Home | History | Annotate | Line # | Download | only in ic
i82557.c revision 1.41
      1 /*	$NetBSD: i82557.c,v 1.41 2000/11/15 01:02:16 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1995, David Greenman
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice unmodified, this list of conditions, and the following
     49  *    disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
     67  */
     68 
     69 /*
     70  * Device driver for the Intel i82557 fast Ethernet controller,
     71  * and its successors, the i82558 and i82559.
     72  */
     73 
     74 #include "opt_inet.h"
     75 #include "opt_ns.h"
     76 #include "bpfilter.h"
     77 #include "rnd.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/callout.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/malloc.h>
     84 #include <sys/kernel.h>
     85 #include <sys/socket.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/errno.h>
     88 #include <sys/device.h>
     89 
     90 #include <machine/endian.h>
     91 
     92 #include <uvm/uvm_extern.h>
     93 
     94 #if NRND > 0
     95 #include <sys/rnd.h>
     96 #endif
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #if NBPFILTER > 0
    104 #include <net/bpf.h>
    105 #endif
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/if_inarp.h>
    110 #endif
    111 
    112 #ifdef NS
    113 #include <netns/ns.h>
    114 #include <netns/ns_if.h>
    115 #endif
    116 
    117 #include <machine/bus.h>
    118 #include <machine/intr.h>
    119 
    120 #include <dev/mii/miivar.h>
    121 
    122 #include <dev/ic/i82557reg.h>
    123 #include <dev/ic/i82557var.h>
    124 
    125 /*
    126  * NOTE!  On the Alpha, we have an alignment constraint.  The
    127  * card DMAs the packet immediately following the RFA.  However,
    128  * the first thing in the packet is a 14-byte Ethernet header.
    129  * This means that the packet is misaligned.  To compensate,
    130  * we actually offset the RFA 2 bytes into the cluster.  This
    131  * alignes the packet after the Ethernet header at a 32-bit
    132  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    133  */
    134 #define	RFA_ALIGNMENT_FUDGE	2
    135 
    136 /*
    137  * Template for default configuration parameters.
    138  * See struct fxp_cb_config for the bit definitions.
    139  */
    140 u_int8_t fxp_cb_config_template[] = {
    141 	0x0, 0x0,		/* cb_status */
    142 	0x80, 0x2,		/* cb_command */
    143 	0xff, 0xff, 0xff, 0xff,	/* link_addr */
    144 	0x16,	/*  0 */
    145 	0x8,	/*  1 */
    146 	0x0,	/*  2 */
    147 	0x0,	/*  3 */
    148 	0x0,	/*  4 */
    149 	0x80,	/*  5 */
    150 	0xb2,	/*  6 */
    151 	0x3,	/*  7 */
    152 	0x1,	/*  8 */
    153 	0x0,	/*  9 */
    154 	0x26,	/* 10 */
    155 	0x0,	/* 11 */
    156 	0x60,	/* 12 */
    157 	0x0,	/* 13 */
    158 	0xf2,	/* 14 */
    159 	0x48,	/* 15 */
    160 	0x0,	/* 16 */
    161 	0x40,	/* 17 */
    162 	0xf3,	/* 18 */
    163 	0x0,	/* 19 */
    164 	0x3f,	/* 20 */
    165 	0x5	/* 21 */
    166 };
    167 
    168 void	fxp_mii_initmedia __P((struct fxp_softc *));
    169 int	fxp_mii_mediachange __P((struct ifnet *));
    170 void	fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
    171 
    172 void	fxp_80c24_initmedia __P((struct fxp_softc *));
    173 int	fxp_80c24_mediachange __P((struct ifnet *));
    174 void	fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
    175 
    176 inline void fxp_scb_wait __P((struct fxp_softc *));
    177 
    178 void	fxp_start __P((struct ifnet *));
    179 int	fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
    180 void	fxp_watchdog __P((struct ifnet *));
    181 int	fxp_init __P((struct ifnet *));
    182 void	fxp_stop __P((struct ifnet *, int));
    183 
    184 void	fxp_rxdrain __P((struct fxp_softc *));
    185 int	fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
    186 int	fxp_mdi_read __P((struct device *, int, int));
    187 void	fxp_statchg __P((struct device *));
    188 void	fxp_mdi_write __P((struct device *, int, int, int));
    189 void	fxp_autosize_eeprom __P((struct fxp_softc*));
    190 void	fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
    191 void	fxp_get_info __P((struct fxp_softc *, u_int8_t *));
    192 void	fxp_tick __P((void *));
    193 void	fxp_mc_setup __P((struct fxp_softc *));
    194 
    195 void	fxp_shutdown __P((void *));
    196 void	fxp_power __P((int, void *));
    197 
    198 int	fxp_copy_small = 0;
    199 
    200 struct fxp_phytype {
    201 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    202 	void	(*fp_init) __P((struct fxp_softc *));
    203 } fxp_phytype_table[] = {
    204 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    205 	{ -1,				fxp_mii_initmedia },
    206 };
    207 
    208 /*
    209  * Set initial transmit threshold at 64 (512 bytes). This is
    210  * increased by 64 (512 bytes) at a time, to maximum of 192
    211  * (1536 bytes), if an underrun occurs.
    212  */
    213 static int tx_threshold = 64;
    214 
    215 /*
    216  * Wait for the previous command to be accepted (but not necessarily
    217  * completed).
    218  */
    219 inline void
    220 fxp_scb_wait(sc)
    221 	struct fxp_softc *sc;
    222 {
    223 	int i = 10000;
    224 
    225 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    226 		delay(2);
    227 	if (i == 0)
    228 		printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
    229 }
    230 
    231 /*
    232  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    233  */
    234 void
    235 fxp_attach(sc)
    236 	struct fxp_softc *sc;
    237 {
    238 	u_int8_t enaddr[ETHER_ADDR_LEN];
    239 	struct ifnet *ifp;
    240 	bus_dma_segment_t seg;
    241 	int rseg, i, error;
    242 	struct fxp_phytype *fp;
    243 
    244 	callout_init(&sc->sc_callout);
    245 
    246 	/*
    247 	 * Allocate the control data structures, and create and load the
    248 	 * DMA map for it.
    249 	 */
    250 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    251 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    252 	    0)) != 0) {
    253 		printf("%s: unable to allocate control data, error = %d\n",
    254 		    sc->sc_dev.dv_xname, error);
    255 		goto fail_0;
    256 	}
    257 
    258 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    259 	    sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
    260 	    BUS_DMA_COHERENT)) != 0) {
    261 		printf("%s: unable to map control data, error = %d\n",
    262 		    sc->sc_dev.dv_xname, error);
    263 		goto fail_1;
    264 	}
    265 	sc->sc_cdseg = seg;
    266 	sc->sc_cdnseg = rseg;
    267 
    268 	bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
    269 
    270 	if ((error = bus_dmamap_create(sc->sc_dmat,
    271 	    sizeof(struct fxp_control_data), 1,
    272 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    273 		printf("%s: unable to create control data DMA map, "
    274 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    275 		goto fail_2;
    276 	}
    277 
    278 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    279 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    280 	    0)) != 0) {
    281 		printf("%s: can't load control data DMA map, error = %d\n",
    282 		    sc->sc_dev.dv_xname, error);
    283 		goto fail_3;
    284 	}
    285 
    286 	/*
    287 	 * Create the transmit buffer DMA maps.
    288 	 */
    289 	for (i = 0; i < FXP_NTXCB; i++) {
    290 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    291 		    FXP_NTXSEG, MCLBYTES, 0, 0,
    292 		    &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    293 			printf("%s: unable to create tx DMA map %d, "
    294 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    295 			goto fail_4;
    296 		}
    297 	}
    298 
    299 	/*
    300 	 * Create the receive buffer DMA maps.
