260 BUS_DMA_COHERENT)) != 0) {
261 printf("%s: unable to map control data, error = %d\n",
262 sc->sc_dev.dv_xname, error);
263 goto fail_1;
264 }
265 sc->sc_cdseg = seg;
266 sc->sc_cdnseg = rseg;
267
268 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
269
270 if ((error = bus_dmamap_create(sc->sc_dmat,
271 sizeof(struct fxp_control_data), 1,
272 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
273 printf("%s: unable to create control data DMA map, "
274 "error = %d\n", sc->sc_dev.dv_xname, error);
275 goto fail_2;
276 }
277
278 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
279 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
280 0)) != 0) {
281 printf("%s: can't load control data DMA map, error = %d\n",
282 sc->sc_dev.dv_xname, error);
283 goto fail_3;
284 }
285
286 /*
287 * Create the transmit buffer DMA maps.
288 */
289 for (i = 0; i < FXP_NTXCB; i++) {
290 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
291 FXP_NTXSEG, MCLBYTES, 0, 0,
292 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
293 printf("%s: unable to create tx DMA map %d, "
294 "error = %d\n", sc->sc_dev.dv_xname, i, error);
295 goto fail_4;
296 }
297 }
298
299 /*
300 * Create the receive buffer DMA maps.
301 */
302 for (i = 0; i < FXP_NRFABUFS; i++) {
303 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
304 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
305 printf("%s: unable to create rx DMA map %d, "
306 "error = %d\n", sc->sc_dev.dv_xname, i, error);
307 goto fail_5;
308 }
309 }
310
311 /* Initialize MAC address and media structures. */
312 fxp_get_info(sc, enaddr);
313
314 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
315 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
316
317 ifp = &sc->sc_ethercom.ec_if;
318
319 /*
320 * Get info about our media interface, and initialize it. Note
321 * the table terminates itself with a phy of -1, indicating
322 * that we're using MII.
323 */
324 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
325 if (fp->fp_phy == sc->phy_primary_device)
326 break;
327 (*fp->fp_init)(sc);
328
329 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
330 ifp->if_softc = sc;
331 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 ifp->if_ioctl = fxp_ioctl;
333 ifp->if_start = fxp_start;
334 ifp->if_watchdog = fxp_watchdog;
335 ifp->if_init = fxp_init;
336 ifp->if_stop = fxp_stop;
337
338 /*
339 * We can support 802.1Q VLAN-sized frames.
340 */
341 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
342
343 /*
344 * Attach the interface.
345 */
346 if_attach(ifp);
347 ether_ifattach(ifp, enaddr);
348 #if NBPFILTER > 0
349 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
350 sizeof(struct ether_header));
351 #endif
352 #if NRND > 0
353 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
354 RND_TYPE_NET, 0);
355 #endif
356
357 /*
358 * Add shutdown hook so that DMA is disabled prior to reboot. Not
359 * doing do could allow DMA to corrupt kernel memory during the
360 * reboot before the driver initializes.
361 */
362 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
363 if (sc->sc_sdhook == NULL)
364 printf("%s: WARNING: unable to establish shutdown hook\n",
365 sc->sc_dev.dv_xname);
366 /*
367 * Add suspend hook, for similar reasons..
368 */
369 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
370 if (sc->sc_powerhook == NULL)
371 printf("%s: WARNING: unable to establish power hook\n",
372 sc->sc_dev.dv_xname);
373
374 /* The attach is successful. */
375 sc->sc_flags |= FXPF_ATTACHED;
376
377 return;
378
379 /*
380 * Free any resources we've allocated during the failed attach
381 * attempt. Do this in reverse order and fall though.
382 */
383 fail_5:
384 for (i = 0; i < FXP_NRFABUFS; i++) {
385 if (sc->sc_rxmaps[i] != NULL)
386 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
387 }
388 fail_4:
389 for (i = 0; i < FXP_NTXCB; i++) {
390 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
391 bus_dmamap_destroy(sc->sc_dmat,
392 FXP_DSTX(sc, i)->txs_dmamap);
393 }
394 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
395 fail_3:
396 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
397 fail_2:
398 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
399 sizeof(struct fxp_control_data));
400 fail_1:
401 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
402 fail_0:
403 return;
404 }
405
406 void
407 fxp_mii_initmedia(sc)
408 struct fxp_softc *sc;
409 {
410
411 sc->sc_flags |= FXPF_MII;
412
413 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
414 sc->sc_mii.mii_readreg = fxp_mdi_read;
415 sc->sc_mii.mii_writereg = fxp_mdi_write;
416 sc->sc_mii.mii_statchg = fxp_statchg;
417 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
418 fxp_mii_mediastatus);
419 /*
420 * The i82557 wedges if all of its PHYs are isolated!
421 */
422 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
423 MII_OFFSET_ANY, MIIF_NOISOLATE);
424 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
425 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
426 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
427 } else
428 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
429 }
430
431 void
432 fxp_80c24_initmedia(sc)
433 struct fxp_softc *sc;
434 {
435
436 /*
437 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
438 * doesn't have a programming interface of any sort. The
439 * media is sensed automatically based on how the link partner
440 * is configured. This is, in essence, manual configuration.
441 */
442 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
443 sc->sc_dev.dv_xname);
444 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
445 fxp_80c24_mediastatus);
446 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
447 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
448 }
449
450 /*
451 * Device shutdown routine. Called at system shutdown after sync. The
452 * main purpose of this routine is to shut off receiver DMA so that
453 * kernel memory doesn't get clobbered during warmboot.
454 */
455 void
456 fxp_shutdown(arg)
457 void *arg;
458 {
459 struct fxp_softc *sc = arg;
460
461 /*
462 * Since the system's going to halt shortly, don't bother
463 * freeing mbufs.
464 */
465 fxp_stop(&sc->sc_ethercom.ec_if, 0);
466 }
467 /*
468 * Power handler routine. Called when the system is transitioning
469 * into/out of power save modes. As with fxp_shutdown, the main
470 * purpose of this routine is to shut off receiver DMA so it doesn't
471 * clobber kernel memory at the wrong time.
