i82557.c revision 1.43 1 /* $NetBSD: i82557.c,v 1.43 2000/12/14 06:27:25 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia __P((struct fxp_softc *));
169 int fxp_mii_mediachange __P((struct ifnet *));
170 void fxp_mii_mediastatus __P((struct ifnet *, struct ifmediareq *));
171
172 void fxp_80c24_initmedia __P((struct fxp_softc *));
173 int fxp_80c24_mediachange __P((struct ifnet *));
174 void fxp_80c24_mediastatus __P((struct ifnet *, struct ifmediareq *));
175
176 inline void fxp_scb_wait __P((struct fxp_softc *));
177
178 void fxp_start __P((struct ifnet *));
179 int fxp_ioctl __P((struct ifnet *, u_long, caddr_t));
180 void fxp_watchdog __P((struct ifnet *));
181 int fxp_init __P((struct ifnet *));
182 void fxp_stop __P((struct ifnet *, int));
183
184 void fxp_rxdrain __P((struct fxp_softc *));
185 int fxp_add_rfabuf __P((struct fxp_softc *, bus_dmamap_t, int));
186 int fxp_mdi_read __P((struct device *, int, int));
187 void fxp_statchg __P((struct device *));
188 void fxp_mdi_write __P((struct device *, int, int, int));
189 void fxp_autosize_eeprom __P((struct fxp_softc*));
190 void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int));
191 void fxp_get_info __P((struct fxp_softc *, u_int8_t *));
192 void fxp_tick __P((void *));
193 void fxp_mc_setup __P((struct fxp_softc *));
194
195 void fxp_shutdown __P((void *));
196 void fxp_power __P((int, void *));
197
198 int fxp_copy_small = 0;
199
200 struct fxp_phytype {
201 int fp_phy; /* type of PHY, -1 for MII at the end. */
202 void (*fp_init) __P((struct fxp_softc *));
203 } fxp_phytype_table[] = {
204 { FXP_PHY_80C24, fxp_80c24_initmedia },
205 { -1, fxp_mii_initmedia },
206 };
207
208 /*
209 * Set initial transmit threshold at 64 (512 bytes). This is
210 * increased by 64 (512 bytes) at a time, to maximum of 192
211 * (1536 bytes), if an underrun occurs.
212 */
213 static int tx_threshold = 64;
214
215 /*
216 * Wait for the previous command to be accepted (but not necessarily
217 * completed).
218 */
219 inline void
220 fxp_scb_wait(sc)
221 struct fxp_softc *sc;
222 {
223 int i = 10000;
224
225 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
226 delay(2);
227 if (i == 0)
228 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
229 }
230
231 /*
232 * Finish attaching an i82557 interface. Called by bus-specific front-end.
233 */
234 void
235 fxp_attach(sc)
236 struct fxp_softc *sc;
237 {
238 u_int8_t enaddr[ETHER_ADDR_LEN];
239 struct ifnet *ifp;
240 bus_dma_segment_t seg;
241 int rseg, i, error;
242 struct fxp_phytype *fp;
243
244 callout_init(&sc->sc_callout);
245
246 /*
247 * Allocate the control data structures, and create and load the
248 * DMA map for it.
249 */
250 if ((error = bus_dmamem_alloc(sc->sc_dmat,
251 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
252 0)) != 0) {
253 printf("%s: unable to allocate control data, error = %d\n",
254 sc->sc_dev.dv_xname, error);
255 goto fail_0;
256 }
257
258 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
259 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
260 BUS_DMA_COHERENT)) != 0) {
261 printf("%s: unable to map control data, error = %d\n",
262 sc->sc_dev.dv_xname, error);
263 goto fail_1;
264 }
265 sc->sc_cdseg = seg;
266 sc->sc_cdnseg = rseg;
267
268 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
269
270 if ((error = bus_dmamap_create(sc->sc_dmat,
271 sizeof(struct fxp_control_data), 1,
272 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
273 printf("%s: unable to create control data DMA map, "
274 "error = %d\n", sc->sc_dev.dv_xname, error);
275 goto fail_2;
276 }
277
278 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
279 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
280 0)) != 0) {
281 printf("%s: can't load control data DMA map, error = %d\n",
282 sc->sc_dev.dv_xname, error);
283 goto fail_3;
284 }
285
286 /*
287 * Create the transmit buffer DMA maps.
288 */
289 for (i = 0; i < FXP_NTXCB; i++) {
290 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
291 FXP_NTXSEG, MCLBYTES, 0, 0,
292 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
293 printf("%s: unable to create tx DMA map %d, "
294 "error = %d\n", sc->sc_dev.dv_xname, i, error);
295 goto fail_4;
296 }
297 }
298
299 /*
300 * Create the receive buffer DMA maps.
301 */
302 for (i = 0; i < FXP_NRFABUFS; i++) {
303 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
304 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
305 printf("%s: unable to create rx DMA map %d, "
306 "error = %d\n", sc->sc_dev.dv_xname, i, error);
307 goto fail_5;
308 }
309 }
310
311 /* Initialize MAC address and media structures. */
312 fxp_get_info(sc, enaddr);
313
314 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
315 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
316
317 ifp = &sc->sc_ethercom.ec_if;
318
319 /*
320 * Get info about our media interface, and initialize it. Note
321 * the table terminates itself with a phy of -1, indicating
322 * that we're using MII.
323 */
324 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
325 if (fp->fp_phy == sc->phy_primary_device)
326 break;
327 (*fp->fp_init)(sc);
328
329 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
330 ifp->if_softc = sc;
331 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 ifp->if_ioctl = fxp_ioctl;
333 ifp->if_start = fxp_start;
334 ifp->if_watchdog = fxp_watchdog;
335 ifp->if_init = fxp_init;
336 ifp->if_stop = fxp_stop;
337 IFQ_SET_READY(&ifp->if_snd);
338
339 /*
340 * We can support 802.1Q VLAN-sized frames.
341 */
342 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
343
344 /*
345 * Attach the interface.
346 */
347 if_attach(ifp);
348 ether_ifattach(ifp, enaddr);
349 #if NRND > 0
350 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
351 RND_TYPE_NET, 0);
352 #endif
353
354 /*
355 * Add shutdown hook so that DMA is disabled prior to reboot. Not
356 * doing do could allow DMA to corrupt kernel memory during the
357 * reboot before the driver initializes.
358 */
359 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
360 if (sc->sc_sdhook == NULL)
361 printf("%s: WARNING: unable to establish shutdown hook\n",
362 sc->sc_dev.dv_xname);
363 /*
364 * Add suspend hook, for similar reasons..