    301 	 */
    302 	for (i = 0; i < FXP_NRFABUFS; i++) {
    303 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    304 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    305 			printf("%s: unable to create rx DMA map %d, "
    306 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    307 			goto fail_5;
    308 		}
    309 	}
    310 
    311 	/* Initialize MAC address and media structures. */
    312 	fxp_get_info(sc, enaddr);
    313 
    314 	printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
    315 	    ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
    316 
    317 	ifp = &sc->sc_ethercom.ec_if;
    318 
    319 	/*
    320 	 * Get info about our media interface, and initialize it.  Note
    321 	 * the table terminates itself with a phy of -1, indicating
    322 	 * that we're using MII.
    323 	 */
    324 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    325 		if (fp->fp_phy == sc->phy_primary_device)
    326 			break;
    327 	(*fp->fp_init)(sc);
    328 
    329 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    330 	ifp->if_softc = sc;
    331 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    332 	ifp->if_ioctl = fxp_ioctl;
    333 	ifp->if_start = fxp_start;
    334 	ifp->if_watchdog = fxp_watchdog;
    335 	ifp->if_init = fxp_init;
    336 	ifp->if_stop = fxp_stop;
    337 
    338 	/*
    339 	 * We can support 802.1Q VLAN-sized frames.
    340 	 */
    341 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    342 
    343 	/*
    344 	 * Attach the interface.
    345 	 */
    346 	if_attach(ifp);
    347 	ether_ifattach(ifp, enaddr);
    348 #if NRND > 0
    349 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    350 	    RND_TYPE_NET, 0);
    351 #endif
    352 
    353 	/*
    354 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
    355 	 * doing do could allow DMA to corrupt kernel memory during the
    356 	 * reboot before the driver initializes.
    357 	 */
    358 	sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
    359 	if (sc->sc_sdhook == NULL)
    360 		printf("%s: WARNING: unable to establish shutdown hook\n",
    361 		    sc->sc_dev.dv_xname);
    362 	/*
    363   	 * Add suspend hook, for similar reasons..
    364 	 */
    365 	sc->sc_powerhook = powerhook_establish(fxp_power, sc);
    366 	if (sc->sc_powerhook == NULL)
    367 		printf("%s: WARNING: unable to establish power hook\n",
    368 		    sc->sc_dev.dv_xname);
    369 
    370 	/* The attach is successful. */
    371 	sc->sc_flags |= FXPF_ATTACHED;
    372 
    373 	return;
    374 
    375 	/*
    376 	 * Free any resources we've allocated during the failed attach
    377 	 * attempt.  Do this in reverse order and fall though.
    378 	 */
    379  fail_5:
    380 	for (i = 0; i < FXP_NRFABUFS; i++) {
    381 		if (sc->sc_rxmaps[i] != NULL)
    382 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    383 	}
    384  fail_4:
    385 	for (i = 0; i < FXP_NTXCB; i++) {
    386 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    387 			bus_dmamap_destroy(sc->sc_dmat,
    388 			    FXP_DSTX(sc, i)->txs_dmamap);
    389 	}
    390 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    391  fail_3:
    392 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    393  fail_2:
    394 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    395 	    sizeof(struct fxp_control_data));
    396  fail_1:
    397 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    398  fail_0:
    399 	return;
    400 }
    401 
    402 void
    403 fxp_mii_initmedia(sc)
    404 	struct fxp_softc *sc;
    405 {
    406 
    407 	sc->sc_flags |= FXPF_MII;
    408 
    409 	sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
    410 	sc->sc_mii.mii_readreg = fxp_mdi_read;
    411 	sc->sc_mii.mii_writereg = fxp_mdi_write;
    412 	sc->sc_mii.mii_statchg = fxp_statchg;
    413 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
    414 	    fxp_mii_mediastatus);
    415 	/*
    416 	 * The i82557 wedges if all of its PHYs are isolated!
    417 	 */
    418 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    419 	    MII_OFFSET_ANY, MIIF_NOISOLATE);
    420 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    421 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
    422 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
    423 	} else
    424 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    425 }
    426 
    427 void
    428 fxp_80c24_initmedia(sc)
    429 	struct fxp_softc *sc;
    430 {
    431 
    432 	/*
    433 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    434 	 * doesn't have a programming interface of any sort.  The
    435 	 * media is sensed automatically based on how the link partner
    436 	 * is configured.  This is, in essence, manual configuration.
    437 	 */
    438 	printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
    439 	    sc->sc_dev.dv_xname);
    440 	ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
    441 	    fxp_80c24_mediastatus);
    442 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    443 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    444 }
    445 
    446 /*
    447  * Device shutdown routine. Called at system shutdown after sync. The
    448  * main purpose of this routine is to shut off receiver DMA so that
    449  * kernel memory doesn't get clobbered during warmboot.
    450  */
    451 void
    452 fxp_shutdown(arg)
    453 	void *arg;
    454 {
    455 	struct fxp_softc *sc = arg;
    456 
    457 	/*
    458 	 * Since the system's going to halt shortly, don't bother
    459 	 * freeing mbufs.
    460 	 */
    461 	fxp_stop(&sc->sc_ethercom.ec_if, 0);
    462 }
    463 /*
    464  * Power handler routine. Called when the system is transitioning
    465  * into/out of power save modes.  As with fxp_shutdown, the main
    466  * purpose of this routine is to shut off receiver DMA so it doesn't
    467  * clobber kernel memory at the wrong time.
    468  */
    469 void
    470 fxp_power(why, arg)
    471 	int why;
    472 	void *arg;
    473 {
    474 	struct fxp_softc *sc = arg;
    475 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    476 	int s;
    477 
    478 	s = splnet();
    479 	if (why != PWR_RESUME)
    480 		fxp_stop(ifp, 0);
    481 	else {
    482 		if (ifp->if_flags & IFF_UP)
    483 			fxp_init(ifp);
    484 	}
    485 	splx(s);
    486 }
    487 
    488 /*
    489  * Initialize the interface media.
    490  */
    491 void
    492 fxp_get_info(sc, enaddr)
    493 	struct fxp_softc *sc;
    494 	u_int8_t *enaddr;
    495 {
    496 	u_int16_t data, myea[ETHER_ADDR_LEN / 2];
    497 
    498 	/*
    499 	 * Reset to a stable state.
    500 	 */
    501 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    502 	DELAY(10);
    503 
    504 	sc->sc_eeprom_size = 0;
    505 	fxp_autosize_eeprom(sc);
    506 	if(sc->sc_eeprom_size == 0) {
    507 	    printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
    508 	    sc->sc_eeprom_size = 6; /* XXX panic here? */
    509 	}
    510 #ifdef DEBUG
    511 	printf("%s: detected %d word EEPROM\n",
    512 	       sc->sc_dev.dv_xname,
    513 	       1 << sc->sc_eeprom_size);
    514 #endif
    515 
    516 	/*
    517 	 * Get info about the primary PHY
    518 	 */
    519 	fxp_read_eeprom(sc, &data, 6, 1);
    520 	sc->phy_primary_addr = data & 0xff;
    521 	sc->phy_primary_device = (data >> 8) & 0x3f;
    522 	sc->phy_10Mbps_only = data >> 15;
    523 
    524 	/*
    525 	 * Read MAC address.