472 */
473 void
474 fxp_power(why, arg)
475 int why;
476 void *arg;
477 {
478 struct fxp_softc *sc = arg;
479 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
480 int s;
481
482 s = splnet();
483 if (why != PWR_RESUME)
484 fxp_stop(ifp, 0);
485 else {
486 if (ifp->if_flags & IFF_UP)
487 fxp_init(ifp);
488 }
489 splx(s);
490 }
491
492 /*
493 * Initialize the interface media.
494 */
495 void
496 fxp_get_info(sc, enaddr)
497 struct fxp_softc *sc;
498 u_int8_t *enaddr;
499 {
500 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
501
502 /*
503 * Reset to a stable state.
504 */
505 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
506 DELAY(10);
507
508 sc->sc_eeprom_size = 0;
509 fxp_autosize_eeprom(sc);
510 if(sc->sc_eeprom_size == 0) {
511 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
512 sc->sc_eeprom_size = 6; /* XXX panic here? */
513 }
514 #ifdef DEBUG
515 printf("%s: detected %d word EEPROM\n",
516 sc->sc_dev.dv_xname,
517 1 << sc->sc_eeprom_size);
518 #endif
519
520 /*
521 * Get info about the primary PHY
522 */
523 fxp_read_eeprom(sc, &data, 6, 1);
524 sc->phy_primary_addr = data & 0xff;
525 sc->phy_primary_device = (data >> 8) & 0x3f;
526 sc->phy_10Mbps_only = data >> 15;
527
528 /*
529 * Read MAC address.
530 */
531 fxp_read_eeprom(sc, myea, 0, 3);
532 enaddr[0] = myea[0] & 0xff;
533 enaddr[1] = myea[0] >> 8;
534 enaddr[2] = myea[1] & 0xff;
535 enaddr[3] = myea[1] >> 8;
536 enaddr[4] = myea[2] & 0xff;
537 enaddr[5] = myea[2] >> 8;
538 }
539
540 /*
541 * Figure out EEPROM size.
542 *
543 * 559's can have either 64-word or 256-word EEPROMs, the 558
544 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
545 * talks about the existance of 16 to 256 word EEPROMs.
546 *
547 * The only known sizes are 64 and 256, where the 256 version is used
548 * by CardBus cards to store CIS information.
549 *
550 * The address is shifted in msb-to-lsb, and after the last
551 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
552 * after which follows the actual data. We try to detect this zero, by
553 * probing the data-out bit in the EEPROM control register just after
554 * having shifted in a bit. If the bit is zero, we assume we've
555 * shifted enough address bits. The data-out should be tri-state,
556 * before this, which should translate to a logical one.
557 *
558 * Other ways to do this would be to try to read a register with known
559 * contents with a varying number of address bits, but no such
560 * register seem to be available. The high bits of register 10 are 01
561 * on the 558 and 559, but apparently not on the 557.
562 *
563 * The Linux driver computes a checksum on the EEPROM data, but the
564 * value of this checksum is not very well documented.
565 */
566
567 void
568 fxp_autosize_eeprom(sc)
569 struct fxp_softc *sc;
570 {
571 u_int16_t reg;
572 int x;
573
574 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
575 /*
576 * Shift in read opcode.
577 */
578 for (x = 3; x > 0; x--) {
579 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
580 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
581 } else {
582 reg = FXP_EEPROM_EECS;
583 }
584 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
585 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
586 reg | FXP_EEPROM_EESK);
587 DELAY(4);
588 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
589 DELAY(4);
590 }
591 /*
592 * Shift in address, wait for the dummy zero following a correct
593 * address shift.
594 */
595 for (x = 1; x <= 8; x++) {
596 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
597 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
598 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
599 DELAY(4);
600 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
601 FXP_EEPROM_EEDO) == 0)
602 break;
603 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
604 DELAY(4);
605 }
606 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
607 DELAY(4);
608 if(x != 6 && x != 8) {
609 #ifdef DEBUG
610 printf("%s: strange EEPROM size (%d)\n",
611 sc->sc_dev.dv_xname, 1 << x);
612 #endif
613 } else
614 sc->sc_eeprom_size = x;
615 }
616
617 /*
618 * Read from the serial EEPROM. Basically, you manually shift in
619 * the read opcode (one bit at a time) and then shift in the address,
620 * and then you shift out the data (all of this one bit at a time).
621 * The word size is 16 bits, so you have to provide the address for
622 * every 16 bits of data.
623 */
624 void
625 fxp_read_eeprom(sc, data, offset, words)
626 struct fxp_softc *sc;
627 u_int16_t *data;
628 int offset;
629 int words;
630 {
631 u_int16_t reg;
632 int i, x;
633
634 for (i = 0; i < words; i++) {
635 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
636 /*
637 * Shift in read opcode.
638 */
639 for (x = 3; x > 0; x--) {
640 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
641 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
642 } else {
643 reg = FXP_EEPROM_EECS;
644 }
645 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
646 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
647 reg | FXP_EEPROM_EESK);
648 DELAY(4);
649 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
650 DELAY(4);
651 }
652 /*
653 * Shift in address.
654 */
655 for (x = sc->sc_eeprom_size; x > 0; x--) {
656 if ((i + offset) & (1 << (x - 1))) {
657 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
658 } else {
659 reg = FXP_EEPROM_EECS;
660 }
661 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
662 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
663 reg | FXP_EEPROM_EESK);
664 DELAY(4);
665 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
666 DELAY(4);
667 }
668 reg = FXP_EEPROM_EECS;
669 data[i] = 0;
670 /*
671 * Shift out data.
672 */
673 for (x = 16; x > 0; x--) {
674 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
675 reg | FXP_EEPROM_EESK);
676 DELAY(4);
677 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
678 FXP_EEPROM_EEDO)
679 data[i] |= (1 << (x - 1));
680 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
681 DELAY(4);
682 }
683 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
684 DELAY(4);
685 }
686 }
687
688 /*
689 * Start packet transmission on the interface.
