i82557.c revision 1.41 1 /* $NetBSD: i82557.c,v 1.41 2000/11/15 01:02:16 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 void fxp_watchdog __P((struct ifnet *));
181 int fxp_init __P((struct ifnet *));
182 void fxp_stop __P((struct ifnet *, int));
183
184 void fxp_rxdrain __P((struct fxp_softc *));
185 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
186 int fxp_mdi_read __P((struct device *, int, int));
187 void fxp_statchg __P((struct device *));
188 void fxp_mdi_write __P((struct device *, int, int, int));
189 void fxp_autosize_eeprom __P((struct fxp_softc*));
190 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
191 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
192 void fxp_tick __P((void *));
193 void fxp_mc_setup __P((struct fxp_softc *));
194
195 void fxp_shutdown __P((void *));
196 void fxp_power __P((int, void *));
197
198 int fxp_copy_small = 0;
199
200 struct fxp_phytype {
201 int fp_phy; /* type of PHY, -1 for MII at the end. */
202 void (*fp_init) __P((struct fxp_softc *));
203 } fxp_phytype_table[] = {
204 { FXP_PHY_80C24, fxp_80c24_initmedia },
205 { -1, fxp_mii_initmedia },
206 };
207
208 /*
209 * Set initial transmit threshold at 64 (512 bytes). This is
210 * increased by 64 (512 bytes) at a time, to maximum of 192
211 * (1536 bytes), if an underrun occurs.
212 */
213 static int tx_threshold = 64;
214
215 /*
216 * Wait for the previous command to be accepted (but not necessarily
217 * completed).
218 */
219 inline void
220 fxp_scb_wait(sc)
221 struct fxp_softc *sc;
222 {
223 int i = 10000;
224
225 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
226 delay(2);
227 if (i == 0)
228 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
229 }
230
231 /*
232 * Finish attaching an i82557 interface. Called by bus-specific front-end.
233 */
234 void
235 fxp_attach(sc)
236 struct fxp_softc *sc;
237 {
238 u_int8_t enaddr[ETHER_ADDR_LEN];
239 struct ifnet *ifp;
240 bus_dma_segment_t seg;
241 int rseg, i, error;
242 struct fxp_phytype *fp;
243
244 callout_init(&sc->sc_callout);
245
246 /*
247 * Allocate the control data structures, and create and load the
248 * DMA map for it.
249 */
250 if ((error = bus_dmamem_alloc(sc->sc_dmat,
251 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
252 0)) != 0) {
253 printf("%s: unable to allocate control data, error = %d\n",
254 sc->sc_dev.dv_xname, error);
255 goto fail_0;
256 }
257
258 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
259 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
260 BUS_DMA_COHERENT)) != 0) {
261 printf("%s: unable to map control data, error = %d\n",
262 sc->sc_dev.dv_xname, error);
263 goto fail_1;
264 }
265 sc->sc_cdseg = seg;
266 sc->sc_cdnseg = rseg;
267
268 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
269
270 if ((error = bus_dmamap_create(sc->sc_dmat,
271 sizeof(struct fxp_control_data), 1,
272 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
273 printf("%s: unable to create control data DMA map, "
274 "error = %d\n", sc->sc_dev.dv_xname, error);
275 goto fail_2;
276 }
277
278 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
279 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
280 0)) != 0) {
281 printf("%s: can't load control data DMA map, error = %d\n",
282 sc->sc_dev.dv_xname, error);
283 goto fail_3;
284 }
285
286 /*
287 * Create the transmit buffer DMA maps.
288 */
289 for (i = 0; i < FXP_NTXCB; i++) {
290 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
291 FXP_NTXSEG, MCLBYTES, 0, 0,
292 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
293 printf("%s: unable to create tx DMA map %d, "
294 "error = %d\n", sc->sc_dev.dv_xname, i, error);
295 goto fail_4;
296 }
297 }
298
299 /*
300 * Create the receive buffer DMA maps.
301 */
302 for (i = 0; i < FXP_NRFABUFS; i++) {
303 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
304 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
305 printf("%s: unable to create rx DMA map %d, "
306 "error = %d\n", sc->sc_dev.dv_xname, i, error);
307 goto fail_5;
308 }
309 }
310
311 /* Initialize MAC address and media structures. */
312 fxp_get_info(sc, enaddr);
313
314 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
315 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
316
317 ifp = &sc->sc_ethercom.ec_if;
318
319 /*
320 * Get info about our media interface, and initialize it. Note
321 * the table terminates itself with a phy of -1, indicating
322 * that we're using MII.
323 */
324 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
325 if (fp->fp_phy == sc->phy_primary_device)
326 break;
327 (*fp->fp_init)(sc);
328
329 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
330 ifp->if_softc = sc;
331 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 ifp->if_ioctl = fxp_ioctl;
333 ifp->if_start = fxp_start;
334 ifp->if_watchdog = fxp_watchdog;
335 ifp->if_init = fxp_init;
336 ifp->if_stop = fxp_stop;
337
338 /*
339 * We can support 802.1Q VLAN-sized frames.
340 */
341 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
342
343 /*
344 * Attach the interface.
345 */
346 if_attach(ifp);
347 ether_ifattach(ifp, enaddr);
348 #if NRND > 0
349 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
350 RND_TYPE_NET, 0);
351 #endif
352
353 /*
354 * Add shutdown hook so that DMA is disabled prior to reboot. Not
355 * doing do could allow DMA to corrupt kernel memory during the
356 * reboot before the driver initializes.
357 */
358 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
359 if (sc->sc_sdhook == NULL)
360 printf("%s: WARNING: unable to establish shutdown hook\n",
361 sc->sc_dev.dv_xname);
362 /*
363 * Add suspend hook, for similar reasons..
364 */
365 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
366 if (sc->sc_powerhook == NULL)
367 printf("%s: WARNING: unable to establish power hook\n",
368 sc->sc_dev.dv_xname);
369
370 /* The attach is successful. */
371 sc->sc_flags |= FXPF_ATTACHED;
372
373 return;
374
375 /*
376 * Free any resources we've allocated during the failed attach
377 * attempt. Do this in reverse order and fall though.