    526 	 */
    527 	fxp_read_eeprom(sc, myea, 0, 3);
    528 	enaddr[0] = myea[0] & 0xff;
    529 	enaddr[1] = myea[0] >> 8;
    530 	enaddr[2] = myea[1] & 0xff;
    531 	enaddr[3] = myea[1] >> 8;
    532 	enaddr[4] = myea[2] & 0xff;
    533 	enaddr[5] = myea[2] >> 8;
    534 }
    535 
    536 /*
    537  * Figure out EEPROM size.
    538  *
    539  * 559's can have either 64-word or 256-word EEPROMs, the 558
    540  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    541  * talks about the existance of 16 to 256 word EEPROMs.
    542  *
    543  * The only known sizes are 64 and 256, where the 256 version is used
    544  * by CardBus cards to store CIS information.
    545  *
    546  * The address is shifted in msb-to-lsb, and after the last
    547  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    548  * after which follows the actual data. We try to detect this zero, by
    549  * probing the data-out bit in the EEPROM control register just after
    550  * having shifted in a bit. If the bit is zero, we assume we've
    551  * shifted enough address bits. The data-out should be tri-state,
    552  * before this, which should translate to a logical one.
    553  *
    554  * Other ways to do this would be to try to read a register with known
    555  * contents with a varying number of address bits, but no such
    556  * register seem to be available. The high bits of register 10 are 01
    557  * on the 558 and 559, but apparently not on the 557.
    558  *
    559  * The Linux driver computes a checksum on the EEPROM data, but the
    560  * value of this checksum is not very well documented.
    561  */
    562 
    563 void
    564 fxp_autosize_eeprom(sc)
    565 	struct fxp_softc *sc;
    566 {
    567 	u_int16_t reg;
    568 	int x;
    569 
    570 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    571 	/*
    572 	 * Shift in read opcode.
    573 	 */
    574 	for (x = 3; x > 0; x--) {
    575 		if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    576 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    577 		} else {
    578 			reg = FXP_EEPROM_EECS;
    579 		}
    580 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    581 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    582 			    reg | FXP_EEPROM_EESK);
    583 		DELAY(4);
    584 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    585 		DELAY(4);
    586 	}
    587 	/*
    588 	 * Shift in address, wait for the dummy zero following a correct
    589 	 * address shift.
    590 	 */
    591 	for (x = 1; x <=  8; x++) {
    592 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    593 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    594 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    595 		DELAY(4);
    596 		if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    597 		    FXP_EEPROM_EEDO) == 0)
    598 			break;
    599 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    600 		DELAY(4);
    601 	}
    602 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    603 	DELAY(4);
    604 	if(x != 6 && x != 8) {
    605 #ifdef DEBUG
    606 		printf("%s: strange EEPROM size (%d)\n",
    607 		       sc->sc_dev.dv_xname, 1 << x);
    608 #endif
    609 	} else
    610 		sc->sc_eeprom_size = x;
    611 }
    612 
    613 /*
    614  * Read from the serial EEPROM. Basically, you manually shift in
    615  * the read opcode (one bit at a time) and then shift in the address,
    616  * and then you shift out the data (all of this one bit at a time).
    617  * The word size is 16 bits, so you have to provide the address for
    618  * every 16 bits of data.
    619  */
    620 void
    621 fxp_read_eeprom(sc, data, offset, words)
    622 	struct fxp_softc *sc;
    623 	u_int16_t *data;
    624 	int offset;
    625 	int words;
    626 {
    627 	u_int16_t reg;
    628 	int i, x;
    629 
    630 	for (i = 0; i < words; i++) {
    631 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    632 		/*
    633 		 * Shift in read opcode.
    634 		 */
    635 		for (x = 3; x > 0; x--) {
    636 			if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
    637 				reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    638 			} else {
    639 				reg = FXP_EEPROM_EECS;
    640 			}
    641 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    642 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    643 			    reg | FXP_EEPROM_EESK);
    644 			DELAY(4);
    645 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    646 			DELAY(4);
    647 		}
    648 		/*
    649 		 * Shift in address.
    650 		 */
    651 		for (x = sc->sc_eeprom_size; x > 0; x--) {
    652 			if ((i + offset) & (1 << (x - 1))) {
    653 			    reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    654 			} else {
    655 			    reg = FXP_EEPROM_EECS;
    656 			}
    657 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    658 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    659 			    reg | FXP_EEPROM_EESK);
    660 			DELAY(4);
    661 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    662 			DELAY(4);
    663 		}
    664 		reg = FXP_EEPROM_EECS;
    665 		data[i] = 0;
    666 		/*
    667 		 * Shift out data.
    668 		 */
    669 		for (x = 16; x > 0; x--) {
    670 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    671 			    reg | FXP_EEPROM_EESK);
    672 			DELAY(4);
    673 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    674 			    FXP_EEPROM_EEDO)
    675 				data[i] |= (1 << (x - 1));
    676 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    677 			DELAY(4);
    678 		}
    679 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    680 		DELAY(4);
    681 	}
    682 }
    683 
    684 /*
    685  * Start packet transmission on the interface.
    686  */
    687 void
    688 fxp_start(ifp)
    689 	struct ifnet *ifp;
    690 {
    691 	struct fxp_softc *sc = ifp->if_softc;
    692 	struct mbuf *m0, *m;
    693 	struct fxp_cb_tx *txd;
    694 	struct fxp_txsoft *txs;
    695 	struct fxp_tbdlist *tbd;
    696 	bus_dmamap_t dmamap;
    697 	int error, lasttx, nexttx, opending, seg;
    698 
    699 	/*
    700 	 * If we want a re-init, bail out now.
    701 	 */
    702 	if (sc->sc_flags & FXPF_WANTINIT) {
    703 		ifp->if_flags |= IFF_OACTIVE;
    704 		return;
    705 	}
    706 
    707 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    708 		return;
    709 
    710 	/*
    711 	 * Remember the previous txpending and the current lasttx.
    712 	 */
    713 	opending = sc->sc_txpending;
    714 	lasttx = sc->sc_txlast;
    715 
    716 	/*
    717 	 * Loop through the send queue, setting up transmit descriptors
    718 	 * until we drain the queue, or use up all available transmit
    719 	 * descriptors.
    720 	 */
    721 	while (sc->sc_txpending < FXP_NTXCB) {
    722 		/*
    723 		 * Grab a packet off the queue.
    724 		 */
    725 		IF_DEQUEUE(&ifp->if_snd, m0);
    726 		if (m0 == NULL)
    727 			break;
    728 
    729 		/*
    730 		 * Get the next available transmit descriptor.
    731 		 */
    732 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    733 		txd = FXP_CDTX(sc, nexttx);
    734 		tbd = FXP_CDTBD(sc, nexttx);
    735 		txs = FXP_DSTX(sc, nexttx);
    736 		dmamap = txs->txs_dmamap;
    737 
    738 		/*
    739 		 * Load the DMA map.  If this fails, the packet either
    740 		 * didn't fit in the allotted number of frags, or we were
    741 		 * short on resources.  In this case, we'll copy and try
    742 		 * again.