690 */
691 void
692 fxp_start(ifp)
693 struct ifnet *ifp;
694 {
695 struct fxp_softc *sc = ifp->if_softc;
696 struct mbuf *m0, *m;
697 struct fxp_cb_tx *txd;
698 struct fxp_txsoft *txs;
699 struct fxp_tbdlist *tbd;
700 bus_dmamap_t dmamap;
701 int error, lasttx, nexttx, opending, seg;
702
703 /*
704 * If we want a re-init, bail out now.
705 */
706 if (sc->sc_flags & FXPF_WANTINIT) {
707 ifp->if_flags |= IFF_OACTIVE;
708 return;
709 }
710
711 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
712 return;
713
714 /*
715 * Remember the previous txpending and the current lasttx.
716 */
717 opending = sc->sc_txpending;
718 lasttx = sc->sc_txlast;
719
720 /*
721 * Loop through the send queue, setting up transmit descriptors
722 * until we drain the queue, or use up all available transmit
723 * descriptors.
724 */
725 while (sc->sc_txpending < FXP_NTXCB) {
726 /*
727 * Grab a packet off the queue.
728 */
729 IF_DEQUEUE(&ifp->if_snd, m0);
730 if (m0 == NULL)
731 break;
732
733 /*
734 * Get the next available transmit descriptor.
735 */
736 nexttx = FXP_NEXTTX(sc->sc_txlast);
737 txd = FXP_CDTX(sc, nexttx);
738 tbd = FXP_CDTBD(sc, nexttx);
739 txs = FXP_DSTX(sc, nexttx);
740 dmamap = txs->txs_dmamap;
741
742 /*
743 * Load the DMA map. If this fails, the packet either
744 * didn't fit in the allotted number of frags, or we were
745 * short on resources. In this case, we'll copy and try
746 * again.
747 */
748 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
749 BUS_DMA_NOWAIT) != 0) {
750 MGETHDR(m, M_DONTWAIT, MT_DATA);
751 if (m == NULL) {
752 printf("%s: unable to allocate Tx mbuf\n",
753 sc->sc_dev.dv_xname);
754 IF_PREPEND(&ifp->if_snd, m0);
755 break;
756 }
757 if (m0->m_pkthdr.len > MHLEN) {
758 MCLGET(m, M_DONTWAIT);
759 if ((m->m_flags & M_EXT) == 0) {
760 printf("%s: unable to allocate Tx "
761 "cluster\n", sc->sc_dev.dv_xname);
762 m_freem(m);
763 IF_PREPEND(&ifp->if_snd, m0);
764 break;
765 }
766 }
767 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
768 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
769 m_freem(m0);
770 m0 = m;
771 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
772 m0, BUS_DMA_NOWAIT);
773 if (error) {
774 printf("%s: unable to load Tx buffer, "
775 "error = %d\n", sc->sc_dev.dv_xname, error);
776 IF_PREPEND(&ifp->if_snd, m0);
777 break;
778 }
779 }
780
781 /* Initialize the fraglist. */
782 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
783 tbd->tbd_d[seg].tb_addr =
784 htole32(dmamap->dm_segs[seg].ds_addr);
785 tbd->tbd_d[seg].tb_size =
786 htole32(dmamap->dm_segs[seg].ds_len);
787 }
788
789 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
790
791 /* Sync the DMA map. */
792 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
793 BUS_DMASYNC_PREWRITE);
794
795 /*
796 * Store a pointer to the packet so we can free it later.
797 */
798 txs->txs_mbuf = m0;
799
800 /*
801 * Initialize the transmit descriptor.
802 */
803 /* BIG_ENDIAN: no need to swap to store 0 */
804 txd->cb_status = 0;
805 txd->cb_command =
806 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
807 txd->tx_threshold = tx_threshold;
808 txd->tbd_number = dmamap->dm_nsegs;
809
810 FXP_CDTXSYNC(sc, nexttx,
811 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
812
813 /* Advance the tx pointer. */
814 sc->sc_txpending++;
815 sc->sc_txlast = nexttx;
816
817 #if NBPFILTER > 0
818 /*
819 * Pass packet to bpf if there is a listener.
820 */
821 if (ifp->if_bpf)
822 bpf_mtap(ifp->if_bpf, m0);
823 #endif
824 }
825
826 if (sc->sc_txpending == FXP_NTXCB) {
827 /* No more slots; notify upper layer. */
828 ifp->if_flags |= IFF_OACTIVE;
829 }
830
831 if (sc->sc_txpending != opending) {
832 /*
833 * We enqueued packets. If the transmitter was idle,
834 * reset the txdirty pointer.
835 */
836 if (opending == 0)
837 sc->sc_txdirty = FXP_NEXTTX(lasttx);
838
839 /*
840 * Cause the chip to interrupt and suspend command
841 * processing once the last packet we've enqueued
842 * has been transmitted.
843 */
844 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
845 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
846 FXP_CDTXSYNC(sc, sc->sc_txlast,
847 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
848
849 /*
850 * The entire packet chain is set up. Clear the suspend bit
851 * on the command prior to the first packet we set up.
852 */
853 FXP_CDTXSYNC(sc, lasttx,
854 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
855 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
856 FXP_CDTXSYNC(sc, lasttx,
857 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
858
859 /*
860 * Issue a Resume command in case the chip was suspended.
861 */
862 fxp_scb_wait(sc);
863 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
864
865 /* Set a watchdog timer in case the chip flakes out. */
866 ifp->if_timer = 5;
867 }
868 }
869
870 /*
871 * Process interface interrupts.
872 */
873 int
874 fxp_intr(arg)
875 void *arg;
876 {
877 struct fxp_softc *sc = arg;
878 struct ethercom *ec = &sc->sc_ethercom;
879 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
880 struct fxp_cb_tx *txd;
881 struct fxp_txsoft *txs;
882 struct mbuf *m, *m0;
883 bus_dmamap_t rxmap;
884 struct fxp_rfa *rfa;
885 int i, claimed = 0;
886 u_int16_t len, rxstat, txstat;
887 u_int8_t statack;
888
889 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
890 return (0);
891 /*
892 * If the interface isn't running, don't try to
893 * service the interrupt.. just ack it and bail.