378 */
379 fail_5:
380 for (i = 0; i < FXP_NRFABUFS; i++) {
381 if (sc->sc_rxmaps[i] != NULL)
382 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
383 }
384 fail_4:
385 for (i = 0; i < FXP_NTXCB; i++) {
386 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
387 bus_dmamap_destroy(sc->sc_dmat,
388 FXP_DSTX(sc, i)->txs_dmamap);
389 }
390 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
391 fail_3:
392 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
393 fail_2:
394 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
395 sizeof(struct fxp_control_data));
396 fail_1:
397 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
398 fail_0:
399 return;
400 }
401
402 void
403 fxp_mii_initmedia(sc)
404 struct fxp_softc *sc;
405 {
406
407 sc->sc_flags |= FXPF_MII;
408
409 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
410 sc->sc_mii.mii_readreg = fxp_mdi_read;
411 sc->sc_mii.mii_writereg = fxp_mdi_write;
412 sc->sc_mii.mii_statchg = fxp_statchg;
413 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
414 fxp_mii_mediastatus);
415 /*
416 * The i82557 wedges if all of its PHYs are isolated!
417 */
418 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
419 MII_OFFSET_ANY, MIIF_NOISOLATE);
420 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
421 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
422 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
423 } else
424 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
425 }
426
427 void
428 fxp_80c24_initmedia(sc)
429 struct fxp_softc *sc;
430 {
431
432 /*
433 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
434 * doesn't have a programming interface of any sort. The
435 * media is sensed automatically based on how the link partner
436 * is configured. This is, in essence, manual configuration.
437 */
438 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
439 sc->sc_dev.dv_xname);
440 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
441 fxp_80c24_mediastatus);
442 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
443 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
444 }
445
446 /*
447 * Device shutdown routine. Called at system shutdown after sync. The
448 * main purpose of this routine is to shut off receiver DMA so that
449 * kernel memory doesn't get clobbered during warmboot.
450 */
451 void
452 fxp_shutdown(arg)
453 void *arg;
454 {
455 struct fxp_softc *sc = arg;
456
457 /*
458 * Since the system's going to halt shortly, don't bother
459 * freeing mbufs.
460 */
461 fxp_stop(&sc->sc_ethercom.ec_if, 0);
462 }
463 /*
464 * Power handler routine. Called when the system is transitioning
465 * into/out of power save modes. As with fxp_shutdown, the main
466 * purpose of this routine is to shut off receiver DMA so it doesn't
467 * clobber kernel memory at the wrong time.
468 */
469 void
470 fxp_power(why, arg)
471 int why;
472 void *arg;
473 {
474 struct fxp_softc *sc = arg;
475 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
476 int s;
477
478 s = splnet();
479 if (why != PWR_RESUME)
480 fxp_stop(ifp, 0);
481 else {
482 if (ifp->if_flags & IFF_UP)
483 fxp_init(ifp);
484 }
485 splx(s);
486 }
487
488 /*
489 * Initialize the interface media.
490 */
491 void
492 fxp_get_info(sc, enaddr)
493 struct fxp_softc *sc;
494 u_int8_t *enaddr;
495 {
496 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
497
498 /*
499 * Reset to a stable state.
500 */
501 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
502 DELAY(10);
503
504 sc->sc_eeprom_size = 0;
505 fxp_autosize_eeprom(sc);
506 if(sc->sc_eeprom_size == 0) {
507 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
508 sc->sc_eeprom_size = 6; /* XXX panic here? */
509 }
510 #ifdef DEBUG
511 printf("%s: detected %d word EEPROM\n",
512 sc->sc_dev.dv_xname,
513 1 << sc->sc_eeprom_size);
514 #endif
515
516 /*
517 * Get info about the primary PHY
518 */
519 fxp_read_eeprom(sc, &data, 6, 1);
520 sc->phy_primary_addr = data & 0xff;
521 sc->phy_primary_device = (data >> 8) & 0x3f;
522 sc->phy_10Mbps_only = data >> 15;
523
524 /*
525 * Read MAC address.
526 */
527 fxp_read_eeprom(sc, myea, 0, 3);
528 enaddr[0] = myea[0] & 0xff;
529 enaddr[1] = myea[0] >> 8;
530 enaddr[2] = myea[1] & 0xff;
531 enaddr[3] = myea[1] >> 8;
532 enaddr[4] = myea[2] & 0xff;
533 enaddr[5] = myea[2] >> 8;
534 }
535
536 /*
537 * Figure out EEPROM size.
538 *
539 * 559's can have either 64-word or 256-word EEPROMs, the 558
540 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
541 * talks about the existance of 16 to 256 word EEPROMs.
542 *
543 * The only known sizes are 64 and 256, where the 256 version is used
544 * by CardBus cards to store CIS information.
545 *
546 * The address is shifted in msb-to-lsb, and after the last
547 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
548 * after which follows the actual data. We try to detect this zero, by
549 * probing the data-out bit in the EEPROM control register just after
550 * having shifted in a bit. If the bit is zero, we assume we've
551 * shifted enough address bits. The data-out should be tri-state,
552 * before this, which should translate to a logical one.
553 *
554 * Other ways to do this would be to try to read a register with known
555 * contents with a varying number of address bits, but no such
556 * register seem to be available. The high bits of register 10 are 01
557 * on the 558 and 559, but apparently not on the 557.
558 *
559 * The Linux driver computes a checksum on the EEPROM data, but the
560 * value of this checksum is not very well documented.
561 */
562
563 void
564 fxp_autosize_eeprom(sc)
565 struct fxp_softc *sc;
566 {
567 u_int16_t reg;
568 int x;
569
570 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
571 /*
572 * Shift in read opcode.
573 */
574 for (x = 3; x > 0; x--) {
575 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
576 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
577 } else {
578 reg = FXP_EEPROM_EECS;
579 }
580 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
581 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
582 reg | FXP_EEPROM_EESK);
583 DELAY(4);
584 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
585 DELAY(4);
586 }
587 /*
588 * Shift in address, wait for the dummy zero following a correct
589 * address shift.
590 */
591 for (x = 1; x <= 8; x++) {
592 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
593 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
594 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
595 DELAY(4);
596 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
597 FXP_EEPROM_EEDO) == 0)
598 break;
599 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
600 DELAY(4);
601 }
602 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
603 DELAY(4);
604 if(x != 6 && x != 8) {
605 #ifdef DEBUG
606 printf("%s: strange EEPROM size (%d)\n",
607 sc->sc_dev.dv_xname, 1 << x);
608 #endif
609 } else
610 sc->sc_eeprom_size = x;
611 }
612
613 /*
614 * Read from the serial EEPROM. Basically, you manually shift in
615 * the read opcode (one bit at a time) and then shift in the address,
616 * and then you shift out the data (all of this one bit at a time).