    743 		 */
    744 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    745 		    BUS_DMA_NOWAIT) != 0) {
    746 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    747 			if (m == NULL) {
    748 				printf("%s: unable to allocate Tx mbuf\n",
    749 				    sc->sc_dev.dv_xname);
    750 				IF_PREPEND(&ifp->if_snd, m0);
    751 				break;
    752 			}
    753 			if (m0->m_pkthdr.len > MHLEN) {
    754 				MCLGET(m, M_DONTWAIT);
    755 				if ((m->m_flags & M_EXT) == 0) {
    756 					printf("%s: unable to allocate Tx "
    757 					    "cluster\n", sc->sc_dev.dv_xname);
    758 					m_freem(m);
    759 					IF_PREPEND(&ifp->if_snd, m0);
    760 					break;
    761 				}
    762 			}
    763 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
    764 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    765 			m_freem(m0);
    766 			m0 = m;
    767 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    768 			    m0, BUS_DMA_NOWAIT);
    769 			if (error) {
    770 				printf("%s: unable to load Tx buffer, "
    771 				    "error = %d\n", sc->sc_dev.dv_xname, error);
    772 				IF_PREPEND(&ifp->if_snd, m0);
    773 				break;
    774 			}
    775 		}
    776 
    777 		/* Initialize the fraglist. */
    778 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
    779 			tbd->tbd_d[seg].tb_addr =
    780 			    htole32(dmamap->dm_segs[seg].ds_addr);
    781 			tbd->tbd_d[seg].tb_size =
    782 			    htole32(dmamap->dm_segs[seg].ds_len);
    783 		}
    784 
    785 		FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
    786 
    787 		/* Sync the DMA map. */
    788 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    789 		    BUS_DMASYNC_PREWRITE);
    790 
    791 		/*
    792 		 * Store a pointer to the packet so we can free it later.
    793 		 */
    794 		txs->txs_mbuf = m0;
    795 
    796 		/*
    797 		 * Initialize the transmit descriptor.
    798 		 */
    799 		/* BIG_ENDIAN: no need to swap to store 0 */
    800 		txd->cb_status = 0;
    801 		txd->cb_command =
    802 		    htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
    803 		txd->tx_threshold = tx_threshold;
    804 		txd->tbd_number = dmamap->dm_nsegs;
    805 
    806 		FXP_CDTXSYNC(sc, nexttx,
    807 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    808 
    809 		/* Advance the tx pointer. */
    810 		sc->sc_txpending++;
    811 		sc->sc_txlast = nexttx;
    812 
    813 #if NBPFILTER > 0
    814 		/*
    815 		 * Pass packet to bpf if there is a listener.
    816 		 */
    817 		if (ifp->if_bpf)
    818 			bpf_mtap(ifp->if_bpf, m0);
    819 #endif
    820 	}
    821 
    822 	if (sc->sc_txpending == FXP_NTXCB) {
    823 		/* No more slots; notify upper layer. */
    824 		ifp->if_flags |= IFF_OACTIVE;
    825 	}
    826 
    827 	if (sc->sc_txpending != opending) {
    828 		/*
    829 		 * We enqueued packets.  If the transmitter was idle,
    830 		 * reset the txdirty pointer.
    831 		 */
    832 		if (opending == 0)
    833 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
    834 
    835 		/*
    836 		 * Cause the chip to interrupt and suspend command
    837 		 * processing once the last packet we've enqueued
    838 		 * has been transmitted.
    839 		 */
    840 		FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
    841 		    htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
    842 		FXP_CDTXSYNC(sc, sc->sc_txlast,
    843 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    844 
    845 		/*
    846 		 * The entire packet chain is set up.  Clear the suspend bit
    847 		 * on the command prior to the first packet we set up.
    848 		 */
    849 		FXP_CDTXSYNC(sc, lasttx,
    850 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    851 		FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
    852 		FXP_CDTXSYNC(sc, lasttx,
    853 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    854 
    855 		/*
    856 		 * Issue a Resume command in case the chip was suspended.
    857 		 */
    858 		fxp_scb_wait(sc);
    859 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
    860 
    861 		/* Set a watchdog timer in case the chip flakes out. */
    862 		ifp->if_timer = 5;
    863 	}
    864 }
    865 
    866 /*
    867  * Process interface interrupts.
    868  */
    869 int
    870 fxp_intr(arg)
    871 	void *arg;
    872 {
    873 	struct fxp_softc *sc = arg;
    874 	struct ethercom *ec = &sc->sc_ethercom;
    875 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    876 	struct fxp_cb_tx *txd;
    877 	struct fxp_txsoft *txs;
    878 	struct mbuf *m, *m0;
    879 	bus_dmamap_t rxmap;
    880 	struct fxp_rfa *rfa;
    881 	int i, claimed = 0;
    882 	u_int16_t len, rxstat, txstat;
    883 	u_int8_t statack;
    884 
    885 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
    886 		return (0);
    887 	/*
    888 	 * If the interface isn't running, don't try to
    889 	 * service the interrupt.. just ack it and bail.
    890 	 */
    891 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
    892 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
    893 		if (statack) {
    894 			claimed = 1;
    895 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    896 		}
    897 		return (claimed);
    898 	}
    899 
    900 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
    901 		claimed = 1;
    902 
    903 		/*
    904 		 * First ACK all the interrupts in this pass.
    905 		 */
    906 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
    907 
    908 		/*
    909 		 * Process receiver interrupts. If a no-resource (RNR)
    910 		 * condition exists, get whatever packets we can and
    911 		 * re-start the receiver.
    912 		 */
    913 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
    914  rcvloop:
    915 			m = sc->sc_rxq.ifq_head;
    916 			rfa = FXP_MTORFA(m);
    917 			rxmap = M_GETCTX(m, bus_dmamap_t);
    918 
    919 			FXP_RFASYNC(sc, m,
    920 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    921 
    922 			rxstat = le16toh(rfa->rfa_status);
    923 
    924 			if ((rxstat & FXP_RFA_STATUS_C) == 0) {
    925 				/*
    926 				 * We have processed all of the
    927 				 * receive buffers.
    928 				 */
    929 				FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
    930 				goto do_transmit;
    931 			}
    932 
    933 			IF_DEQUEUE(&sc->sc_rxq, m);
    934 
    935 			FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
    936 
    937 			len = le16toh(rfa->actual_size) &
    938 			    (m->m_ext.ext_size - 1);
    939 
    940 			if (len < sizeof(struct ether_header)) {
    941 				/*
    942 				 * Runt packet; drop it now.
    943 				 */
    944 				FXP_INIT_RFABUF(sc, m);
    945 				goto rcvloop;
    946 			}
    947 
    948 			/*
    949 			 * If support for 802.1Q VLAN sized frames is
    950 			 * enabled, we need to do some additional error
    951 			 * checking (as we are saving bad frames, in
    952 			 * order to receive the larger ones).
    953 			 */
    954 			if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
    955 			    (rxstat & (FXP_RFA_STATUS_OVERRUN|
    956 				       FXP_RFA_STATUS_RNR|
    957 				       FXP_RFA_STATUS_ALIGN|
    958 				       FXP_RFA_STATUS_CRC)) != 0) {
    959 				FXP_INIT_RFABUF(sc, m);
    960 				goto rcvloop;
    961 			}
    962 
    963 			/*
    964 			 * If the packet is small enough to fit in a
    965 			 * single header mbuf, allocate one and copy
    966 			 * the data into it.  This greatly reduces
    967 			 * memory consumption when we receive lots
    968 			 * of small packets.
    969 			 *
    970 			 * Otherwise, we add a new buffer to the receive
    971 			 * chain.  If this fails, we drop the packet and
    972 			 * recycle the old buffer.
    973 			 */
    974 			if (fxp_copy_small != 0 && len <= MHLEN) {
    975 				MGETHDR(m0, M_DONTWAIT, MT_DATA);
    976 				if (m == NULL)
    977 					goto dropit;
    978 				memcpy(mtod(m0, caddr_t),
    979 				    mtod(m, caddr_t), len);
    980 				FXP_INIT_RFABUF(sc, m);
    981 				m = m0;
    982 			} else {
    983 				if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
    984  dropit:
    985 					ifp->if_ierrors++;
    986 					FXP_INIT_RFABUF(sc, m);
    987 					goto rcvloop;
    988 				}
    989 			}
    990 
    991 			m->m_pkthdr.rcvif = ifp;
    992 			m->m_pkthdr.len = m->m_len = len;
    993 
    994 #if NBPFILTER > 0
    995 			/*
    996 			 * Pass this up to any BPF listeners, but only
    997 			 * pass it up the stack it its for us.