894 */
895 if ((ifp->if_flags & IFF_RUNNING) == 0) {
896 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
897 if (statack) {
898 claimed = 1;
899 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
900 }
901 return (claimed);
902 }
903
904 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
905 claimed = 1;
906
907 /*
908 * First ACK all the interrupts in this pass.
909 */
910 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
911
912 /*
913 * Process receiver interrupts. If a no-resource (RNR)
914 * condition exists, get whatever packets we can and
915 * re-start the receiver.
916 */
917 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
918 rcvloop:
919 m = sc->sc_rxq.ifq_head;
920 rfa = FXP_MTORFA(m);
921 rxmap = M_GETCTX(m, bus_dmamap_t);
922
923 FXP_RFASYNC(sc, m,
924 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
925
926 rxstat = le16toh(rfa->rfa_status);
927
928 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
929 /*
930 * We have processed all of the
931 * receive buffers.
932 */
933 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
934 goto do_transmit;
935 }
936
937 IF_DEQUEUE(&sc->sc_rxq, m);
938
939 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
940
941 len = le16toh(rfa->actual_size) &
942 (m->m_ext.ext_size - 1);
943
944 if (len < sizeof(struct ether_header)) {
945 /*
946 * Runt packet; drop it now.
947 */
948 FXP_INIT_RFABUF(sc, m);
949 goto rcvloop;
950 }
951
952 /*
953 * If support for 802.1Q VLAN sized frames is
954 * enabled, we need to do some additional error
955 * checking (as we are saving bad frames, in
956 * order to receive the larger ones).
957 */
958 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
959 (rxstat & (FXP_RFA_STATUS_OVERRUN|
960 FXP_RFA_STATUS_RNR|
961 FXP_RFA_STATUS_ALIGN|
962 FXP_RFA_STATUS_CRC)) != 0) {
963 FXP_INIT_RFABUF(sc, m);
964 goto rcvloop;
965 }
966
967 /*
968 * If the packet is small enough to fit in a
969 * single header mbuf, allocate one and copy
970 * the data into it. This greatly reduces
971 * memory consumption when we receive lots
972 * of small packets.
973 *
974 * Otherwise, we add a new buffer to the receive
975 * chain. If this fails, we drop the packet and
976 * recycle the old buffer.
977 */
978 if (fxp_copy_small != 0 && len <= MHLEN) {
979 MGETHDR(m0, M_DONTWAIT, MT_DATA);
980 if (m == NULL)
981 goto dropit;
982 memcpy(mtod(m0, caddr_t),
983 mtod(m, caddr_t), len);
984 FXP_INIT_RFABUF(sc, m);
985 m = m0;
986 } else {
987 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
988 dropit:
989 ifp->if_ierrors++;
990 FXP_INIT_RFABUF(sc, m);
991 goto rcvloop;
992 }
993 }
994
995 m->m_pkthdr.rcvif = ifp;
996 m->m_pkthdr.len = m->m_len = len;
997
998 #if NBPFILTER > 0
999 /*
1000 * Pass this up to any BPF listeners, but only
1001 * pass it up the stack it its for us.
1002 */
1003 if (ifp->if_bpf)
1004 bpf_mtap(ifp->if_bpf, m);
1005 #endif
1006
1007 /* Pass it on. */
1008 (*ifp->if_input)(ifp, m);
1009 goto rcvloop;
1010 }
1011
1012 do_transmit:
1013 if (statack & FXP_SCB_STATACK_RNR) {
1014 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1015 fxp_scb_wait(sc);
1016 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1017 rxmap->dm_segs[0].ds_addr +
1018 RFA_ALIGNMENT_FUDGE);
1019 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1020 FXP_SCB_COMMAND_RU_START);
1021 }
1022
1023 /*
1024 * Free any finished transmit mbuf chains.
1025 */
1026 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1027 ifp->if_flags &= ~IFF_OACTIVE;
1028 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1029 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1030 txd = FXP_CDTX(sc, i);
1031 txs = FXP_DSTX(sc, i);
1032
1033 FXP_CDTXSYNC(sc, i,
1034 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1035
1036 txstat = le16toh(txd->cb_status);
1037
1038 if ((txstat & FXP_CB_STATUS_C) == 0)
1039 break;
1040
1041 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1042
1043 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1044 0, txs->txs_dmamap->dm_mapsize,
1045 BUS_DMASYNC_POSTWRITE);
1046 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1047 m_freem(txs->txs_mbuf);
1048 txs->txs_mbuf = NULL;
1049 }
1050
1051 /* Update the dirty transmit buffer pointer. */
1052 sc->sc_txdirty = i;
1053
1054 /*
1055 * Cancel the watchdog timer if there are no pending
1056 * transmissions.
1057 */
1058 if (sc->sc_txpending == 0) {
1059 ifp->if_timer = 0;
1060
1061 /*
1062 * If we want a re-init, do that now.
1063 */
1064 if (sc->sc_flags & FXPF_WANTINIT)
1065 (void) fxp_init(ifp);
1066 }
1067
1068 /*
1069 * Try to get more packets going.
1070 */
1071 fxp_start(ifp);
1072 }
1073 }
1074
1075 #if NRND > 0
1076 if (claimed)
1077 rnd_add_uint32(&sc->rnd_source, statack);
1078 #endif
1079 return (claimed);
1080 }
1081
1082 /*
1083 * Update packet in/out/collision statistics. The i82557 doesn't
1084 * allow you to access these counters without doing a fairly
1085 * expensive DMA to get _all_ of the statistics it maintains, so
1086 * we do this operation here only once per second. The statistics
1087 * counters in the kernel are updated from the previous dump-stats
1088 * DMA and then a new dump-stats DMA is started. The on-chip
1089 * counters are zeroed when the DMA completes. If we can't start
1090 * the DMA immediately, we don't wait - we just prepare to read
1091 * them again next time.