365 */
366 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
367 if (sc->sc_powerhook == NULL)
368 printf("%s: WARNING: unable to establish power hook\n",
369 sc->sc_dev.dv_xname);
370
371 /* The attach is successful. */
372 sc->sc_flags |= FXPF_ATTACHED;
373
374 return;
375
376 /*
377 * Free any resources we've allocated during the failed attach
378 * attempt. Do this in reverse order and fall though.
379 */
380 fail_5:
381 for (i = 0; i < FXP_NRFABUFS; i++) {
382 if (sc->sc_rxmaps[i] != NULL)
383 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
384 }
385 fail_4:
386 for (i = 0; i < FXP_NTXCB; i++) {
387 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
388 bus_dmamap_destroy(sc->sc_dmat,
389 FXP_DSTX(sc, i)->txs_dmamap);
390 }
391 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
392 fail_3:
393 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
394 fail_2:
395 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
396 sizeof(struct fxp_control_data));
397 fail_1:
398 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
399 fail_0:
400 return;
401 }
402
403 void
404 fxp_mii_initmedia(sc)
405 struct fxp_softc *sc;
406 {
407
408 sc->sc_flags |= FXPF_MII;
409
410 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
411 sc->sc_mii.mii_readreg = fxp_mdi_read;
412 sc->sc_mii.mii_writereg = fxp_mdi_write;
413 sc->sc_mii.mii_statchg = fxp_statchg;
414 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
415 fxp_mii_mediastatus);
416 /*
417 * The i82557 wedges if all of its PHYs are isolated!
418 */
419 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
420 MII_OFFSET_ANY, MIIF_NOISOLATE);
421 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
422 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
423 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
424 } else
425 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
426 }
427
428 void
429 fxp_80c24_initmedia(sc)
430 struct fxp_softc *sc;
431 {
432
433 /*
434 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
435 * doesn't have a programming interface of any sort. The
436 * media is sensed automatically based on how the link partner
437 * is configured. This is, in essence, manual configuration.
438 */
439 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
440 sc->sc_dev.dv_xname);
441 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
442 fxp_80c24_mediastatus);
443 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
444 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
445 }
446
447 /*
448 * Device shutdown routine. Called at system shutdown after sync. The
449 * main purpose of this routine is to shut off receiver DMA so that
450 * kernel memory doesn't get clobbered during warmboot.
451 */
452 void
453 fxp_shutdown(arg)
454 void *arg;
455 {
456 struct fxp_softc *sc = arg;
457
458 /*
459 * Since the system's going to halt shortly, don't bother
460 * freeing mbufs.
461 */
462 fxp_stop(&sc->sc_ethercom.ec_if, 0);
463 }
464 /*
465 * Power handler routine. Called when the system is transitioning
466 * into/out of power save modes. As with fxp_shutdown, the main
467 * purpose of this routine is to shut off receiver DMA so it doesn't
468 * clobber kernel memory at the wrong time.
469 */
470 void
471 fxp_power(why, arg)
472 int why;
473 void *arg;
474 {
475 struct fxp_softc *sc = arg;
476 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
477 int s;
478
479 s = splnet();
480 switch (why) {
481 case PWR_SUSPEND:
482 case PWR_STANDBY:
483 fxp_stop(ifp, 0);
484 break;
485 case PWR_RESUME:
486 if (ifp->if_flags & IFF_UP)
487 fxp_init(ifp);
488 break;
489 case PWR_SOFTSUSPEND:
490 case PWR_SOFTSTANDBY:
491 case PWR_SOFTRESUME:
492 break;
493 }
494 splx(s);
495 }
496
497 /*
498 * Initialize the interface media.
499 */
500 void
501 fxp_get_info(sc, enaddr)
502 struct fxp_softc *sc;
503 u_int8_t *enaddr;
504 {
505 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
506
507 /*
508 * Reset to a stable state.
509 */
510 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
511 DELAY(10);
512
513 sc->sc_eeprom_size = 0;
514 fxp_autosize_eeprom(sc);
515 if(sc->sc_eeprom_size == 0) {
516 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
517 sc->sc_eeprom_size = 6; /* XXX panic here? */
518 }
519 #ifdef DEBUG
520 printf("%s: detected %d word EEPROM\n",
521 sc->sc_dev.dv_xname,
522 1 << sc->sc_eeprom_size);
523 #endif
524
525 /*
526 * Get info about the primary PHY
527 */
528 fxp_read_eeprom(sc, &data, 6, 1);
529 sc->phy_primary_addr = data & 0xff;
530 sc->phy_primary_device = (data >> 8) & 0x3f;
531 sc->phy_10Mbps_only = data >> 15;
532
533 /*
534 * Read MAC address.
535 */
536 fxp_read_eeprom(sc, myea, 0, 3);
537 enaddr[0] = myea[0] & 0xff;
538 enaddr[1] = myea[0] >> 8;
539 enaddr[2] = myea[1] & 0xff;
540 enaddr[3] = myea[1] >> 8;
541 enaddr[4] = myea[2] & 0xff;
542 enaddr[5] = myea[2] >> 8;
543 }
544
545 /*
546 * Figure out EEPROM size.
547 *
548 * 559's can have either 64-word or 256-word EEPROMs, the 558
549 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
550 * talks about the existance of 16 to 256 word EEPROMs.
551 *
552 * The only known sizes are 64 and 256, where the 256 version is used
553 * by CardBus cards to store CIS information.
554 *
555 * The address is shifted in msb-to-lsb, and after the last
556 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
557 * after which follows the actual data. We try to detect this zero, by
558 * probing the data-out bit in the EEPROM control register just after
559 * having shifted in a bit. If the bit is zero, we assume we've
560 * shifted enough address bits. The data-out should be tri-state,
561 * before this, which should translate to a logical one.
562 *
563 * Other ways to do this would be to try to read a register with known
564 * contents with a varying number of address bits, but no such
565 * register seem to be available. The high bits of register 10 are 01
566 * on the 558 and 559, but apparently not on the 557.
567 *
568 * The Linux driver computes a checksum on the EEPROM data, but the
569 * value of this checksum is not very well documented.
570 */
571
572 void
573 fxp_autosize_eeprom(sc)
574 struct fxp_softc *sc;
575 {
576 u_int16_t reg;
577 int x;
578
579 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
580 /*
581 * Shift in read opcode.