617 * The word size is 16 bits, so you have to provide the address for
618 * every 16 bits of data.
619 */
620 void
621 fxp_read_eeprom(sc, data, offset, words)
622 struct fxp_softc *sc;
623 u_int16_t *data;
624 int offset;
625 int words;
626 {
627 u_int16_t reg;
628 int i, x;
629
630 for (i = 0; i < words; i++) {
631 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
632 /*
633 * Shift in read opcode.
634 */
635 for (x = 3; x > 0; x--) {
636 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
637 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
638 } else {
639 reg = FXP_EEPROM_EECS;
640 }
641 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
642 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
643 reg | FXP_EEPROM_EESK);
644 DELAY(4);
645 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
646 DELAY(4);
647 }
648 /*
649 * Shift in address.
650 */
651 for (x = sc->sc_eeprom_size; x > 0; x--) {
652 if ((i + offset) & (1 << (x - 1))) {
653 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
654 } else {
655 reg = FXP_EEPROM_EECS;
656 }
657 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
658 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
659 reg | FXP_EEPROM_EESK);
660 DELAY(4);
661 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
662 DELAY(4);
663 }
664 reg = FXP_EEPROM_EECS;
665 data[i] = 0;
666 /*
667 * Shift out data.
668 */
669 for (x = 16; x > 0; x--) {
670 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
671 reg | FXP_EEPROM_EESK);
672 DELAY(4);
673 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
674 FXP_EEPROM_EEDO)
675 data[i] |= (1 << (x - 1));
676 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
677 DELAY(4);
678 }
679 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
680 DELAY(4);
681 }
682 }
683
684 /*
685 * Start packet transmission on the interface.
686 */
687 void
688 fxp_start(ifp)
689 struct ifnet *ifp;
690 {
691 struct fxp_softc *sc = ifp->if_softc;
692 struct mbuf *m0, *m;
693 struct fxp_cb_tx *txd;
694 struct fxp_txsoft *txs;
695 struct fxp_tbdlist *tbd;
696 bus_dmamap_t dmamap;
697 int error, lasttx, nexttx, opending, seg;
698
699 /*
700 * If we want a re-init, bail out now.
701 */
702 if (sc->sc_flags & FXPF_WANTINIT) {
703 ifp->if_flags |= IFF_OACTIVE;
704 return;
705 }
706
707 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
708 return;
709
710 /*
711 * Remember the previous txpending and the current lasttx.
712 */
713 opending = sc->sc_txpending;
714 lasttx = sc->sc_txlast;
715
716 /*
717 * Loop through the send queue, setting up transmit descriptors
718 * until we drain the queue, or use up all available transmit
719 * descriptors.
720 */
721 while (sc->sc_txpending < FXP_NTXCB) {
722 /*
723 * Grab a packet off the queue.
724 */
725 IF_DEQUEUE(&ifp->if_snd, m0);
726 if (m0 == NULL)
727 break;
728
729 /*
730 * Get the next available transmit descriptor.
731 */
732 nexttx = FXP_NEXTTX(sc->sc_txlast);
733 txd = FXP_CDTX(sc, nexttx);
734 tbd = FXP_CDTBD(sc, nexttx);
735 txs = FXP_DSTX(sc, nexttx);
736 dmamap = txs->txs_dmamap;
737
738 /*
739 * Load the DMA map. If this fails, the packet either
740 * didn't fit in the allotted number of frags, or we were
741 * short on resources. In this case, we'll copy and try
742 * again.
743 */
744 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
745 BUS_DMA_NOWAIT) != 0) {
746 MGETHDR(m, M_DONTWAIT, MT_DATA);
747 if (m == NULL) {
748 printf("%s: unable to allocate Tx mbuf\n",
749 sc->sc_dev.dv_xname);
750 IF_PREPEND(&ifp->if_snd, m0);
751 break;
752 }
753 if (m0->m_pkthdr.len > MHLEN) {
754 MCLGET(m, M_DONTWAIT);
755 if ((m->m_flags & M_EXT) == 0) {
756 printf("%s: unable to allocate Tx "
757 "cluster\n", sc->sc_dev.dv_xname);
758 m_freem(m);
759 IF_PREPEND(&ifp->if_snd, m0);
760 break;
761 }
762 }
763 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
764 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
765 m_freem(m0);
766 m0 = m;
767 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
768 m0, BUS_DMA_NOWAIT);
769 if (error) {
770 printf("%s: unable to load Tx buffer, "
771 "error = %d\n", sc->sc_dev.dv_xname, error);
772 IF_PREPEND(&ifp->if_snd, m0);
773 break;
774 }
775 }
776
777 /* Initialize the fraglist. */
778 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
779 tbd->tbd_d[seg].tb_addr =
780 htole32(dmamap->dm_segs[seg].ds_addr);
781 tbd->tbd_d[seg].tb_size =
782 htole32(dmamap->dm_segs[seg].ds_len);
783 }
784
785 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
786
787 /* Sync the DMA map. */
788 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
789 BUS_DMASYNC_PREWRITE);
790
791 /*
792 * Store a pointer to the packet so we can free it later.
793 */
794 txs->txs_mbuf = m0;
795
796 /*
797 * Initialize the transmit descriptor.
798 */
799 /* BIG_ENDIAN: no need to swap to store 0 */
800 txd->cb_status = 0;
801 txd->cb_command =
802 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
803 txd->tx_threshold = tx_threshold;
804 txd->tbd_number = dmamap->dm_nsegs;
805
806 FXP_CDTXSYNC(sc, nexttx,
807 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
808
809 /* Advance the tx pointer. */
810 sc->sc_txpending++;
811 sc->sc_txlast = nexttx;
812
813 #if NBPFILTER > 0
814 /*
815 * Pass packet to bpf if there is a listener.
816 */
817 if (ifp->if_bpf)
818 bpf_mtap(ifp->if_bpf, m0);
819 #endif
820 }
821
822 if (sc->sc_txpending == FXP_NTXCB) {
823 /* No more slots; notify upper layer. */
824 ifp->if_flags |= IFF_OACTIVE;
825 }
826
827 if (sc->sc_txpending != opending) {
828 /*
829 * We enqueued packets. If the transmitter was idle,
830 * reset the txdirty pointer.