1092 */
1093 void
1094 fxp_tick(arg)
1095 void *arg;
1096 {
1097 struct fxp_softc *sc = arg;
1098 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1099 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1100 int s;
1101
1102 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1103 return;
1104
1105 s = splnet();
1106
1107 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1108
1109 ifp->if_opackets += le32toh(sp->tx_good);
1110 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1111 if (sp->rx_good) {
1112 ifp->if_ipackets += le32toh(sp->rx_good);
1113 sc->sc_rxidle = 0;
1114 } else {
1115 sc->sc_rxidle++;
1116 }
1117 ifp->if_ierrors +=
1118 le32toh(sp->rx_crc_errors) +
1119 le32toh(sp->rx_alignment_errors) +
1120 le32toh(sp->rx_rnr_errors) +
1121 le32toh(sp->rx_overrun_errors);
1122 /*
1123 * If any transmit underruns occured, bump up the transmit
1124 * threshold by another 512 bytes (64 * 8).
1125 */
1126 if (sp->tx_underruns) {
1127 ifp->if_oerrors += le32toh(sp->tx_underruns);
1128 if (tx_threshold < 192)
1129 tx_threshold += 64;
1130 }
1131
1132 /*
1133 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1134 * then assume the receiver has locked up and attempt to clear
1135 * the condition by reprogramming the multicast filter (actually,
1136 * resetting the interface). This is a work-around for a bug in
1137 * the 82557 where the receiver locks up if it gets certain types
1138 * of garbage in the syncronization bits prior to the packet header.
1139 * This bug is supposed to only occur in 10Mbps mode, but has been
1140 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1141 * speed transition).
1142 */
1143 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1144 (void) fxp_init(ifp);
1145 splx(s);
1146 return;
1147 }
1148 /*
1149 * If there is no pending command, start another stats
1150 * dump. Otherwise punt for now.
1151 */
1152 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1153 /*
1154 * Start another stats dump.
1155 */
1156 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1157 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1158 FXP_SCB_COMMAND_CU_DUMPRESET);
1159 } else {
1160 /*
1161 * A previous command is still waiting to be accepted.
1162 * Just zero our copy of the stats and wait for the
1163 * next timer event to update them.
1164 */
1165 /* BIG_ENDIAN: no swap required to store 0 */
1166 sp->tx_good = 0;
1167 sp->tx_underruns = 0;
1168 sp->tx_total_collisions = 0;
1169
1170 sp->rx_good = 0;
1171 sp->rx_crc_errors = 0;
1172 sp->rx_alignment_errors = 0;
1173 sp->rx_rnr_errors = 0;
1174 sp->rx_overrun_errors = 0;
1175 }
1176
1177 if (sc->sc_flags & FXPF_MII) {
1178 /* Tick the MII clock. */
1179 mii_tick(&sc->sc_mii);
1180 }
1181
1182 splx(s);
1183
1184 /*
1185 * Schedule another timeout one second from now.
1186 */
1187 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1188 }
1189
1190 /*
1191 * Drain the receive queue.
1192 */
1193 void
1194 fxp_rxdrain(sc)
1195 struct fxp_softc *sc;
1196 {
1197 bus_dmamap_t rxmap;
1198 struct mbuf *m;
1199
1200 for (;;) {
1201 IF_DEQUEUE(&sc->sc_rxq, m);
1202 if (m == NULL)
1203 break;
1204 rxmap = M_GETCTX(m, bus_dmamap_t);
1205 bus_dmamap_unload(sc->sc_dmat, rxmap);
1206 FXP_RXMAP_PUT(sc, rxmap);
1207 m_freem(m);
1208 }
1209 }
1210
1211 /*
1212 * Stop the interface. Cancels the statistics updater and resets
1213 * the interface.
1214 */
1215 void
1216 fxp_stop(ifp, disable)
1217 struct ifnet *ifp;
1218 int disable;
1219 {
1220 struct fxp_softc *sc = ifp->if_softc;
1221 struct fxp_txsoft *txs;
1222 int i;
1223
1224 /*
1225 * Turn down interface (done early to avoid bad interactions
1226 * between panics, shutdown hooks, and the watchdog timer)
1227 */
1228 ifp->if_timer = 0;
1229 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1230
1231 /*
1232 * Cancel stats updater.
1233 */
1234 callout_stop(&sc->sc_callout);
1235 if (sc->sc_flags & FXPF_MII) {
1236 /* Down the MII. */
1237 mii_down(&sc->sc_mii);
1238 }
1239
1240 /*
1241 * Issue software reset
1242 */
1243 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1244 DELAY(10);
1245
1246 /*
1247 * Release any xmit buffers.
1248 */
1249 for (i = 0; i < FXP_NTXCB; i++) {
1250 txs = FXP_DSTX(sc, i);
1251 if (txs->txs_mbuf != NULL) {
1252 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1253 m_freem(txs->txs_mbuf);
1254 txs->txs_mbuf = NULL;
1255 }
1256 }
1257 sc->sc_txpending = 0;
1258
1259 if (disable) {
1260 fxp_rxdrain(sc);
1261 fxp_disable(sc);
1262 }
1263
1264 }
1265
1266 /*
1267 * Watchdog/transmission transmit timeout handler. Called when a
1268 * transmission is started on the interface, but no interrupt is
1269 * received before the timeout. This usually indicates that the
1270 * card has wedged for some reason.
1271 */
1272 void
1273 fxp_watchdog(ifp)
1274 struct ifnet *ifp;
1275 {
1276 struct fxp_softc *sc = ifp->if_softc;
1277
1278 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1279 ifp->if_oerrors++;
1280
1281 (void) fxp_init(ifp);
1282 }
1283
1284 /*
1285 * Initialize the interface. Must be called at splnet().