    998 			 */
    999 			if (ifp->if_bpf)
   1000 				bpf_mtap(ifp->if_bpf, m);
   1001 #endif
   1002 
   1003 			/* Pass it on. */
   1004 			(*ifp->if_input)(ifp, m);
   1005 			goto rcvloop;
   1006 		}
   1007 
   1008  do_transmit:
   1009 		if (statack & FXP_SCB_STATACK_RNR) {
   1010 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1011 			fxp_scb_wait(sc);
   1012 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1013 			    rxmap->dm_segs[0].ds_addr +
   1014 			    RFA_ALIGNMENT_FUDGE);
   1015 			CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
   1016 			    FXP_SCB_COMMAND_RU_START);
   1017 		}
   1018 
   1019 		/*
   1020 		 * Free any finished transmit mbuf chains.
   1021 		 */
   1022 		if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
   1023 			ifp->if_flags &= ~IFF_OACTIVE;
   1024 			for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1025 			     i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1026 				txd = FXP_CDTX(sc, i);
   1027 				txs = FXP_DSTX(sc, i);
   1028 
   1029 				FXP_CDTXSYNC(sc, i,
   1030 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1031 
   1032 				txstat = le16toh(txd->cb_status);
   1033 
   1034 				if ((txstat & FXP_CB_STATUS_C) == 0)
   1035 					break;
   1036 
   1037 				FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
   1038 
   1039 				bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1040 				    0, txs->txs_dmamap->dm_mapsize,
   1041 				    BUS_DMASYNC_POSTWRITE);
   1042 				bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1043 				m_freem(txs->txs_mbuf);
   1044 				txs->txs_mbuf = NULL;
   1045 			}
   1046 
   1047 			/* Update the dirty transmit buffer pointer. */
   1048 			sc->sc_txdirty = i;
   1049 
   1050 			/*
   1051 			 * Cancel the watchdog timer if there are no pending
   1052 			 * transmissions.
   1053 			 */
   1054 			if (sc->sc_txpending == 0) {
   1055 				ifp->if_timer = 0;
   1056 
   1057 				/*
   1058 				 * If we want a re-init, do that now.
   1059 				 */
   1060 				if (sc->sc_flags & FXPF_WANTINIT)
   1061 					(void) fxp_init(ifp);
   1062 			}
   1063 
   1064 			/*
   1065 			 * Try to get more packets going.
   1066 			 */
   1067 			fxp_start(ifp);
   1068 		}
   1069 	}
   1070 
   1071 #if NRND > 0
   1072 	if (claimed)
   1073 		rnd_add_uint32(&sc->rnd_source, statack);
   1074 #endif
   1075 	return (claimed);
   1076 }
   1077 
   1078 /*
   1079  * Update packet in/out/collision statistics. The i82557 doesn't
   1080  * allow you to access these counters without doing a fairly
   1081  * expensive DMA to get _all_ of the statistics it maintains, so
   1082  * we do this operation here only once per second. The statistics
   1083  * counters in the kernel are updated from the previous dump-stats
   1084  * DMA and then a new dump-stats DMA is started. The on-chip
   1085  * counters are zeroed when the DMA completes. If we can't start
   1086  * the DMA immediately, we don't wait - we just prepare to read
   1087  * them again next time.
   1088  */
   1089 void
   1090 fxp_tick(arg)
   1091 	void *arg;
   1092 {
   1093 	struct fxp_softc *sc = arg;
   1094 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1095 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1096 	int s;
   1097 
   1098 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1099 		return;
   1100 
   1101 	s = splnet();
   1102 
   1103 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1104 
   1105 	ifp->if_opackets += le32toh(sp->tx_good);
   1106 	ifp->if_collisions += le32toh(sp->tx_total_collisions);
   1107 	if (sp->rx_good) {
   1108 		ifp->if_ipackets += le32toh(sp->rx_good);
   1109 		sc->sc_rxidle = 0;
   1110 	} else {
   1111 		sc->sc_rxidle++;
   1112 	}
   1113 	ifp->if_ierrors +=
   1114 	    le32toh(sp->rx_crc_errors) +
   1115 	    le32toh(sp->rx_alignment_errors) +
   1116 	    le32toh(sp->rx_rnr_errors) +
   1117 	    le32toh(sp->rx_overrun_errors);
   1118 	/*
   1119 	 * If any transmit underruns occured, bump up the transmit
   1120 	 * threshold by another 512 bytes (64 * 8).
   1121 	 */
   1122 	if (sp->tx_underruns) {
   1123 		ifp->if_oerrors += le32toh(sp->tx_underruns);
   1124 		if (tx_threshold < 192)
   1125 			tx_threshold += 64;
   1126 	}
   1127 
   1128 	/*
   1129 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
   1130 	 * then assume the receiver has locked up and attempt to clear
   1131 	 * the condition by reprogramming the multicast filter (actually,
   1132 	 * resetting the interface). This is a work-around for a bug in
   1133 	 * the 82557 where the receiver locks up if it gets certain types
   1134 	 * of garbage in the syncronization bits prior to the packet header.
   1135 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1136 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1137 	 * speed transition).
   1138 	 */
   1139 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1140 		(void) fxp_init(ifp);
   1141 		splx(s);
   1142 		return;
   1143 	}
   1144 	/*
   1145 	 * If there is no pending command, start another stats
   1146 	 * dump. Otherwise punt for now.
   1147 	 */
   1148 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1149 		/*
   1150 		 * Start another stats dump.
   1151 		 */
   1152 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1153 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
   1154 		    FXP_SCB_COMMAND_CU_DUMPRESET);
   1155 	} else {
   1156 		/*
   1157 		 * A previous command is still waiting to be accepted.
   1158 		 * Just zero our copy of the stats and wait for the
   1159 		 * next timer event to update them.
   1160 		 */
   1161 		/* BIG_ENDIAN: no swap required to store 0 */
   1162 		sp->tx_good = 0;
   1163 		sp->tx_underruns = 0;
   1164 		sp->tx_total_collisions = 0;
   1165 
   1166 		sp->rx_good = 0;
   1167 		sp->rx_crc_errors = 0;
   1168 		sp->rx_alignment_errors = 0;
   1169 		sp->rx_rnr_errors = 0;
   1170 		sp->rx_overrun_errors = 0;
   1171 	}
   1172 
   1173 	if (sc->sc_flags & FXPF_MII) {
   1174 		/* Tick the MII clock. */
   1175 		mii_tick(&sc->sc_mii);
   1176 	}
   1177 
   1178 	splx(s);
   1179 
   1180 	/*
   1181 	 * Schedule another timeout one second from now.
   1182 	 */
   1183 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1184 }
   1185 
   1186 /*
   1187  * Drain the receive queue.
   1188  */
   1189 void
   1190 fxp_rxdrain(sc)
   1191 	struct fxp_softc *sc;
   1192 {
   1193 	bus_dmamap_t rxmap;
   1194 	struct mbuf *m;
   1195 
   1196 	for (;;) {
   1197 		IF_DEQUEUE(&sc->sc_rxq, m);
   1198 		if (m == NULL)
   1199 			break;
   1200 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1201 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1202 		FXP_RXMAP_PUT(sc, rxmap);
   1203 		m_freem(m);
   1204 	}
   1205 }
   1206 
   1207 /*
   1208  * Stop the interface. Cancels the statistics updater and resets
   1209  * the interface.