831 */
832 if (opending == 0)
833 sc->sc_txdirty = FXP_NEXTTX(lasttx);
834
835 /*
836 * Cause the chip to interrupt and suspend command
837 * processing once the last packet we've enqueued
838 * has been transmitted.
839 */
840 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
841 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
842 FXP_CDTXSYNC(sc, sc->sc_txlast,
843 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
844
845 /*
846 * The entire packet chain is set up. Clear the suspend bit
847 * on the command prior to the first packet we set up.
848 */
849 FXP_CDTXSYNC(sc, lasttx,
850 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
851 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
852 FXP_CDTXSYNC(sc, lasttx,
853 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
854
855 /*
856 * Issue a Resume command in case the chip was suspended.
857 */
858 fxp_scb_wait(sc);
859 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
860
861 /* Set a watchdog timer in case the chip flakes out. */
862 ifp->if_timer = 5;
863 }
864 }
865
866 /*
867 * Process interface interrupts.
868 */
869 int
870 fxp_intr(arg)
871 void *arg;
872 {
873 struct fxp_softc *sc = arg;
874 struct ethercom *ec = &sc->sc_ethercom;
875 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
876 struct fxp_cb_tx *txd;
877 struct fxp_txsoft *txs;
878 struct mbuf *m, *m0;
879 bus_dmamap_t rxmap;
880 struct fxp_rfa *rfa;
881 int i, claimed = 0;
882 u_int16_t len, rxstat, txstat;
883 u_int8_t statack;
884
885 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
886 return (0);
887 /*
888 * If the interface isn't running, don't try to
889 * service the interrupt.. just ack it and bail.
890 */
891 if ((ifp->if_flags & IFF_RUNNING) == 0) {
892 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
893 if (statack) {
894 claimed = 1;
895 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
896 }
897 return (claimed);
898 }
899
900 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
901 claimed = 1;
902
903 /*
904 * First ACK all the interrupts in this pass.
905 */
906 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
907
908 /*
909 * Process receiver interrupts. If a no-resource (RNR)
910 * condition exists, get whatever packets we can and
911 * re-start the receiver.
912 */
913 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
914 rcvloop:
915 m = sc->sc_rxq.ifq_head;
916 rfa = FXP_MTORFA(m);
917 rxmap = M_GETCTX(m, bus_dmamap_t);
918
919 FXP_RFASYNC(sc, m,
920 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
921
922 rxstat = le16toh(rfa->rfa_status);
923
924 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
925 /*
926 * We have processed all of the
927 * receive buffers.
928 */
929 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
930 goto do_transmit;
931 }
932
933 IF_DEQUEUE(&sc->sc_rxq, m);
934
935 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
936
937 len = le16toh(rfa->actual_size) &
938 (m->m_ext.ext_size - 1);
939
940 if (len < sizeof(struct ether_header)) {
941 /*
942 * Runt packet; drop it now.
943 */
944 FXP_INIT_RFABUF(sc, m);
945 goto rcvloop;
946 }
947
948 /*
949 * If support for 802.1Q VLAN sized frames is
950 * enabled, we need to do some additional error
951 * checking (as we are saving bad frames, in
952 * order to receive the larger ones).
953 */
954 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
955 (rxstat & (FXP_RFA_STATUS_OVERRUN|
956 FXP_RFA_STATUS_RNR|
957 FXP_RFA_STATUS_ALIGN|
958 FXP_RFA_STATUS_CRC)) != 0) {
959 FXP_INIT_RFABUF(sc, m);
960 goto rcvloop;
961 }
962
963 /*
964 * If the packet is small enough to fit in a
965 * single header mbuf, allocate one and copy
966 * the data into it. This greatly reduces
967 * memory consumption when we receive lots
968 * of small packets.
969 *
970 * Otherwise, we add a new buffer to the receive
971 * chain. If this fails, we drop the packet and
972 * recycle the old buffer.
973 */
974 if (fxp_copy_small != 0 && len <= MHLEN) {
975 MGETHDR(m0, M_DONTWAIT, MT_DATA);
976 if (m == NULL)
977 goto dropit;
978 memcpy(mtod(m0, caddr_t),
979 mtod(m, caddr_t), len);
980 FXP_INIT_RFABUF(sc, m);
981 m = m0;
982 } else {
983 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
984 dropit:
985 ifp->if_ierrors++;
986 FXP_INIT_RFABUF(sc, m);
987 goto rcvloop;
988 }
989 }
990
991 m->m_pkthdr.rcvif = ifp;
992 m->m_pkthdr.len = m->m_len = len;
993
994 #if NBPFILTER > 0
995 /*
996 * Pass this up to any BPF listeners, but only
997 * pass it up the stack it its for us.
998 */
999 if (ifp->if_bpf)
1000 bpf_mtap(ifp->if_bpf, m);
1001 #endif
1002
1003 /* Pass it on. */
1004 (*ifp->if_input)(ifp, m);
1005 goto rcvloop;
1006 }
1007
1008 do_transmit:
1009 if (statack & FXP_SCB_STATACK_RNR) {
1010 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1011 fxp_scb_wait(sc);
1012 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1013 rxmap->dm_segs[0].ds_addr +
1014 RFA_ALIGNMENT_FUDGE);
1015 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1016 FXP_SCB_COMMAND_RU_START);
1017 }
1018
1019 /*
1020 * Free any finished transmit mbuf chains.
1021 */
1022 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1023 ifp->if_flags &= ~IFF_OACTIVE;
1024 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1025 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1026 txd = FXP_CDTX(sc, i);
1027 txs = FXP_DSTX(sc, i);
1028
1029 FXP_CDTXSYNC(sc, i,
1030 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1031
1032 txstat = le16toh(txd->cb_status);
1033
1034 if ((txstat & FXP_CB_STATUS_C) == 0)
1035 break;
1036
1037 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1038
1039 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1040 0, txs->txs_dmamap->dm_mapsize,
1041 BUS_DMASYNC_POSTWRITE);
1042 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1043 m_freem(txs->txs_mbuf);
1044 txs->txs_mbuf = NULL;
1045 }
1046
1047 /* Update the dirty transmit buffer pointer. */
1048 sc->sc_txdirty = i;
1049
1050 /*
1051 * Cancel the watchdog timer if there are no pending
1052 * transmissions.