1286 */
1287 int
1288 fxp_init(ifp)
1289 struct ifnet *ifp;
1290 {
1291 struct fxp_softc *sc = ifp->if_softc;
1292 struct fxp_cb_config *cbp;
1293 struct fxp_cb_ias *cb_ias;
1294 struct fxp_cb_tx *txd;
1295 bus_dmamap_t rxmap;
1296 int i, prm, save_bf, allm, error = 0;
1297
1298 if ((error = fxp_enable(sc)) != 0)
1299 goto out;
1300
1301 /*
1302 * Cancel any pending I/O
1303 */
1304 fxp_stop(ifp, 0);
1305
1306 /*
1307 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1308 * flag, and this prevents the MII from detaching resulting in
1309 * a panic. The flags field should perhaps be split in runtime
1310 * flags and more static information. For now, just clear the
1311 * only other flag set.
1312 */
1313
1314 sc->sc_flags &= ~FXPF_WANTINIT;
1315
1316 /*
1317 * Initialize base of CBL and RFA memory. Loading with zero
1318 * sets it up for regular linear addressing.
1319 */
1320 fxp_scb_wait(sc);
1321 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1322 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1323
1324 fxp_scb_wait(sc);
1325 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1326
1327 /*
1328 * Initialize the multicast filter. Do this now, since we might
1329 * have to setup the config block differently.
1330 */
1331 fxp_mc_setup(sc);
1332
1333 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1334 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1335
1336 /*
1337 * In order to support receiving 802.1Q VLAN frames, we have to
1338 * enable "save bad frames", since they are 4 bytes larger than
1339 * the normal Ethernet maximum frame length.
1340 */
1341 save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
1342
1343 /*
1344 * Initialize base of dump-stats buffer.
1345 */
1346 fxp_scb_wait(sc);
1347 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1348 sc->sc_cddma + FXP_CDSTATSOFF);
1349 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1350 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1351
1352 cbp = &sc->sc_control_data->fcd_configcb;
1353 memset(cbp, 0, sizeof(struct fxp_cb_config));
1354
1355 /*
1356 * This copy is kind of disgusting, but there are a bunch of must be
1357 * zero and must be one bits in this structure and this is the easiest
1358 * way to initialize them all to proper values.
1359 */
1360 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1361
1362 /* BIG_ENDIAN: no need to swap to store 0 */
1363 cbp->cb_status = 0;
1364 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1365 FXP_CB_COMMAND_EL);
1366 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1367 cbp->link_addr = 0xffffffff; /* (no) next command */
1368 cbp->byte_count = 22; /* (22) bytes to config */
1369 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1370 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1371 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1372 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1373 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1374 cbp->dma_bce = 0; /* (disable) dma max counters */
1375 cbp->late_scb = 0; /* (don't) defer SCB update */
1376 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1377 cbp->ci_int = 1; /* interrupt on CU idle */
1378 cbp->save_bf = save_bf;/* save bad frames */
1379 cbp->disc_short_rx = !prm; /* discard short packets */
1380 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1381 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1382 cbp->nsai = 1; /* (don't) disable source addr insert */
1383 cbp->preamble_length = 2; /* (7 byte) preamble */
1384 cbp->loopback = 0; /* (don't) loopback */
1385 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1386 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1387 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1388 cbp->promiscuous = prm; /* promiscuous mode */
1389 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1390 cbp->crscdt = 0; /* (CRS only) */
1391 cbp->stripping = !prm; /* truncate rx packet to byte count */
1392 cbp->padding = 1; /* (do) pad short tx packets */
1393 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1394 cbp->force_fdx = 0; /* (don't) force full duplex */
1395 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1396 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1397 cbp->mc_all = allm; /* accept all multicasts */
1398
1399 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1400
1401 /*
1402 * Start the config command/DMA.
1403 */
1404 fxp_scb_wait(sc);
1405 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1406 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1407 /* ...and wait for it to complete. */
1408 i = 1000;
1409 do {
1410 FXP_CDCONFIGSYNC(sc,
1411 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1412 DELAY(1);
1413 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1414 if (i == 0) {
1415 printf("%s at line %d: dmasync timeout\n",
1416 sc->sc_dev.dv_xname, __LINE__);
1417 return ETIMEDOUT;
1418 }
1419
1420 /*
1421 * Initialize the station address.
1422 */
1423 cb_ias = &sc->sc_control_data->fcd_iascb;
1424 /* BIG_ENDIAN: no need to swap to store 0 */
1425 cb_ias->cb_status = 0;
1426 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1427 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1428 cb_ias->link_addr = 0xffffffff;
1429 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1430
1431 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1432
1433 /*
1434 * Start the IAS (Individual Address Setup) command/DMA.
1435 */
1436 fxp_scb_wait(sc);
1437 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1438 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1439 /* ...and wait for it to complete. */
1440 i = 1000;
1441 do {
1442 FXP_CDIASSYNC(sc,
1443 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1444 DELAY(1);
1445 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1446 if (i == 0) {
1447 printf("%s at line %d: dmasync timeout\n",
1448 sc->sc_dev.dv_xname, __LINE__);
1449 return ETIMEDOUT;
1450 }
1451
1452 /*
1453 * Initialize the transmit descriptor ring. txlast is initialized
1454 * to the end of the list so that it will wrap around to the first
1455 * descriptor when the first packet is transmitted.
1456 */
1457 for (i = 0; i < FXP_NTXCB; i++) {
1458 txd = FXP_CDTX(sc, i);
1459 memset(txd, 0, sizeof(struct fxp_cb_tx));
1460 txd->cb_command =
1461 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1462 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1463 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1464 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1465 }
1466 sc->sc_txpending = 0;
1467 sc->sc_txdirty = 0;
1468 sc->sc_txlast = FXP_NTXCB - 1;
1469
1470 /*
1471 * Initialize the receive buffer list.
1472 */
1473 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1474 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1475 rxmap = FXP_RXMAP_GET(sc);
1476 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1477 printf("%s: unable to allocate or map rx "
1478 "buffer %d, error = %d\n",
1479 sc->sc_dev.dv_xname,
1480 sc->sc_rxq.ifq_len, error);
1481 /*
1482 * XXX Should attempt to run with fewer receive
1483 * XXX buffers instead of just failing.
1484 */
1485 FXP_RXMAP_PUT(sc, rxmap);
1486 fxp_rxdrain(sc);
1487 goto out;
1488 }
1489 }
1490 sc->sc_rxidle = 0;
1491
1492 /*
1493 * Give the transmit ring to the chip. We do this by pointing
1494 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1495 * issuing a start command. It will execute the NOP and then
1496 * suspend, pointing at the first descriptor.