   1210  */
   1211 void
   1212 fxp_stop(ifp, disable)
   1213 	struct ifnet *ifp;
   1214 	int disable;
   1215 {
   1216 	struct fxp_softc *sc = ifp->if_softc;
   1217 	struct fxp_txsoft *txs;
   1218 	int i;
   1219 
   1220 	/*
   1221 	 * Turn down interface (done early to avoid bad interactions
   1222 	 * between panics, shutdown hooks, and the watchdog timer)
   1223 	 */
   1224 	ifp->if_timer = 0;
   1225 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1226 
   1227 	/*
   1228 	 * Cancel stats updater.
   1229 	 */
   1230 	callout_stop(&sc->sc_callout);
   1231 	if (sc->sc_flags & FXPF_MII) {
   1232 		/* Down the MII. */
   1233 		mii_down(&sc->sc_mii);
   1234 	}
   1235 
   1236 	/*
   1237 	 * Issue software reset
   1238 	 */
   1239 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
   1240 	DELAY(10);
   1241 
   1242 	/*
   1243 	 * Release any xmit buffers.
   1244 	 */
   1245 	for (i = 0; i < FXP_NTXCB; i++) {
   1246 		txs = FXP_DSTX(sc, i);
   1247 		if (txs->txs_mbuf != NULL) {
   1248 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1249 			m_freem(txs->txs_mbuf);
   1250 			txs->txs_mbuf = NULL;
   1251 		}
   1252 	}
   1253 	sc->sc_txpending = 0;
   1254 
   1255 	if (disable) {
   1256 		fxp_rxdrain(sc);
   1257 		fxp_disable(sc);
   1258 	}
   1259 
   1260 }
   1261 
   1262 /*
   1263  * Watchdog/transmission transmit timeout handler. Called when a
   1264  * transmission is started on the interface, but no interrupt is
   1265  * received before the timeout. This usually indicates that the
   1266  * card has wedged for some reason.
   1267  */
   1268 void
   1269 fxp_watchdog(ifp)
   1270 	struct ifnet *ifp;
   1271 {
   1272 	struct fxp_softc *sc = ifp->if_softc;
   1273 
   1274 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
   1275 	ifp->if_oerrors++;
   1276 
   1277 	(void) fxp_init(ifp);
   1278 }
   1279 
   1280 /*
   1281  * Initialize the interface.  Must be called at splnet().
   1282  */
   1283 int
   1284 fxp_init(ifp)
   1285 	struct ifnet *ifp;
   1286 {
   1287 	struct fxp_softc *sc = ifp->if_softc;
   1288 	struct fxp_cb_config *cbp;
   1289 	struct fxp_cb_ias *cb_ias;
   1290 	struct fxp_cb_tx *txd;
   1291 	bus_dmamap_t rxmap;
   1292 	int i, prm, save_bf, allm, error = 0;
   1293 
   1294 	if ((error = fxp_enable(sc)) != 0)
   1295 		goto out;
   1296 
   1297 	/*
   1298 	 * Cancel any pending I/O
   1299 	 */
   1300 	fxp_stop(ifp, 0);
   1301 
   1302 	/*
   1303 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1304 	 * flag, and this prevents the MII from detaching resulting in
   1305 	 * a panic. The flags field should perhaps be split in runtime
   1306 	 * flags and more static information. For now, just clear the
   1307 	 * only other flag set.
   1308 	 */
   1309 
   1310 	sc->sc_flags &= ~FXPF_WANTINIT;
   1311 
   1312 	/*
   1313 	 * Initialize base of CBL and RFA memory. Loading with zero
   1314 	 * sets it up for regular linear addressing.
   1315 	 */
   1316 	fxp_scb_wait(sc);
   1317 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1318 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
   1319 
   1320 	fxp_scb_wait(sc);
   1321 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
   1322 
   1323 	/*
   1324 	 * Initialize the multicast filter.  Do this now, since we might
   1325 	 * have to setup the config block differently.
   1326 	 */
   1327 	fxp_mc_setup(sc);
   1328 
   1329 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1330 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1331 
   1332 	/*
   1333 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1334 	 * enable "save bad frames", since they are 4 bytes larger than
   1335 	 * the normal Ethernet maximum frame length.
   1336 	 */
   1337 	save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
   1338 
   1339 	/*
   1340 	 * Initialize base of dump-stats buffer.
   1341 	 */
   1342 	fxp_scb_wait(sc);
   1343 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1344 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1345 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1346 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1347 
   1348 	cbp = &sc->sc_control_data->fcd_configcb;
   1349 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1350 
   1351 	/*
   1352 	 * This copy is kind of disgusting, but there are a bunch of must be
   1353 	 * zero and must be one bits in this structure and this is the easiest
   1354 	 * way to initialize them all to proper values.
   1355 	 */
   1356 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1357 
   1358 	/* BIG_ENDIAN: no need to swap to store 0 */
   1359 	cbp->cb_status =	0;
   1360 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1361 				    FXP_CB_COMMAND_EL);
   1362 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1363 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1364 	cbp->byte_count =	22;	/* (22) bytes to config */
   1365 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1366 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1367 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1368 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1369 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1370 	cbp->dma_bce =		0;	/* (disable) dma max counters */
   1371 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1372 	cbp->tno_int =		0;	/* (disable) tx not okay interrupt */
   1373 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1374 	cbp->save_bf =		save_bf;/* save bad frames */
   1375 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1376 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1377 	cbp->mediatype =	!sc->phy_10Mbps_only; /* interface mode */
   1378 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1379 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1380 	cbp->loopback =		0;	/* (don't) loopback */
   1381 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1382 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1383 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1384 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1385 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1386 	cbp->crscdt =		0;	/* (CRS only) */
   1387 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1388 	cbp->padding =		1;	/* (do) pad short tx packets */
   1389 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1390 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1391 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1392 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1393 	cbp->mc_all =		allm;	/* accept all multicasts */
   1394 
   1395 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1396 
   1397 	/*
   1398 	 * Start the config command/DMA.
   1399 	 */
   1400 	fxp_scb_wait(sc);
   1401 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1402 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1403 	/* ...and wait for it to complete. */
   1404 	i = 1000;
   1405 	do {
   1406 		FXP_CDCONFIGSYNC(sc,
   1407 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1408 		DELAY(1);
   1409 	} while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1410 	if (i == 0) {
   1411 		printf("%s at line %d: dmasync timeout\n",
   1412 		    sc->sc_dev.dv_xname, __LINE__);
   1413 		return ETIMEDOUT;
   1414 	}
   1415 
   1416 	/*
   1417 	 * Initialize the station address.
   1418 	 */
   1419 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1420 	/* BIG_ENDIAN: no need to swap to store 0 */
   1421 	cb_ias->cb_status = 0;
   1422 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1423 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1424 	cb_ias->link_addr = 0xffffffff;
   1425 	memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1426 
   1427 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1428 
   1429 	/*
   1430 	 * Start the IAS (Individual Address Setup) command/DMA.
   1431 	 */
   1432 	fxp_scb_wait(sc);
   1433 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1434 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1435 	/* ...and wait for it to complete. */
   1436 	i = 1000;
   1437 	do {
   1438 		FXP_CDIASSYNC(sc,
   1439 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1440 		DELAY(1);
   1441 	} while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
   1442 	if (i == 0) {
   1443 		printf("%s at line %d: dmasync timeout\n",
   1444 		    sc->sc_dev.dv_xname, __LINE__);
   1445 		return ETIMEDOUT;
   1446 	}
   1447 
   1448 	/*
   1449 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1450 	 * to the end of the list so that it will wrap around to the first
   1451 	 * descriptor when the first packet is transmitted.