1053 */
1054 if (sc->sc_txpending == 0) {
1055 ifp->if_timer = 0;
1056
1057 /*
1058 * If we want a re-init, do that now.
1059 */
1060 if (sc->sc_flags & FXPF_WANTINIT)
1061 (void) fxp_init(ifp);
1062 }
1063
1064 /*
1065 * Try to get more packets going.
1066 */
1067 fxp_start(ifp);
1068 }
1069 }
1070
1071 #if NRND > 0
1072 if (claimed)
1073 rnd_add_uint32(&sc->rnd_source, statack);
1074 #endif
1075 return (claimed);
1076 }
1077
1078 /*
1079 * Update packet in/out/collision statistics. The i82557 doesn't
1080 * allow you to access these counters without doing a fairly
1081 * expensive DMA to get _all_ of the statistics it maintains, so
1082 * we do this operation here only once per second. The statistics
1083 * counters in the kernel are updated from the previous dump-stats
1084 * DMA and then a new dump-stats DMA is started. The on-chip
1085 * counters are zeroed when the DMA completes. If we can't start
1086 * the DMA immediately, we don't wait - we just prepare to read
1087 * them again next time.
1088 */
1089 void
1090 fxp_tick(arg)
1091 void *arg;
1092 {
1093 struct fxp_softc *sc = arg;
1094 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1095 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1096 int s;
1097
1098 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1099 return;
1100
1101 s = splnet();
1102
1103 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1104
1105 ifp->if_opackets += le32toh(sp->tx_good);
1106 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1107 if (sp->rx_good) {
1108 ifp->if_ipackets += le32toh(sp->rx_good);
1109 sc->sc_rxidle = 0;
1110 } else {
1111 sc->sc_rxidle++;
1112 }
1113 ifp->if_ierrors +=
1114 le32toh(sp->rx_crc_errors) +
1115 le32toh(sp->rx_alignment_errors) +
1116 le32toh(sp->rx_rnr_errors) +
1117 le32toh(sp->rx_overrun_errors);
1118 /*
1119 * If any transmit underruns occured, bump up the transmit
1120 * threshold by another 512 bytes (64 * 8).
1121 */
1122 if (sp->tx_underruns) {
1123 ifp->if_oerrors += le32toh(sp->tx_underruns);
1124 if (tx_threshold < 192)
1125 tx_threshold += 64;
1126 }
1127
1128 /*
1129 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1130 * then assume the receiver has locked up and attempt to clear
1131 * the condition by reprogramming the multicast filter (actually,
1132 * resetting the interface). This is a work-around for a bug in
1133 * the 82557 where the receiver locks up if it gets certain types
1134 * of garbage in the syncronization bits prior to the packet header.
1135 * This bug is supposed to only occur in 10Mbps mode, but has been
1136 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1137 * speed transition).
1138 */
1139 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1140 (void) fxp_init(ifp);
1141 splx(s);
1142 return;
1143 }
1144 /*
1145 * If there is no pending command, start another stats
1146 * dump. Otherwise punt for now.
1147 */
1148 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1149 /*
1150 * Start another stats dump.
1151 */
1152 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1153 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1154 FXP_SCB_COMMAND_CU_DUMPRESET);
1155 } else {
1156 /*
1157 * A previous command is still waiting to be accepted.
1158 * Just zero our copy of the stats and wait for the
1159 * next timer event to update them.
1160 */
1161 /* BIG_ENDIAN: no swap required to store 0 */
1162 sp->tx_good = 0;
1163 sp->tx_underruns = 0;
1164 sp->tx_total_collisions = 0;
1165
1166 sp->rx_good = 0;
1167 sp->rx_crc_errors = 0;
1168 sp->rx_alignment_errors = 0;
1169 sp->rx_rnr_errors = 0;
1170 sp->rx_overrun_errors = 0;
1171 }
1172
1173 if (sc->sc_flags & FXPF_MII) {
1174 /* Tick the MII clock. */
1175 mii_tick(&sc->sc_mii);
1176 }
1177
1178 splx(s);
1179
1180 /*
1181 * Schedule another timeout one second from now.
1182 */
1183 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1184 }
1185
1186 /*
1187 * Drain the receive queue.
1188 */
1189 void
1190 fxp_rxdrain(sc)
1191 struct fxp_softc *sc;
1192 {
1193 bus_dmamap_t rxmap;
1194 struct mbuf *m;
1195
1196 for (;;) {
1197 IF_DEQUEUE(&sc->sc_rxq, m);
1198 if (m == NULL)
1199 break;
1200 rxmap = M_GETCTX(m, bus_dmamap_t);
1201 bus_dmamap_unload(sc->sc_dmat, rxmap);
1202 FXP_RXMAP_PUT(sc, rxmap);
1203 m_freem(m);
1204 }
1205 }
1206
1207 /*
1208 * Stop the interface. Cancels the statistics updater and resets
1209 * the interface.
1210 */
1211 void
1212 fxp_stop(ifp, disable)
1213 struct ifnet *ifp;
1214 int disable;
1215 {
1216 struct fxp_softc *sc = ifp->if_softc;
1217 struct fxp_txsoft *txs;
1218 int i;
1219
1220 /*
1221 * Turn down interface (done early to avoid bad interactions
1222 * between panics, shutdown hooks, and the watchdog timer)
1223 */
1224 ifp->if_timer = 0;
1225 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1226
1227 /*
1228 * Cancel stats updater.
1229 */
1230 callout_stop(&sc->sc_callout);
1231 if (sc->sc_flags & FXPF_MII) {
1232 /* Down the MII. */
1233 mii_down(&sc->sc_mii);
1234 }
1235
1236 /*
1237 * Issue software reset
1238 */
1239 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1240 DELAY(10);
1241
1242 /*
1243 * Release any xmit buffers.
1244 */
1245 for (i = 0; i < FXP_NTXCB; i++) {
1246 txs = FXP_DSTX(sc, i);
1247 if (txs->txs_mbuf != NULL) {
1248 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1249 m_freem(txs->txs_mbuf);
1250 txs->txs_mbuf = NULL;
1251 }
1252 }
1253 sc->sc_txpending = 0;
1254
1255 if (disable) {
1256 fxp_rxdrain(sc);
1257 fxp_disable(sc);
1258 }
1259
1260 }
1261
1262 /*
1263 * Watchdog/transmission transmit timeout handler. Called when a
1264 * transmission is started on the interface, but no interrupt is
1265 * received before the timeout. This usually indicates that the
1266 * card has wedged for some reason.