582 */
583 for (x = 3; x > 0; x--) {
584 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
585 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
586 } else {
587 reg = FXP_EEPROM_EECS;
588 }
589 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
590 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
591 reg | FXP_EEPROM_EESK);
592 DELAY(4);
593 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
594 DELAY(4);
595 }
596 /*
597 * Shift in address, wait for the dummy zero following a correct
598 * address shift.
599 */
600 for (x = 1; x <= 8; x++) {
601 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
602 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
603 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
604 DELAY(4);
605 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
606 FXP_EEPROM_EEDO) == 0)
607 break;
608 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
609 DELAY(4);
610 }
611 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
612 DELAY(4);
613 if(x != 6 && x != 8) {
614 #ifdef DEBUG
615 printf("%s: strange EEPROM size (%d)\n",
616 sc->sc_dev.dv_xname, 1 << x);
617 #endif
618 } else
619 sc->sc_eeprom_size = x;
620 }
621
622 /*
623 * Read from the serial EEPROM. Basically, you manually shift in
624 * the read opcode (one bit at a time) and then shift in the address,
625 * and then you shift out the data (all of this one bit at a time).
626 * The word size is 16 bits, so you have to provide the address for
627 * every 16 bits of data.
628 */
629 void
630 fxp_read_eeprom(sc, data, offset, words)
631 struct fxp_softc *sc;
632 u_int16_t *data;
633 int offset;
634 int words;
635 {
636 u_int16_t reg;
637 int i, x;
638
639 for (i = 0; i < words; i++) {
640 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
641 /*
642 * Shift in read opcode.
643 */
644 for (x = 3; x > 0; x--) {
645 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
646 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
647 } else {
648 reg = FXP_EEPROM_EECS;
649 }
650 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
651 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
652 reg | FXP_EEPROM_EESK);
653 DELAY(4);
654 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
655 DELAY(4);
656 }
657 /*
658 * Shift in address.
659 */
660 for (x = sc->sc_eeprom_size; x > 0; x--) {
661 if ((i + offset) & (1 << (x - 1))) {
662 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
663 } else {
664 reg = FXP_EEPROM_EECS;
665 }
666 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
667 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
668 reg | FXP_EEPROM_EESK);
669 DELAY(4);
670 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
671 DELAY(4);
672 }
673 reg = FXP_EEPROM_EECS;
674 data[i] = 0;
675 /*
676 * Shift out data.
677 */
678 for (x = 16; x > 0; x--) {
679 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
680 reg | FXP_EEPROM_EESK);
681 DELAY(4);
682 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
683 FXP_EEPROM_EEDO)
684 data[i] |= (1 << (x - 1));
685 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
686 DELAY(4);
687 }
688 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
689 DELAY(4);
690 }
691 }
692
693 /*
694 * Start packet transmission on the interface.
695 */
696 void
697 fxp_start(ifp)
698 struct ifnet *ifp;
699 {
700 struct fxp_softc *sc = ifp->if_softc;
701 struct mbuf *m0, *m;
702 struct fxp_cb_tx *txd;
703 struct fxp_txsoft *txs;
704 struct fxp_tbdlist *tbd;
705 bus_dmamap_t dmamap;
706 int error, lasttx, nexttx, opending, seg;
707
708 /*
709 * If we want a re-init, bail out now.
710 */
711 if (sc->sc_flags & FXPF_WANTINIT) {
712 ifp->if_flags |= IFF_OACTIVE;
713 return;
714 }
715
716 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
717 return;
718
719 /*
720 * Remember the previous txpending and the current lasttx.
721 */
722 opending = sc->sc_txpending;
723 lasttx = sc->sc_txlast;
724
725 /*
726 * Loop through the send queue, setting up transmit descriptors
727 * until we drain the queue, or use up all available transmit
728 * descriptors.
729 */
730 while (sc->sc_txpending < FXP_NTXCB) {
731 /*
732 * Grab a packet off the queue.
733 */
734 IFQ_POLL(&ifp->if_snd, m0);
735 if (m0 == NULL)
736 break;
737
738 /*
739 * Get the next available transmit descriptor.
740 */
741 nexttx = FXP_NEXTTX(sc->sc_txlast);
742 txd = FXP_CDTX(sc, nexttx);
743 tbd = FXP_CDTBD(sc, nexttx);
744 txs = FXP_DSTX(sc, nexttx);
745 dmamap = txs->txs_dmamap;
746
747 /*
748 * Load the DMA map. If this fails, the packet either
749 * didn't fit in the allotted number of frags, or we were
750 * short on resources. In this case, we'll copy and try
751 * again.
752 */
753 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
754 BUS_DMA_NOWAIT) != 0) {
755 MGETHDR(m, M_DONTWAIT, MT_DATA);
756 if (m == NULL) {
757 printf("%s: unable to allocate Tx mbuf\n",
758 sc->sc_dev.dv_xname);
759 break;
760 }
761 if (m0->m_pkthdr.len > MHLEN) {
762 MCLGET(m, M_DONTWAIT);
763 if ((m->m_flags & M_EXT) == 0) {
764 printf("%s: unable to allocate Tx "
765 "cluster\n", sc->sc_dev.dv_xname);
766 m_freem(m);
767 break;
768 }
769 }
770 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
771 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
772 m_freem(m0);
773 m0 = m;
774 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
775 m0, BUS_DMA_NOWAIT);
776 if (error) {
777 printf("%s: unable to load Tx buffer, "
778 "error = %d\n", sc->sc_dev.dv_xname, error);
779 break;
780 }
781 }
782
783 IFQ_DEQUEUE(&ifp->if_snd, m0);
784
785 /* Initialize the fraglist. */
786 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
787 tbd->tbd_d[seg].tb_addr =
788 htole32(dmamap->dm_segs[seg].ds_addr);
789 tbd->tbd_d[seg].tb_size =
790 htole32(dmamap->dm_segs[seg].ds_len);
791 }
792
793 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
794
795 /* Sync the DMA map. */
796 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
797 BUS_DMASYNC_PREWRITE);
798
799 /*
800 * Store a pointer to the packet so we can free it later.
801 */
802 txs->txs_mbuf = m0;
803
804 /*
805 * Initialize the transmit descriptor.
806 */
807 /* BIG_ENDIAN: no need to swap to store 0 */
808 txd->cb_status = 0;
809 txd->cb_command =
810 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
811 txd->tx_threshold = tx_threshold;
812 txd->tbd_number = dmamap->dm_nsegs;
813
814 FXP_CDTXSYNC(sc, nexttx,
815 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
816
817 /* Advance the tx pointer. */
818 sc->sc_txpending++;
819 sc->sc_txlast = nexttx;
820
821 #if NBPFILTER > 0
822 /*
823 * Pass packet to bpf if there is a listener.