   1452 	 */
   1453 	for (i = 0; i < FXP_NTXCB; i++) {
   1454 		txd = FXP_CDTX(sc, i);
   1455 		memset(txd, 0, sizeof(struct fxp_cb_tx));
   1456 		txd->cb_command =
   1457 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1458 		txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
   1459 		txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1460 		FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1461 	}
   1462 	sc->sc_txpending = 0;
   1463 	sc->sc_txdirty = 0;
   1464 	sc->sc_txlast = FXP_NTXCB - 1;
   1465 
   1466 	/*
   1467 	 * Initialize the receive buffer list.
   1468 	 */
   1469 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1470 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1471 		rxmap = FXP_RXMAP_GET(sc);
   1472 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1473 			printf("%s: unable to allocate or map rx "
   1474 			    "buffer %d, error = %d\n",
   1475 			    sc->sc_dev.dv_xname,
   1476 			    sc->sc_rxq.ifq_len, error);
   1477 			/*
   1478 			 * XXX Should attempt to run with fewer receive
   1479 			 * XXX buffers instead of just failing.
   1480 			 */
   1481 			FXP_RXMAP_PUT(sc, rxmap);
   1482 			fxp_rxdrain(sc);
   1483 			goto out;
   1484 		}
   1485 	}
   1486 	sc->sc_rxidle = 0;
   1487 
   1488 	/*
   1489 	 * Give the transmit ring to the chip.  We do this by pointing
   1490 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1491 	 * issuing a start command.  It will execute the NOP and then
   1492 	 * suspend, pointing at the first descriptor.
   1493 	 */
   1494 	fxp_scb_wait(sc);
   1495 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1496 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1497 
   1498 	/*
   1499 	 * Initialize receiver buffer area - RFA.
   1500 	 */
   1501 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1502 	fxp_scb_wait(sc);
   1503 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1504 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1505 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
   1506 
   1507 	if (sc->sc_flags & FXPF_MII) {
   1508 		/*
   1509 		 * Set current media.
   1510 		 */
   1511 		mii_mediachg(&sc->sc_mii);
   1512 	}
   1513 
   1514 	/*
   1515 	 * ...all done!
   1516 	 */
   1517 	ifp->if_flags |= IFF_RUNNING;
   1518 	ifp->if_flags &= ~IFF_OACTIVE;
   1519 
   1520 	/*
   1521 	 * Start the one second timer.
   1522 	 */
   1523 	callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
   1524 
   1525 	/*
   1526 	 * Attempt to start output on the interface.
   1527 	 */
   1528 	fxp_start(ifp);
   1529 
   1530  out:
   1531 	if (error) {
   1532 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1533 		ifp->if_timer = 0;
   1534 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1535 	}
   1536 	return (error);
   1537 }
   1538 
   1539 /*
   1540  * Change media according to request.
   1541  */
   1542 int
   1543 fxp_mii_mediachange(ifp)
   1544 	struct ifnet *ifp;
   1545 {
   1546 	struct fxp_softc *sc = ifp->if_softc;
   1547 
   1548 	if (ifp->if_flags & IFF_UP)
   1549 		mii_mediachg(&sc->sc_mii);
   1550 	return (0);
   1551 }
   1552 
   1553 /*
   1554  * Notify the world which media we're using.
   1555  */
   1556 void
   1557 fxp_mii_mediastatus(ifp, ifmr)
   1558 	struct ifnet *ifp;
   1559 	struct ifmediareq *ifmr;
   1560 {
   1561 	struct fxp_softc *sc = ifp->if_softc;
   1562 
   1563 	if(sc->sc_enabled == 0) {
   1564 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   1565 		ifmr->ifm_status = 0;
   1566 		return;
   1567 	}
   1568 
   1569 	mii_pollstat(&sc->sc_mii);
   1570 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1571 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1572 }
   1573 
   1574 int
   1575 fxp_80c24_mediachange(ifp)
   1576 	struct ifnet *ifp;
   1577 {
   1578 
   1579 	/* Nothing to do here. */
   1580 	return (0);
   1581 }
   1582 
   1583 void
   1584 fxp_80c24_mediastatus(ifp, ifmr)
   1585 	struct ifnet *ifp;
   1586 	struct ifmediareq *ifmr;
   1587 {
   1588 	struct fxp_softc *sc = ifp->if_softc;
   1589 
   1590 	/*
   1591 	 * Media is currently-selected media.  We cannot determine
   1592 	 * the link status.
   1593 	 */
   1594 	ifmr->ifm_status = 0;
   1595 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1596 }
   1597 
   1598 /*
   1599  * Add a buffer to the end of the RFA buffer list.
   1600  * Return 0 if successful, error code on failure.
   1601  *
   1602  * The RFA struct is stuck at the beginning of mbuf cluster and the
   1603  * data pointer is fixed up to point just past it.
   1604  */
   1605 int
   1606 fxp_add_rfabuf(sc, rxmap, unload)
   1607 	struct fxp_softc *sc;
   1608 	bus_dmamap_t rxmap;
   1609 	int unload;
   1610 {
   1611 	struct mbuf *m;
   1612 	int error;
   1613 
   1614 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1615 	if (m == NULL)
   1616 		return (ENOBUFS);
   1617 
   1618 	MCLGET(m, M_DONTWAIT);
   1619 	if ((m->m_flags & M_EXT) == 0) {
   1620 		m_freem(m);
   1621 		return (ENOBUFS);
   1622 	}
   1623 
   1624 	if (unload)
   1625 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1626 
   1627 	M_SETCTX(m, rxmap);
   1628 
   1629 	error = bus_dmamap_load(sc->sc_dmat, rxmap,
   1630 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
   1631 	if (error) {
   1632 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1633 		    sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
   1634 		panic("fxp_add_rfabuf");		/* XXX */
   1635 	}
   1636 
   1637 	FXP_INIT_RFABUF(sc, m);
   1638 
   1639 	return (0);
   1640 }
   1641 
   1642 volatile int
   1643 fxp_mdi_read(self, phy, reg)
   1644 	struct device *self;
   1645 	int phy;
   1646 	int reg;
   1647 {
   1648 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1649 	int count = 10000;
   1650 	int value;
   1651 
   1652 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1653 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   1654 
   1655 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
   1656 	    && count--)
   1657 		DELAY(10);
   1658 
   1659 	if (count <= 0)
   1660 		printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
   1661 
   1662 	return (value & 0xffff);
   1663 }
   1664 
   1665 void
   1666 fxp_statchg(self)
   1667 	struct device *self;
   1668 {
   1669 
   1670 	/* Nothing to do. */
   1671 }
   1672 
   1673 void
   1674 fxp_mdi_write(self, phy, reg, value)
   1675 	struct device *self;
   1676 	int phy;
   1677 	int reg;
   1678 	int value;
   1679 {
   1680 	struct fxp_softc *sc = (struct fxp_softc *)self;
   1681 	int count = 10000;
   1682 
   1683 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   1684 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
   1685 	    (value & 0xffff));
   1686 
   1687 	while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   1688 	    count--)
   1689 		DELAY(10);
   1690 
   1691 	if (count <= 0)
   1692 		printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
   1693 }
   1694 
   1695 int
   1696 fxp_ioctl(ifp, cmd, data)
   1697 	struct ifnet *ifp;
   1698 	u_long cmd;
   1699 	caddr_t data;
   1700 {
   1701 	struct fxp_softc *sc = ifp->if_softc;
   1702 	struct ifreq *ifr = (struct ifreq *)data;
   1703 	int s, error;
   1704 
   1705 	s = splnet();
   1706 
   1707 	switch (cmd) {
   1708 	case SIOCSIFMEDIA:
   1709 	case SIOCGIFMEDIA:
   1710 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1711 		break;
   1712 
   1713 	default:
   1714 		error = ether_ioctl(ifp, cmd, data);
   1715 		if (error == ENETRESET) {
   1716 			if (sc->sc_enabled) {
   1717 				/*
   1718 				 * Multicast list has changed; set the
   1719 				 * hardware filter accordingly.