1267 */
1268 void
1269 fxp_watchdog(ifp)
1270 struct ifnet *ifp;
1271 {
1272 struct fxp_softc *sc = ifp->if_softc;
1273
1274 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1275 ifp->if_oerrors++;
1276
1277 (void) fxp_init(ifp);
1278 }
1279
1280 /*
1281 * Initialize the interface. Must be called at splnet().
1282 */
1283 int
1284 fxp_init(ifp)
1285 struct ifnet *ifp;
1286 {
1287 struct fxp_softc *sc = ifp->if_softc;
1288 struct fxp_cb_config *cbp;
1289 struct fxp_cb_ias *cb_ias;
1290 struct fxp_cb_tx *txd;
1291 bus_dmamap_t rxmap;
1292 int i, prm, save_bf, allm, error = 0;
1293
1294 if ((error = fxp_enable(sc)) != 0)
1295 goto out;
1296
1297 /*
1298 * Cancel any pending I/O
1299 */
1300 fxp_stop(ifp, 0);
1301
1302 /*
1303 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1304 * flag, and this prevents the MII from detaching resulting in
1305 * a panic. The flags field should perhaps be split in runtime
1306 * flags and more static information. For now, just clear the
1307 * only other flag set.
1308 */
1309
1310 sc->sc_flags &= ~FXPF_WANTINIT;
1311
1312 /*
1313 * Initialize base of CBL and RFA memory. Loading with zero
1314 * sets it up for regular linear addressing.
1315 */
1316 fxp_scb_wait(sc);
1317 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1318 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1319
1320 fxp_scb_wait(sc);
1321 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1322
1323 /*
1324 * Initialize the multicast filter. Do this now, since we might
1325 * have to setup the config block differently.
1326 */
1327 fxp_mc_setup(sc);
1328
1329 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1330 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1331
1332 /*
1333 * In order to support receiving 802.1Q VLAN frames, we have to
1334 * enable "save bad frames", since they are 4 bytes larger than
1335 * the normal Ethernet maximum frame length.
1336 */
1337 save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
1338
1339 /*
1340 * Initialize base of dump-stats buffer.
1341 */
1342 fxp_scb_wait(sc);
1343 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1344 sc->sc_cddma + FXP_CDSTATSOFF);
1345 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1346 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1347
1348 cbp = &sc->sc_control_data->fcd_configcb;
1349 memset(cbp, 0, sizeof(struct fxp_cb_config));
1350
1351 /*
1352 * This copy is kind of disgusting, but there are a bunch of must be
1353 * zero and must be one bits in this structure and this is the easiest
1354 * way to initialize them all to proper values.
1355 */
1356 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1357
1358 /* BIG_ENDIAN: no need to swap to store 0 */
1359 cbp->cb_status = 0;
1360 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1361 FXP_CB_COMMAND_EL);
1362 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1363 cbp->link_addr = 0xffffffff; /* (no) next command */
1364 cbp->byte_count = 22; /* (22) bytes to config */
1365 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1366 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1367 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1368 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1369 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1370 cbp->dma_bce = 0; /* (disable) dma max counters */
1371 cbp->late_scb = 0; /* (don't) defer SCB update */
1372 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1373 cbp->ci_int = 1; /* interrupt on CU idle */
1374 cbp->save_bf = save_bf;/* save bad frames */
1375 cbp->disc_short_rx = !prm; /* discard short packets */
1376 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1377 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1378 cbp->nsai = 1; /* (don't) disable source addr insert */
1379 cbp->preamble_length = 2; /* (7 byte) preamble */
1380 cbp->loopback = 0; /* (don't) loopback */
1381 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1382 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1383 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1384 cbp->promiscuous = prm; /* promiscuous mode */
1385 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1386 cbp->crscdt = 0; /* (CRS only) */
1387 cbp->stripping = !prm; /* truncate rx packet to byte count */
1388 cbp->padding = 1; /* (do) pad short tx packets */
1389 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1390 cbp->force_fdx = 0; /* (don't) force full duplex */
1391 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1392 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1393 cbp->mc_all = allm; /* accept all multicasts */
1394
1395 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1396
1397 /*
1398 * Start the config command/DMA.
1399 */
1400 fxp_scb_wait(sc);
1401 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1402 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1403 /* ...and wait for it to complete. */
1404 i = 1000;
1405 do {
1406 FXP_CDCONFIGSYNC(sc,
1407 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1408 DELAY(1);
1409 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1410 if (i == 0) {
1411 printf("%s at line %d: dmasync timeout\n",
1412 sc->sc_dev.dv_xname, __LINE__);
1413 return ETIMEDOUT;
1414 }
1415
1416 /*
1417 * Initialize the station address.
1418 */
1419 cb_ias = &sc->sc_control_data->fcd_iascb;
1420 /* BIG_ENDIAN: no need to swap to store 0 */
1421 cb_ias->cb_status = 0;
1422 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1423 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1424 cb_ias->link_addr = 0xffffffff;
1425 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1426
1427 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1428
1429 /*
1430 * Start the IAS (Individual Address Setup) command/DMA.
1431 */
1432 fxp_scb_wait(sc);
1433 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1434 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1435 /* ...and wait for it to complete. */
1436 i = 1000;
1437 do {
1438 FXP_CDIASSYNC(sc,
1439 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1440 DELAY(1);
1441 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1442 if (i == 0) {
1443 printf("%s at line %d: dmasync timeout\n",
1444 sc->sc_dev.dv_xname, __LINE__);
1445 return ETIMEDOUT;
1446 }
1447
1448 /*
1449 * Initialize the transmit descriptor ring. txlast is initialized
1450 * to the end of the list so that it will wrap around to the first
1451 * descriptor when the first packet is transmitted.
1452 */
1453 for (i = 0; i < FXP_NTXCB; i++) {
1454 txd = FXP_CDTX(sc, i);
1455 memset(txd, 0, sizeof(struct fxp_cb_tx));
1456 txd->cb_command =
1457 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1458 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1459 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1460 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1461 }
1462 sc->sc_txpending = 0;
1463 sc->sc_txdirty = 0;
1464 sc->sc_txlast = FXP_NTXCB - 1;
1465
1466 /*
1467 * Initialize the receive buffer list.