1497 */
1498 fxp_scb_wait(sc);
1499 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1500 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1501
1502 /*
1503 * Initialize receiver buffer area - RFA.
1504 */
1505 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1506 fxp_scb_wait(sc);
1507 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1508 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1509 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1510
1511 if (sc->sc_flags & FXPF_MII) {
1512 /*
1513 * Set current media.
1514 */
1515 mii_mediachg(&sc->sc_mii);
1516 }
1517
1518 /*
1519 * ...all done!
1520 */
1521 ifp->if_flags |= IFF_RUNNING;
1522 ifp->if_flags &= ~IFF_OACTIVE;
1523
1524 /*
1525 * Start the one second timer.
1526 */
1527 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1528
1529 /*
1530 * Attempt to start output on the interface.
1531 */
1532 fxp_start(ifp);
1533
1534 out:
1535 if (error) {
1536 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1537 ifp->if_timer = 0;
1538 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1539 }
1540 return (error);
1541 }
1542
1543 /*
1544 * Change media according to request.
1545 */
1546 int
1547 fxp_mii_mediachange(ifp)
1548 struct ifnet *ifp;
1549 {
1550 struct fxp_softc *sc = ifp->if_softc;
1551
1552 if (ifp->if_flags & IFF_UP)
1553 mii_mediachg(&sc->sc_mii);
1554 return (0);
1555 }
1556
1557 /*
1558 * Notify the world which media we're using.
1559 */
1560 void
1561 fxp_mii_mediastatus(ifp, ifmr)
1562 struct ifnet *ifp;
1563 struct ifmediareq *ifmr;
1564 {
1565 struct fxp_softc *sc = ifp->if_softc;
1566
1567 if(sc->sc_enabled == 0) {
1568 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1569 ifmr->ifm_status = 0;
1570 return;
1571 }
1572
1573 mii_pollstat(&sc->sc_mii);
1574 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1575 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1576 }
1577
1578 int
1579 fxp_80c24_mediachange(ifp)
1580 struct ifnet *ifp;
1581 {
1582
1583 /* Nothing to do here. */
1584 return (0);
1585 }
1586
1587 void
1588 fxp_80c24_mediastatus(ifp, ifmr)
1589 struct ifnet *ifp;
1590 struct ifmediareq *ifmr;
1591 {
1592 struct fxp_softc *sc = ifp->if_softc;
1593
1594 /*
1595 * Media is currently-selected media. We cannot determine
1596 * the link status.
1597 */
1598 ifmr->ifm_status = 0;
1599 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1600 }
1601
1602 /*
1603 * Add a buffer to the end of the RFA buffer list.
1604 * Return 0 if successful, error code on failure.
1605 *
1606 * The RFA struct is stuck at the beginning of mbuf cluster and the
1607 * data pointer is fixed up to point just past it.
1608 */
1609 int
1610 fxp_add_rfabuf(sc, rxmap, unload)
1611 struct fxp_softc *sc;
1612 bus_dmamap_t rxmap;
1613 int unload;
1614 {
1615 struct mbuf *m;
1616 int error;
1617
1618 MGETHDR(m, M_DONTWAIT, MT_DATA);
1619 if (m == NULL)
1620 return (ENOBUFS);
1621
1622 MCLGET(m, M_DONTWAIT);
1623 if ((m->m_flags & M_EXT) == 0) {
1624 m_freem(m);
1625 return (ENOBUFS);
1626 }
1627
1628 if (unload)
1629 bus_dmamap_unload(sc->sc_dmat, rxmap);
1630
1631 M_SETCTX(m, rxmap);
1632
1633 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1634 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1635 if (error) {
1636 printf("%s: can't load rx DMA map %d, error = %d\n",
1637 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1638 panic("fxp_add_rfabuf"); /* XXX */
1639 }
1640
1641 FXP_INIT_RFABUF(sc, m);
1642
1643 return (0);
1644 }
1645
1646 volatile int
1647 fxp_mdi_read(self, phy, reg)
1648 struct device *self;
1649 int phy;
1650 int reg;
1651 {
1652 struct fxp_softc *sc = (struct fxp_softc *)self;
1653 int count = 10000;
1654 int value;
1655
1656 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1657 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1658
1659 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1660 && count--)
1661 DELAY(10);
1662
1663 if (count <= 0)
1664 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1665
1666 return (value & 0xffff);
1667 }
1668
1669 void
1670 fxp_statchg(self)
1671 struct device *self;
1672 {
1673
1674 /* Nothing to do. */
1675 }
1676
1677 void
1678 fxp_mdi_write(self, phy, reg, value)
1679 struct device *self;
1680 int phy;
1681 int reg;
1682 int value;
1683 {
1684 struct fxp_softc *sc = (struct fxp_softc *)self;
1685 int count = 10000;
1686
1687 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1688 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1689 (value & 0xffff));
1690
1691 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1692 count--)
1693 DELAY(10);
1694
1695 if (count <= 0)
1696 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1697 }
1698
1699 int
1700 fxp_ioctl(ifp, cmd, data)
1701 struct ifnet *ifp;
1702 u_long cmd;
1703 caddr_t data;
1704 {
1705 struct fxp_softc *sc = ifp->if_softc;
1706 struct ifreq *ifr = (struct ifreq *)data;
1707 int s, error;
1708
1709 s = splnet();
1710
1711 switch (cmd) {
1712 case SIOCSIFMEDIA:
1713 case SIOCGIFMEDIA:
1714 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1715 break;
1716
1717 default:
1718 error = ether_ioctl(ifp, cmd, data);
1719 if (error == ENETRESET) {
1720 if (sc->sc_enabled) {
1721 /*
1722 * Multicast list has changed; set the
1723 * hardware filter accordingly.