824 */
825 if (ifp->if_bpf)
826 bpf_mtap(ifp->if_bpf, m0);
827 #endif
828 }
829
830 if (sc->sc_txpending == FXP_NTXCB) {
831 /* No more slots; notify upper layer. */
832 ifp->if_flags |= IFF_OACTIVE;
833 }
834
835 if (sc->sc_txpending != opending) {
836 /*
837 * We enqueued packets. If the transmitter was idle,
838 * reset the txdirty pointer.
839 */
840 if (opending == 0)
841 sc->sc_txdirty = FXP_NEXTTX(lasttx);
842
843 /*
844 * Cause the chip to interrupt and suspend command
845 * processing once the last packet we've enqueued
846 * has been transmitted.
847 */
848 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
849 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
850 FXP_CDTXSYNC(sc, sc->sc_txlast,
851 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
852
853 /*
854 * The entire packet chain is set up. Clear the suspend bit
855 * on the command prior to the first packet we set up.
856 */
857 FXP_CDTXSYNC(sc, lasttx,
858 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
859 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
860 FXP_CDTXSYNC(sc, lasttx,
861 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
862
863 /*
864 * Issue a Resume command in case the chip was suspended.
865 */
866 fxp_scb_wait(sc);
867 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
868
869 /* Set a watchdog timer in case the chip flakes out. */
870 ifp->if_timer = 5;
871 }
872 }
873
874 /*
875 * Process interface interrupts.
876 */
877 int
878 fxp_intr(arg)
879 void *arg;
880 {
881 struct fxp_softc *sc = arg;
882 struct ethercom *ec = &sc->sc_ethercom;
883 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
884 struct fxp_cb_tx *txd;
885 struct fxp_txsoft *txs;
886 struct mbuf *m, *m0;
887 bus_dmamap_t rxmap;
888 struct fxp_rfa *rfa;
889 int i, claimed = 0;
890 u_int16_t len, rxstat, txstat;
891 u_int8_t statack;
892
893 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
894 return (0);
895 /*
896 * If the interface isn't running, don't try to
897 * service the interrupt.. just ack it and bail.
898 */
899 if ((ifp->if_flags & IFF_RUNNING) == 0) {
900 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
901 if (statack) {
902 claimed = 1;
903 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
904 }
905 return (claimed);
906 }
907
908 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
909 claimed = 1;
910
911 /*
912 * First ACK all the interrupts in this pass.
913 */
914 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
915
916 /*
917 * Process receiver interrupts. If a no-resource (RNR)
918 * condition exists, get whatever packets we can and
919 * re-start the receiver.
920 */
921 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
922 rcvloop:
923 m = sc->sc_rxq.ifq_head;
924 rfa = FXP_MTORFA(m);
925 rxmap = M_GETCTX(m, bus_dmamap_t);
926
927 FXP_RFASYNC(sc, m,
928 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
929
930 rxstat = le16toh(rfa->rfa_status);
931
932 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
933 /*
934 * We have processed all of the
935 * receive buffers.
936 */
937 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
938 goto do_transmit;
939 }
940
941 IF_DEQUEUE(&sc->sc_rxq, m);
942
943 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
944
945 len = le16toh(rfa->actual_size) &
946 (m->m_ext.ext_size - 1);
947
948 if (len < sizeof(struct ether_header)) {
949 /*
950 * Runt packet; drop it now.
951 */
952 FXP_INIT_RFABUF(sc, m);
953 goto rcvloop;
954 }
955
956 /*
957 * If support for 802.1Q VLAN sized frames is
958 * enabled, we need to do some additional error
959 * checking (as we are saving bad frames, in
960 * order to receive the larger ones).
961 */
962 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
963 (rxstat & (FXP_RFA_STATUS_OVERRUN|
964 FXP_RFA_STATUS_RNR|
965 FXP_RFA_STATUS_ALIGN|
966 FXP_RFA_STATUS_CRC)) != 0) {
967 FXP_INIT_RFABUF(sc, m);
968 goto rcvloop;
969 }
970
971 /*
972 * If the packet is small enough to fit in a
973 * single header mbuf, allocate one and copy
974 * the data into it. This greatly reduces
975 * memory consumption when we receive lots
976 * of small packets.
977 *
978 * Otherwise, we add a new buffer to the receive
979 * chain. If this fails, we drop the packet and
980 * recycle the old buffer.
981 */
982 if (fxp_copy_small != 0 && len <= MHLEN) {
983 MGETHDR(m0, M_DONTWAIT, MT_DATA);
984 if (m == NULL)
985 goto dropit;
986 memcpy(mtod(m0, caddr_t),
987 mtod(m, caddr_t), len);
988 FXP_INIT_RFABUF(sc, m);
989 m = m0;
990 } else {
991 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
992 dropit:
993 ifp->if_ierrors++;
994 FXP_INIT_RFABUF(sc, m);
995 goto rcvloop;
996 }
997 }
998
999 m->m_pkthdr.rcvif = ifp;
1000 m->m_pkthdr.len = m->m_len = len;
1001
1002 #if NBPFILTER > 0
1003 /*
1004 * Pass this up to any BPF listeners, but only
1005 * pass it up the stack it its for us.
1006 */
1007 if (ifp->if_bpf)
1008 bpf_mtap(ifp->if_bpf, m);
1009 #endif
1010
1011 /* Pass it on. */
1012 (*ifp->if_input)(ifp, m);
1013 goto rcvloop;
1014 }
1015
1016 do_transmit:
1017 if (statack & FXP_SCB_STATACK_RNR) {
1018 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1019 fxp_scb_wait(sc);
1020 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1021 rxmap->dm_segs[0].ds_addr +
1022 RFA_ALIGNMENT_FUDGE);
1023 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1024 FXP_SCB_COMMAND_RU_START);
1025 }
1026
1027 /*
1028 * Free any finished transmit mbuf chains.