1468 */
1469 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1470 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1471 rxmap = FXP_RXMAP_GET(sc);
1472 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1473 printf("%s: unable to allocate or map rx "
1474 "buffer %d, error = %d\n",
1475 sc->sc_dev.dv_xname,
1476 sc->sc_rxq.ifq_len, error);
1477 /*
1478 * XXX Should attempt to run with fewer receive
1479 * XXX buffers instead of just failing.
1480 */
1481 FXP_RXMAP_PUT(sc, rxmap);
1482 fxp_rxdrain(sc);
1483 goto out;
1484 }
1485 }
1486 sc->sc_rxidle = 0;
1487
1488 /*
1489 * Give the transmit ring to the chip. We do this by pointing
1490 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1491 * issuing a start command. It will execute the NOP and then
1492 * suspend, pointing at the first descriptor.
1493 */
1494 fxp_scb_wait(sc);
1495 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1496 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1497
1498 /*
1499 * Initialize receiver buffer area - RFA.
1500 */
1501 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1502 fxp_scb_wait(sc);
1503 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1504 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1505 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1506
1507 if (sc->sc_flags & FXPF_MII) {
1508 /*
1509 * Set current media.
1510 */
1511 mii_mediachg(&sc->sc_mii);
1512 }
1513
1514 /*
1515 * ...all done!
1516 */
1517 ifp->if_flags |= IFF_RUNNING;
1518 ifp->if_flags &= ~IFF_OACTIVE;
1519
1520 /*
1521 * Start the one second timer.
1522 */
1523 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1524
1525 /*
1526 * Attempt to start output on the interface.
1527 */
1528 fxp_start(ifp);
1529
1530 out:
1531 if (error) {
1532 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1533 ifp->if_timer = 0;
1534 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1535 }
1536 return (error);
1537 }
1538
1539 /*
1540 * Change media according to request.
1541 */
1542 int
1543 fxp_mii_mediachange(ifp)
1544 struct ifnet *ifp;
1545 {
1546 struct fxp_softc *sc = ifp->if_softc;
1547
1548 if (ifp->if_flags & IFF_UP)
1549 mii_mediachg(&sc->sc_mii);
1550 return (0);
1551 }
1552
1553 /*
1554 * Notify the world which media we're using.
1555 */
1556 void
1557 fxp_mii_mediastatus(ifp, ifmr)
1558 struct ifnet *ifp;
1559 struct ifmediareq *ifmr;
1560 {
1561 struct fxp_softc *sc = ifp->if_softc;
1562
1563 if(sc->sc_enabled == 0) {
1564 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1565 ifmr->ifm_status = 0;
1566 return;
1567 }
1568
1569 mii_pollstat(&sc->sc_mii);
1570 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1571 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1572 }
1573
1574 int
1575 fxp_80c24_mediachange(ifp)
1576 struct ifnet *ifp;
1577 {
1578
1579 /* Nothing to do here. */
1580 return (0);
1581 }
1582
1583 void
1584 fxp_80c24_mediastatus(ifp, ifmr)
1585 struct ifnet *ifp;
1586 struct ifmediareq *ifmr;
1587 {
1588 struct fxp_softc *sc = ifp->if_softc;
1589
1590 /*
1591 * Media is currently-selected media. We cannot determine
1592 * the link status.
1593 */
1594 ifmr->ifm_status = 0;
1595 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1596 }
1597
1598 /*
1599 * Add a buffer to the end of the RFA buffer list.
1600 * Return 0 if successful, error code on failure.
1601 *
1602 * The RFA struct is stuck at the beginning of mbuf cluster and the
1603 * data pointer is fixed up to point just past it.
1604 */
1605 int
1606 fxp_add_rfabuf(sc, rxmap, unload)
1607 struct fxp_softc *sc;
1608 bus_dmamap_t rxmap;
1609 int unload;
1610 {
1611 struct mbuf *m;
1612 int error;
1613
1614 MGETHDR(m, M_DONTWAIT, MT_DATA);
1615 if (m == NULL)
1616 return (ENOBUFS);
1617
1618 MCLGET(m, M_DONTWAIT);
1619 if ((m->m_flags & M_EXT) == 0) {
1620 m_freem(m);
1621 return (ENOBUFS);
1622 }
1623
1624 if (unload)
1625 bus_dmamap_unload(sc->sc_dmat, rxmap);
1626
1627 M_SETCTX(m, rxmap);
1628
1629 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1630 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1631 if (error) {
1632 printf("%s: can't load rx DMA map %d, error = %d\n",
1633 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1634 panic("fxp_add_rfabuf"); /* XXX */
1635 }
1636
1637 FXP_INIT_RFABUF(sc, m);
1638
1639 return (0);
1640 }
1641
1642 volatile int
1643 fxp_mdi_read(self, phy, reg)
1644 struct device *self;
1645 int phy;
1646 int reg;
1647 {
1648 struct fxp_softc *sc = (struct fxp_softc *)self;
1649 int count = 10000;
1650 int value;
1651
1652 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1653 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1654
1655 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1656 && count--)
1657 DELAY(10);
1658
1659 if (count <= 0)
1660 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1661
1662 return (value & 0xffff);
1663 }
1664
1665 void
1666 fxp_statchg(self)
1667 struct device *self;
1668 {
1669
1670 /* Nothing to do. */
1671 }
1672
1673 void
1674 fxp_mdi_write(self, phy, reg, value)
1675 struct device *self;
1676 int phy;
1677 int reg;
1678 int value;
1679 {
1680 struct fxp_softc *sc = (struct fxp_softc *)self;
1681 int count = 10000;
1682
1683 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1684 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1685 (value & 0xffff));
1686
1687 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1688 count--)
1689 DELAY(10);
1690
1691 if (count <= 0)
1692 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1693 }
1694
1695 int
1696 fxp_ioctl(ifp, cmd, data)
1697 struct ifnet *ifp;
1698 u_long cmd;
1699 caddr_t data;
1700 {
1701 struct fxp_softc *sc = ifp->if_softc;
1702 struct ifreq *ifr = (struct ifreq *)data;
1703 int s, error;
1704
1705 s = splnet();
1706
1707 switch (cmd) {
1708 case SIOCSIFMEDIA:
1709 case SIOCGIFMEDIA:
1710 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1711 break;
1712
1713 default:
1714 error = ether_ioctl(ifp, cmd, data);
1715 if (error == ENETRESET) {
1716 if (sc->sc_enabled) {
1717 /*
1718 * Multicast list has changed; set the
1719 * hardware filter accordingly.