   1720 				 */
   1721 				if (sc->sc_txpending) {
   1722 					sc->sc_flags |= FXPF_WANTINIT;
   1723 					error = 0;
   1724 				} else
   1725 					error = fxp_init(ifp);
   1726 			} else
   1727 				error = 0;
   1728 		}
   1729 		break;
   1730 	}
   1731 
   1732 	/* Try to get more packets going. */
   1733 	if (sc->sc_enabled)
   1734 		fxp_start(ifp);
   1735 
   1736 	splx(s);
   1737 	return (error);
   1738 }
   1739 
   1740 /*
   1741  * Program the multicast filter.
   1742  *
   1743  * This function must be called at splnet().
   1744  */
   1745 void
   1746 fxp_mc_setup(sc)
   1747 	struct fxp_softc *sc;
   1748 {
   1749 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   1750 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1751 	struct ethercom *ec = &sc->sc_ethercom;
   1752 	struct ether_multi *enm;
   1753 	struct ether_multistep step;
   1754 	int count, nmcasts;
   1755 
   1756 #ifdef DIAGNOSTIC
   1757 	if (sc->sc_txpending)
   1758 		panic("fxp_mc_setup: pending transmissions");
   1759 #endif
   1760 
   1761 	ifp->if_flags &= ~IFF_ALLMULTI;
   1762 
   1763 	/*
   1764 	 * Initialize multicast setup descriptor.
   1765 	 */
   1766 	nmcasts = 0;
   1767 	ETHER_FIRST_MULTI(step, ec, enm);
   1768 	while (enm != NULL) {
   1769 		/*
   1770 		 * Check for too many multicast addresses or if we're
   1771 		 * listening to a range.  Either way, we simply have
   1772 		 * to accept all multicasts.
   1773 		 */
   1774 		if (nmcasts >= MAXMCADDR ||
   1775 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1776 		    ETHER_ADDR_LEN) != 0) {
   1777 			/*
   1778 			 * Callers of this function must do the
   1779 			 * right thing with this.  If we're called
   1780 			 * from outside fxp_init(), the caller must
   1781 			 * detect if the state if IFF_ALLMULTI changes.
   1782 			 * If it does, the caller must then call
   1783 			 * fxp_init(), since allmulti is handled by
   1784 			 * the config block.
   1785 			 */
   1786 			ifp->if_flags |= IFF_ALLMULTI;
   1787 			return;
   1788 		}
   1789 		memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   1790 		    ETHER_ADDR_LEN);
   1791 		nmcasts++;
   1792 		ETHER_NEXT_MULTI(step, enm);
   1793 	}
   1794 
   1795 	/* BIG_ENDIAN: no need to swap to store 0 */
   1796 	mcsp->cb_status = 0;
   1797 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   1798 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   1799 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   1800 
   1801 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1802 
   1803 	/*
   1804 	 * Wait until the command unit is not active.  This should never
   1805 	 * happen since nothing is queued, but make sure anyway.
   1806 	 */
   1807 	count = 100;
   1808 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   1809 	    FXP_SCB_CUS_ACTIVE && --count)
   1810 		DELAY(1);
   1811 	if (count == 0) {
   1812 		printf("%s at line %d: command queue timeout\n",
   1813 		    sc->sc_dev.dv_xname, __LINE__);
   1814 		return;
   1815 	}
   1816 
   1817 	/*
   1818 	 * Start the multicast setup command/DMA.
   1819 	 */
   1820 	fxp_scb_wait(sc);
   1821 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   1822 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
   1823 
   1824 	/* ...and wait for it to complete. */
   1825 	count = 1000;
   1826 	do {
   1827 		FXP_CDMCSSYNC(sc,
   1828 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1829 		DELAY(1);
   1830 	} while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
   1831 	if (count == 0) {
   1832 		printf("%s at line %d: dmasync timeout\n",
   1833 		    sc->sc_dev.dv_xname, __LINE__);
   1834 		return;
   1835 	}
   1836 }
   1837 
   1838 int
   1839 fxp_enable(sc)
   1840 	struct fxp_softc *sc;
   1841 {
   1842 
   1843 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   1844 		if ((*sc->sc_enable)(sc) != 0) {
   1845 			printf("%s: device enable failed\n",
   1846 			    sc->sc_dev.dv_xname);
   1847 			return (EIO);
   1848 		}
   1849 	}
   1850 
   1851 	sc->sc_enabled = 1;
   1852 	return (0);
   1853 }
   1854 
   1855 void
   1856 fxp_disable(sc)
   1857 	struct fxp_softc *sc;
   1858 {
   1859 
   1860 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   1861 		(*sc->sc_disable)(sc);
   1862 		sc->sc_enabled = 0;
   1863 	}
   1864 }
   1865 
   1866 /*
   1867  * fxp_activate:
   1868  *
   1869  *	Handle device activation/deactivation requests.
   1870  */
   1871 int
   1872 fxp_activate(self, act)
   1873 	struct device *self;
   1874 	enum devact act;
   1875 {
   1876 	struct fxp_softc *sc = (void *) self;
   1877 	int s, error = 0;
   1878 
   1879 	s = splnet();
   1880 	switch (act) {
   1881 	case DVACT_ACTIVATE:
   1882 		error = EOPNOTSUPP;
   1883 		break;
   1884 
   1885 	case DVACT_DEACTIVATE:
   1886 		if (sc->sc_flags & FXPF_MII)
   1887 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   1888 			    MII_OFFSET_ANY);
   1889 		if_deactivate(&sc->sc_ethercom.ec_if);
   1890 		break;
   1891 	}
   1892 	splx(s);
   1893 
   1894 	return (error);
   1895 }
   1896 
   1897 /*
   1898  * fxp_detach:
   1899  *
   1900  *	Detach an i82557 interface.
   1901  */
   1902 int
   1903 fxp_detach(sc)
   1904 	struct fxp_softc *sc;
   1905 {
   1906 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1907 	int i;
   1908 
   1909 	/* Succeed now if there's no work to do. */
   1910 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   1911 		return (0);
   1912 
   1913 	/* Unhook our tick handler. */
   1914 	callout_stop(&sc->sc_callout);
   1915 
   1916 	if (sc->sc_flags & FXPF_MII) {
   1917 		/* Detach all PHYs */
   1918 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   1919 	}
   1920 
   1921 	/* Delete all remaining media. */
   1922 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   1923 
   1924 #if NRND > 0
   1925 	rnd_detach_source(&sc->rnd_source);
   1926 #endif
   1927 	ether_ifdetach(ifp);
   1928 	if_detach(ifp);
   1929 
   1930 	for (i = 0; i < FXP_NRFABUFS; i++) {
   1931 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   1932 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   1933 	}
   1934 
   1935 	for (i = 0; i < FXP_NTXCB; i++) {
   1936 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   1937 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   1938 	}
   1939 
   1940 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   1941 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   1942 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
   1943 	    sizeof(struct fxp_control_data));
   1944 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   1945 
   1946 	shutdownhook_disestablish(sc->sc_sdhook);
   1947 	powerhook_disestablish(sc->sc_powerhook);
   1948 
   1949 	return (0);
   1950 }
   1951