1029 */
1030 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1031 ifp->if_flags &= ~IFF_OACTIVE;
1032 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1033 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1034 txd = FXP_CDTX(sc, i);
1035 txs = FXP_DSTX(sc, i);
1036
1037 FXP_CDTXSYNC(sc, i,
1038 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1039
1040 txstat = le16toh(txd->cb_status);
1041
1042 if ((txstat & FXP_CB_STATUS_C) == 0)
1043 break;
1044
1045 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1046
1047 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1048 0, txs->txs_dmamap->dm_mapsize,
1049 BUS_DMASYNC_POSTWRITE);
1050 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1051 m_freem(txs->txs_mbuf);
1052 txs->txs_mbuf = NULL;
1053 }
1054
1055 /* Update the dirty transmit buffer pointer. */
1056 sc->sc_txdirty = i;
1057
1058 /*
1059 * Cancel the watchdog timer if there are no pending
1060 * transmissions.
1061 */
1062 if (sc->sc_txpending == 0) {
1063 ifp->if_timer = 0;
1064
1065 /*
1066 * If we want a re-init, do that now.
1067 */
1068 if (sc->sc_flags & FXPF_WANTINIT)
1069 (void) fxp_init(ifp);
1070 }
1071
1072 /*
1073 * Try to get more packets going.
1074 */
1075 fxp_start(ifp);
1076 }
1077 }
1078
1079 #if NRND > 0
1080 if (claimed)
1081 rnd_add_uint32(&sc->rnd_source, statack);
1082 #endif
1083 return (claimed);
1084 }
1085
1086 /*
1087 * Update packet in/out/collision statistics. The i82557 doesn't
1088 * allow you to access these counters without doing a fairly
1089 * expensive DMA to get _all_ of the statistics it maintains, so
1090 * we do this operation here only once per second. The statistics
1091 * counters in the kernel are updated from the previous dump-stats
1092 * DMA and then a new dump-stats DMA is started. The on-chip
1093 * counters are zeroed when the DMA completes. If we can't start
1094 * the DMA immediately, we don't wait - we just prepare to read
1095 * them again next time.
1096 */
1097 void
1098 fxp_tick(arg)
1099 void *arg;
1100 {
1101 struct fxp_softc *sc = arg;
1102 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1103 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1104 int s;
1105
1106 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1107 return;
1108
1109 s = splnet();
1110
1111 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1112
1113 ifp->if_opackets += le32toh(sp->tx_good);
1114 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1115 if (sp->rx_good) {
1116 ifp->if_ipackets += le32toh(sp->rx_good);
1117 sc->sc_rxidle = 0;
1118 } else {
1119 sc->sc_rxidle++;
1120 }
1121 ifp->if_ierrors +=
1122 le32toh(sp->rx_crc_errors) +
1123 le32toh(sp->rx_alignment_errors) +
1124 le32toh(sp->rx_rnr_errors) +
1125 le32toh(sp->rx_overrun_errors);
1126 /*
1127 * If any transmit underruns occured, bump up the transmit
1128 * threshold by another 512 bytes (64 * 8).
1129 */
1130 if (sp->tx_underruns) {
1131 ifp->if_oerrors += le32toh(sp->tx_underruns);
1132 if (tx_threshold < 192)
1133 tx_threshold += 64;
1134 }
1135
1136 /*
1137 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1138 * then assume the receiver has locked up and attempt to clear
1139 * the condition by reprogramming the multicast filter (actually,
1140 * resetting the interface). This is a work-around for a bug in
1141 * the 82557 where the receiver locks up if it gets certain types
1142 * of garbage in the syncronization bits prior to the packet header.
1143 * This bug is supposed to only occur in 10Mbps mode, but has been
1144 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1145 * speed transition).
1146 */
1147 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1148 (void) fxp_init(ifp);
1149 splx(s);
1150 return;
1151 }
1152 /*
1153 * If there is no pending command, start another stats
1154 * dump. Otherwise punt for now.
1155 */
1156 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1157 /*
1158 * Start another stats dump.
1159 */
1160 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1161 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1162 FXP_SCB_COMMAND_CU_DUMPRESET);
1163 } else {
1164 /*
1165 * A previous command is still waiting to be accepted.
1166 * Just zero our copy of the stats and wait for the
1167 * next timer event to update them.
1168 */
1169 /* BIG_ENDIAN: no swap required to store 0 */
1170 sp->tx_good = 0;
1171 sp->tx_underruns = 0;
1172 sp->tx_total_collisions = 0;
1173
1174 sp->rx_good = 0;
1175 sp->rx_crc_errors = 0;
1176 sp->rx_alignment_errors = 0;
1177 sp->rx_rnr_errors = 0;
1178 sp->rx_overrun_errors = 0;
1179 }
1180
1181 if (sc->sc_flags & FXPF_MII) {
1182 /* Tick the MII clock. */
1183 mii_tick(&sc->sc_mii);
1184 }
1185
1186 splx(s);
1187
1188 /*
1189 * Schedule another timeout one second from now.
1190 */
1191 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1192 }
1193
1194 /*
1195 * Drain the receive queue.
1196 */
1197 void
1198 fxp_rxdrain(sc)
1199 struct fxp_softc *sc;
1200 {
1201 bus_dmamap_t rxmap;
1202 struct mbuf *m;
1203
1204 for (;;) {
1205 IF_DEQUEUE(&sc->sc_rxq, m);
1206 if (m == NULL)
1207 break;
1208 rxmap = M_GETCTX(m, bus_dmamap_t);
1209 bus_dmamap_unload(sc->sc_dmat, rxmap);
1210 FXP_RXMAP_PUT(sc, rxmap);
1211 m_freem(m);
1212 }
1213 }
1214
1215 /*
1216 * Stop the interface. Cancels the statistics updater and resets
1217 * the interface.
1218 */
1219 void
1220 fxp_stop(ifp, disable)
1221 struct ifnet *ifp;
1222 int disable;
1223 {
1224 struct fxp_softc *sc = ifp->if_softc;
1225 struct fxp_txsoft *txs;
1226 int i;
1227
1228 /*
1229 * Turn down interface (done early to avoid bad interactions
1230 * between panics, shutdown hooks, and the watchdog timer)
1231 */
1232 ifp->if_timer = 0;
1233 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1234
1235 /*
1236 * Cancel stats updater.
1237 */
1238 callout_stop(&sc->sc_callout);
1239 if (sc->sc_flags & FXPF_MII) {
1240 /* Down the MII. */
1241 mii_down(&sc->sc_mii);
1242 }
1243
1244 /*
1245 * Issue software reset
1246 */
1247 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1248 DELAY(10);
1249
1250 /*
1251 * Release any xmit buffers.