1720 */
1721 if (sc->sc_txpending) {
1722 sc->sc_flags |= FXPF_WANTINIT;
1723 error = 0;
1724 } else
1725 error = fxp_init(ifp);
1726 } else
1727 error = 0;
1728 }
1729 break;
1730 }
1731
1732 /* Try to get more packets going. */
1733 if (sc->sc_enabled)
1734 fxp_start(ifp);
1735
1736 splx(s);
1737 return (error);
1738 }
1739
1740 /*
1741 * Program the multicast filter.
1742 *
1743 * This function must be called at splnet().
1744 */
1745 void
1746 fxp_mc_setup(sc)
1747 struct fxp_softc *sc;
1748 {
1749 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1750 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1751 struct ethercom *ec = &sc->sc_ethercom;
1752 struct ether_multi *enm;
1753 struct ether_multistep step;
1754 int count, nmcasts;
1755
1756 #ifdef DIAGNOSTIC
1757 if (sc->sc_txpending)
1758 panic("fxp_mc_setup: pending transmissions");
1759 #endif
1760
1761 ifp->if_flags &= ~IFF_ALLMULTI;
1762
1763 /*
1764 * Initialize multicast setup descriptor.
1765 */
1766 nmcasts = 0;
1767 ETHER_FIRST_MULTI(step, ec, enm);
1768 while (enm != NULL) {
1769 /*
1770 * Check for too many multicast addresses or if we're
1771 * listening to a range. Either way, we simply have
1772 * to accept all multicasts.
1773 */
1774 if (nmcasts >= MAXMCADDR ||
1775 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1776 ETHER_ADDR_LEN) != 0) {
1777 /*
1778 * Callers of this function must do the
1779 * right thing with this. If we're called
1780 * from outside fxp_init(), the caller must
1781 * detect if the state if IFF_ALLMULTI changes.
1782 * If it does, the caller must then call
1783 * fxp_init(), since allmulti is handled by
1784 * the config block.
1785 */
1786 ifp->if_flags |= IFF_ALLMULTI;
1787 return;
1788 }
1789 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1790 ETHER_ADDR_LEN);
1791 nmcasts++;
1792 ETHER_NEXT_MULTI(step, enm);
1793 }
1794
1795 /* BIG_ENDIAN: no need to swap to store 0 */
1796 mcsp->cb_status = 0;
1797 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1798 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1799 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1800
1801 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1802
1803 /*
1804 * Wait until the command unit is not active. This should never
1805 * happen since nothing is queued, but make sure anyway.
1806 */
1807 count = 100;
1808 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1809 FXP_SCB_CUS_ACTIVE && --count)
1810 DELAY(1);
1811 if (count == 0) {
1812 printf("%s at line %d: command queue timeout\n",
1813 sc->sc_dev.dv_xname, __LINE__);
1814 return;
1815 }
1816
1817 /*
1818 * Start the multicast setup command/DMA.
1819 */
1820 fxp_scb_wait(sc);
1821 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1822 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1823
1824 /* ...and wait for it to complete. */
1825 count = 1000;
1826 do {
1827 FXP_CDMCSSYNC(sc,
1828 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1829 DELAY(1);
1830 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1831 if (count == 0) {
1832 printf("%s at line %d: dmasync timeout\n",
1833 sc->sc_dev.dv_xname, __LINE__);
1834 return;
1835 }
1836 }
1837
1838 int
1839 fxp_enable(sc)
1840 struct fxp_softc *sc;
1841 {
1842
1843 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1844 if ((*sc->sc_enable)(sc) != 0) {
1845 printf("%s: device enable failed\n",
1846 sc->sc_dev.dv_xname);
1847 return (EIO);
1848 }
1849 }
1850
1851 sc->sc_enabled = 1;
1852 return (0);
1853 }
1854
1855 void
1856 fxp_disable(sc)
1857 struct fxp_softc *sc;
1858 {
1859
1860 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1861 (*sc->sc_disable)(sc);
1862 sc->sc_enabled = 0;
1863 }
1864 }
1865
1866 /*
1867 * fxp_activate:
1868 *
1869 * Handle device activation/deactivation requests.
1870 */
1871 int
1872 fxp_activate(self, act)
1873 struct device *self;
1874 enum devact act;
1875 {
1876 struct fxp_softc *sc = (void *) self;
1877 int s, error = 0;
1878
1879 s = splnet();
1880 switch (act) {
1881 case DVACT_ACTIVATE:
1882 error = EOPNOTSUPP;
1883 break;
1884
1885 case DVACT_DEACTIVATE:
1886 if (sc->sc_flags & FXPF_MII)
1887 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1888 MII_OFFSET_ANY);
1889 if_deactivate(&sc->sc_ethercom.ec_if);
1890 break;
1891 }
1892 splx(s);
1893
1894 return (error);
1895 }
1896
1897 /*
1898 * fxp_detach:
1899 *
1900 * Detach an i82557 interface.
1901 */
1902 int
1903 fxp_detach(sc)
1904 struct fxp_softc *sc;
1905 {
1906 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1907 int i;
1908
1909 /* Succeed now if there's no work to do. */
1910 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1911 return (0);
1912
1913 /* Unhook our tick handler. */
1914 callout_stop(&sc->sc_callout);
1915
1916 if (sc->sc_flags & FXPF_MII) {
1917 /* Detach all PHYs */
1918 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1919 }
1920
1921 /* Delete all remaining media. */
1922 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1923
1924 #if NRND > 0
1925 rnd_detach_source(&sc->rnd_source);
1926 #endif
1927 ether_ifdetach(ifp);
1928 if_detach(ifp);
1929
1930 for (i = 0; i < FXP_NRFABUFS; i++) {
1931 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1932 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1933 }
1934
1935 for (i = 0; i < FXP_NTXCB; i++) {
1936 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1937 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1938 }
1939
1940 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1941 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1942 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1943 sizeof(struct fxp_control_data));
1944 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1945
1946 shutdownhook_disestablish(sc->sc_sdhook);
1947 powerhook_disestablish(sc->sc_powerhook);
1948
1949 return (0);
1950 }
1951