1724 */
1725 if (sc->sc_txpending) {
1726 sc->sc_flags |= FXPF_WANTINIT;
1727 error = 0;
1728 } else
1729 error = fxp_init(ifp);
1730 } else
1731 error = 0;
1732 }
1733 break;
1734 }
1735
1736 /* Try to get more packets going. */
1737 if (sc->sc_enabled)
1738 fxp_start(ifp);
1739
1740 splx(s);
1741 return (error);
1742 }
1743
1744 /*
1745 * Program the multicast filter.
1746 *
1747 * This function must be called at splnet().
1748 */
1749 void
1750 fxp_mc_setup(sc)
1751 struct fxp_softc *sc;
1752 {
1753 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1754 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1755 struct ethercom *ec = &sc->sc_ethercom;
1756 struct ether_multi *enm;
1757 struct ether_multistep step;
1758 int count, nmcasts;
1759
1760 #ifdef DIAGNOSTIC
1761 if (sc->sc_txpending)
1762 panic("fxp_mc_setup: pending transmissions");
1763 #endif
1764
1765 ifp->if_flags &= ~IFF_ALLMULTI;
1766
1767 /*
1768 * Initialize multicast setup descriptor.
1769 */
1770 nmcasts = 0;
1771 ETHER_FIRST_MULTI(step, ec, enm);
1772 while (enm != NULL) {
1773 /*
1774 * Check for too many multicast addresses or if we're
1775 * listening to a range. Either way, we simply have
1776 * to accept all multicasts.
1777 */
1778 if (nmcasts >= MAXMCADDR ||
1779 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1780 ETHER_ADDR_LEN) != 0) {
1781 /*
1782 * Callers of this function must do the
1783 * right thing with this. If we're called
1784 * from outside fxp_init(), the caller must
1785 * detect if the state if IFF_ALLMULTI changes.
1786 * If it does, the caller must then call
1787 * fxp_init(), since allmulti is handled by
1788 * the config block.
1789 */
1790 ifp->if_flags |= IFF_ALLMULTI;
1791 return;
1792 }
1793 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1794 ETHER_ADDR_LEN);
1795 nmcasts++;
1796 ETHER_NEXT_MULTI(step, enm);
1797 }
1798
1799 /* BIG_ENDIAN: no need to swap to store 0 */
1800 mcsp->cb_status = 0;
1801 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1802 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1803 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1804
1805 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1806
1807 /*
1808 * Wait until the command unit is not active. This should never
1809 * happen since nothing is queued, but make sure anyway.
1810 */
1811 count = 100;
1812 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1813 FXP_SCB_CUS_ACTIVE && --count)
1814 DELAY(1);
1815 if (count == 0) {
1816 printf("%s at line %d: command queue timeout\n",
1817 sc->sc_dev.dv_xname, __LINE__);
1818 return;
1819 }
1820
1821 /*
1822 * Start the multicast setup command/DMA.
1823 */
1824 fxp_scb_wait(sc);
1825 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1826 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1827
1828 /* ...and wait for it to complete. */
1829 count = 1000;
1830 do {
1831 FXP_CDMCSSYNC(sc,
1832 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1833 DELAY(1);
1834 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1835 if (count == 0) {
1836 printf("%s at line %d: dmasync timeout\n",
1837 sc->sc_dev.dv_xname, __LINE__);
1838 return;
1839 }
1840 }
1841
1842 int
1843 fxp_enable(sc)
1844 struct fxp_softc *sc;
1845 {
1846
1847 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1848 if ((*sc->sc_enable)(sc) != 0) {
1849 printf("%s: device enable failed\n",
1850 sc->sc_dev.dv_xname);
1851 return (EIO);
1852 }
1853 }
1854
1855 sc->sc_enabled = 1;
1856 return (0);
1857 }
1858
1859 void
1860 fxp_disable(sc)
1861 struct fxp_softc *sc;
1862 {
1863
1864 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1865 (*sc->sc_disable)(sc);
1866 sc->sc_enabled = 0;
1867 }
1868 }
1869
1870 /*
1871 * fxp_activate:
1872 *
1873 * Handle device activation/deactivation requests.
1874 */
1875 int
1876 fxp_activate(self, act)
1877 struct device *self;
1878 enum devact act;
1879 {
1880 struct fxp_softc *sc = (void *) self;
1881 int s, error = 0;
1882
1883 s = splnet();
1884 switch (act) {
1885 case DVACT_ACTIVATE:
1886 error = EOPNOTSUPP;
1887 break;
1888
1889 case DVACT_DEACTIVATE:
1890 if (sc->sc_flags & FXPF_MII)
1891 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1892 MII_OFFSET_ANY);
1893 if_deactivate(&sc->sc_ethercom.ec_if);
1894 break;
1895 }
1896 splx(s);
1897
1898 return (error);
1899 }
1900
1901 /*
1902 * fxp_detach:
1903 *
1904 * Detach an i82557 interface.
1905 */
1906 int
1907 fxp_detach(sc)
1908 struct fxp_softc *sc;
1909 {
1910 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1911 int i;
1912
1913 /* Succeed now if there's no work to do. */
1914 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1915 return (0);
1916
1917 /* Unhook our tick handler. */
1918 callout_stop(&sc->sc_callout);
1919
1920 if (sc->sc_flags & FXPF_MII) {
1921 /* Detach all PHYs */
1922 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1923 }
1924
1925 /* Delete all remaining media. */
1926 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1927
1928 #if NRND > 0
1929 rnd_detach_source(&sc->rnd_source);
1930 #endif
1931 #if NBPFILTER > 0
1932 bpfdetach(ifp);
1933 #endif
1934 ether_ifdetach(ifp);
1935 if_detach(ifp);
1936
1937 for (i = 0; i < FXP_NRFABUFS; i++) {
1938 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1939 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1940 }
1941
1942 for (i = 0; i < FXP_NTXCB; i++) {
1943 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1944 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1945 }
1946
1947 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1948 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1949 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1950 sizeof(struct fxp_control_data));
1951 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1952
1953 shutdownhook_disestablish(sc->sc_sdhook);
1954 powerhook_disestablish(sc->sc_powerhook);
1955
1956 return (0);
1957 }
1958