1252 */
1253 for (i = 0; i < FXP_NTXCB; i++) {
1254 txs = FXP_DSTX(sc, i);
1255 if (txs->txs_mbuf != NULL) {
1256 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1257 m_freem(txs->txs_mbuf);
1258 txs->txs_mbuf = NULL;
1259 }
1260 }
1261 sc->sc_txpending = 0;
1262
1263 if (disable) {
1264 fxp_rxdrain(sc);
1265 fxp_disable(sc);
1266 }
1267
1268 }
1269
1270 /*
1271 * Watchdog/transmission transmit timeout handler. Called when a
1272 * transmission is started on the interface, but no interrupt is
1273 * received before the timeout. This usually indicates that the
1274 * card has wedged for some reason.
1275 */
1276 void
1277 fxp_watchdog(ifp)
1278 struct ifnet *ifp;
1279 {
1280 struct fxp_softc *sc = ifp->if_softc;
1281
1282 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1283 ifp->if_oerrors++;
1284
1285 (void) fxp_init(ifp);
1286 }
1287
1288 /*
1289 * Initialize the interface. Must be called at splnet().
1290 */
1291 int
1292 fxp_init(ifp)
1293 struct ifnet *ifp;
1294 {
1295 struct fxp_softc *sc = ifp->if_softc;
1296 struct fxp_cb_config *cbp;
1297 struct fxp_cb_ias *cb_ias;
1298 struct fxp_cb_tx *txd;
1299 bus_dmamap_t rxmap;
1300 int i, prm, save_bf, allm, error = 0;
1301
1302 if ((error = fxp_enable(sc)) != 0)
1303 goto out;
1304
1305 /*
1306 * Cancel any pending I/O
1307 */
1308 fxp_stop(ifp, 0);
1309
1310 /*
1311 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1312 * flag, and this prevents the MII from detaching resulting in
1313 * a panic. The flags field should perhaps be split in runtime
1314 * flags and more static information. For now, just clear the
1315 * only other flag set.
1316 */
1317
1318 sc->sc_flags &= ~FXPF_WANTINIT;
1319
1320 /*
1321 * Initialize base of CBL and RFA memory. Loading with zero
1322 * sets it up for regular linear addressing.
1323 */
1324 fxp_scb_wait(sc);
1325 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1326 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1327
1328 fxp_scb_wait(sc);
1329 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1330
1331 /*
1332 * Initialize the multicast filter. Do this now, since we might
1333 * have to setup the config block differently.
1334 */
1335 fxp_mc_setup(sc);
1336
1337 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1338 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1339
1340 /*
1341 * In order to support receiving 802.1Q VLAN frames, we have to
1342 * enable "save bad frames", since they are 4 bytes larger than
1343 * the normal Ethernet maximum frame length.
1344 */
1345 save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
1346
1347 /*
1348 * Initialize base of dump-stats buffer.
1349 */
1350 fxp_scb_wait(sc);
1351 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1352 sc->sc_cddma + FXP_CDSTATSOFF);
1353 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1354 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1355
1356 cbp = &sc->sc_control_data->fcd_configcb;
1357 memset(cbp, 0, sizeof(struct fxp_cb_config));
1358
1359 /*
1360 * This copy is kind of disgusting, but there are a bunch of must be
1361 * zero and must be one bits in this structure and this is the easiest
1362 * way to initialize them all to proper values.
1363 */
1364 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1365
1366 /* BIG_ENDIAN: no need to swap to store 0 */
1367 cbp->cb_status = 0;
1368 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1369 FXP_CB_COMMAND_EL);
1370 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1371 cbp->link_addr = 0xffffffff; /* (no) next command */
1372 cbp->byte_count = 22; /* (22) bytes to config */
1373 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1374 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1375 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1376 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1377 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1378 cbp->dma_bce = 0; /* (disable) dma max counters */
1379 cbp->late_scb = 0; /* (don't) defer SCB update */
1380 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1381 cbp->ci_int = 1; /* interrupt on CU idle */
1382 cbp->save_bf = save_bf;/* save bad frames */
1383 cbp->disc_short_rx = !prm; /* discard short packets */
1384 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1385 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1386 cbp->nsai = 1; /* (don't) disable source addr insert */
1387 cbp->preamble_length = 2; /* (7 byte) preamble */
1388 cbp->loopback = 0; /* (don't) loopback */
1389 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1390 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1391 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1392 cbp->promiscuous = prm; /* promiscuous mode */
1393 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1394 cbp->crscdt = 0; /* (CRS only) */
1395 cbp->stripping = !prm; /* truncate rx packet to byte count */
1396 cbp->padding = 1; /* (do) pad short tx packets */
1397 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1398 cbp->force_fdx = 0; /* (don't) force full duplex */
1399 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1400 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1401 cbp->mc_all = allm; /* accept all multicasts */
1402
1403 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1404
1405 /*
1406 * Start the config command/DMA.
1407 */
1408 fxp_scb_wait(sc);
1409 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1410 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1411 /* ...and wait for it to complete. */
1412 i = 1000;
1413 do {
1414 FXP_CDCONFIGSYNC(sc,
1415 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1416 DELAY(1);
1417 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1418 if (i == 0) {
1419 printf("%s at line %d: dmasync timeout\n",
1420 sc->sc_dev.dv_xname, __LINE__);
1421 return ETIMEDOUT;
1422 }
1423
1424 /*
1425 * Initialize the station address.
1426 */
1427 cb_ias = &sc->sc_control_data->fcd_iascb;
1428 /* BIG_ENDIAN: no need to swap to store 0 */
1429 cb_ias->cb_status = 0;
1430 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1431 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1432 cb_ias->link_addr = 0xffffffff;
1433 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1434
1435 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1436
1437 /*
1438 * Start the IAS (Individual Address Setup) command/DMA.
1439 */
1440 fxp_scb_wait(sc);
1441 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1442 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1443 /* ...and wait for it to complete. */
1444 i = 1000;
1445 do {
1446 FXP_CDIASSYNC(sc,
1447 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1448 DELAY(1);
1449 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1450 if (i == 0) {
1451 printf("%s at line %d: dmasync timeout\n",
1452 sc->sc_dev.dv_xname, __LINE__);
1453 return ETIMEDOUT;
1454 }
1455
1456 /*
1457 * Initialize the transmit descriptor ring. txlast is initialized
1458 * to the end of the list so that it will wrap around to the first
1459 * descriptor when the first packet is transmitted.
1460 */
1461 for (i = 0; i < FXP_NTXCB; i++) {
1462 txd = FXP_CDTX(sc, i);
1463 memset(txd, 0, sizeof(struct fxp_cb_tx));
1464 txd->cb_command =
1465 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1466 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1467 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1468 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1469 }
1470 sc->sc_txpending = 0;
1471 sc->sc_txdirty = 0;
1472 sc->sc_txlast = FXP_NTXCB - 1;
1473
1474 /*
1475 * Initialize the receive buffer list.
1476 */
1477 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1478 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1479 rxmap = FXP_RXMAP_GET(sc);
1480 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1481 printf("%s: unable to allocate or map rx "
1482 "buffer %d, error = %d\n",
1483 sc->sc_dev.dv_xname,
1484 sc->sc_rxq.ifq_len, error);
1485 /*
1486 * XXX Should attempt to run with fewer receive
1487 * XXX buffers instead of just failing.
1488 */
1489 FXP_RXMAP_PUT(sc, rxmap);
1490 fxp_rxdrain(sc);
1491 goto out;
1492 }
1493 }
1494 sc->sc_rxidle = 0;
1495
1496 /*
1497 * Give the transmit ring to the chip. We do this by pointing
1498 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1499 * issuing a start command. It will execute the NOP and then
1500 * suspend, pointing at the first descriptor.
1501 */
1502 fxp_scb_wait(sc);
1503 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1504 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1505
1506 /*
1507 * Initialize receiver buffer area - RFA.
1508 */
1509 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1510 fxp_scb_wait(sc);
1511 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1512 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1513 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1514
1515 if (sc->sc_flags & FXPF_MII) {
1516 /*
1517 * Set current media.
1518 */
1519 mii_mediachg(&sc->sc_mii);
1520 }
1521
1522 /*
1523 * ...all done!
1524 */
1525 ifp->if_flags |= IFF_RUNNING;
1526 ifp->if_flags &= ~IFF_OACTIVE;
1527
1528 /*
1529 * Start the one second timer.
1530 */
1531 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1532
1533 /*
1534 * Attempt to start output on the interface.
1535 */
1536 fxp_start(ifp);
1537
1538 out:
1539 if (error) {
1540 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1541 ifp->if_timer = 0;
1542 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1543 }
1544 return (error);
1545 }
1546
1547 /*
1548 * Change media according to request.
1549 */
1550 int
1551 fxp_mii_mediachange(ifp)
1552 struct ifnet *ifp;
1553 {
1554 struct fxp_softc *sc = ifp->if_softc;
1555
1556 if (ifp->if_flags & IFF_UP)
1557 mii_mediachg(&sc->sc_mii);
1558 return (0);
1559 }
1560
1561 /*
1562 * Notify the world which media we're using.
1563 */
1564 void
1565 fxp_mii_mediastatus(ifp, ifmr)
1566 struct ifnet *ifp;
1567 struct ifmediareq *ifmr;
1568 {
1569 struct fxp_softc *sc = ifp->if_softc;
1570
1571 if(sc->sc_enabled == 0) {
1572 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1573 ifmr->ifm_status = 0;
1574 return;
1575 }
1576
1577 mii_pollstat(&sc->sc_mii);
1578 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1579 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1580 }
1581
1582 int
1583 fxp_80c24_mediachange(ifp)
1584 struct ifnet *ifp;
1585 {
1586
1587 /* Nothing to do here. */
1588 return (0);
1589 }
1590
1591 void
1592 fxp_80c24_mediastatus(ifp, ifmr)
1593 struct ifnet *ifp;
1594 struct ifmediareq *ifmr;
1595 {
1596 struct fxp_softc *sc = ifp->if_softc;
1597
1598 /*
1599 * Media is currently-selected media. We cannot determine
1600 * the link status.
1601 */
1602 ifmr->ifm_status = 0;
1603 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1604 }
1605
1606 /*
1607 * Add a buffer to the end of the RFA buffer list.
1608 * Return 0 if successful, error code on failure.
1609 *
1610 * The RFA struct is stuck at the beginning of mbuf cluster and the
1611 * data pointer is fixed up to point just past it.
1612 */
1613 int
1614 fxp_add_rfabuf(sc, rxmap, unload)
1615 struct fxp_softc *sc;
1616 bus_dmamap_t rxmap;
1617 int unload;
1618 {
1619 struct mbuf *m;
1620 int error;
1621
1622 MGETHDR(m, M_DONTWAIT, MT_DATA);
1623 if (m == NULL)
1624 return (ENOBUFS);
1625
1626 MCLGET(m, M_DONTWAIT);
1627 if ((m->m_flags & M_EXT) == 0) {
1628 m_freem(m);
1629 return (ENOBUFS);
1630 }
1631
1632 if (unload)
1633 bus_dmamap_unload(sc->sc_dmat, rxmap);
1634
1635 M_SETCTX(m, rxmap);
1636
1637 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1638 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1639 if (error) {
1640 printf("%s: can't load rx DMA map %d, error = %d\n",
1641 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1642 panic("fxp_add_rfabuf"); /* XXX */
1643 }
1644
1645 FXP_INIT_RFABUF(sc, m);
1646
1647 return (0);
1648 }
1649
1650 volatile int
1651 fxp_mdi_read(self, phy, reg)
1652 struct device *self;
1653 int phy;
1654 int reg;
1655 {
1656 struct fxp_softc *sc = (struct fxp_softc *)self;
1657 int count = 10000;
1658 int value;
1659
1660 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1661 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1662
1663 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1664 && count--)
1665 DELAY(10);
1666
1667 if (count <= 0)
1668 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1669
1670 return (value & 0xffff);
1671 }
1672
1673 void
1674 fxp_statchg(self)
1675 struct device *self;
1676 {
1677
1678 /* Nothing to do. */
1679 }
1680
1681 void
1682 fxp_mdi_write(self, phy, reg, value)
1683 struct device *self;
1684 int phy;
1685 int reg;
1686 int value;
1687 {
1688 struct fxp_softc *sc = (struct fxp_softc *)self;
1689 int count = 10000;
1690
1691 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1692 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1693 (value & 0xffff));
1694
1695 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1696 count--)
1697 DELAY(10);
1698
1699 if (count <= 0)
1700 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1701 }
1702
1703 int
1704 fxp_ioctl(ifp, cmd, data)
1705 struct ifnet *ifp;
1706 u_long cmd;
1707 caddr_t data;
1708 {
1709 struct fxp_softc *sc = ifp->if_softc;
1710 struct ifreq *ifr = (struct ifreq *)data;
1711 int s, error;
1712
1713 s = splnet();
1714
1715 switch (cmd) {
1716 case SIOCSIFMEDIA:
1717 case SIOCGIFMEDIA:
1718 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1719 break;
1720
1721 default:
1722 error = ether_ioctl(ifp, cmd, data);
1723 if (error == ENETRESET) {
1724 if (sc->sc_enabled) {
1725 /*
1726 * Multicast list has changed; set the
1727 * hardware filter accordingly.
1728 */
1729 if (sc->sc_txpending) {
1730 sc->sc_flags |= FXPF_WANTINIT;
1731 error = 0;
1732 } else
1733 error = fxp_init(ifp);
1734 } else
1735 error = 0;
1736 }
1737 break;
1738 }
1739
1740 /* Try to get more packets going. */
1741 if (sc->sc_enabled)
1742 fxp_start(ifp);
1743
1744 splx(s);
1745 return (error);
1746 }
1747
1748 /*
1749 * Program the multicast filter.
1750 *
1751 * This function must be called at splnet().
1752 */
1753 void
1754 fxp_mc_setup(sc)
1755 struct fxp_softc *sc;
1756 {
1757 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1758 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1759 struct ethercom *ec = &sc->sc_ethercom;
1760 struct ether_multi *enm;
1761 struct ether_multistep step;
1762 int count, nmcasts;
1763
1764 #ifdef DIAGNOSTIC
1765 if (sc->sc_txpending)
1766 panic("fxp_mc_setup: pending transmissions");
1767 #endif
1768
1769 ifp->if_flags &= ~IFF_ALLMULTI;
1770
1771 /*
1772 * Initialize multicast setup descriptor.
1773 */
1774 nmcasts = 0;
1775 ETHER_FIRST_MULTI(step, ec, enm);
1776 while (enm != NULL) {
1777 /*
1778 * Check for too many multicast addresses or if we're
1779 * listening to a range. Either way, we simply have
1780 * to accept all multicasts.
1781 */
1782 if (nmcasts >= MAXMCADDR ||
1783 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1784 ETHER_ADDR_LEN) != 0) {
1785 /*
1786 * Callers of this function must do the
1787 * right thing with this. If we're called
1788 * from outside fxp_init(), the caller must
1789 * detect if the state if IFF_ALLMULTI changes.
1790 * If it does, the caller must then call
1791 * fxp_init(), since allmulti is handled by
1792 * the config block.
1793 */
1794 ifp->if_flags |= IFF_ALLMULTI;
1795 return;
1796 }
1797 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1798 ETHER_ADDR_LEN);
1799 nmcasts++;
1800 ETHER_NEXT_MULTI(step, enm);
1801 }
1802
1803 /* BIG_ENDIAN: no need to swap to store 0 */
1804 mcsp->cb_status = 0;
1805 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1806 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1807 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1808
1809 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1810
1811 /*
1812 * Wait until the command unit is not active. This should never
1813 * happen since nothing is queued, but make sure anyway.
1814 */
1815 count = 100;
1816 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1817 FXP_SCB_CUS_ACTIVE && --count)
1818 DELAY(1);
1819 if (count == 0) {
1820 printf("%s at line %d: command queue timeout\n",
1821 sc->sc_dev.dv_xname, __LINE__);
1822 return;
1823 }
1824
1825 /*
1826 * Start the multicast setup command/DMA.
1827 */
1828 fxp_scb_wait(sc);
1829 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1830 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1831
1832 /* ...and wait for it to complete. */
1833 count = 1000;
1834 do {
1835 FXP_CDMCSSYNC(sc,
1836 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1837 DELAY(1);
1838 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1839 if (count == 0) {
1840 printf("%s at line %d: dmasync timeout\n",
1841 sc->sc_dev.dv_xname, __LINE__);
1842 return;
1843 }
1844 }
1845
1846 int
1847 fxp_enable(sc)
1848 struct fxp_softc *sc;
1849 {
1850
1851 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1852 if ((*sc->sc_enable)(sc) != 0) {
1853 printf("%s: device enable failed\n",
1854 sc->sc_dev.dv_xname);
1855 return (EIO);
1856 }
1857 }
1858
1859 sc->sc_enabled = 1;
1860 return (0);
1861 }
1862
1863 void
1864 fxp_disable(sc)
1865 struct fxp_softc *sc;
1866 {
1867
1868 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1869 (*sc->sc_disable)(sc);
1870 sc->sc_enabled = 0;
1871 }
1872 }
1873
1874 /*
1875 * fxp_activate:
1876 *
1877 * Handle device activation/deactivation requests.
1878 */
1879 int
1880 fxp_activate(self, act)
1881 struct device *self;
1882 enum devact act;
1883 {
1884 struct fxp_softc *sc = (void *) self;
1885 int s, error = 0;
1886
1887 s = splnet();
1888 switch (act) {
1889 case DVACT_ACTIVATE:
1890 error = EOPNOTSUPP;
1891 break;
1892
1893 case DVACT_DEACTIVATE:
1894 if (sc->sc_flags & FXPF_MII)
1895 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1896 MII_OFFSET_ANY);
1897 if_deactivate(&sc->sc_ethercom.ec_if);
1898 break;
1899 }
1900 splx(s);
1901
1902 return (error);
1903 }
1904
1905 /*
1906 * fxp_detach:
1907 *
1908 * Detach an i82557 interface.
1909 */
1910 int
1911 fxp_detach(sc)
1912 struct fxp_softc *sc;
1913 {
1914 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1915 int i;
1916
1917 /* Succeed now if there's no work to do. */
1918 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1919 return (0);
1920
1921 /* Unhook our tick handler. */
1922 callout_stop(&sc->sc_callout);
1923
1924 if (sc->sc_flags & FXPF_MII) {
1925 /* Detach all PHYs */
1926 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1927 }
1928
1929 /* Delete all remaining media. */
1930 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1931
1932 #if NRND > 0
1933 rnd_detach_source(&sc->rnd_source);
1934 #endif
1935 ether_ifdetach(ifp);
1936 if_detach(ifp);
1937
1938 for (i = 0; i < FXP_NRFABUFS; i++) {
1939 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1940 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1941 }
1942
1943 for (i = 0; i < FXP_NTXCB; i++) {
1944 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1945 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1946 }
1947
1948 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1949 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1950 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1951 sizeof(struct fxp_control_data));
1952 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1953
1954 shutdownhook_disestablish(sc->sc_sdhook);
1955 powerhook_disestablish(sc->sc_powerhook);
1956
1957 return (0);
1958 }
1959