i82557.c revision 1.46 1 /* $NetBSD: i82557.c,v 1.46 2001/05/21 20:59:38 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1995, David Greenman
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice unmodified, this list of conditions, and the following
49 * disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * Id: if_fxp.c,v 1.47 1998/01/08 23:42:29 eivind Exp
67 */
68
69 /*
70 * Device driver for the Intel i82557 fast Ethernet controller,
71 * and its successors, the i82558 and i82559.
72 */
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89
90 #include <machine/endian.h>
91
92 #include <uvm/uvm_extern.h>
93
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #if NBPFILTER > 0
104 #include <net/bpf.h>
105 #endif
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #ifdef NS
113 #include <netns/ns.h>
114 #include <netns/ns_if.h>
115 #endif
116
117 #include <machine/bus.h>
118 #include <machine/intr.h>
119
120 #include <dev/mii/miivar.h>
121
122 #include <dev/ic/i82557reg.h>
123 #include <dev/ic/i82557var.h>
124
125 /*
126 * NOTE! On the Alpha, we have an alignment constraint. The
127 * card DMAs the packet immediately following the RFA. However,
128 * the first thing in the packet is a 14-byte Ethernet header.
129 * This means that the packet is misaligned. To compensate,
130 * we actually offset the RFA 2 bytes into the cluster. This
131 * alignes the packet after the Ethernet header at a 32-bit
132 * boundary. HOWEVER! This means that the RFA is misaligned!
133 */
134 #define RFA_ALIGNMENT_FUDGE 2
135
136 /*
137 * Template for default configuration parameters.
138 * See struct fxp_cb_config for the bit definitions.
139 */
140 u_int8_t fxp_cb_config_template[] = {
141 0x0, 0x0, /* cb_status */
142 0x80, 0x2, /* cb_command */
143 0xff, 0xff, 0xff, 0xff, /* link_addr */
144 0x16, /* 0 */
145 0x8, /* 1 */
146 0x0, /* 2 */
147 0x0, /* 3 */
148 0x0, /* 4 */
149 0x80, /* 5 */
150 0xb2, /* 6 */
151 0x3, /* 7 */
152 0x1, /* 8 */
153 0x0, /* 9 */
154 0x26, /* 10 */
155 0x0, /* 11 */
156 0x60, /* 12 */
157 0x0, /* 13 */
158 0xf2, /* 14 */
159 0x48, /* 15 */
160 0x0, /* 16 */
161 0x40, /* 17 */
162 0xf3, /* 18 */
163 0x0, /* 19 */
164 0x3f, /* 20 */
165 0x5 /* 21 */
166 };
167
168 void fxp_mii_initmedia(struct fxp_softc *);
169 int fxp_mii_mediachange(struct ifnet *);
170 void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
171
172 void fxp_80c24_initmedia(struct fxp_softc *);
173 int fxp_80c24_mediachange(struct ifnet *);
174 void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
175
176 void fxp_start(struct ifnet *);
177 int fxp_ioctl(struct ifnet *, u_long, caddr_t);
178 void fxp_watchdog(struct ifnet *);
179 int fxp_init(struct ifnet *);
180 void fxp_stop(struct ifnet *, int);
181
182 void fxp_rxdrain(struct fxp_softc *);
183 int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
184 int fxp_mdi_read(struct device *, int, int);
185 void fxp_statchg(struct device *);
186 void fxp_mdi_write(struct device *, int, int, int);
187 void fxp_autosize_eeprom(struct fxp_softc*);
188 void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int);
189 void fxp_get_info(struct fxp_softc *, u_int8_t *);
190 void fxp_tick(void *);
191 void fxp_mc_setup(struct fxp_softc *);
192
193 void fxp_shutdown(void *);
194 void fxp_power(int, void *);
195
196 int fxp_copy_small = 0;
197
198 struct fxp_phytype {
199 int fp_phy; /* type of PHY, -1 for MII at the end. */
200 void (*fp_init)(struct fxp_softc *);
201 } fxp_phytype_table[] = {
202 { FXP_PHY_80C24, fxp_80c24_initmedia },
203 { -1, fxp_mii_initmedia },
204 };
205
206 /*
207 * Set initial transmit threshold at 64 (512 bytes). This is
208 * increased by 64 (512 bytes) at a time, to maximum of 192
209 * (1536 bytes), if an underrun occurs.
210 */
211 static int tx_threshold = 64;
212
213 /*
214 * Wait for the previous command to be accepted (but not necessarily
215 * completed).
216 */
217 static __inline void
218 fxp_scb_wait(struct fxp_softc *sc)
219 {
220 int i = 10000;
221
222 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
223 delay(2);
224 if (i == 0)
225 printf("%s: WARNING: SCB timed out!\n", sc->sc_dev.dv_xname);
226 }
227
228 /*
229 * Finish attaching an i82557 interface. Called by bus-specific front-end.
230 */
231 void
232 fxp_attach(struct fxp_softc *sc)
233 {
234 u_int8_t enaddr[ETHER_ADDR_LEN];
235 struct ifnet *ifp;
236 bus_dma_segment_t seg;
237 int rseg, i, error;
238 struct fxp_phytype *fp;
239
240 callout_init(&sc->sc_callout);
241
242 /*
243 * Allocate the control data structures, and create and load the
244 * DMA map for it.
245 */
246 if ((error = bus_dmamem_alloc(sc->sc_dmat,
247 sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
248 0)) != 0) {
249 printf("%s: unable to allocate control data, error = %d\n",
250 sc->sc_dev.dv_xname, error);
251 goto fail_0;
252 }
253
254 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
255 sizeof(struct fxp_control_data), (caddr_t *)&sc->sc_control_data,
256 BUS_DMA_COHERENT)) != 0) {
257 printf("%s: unable to map control data, error = %d\n",
258 sc->sc_dev.dv_xname, error);
259 goto fail_1;
260 }
261 sc->sc_cdseg = seg;
262 sc->sc_cdnseg = rseg;
263
264 bzero(sc->sc_control_data, sizeof(struct fxp_control_data));
265
266 if ((error = bus_dmamap_create(sc->sc_dmat,
267 sizeof(struct fxp_control_data), 1,
268 sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
269 printf("%s: unable to create control data DMA map, "
270 "error = %d\n", sc->sc_dev.dv_xname, error);
271 goto fail_2;
272 }
273
274 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
275 sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
276 0)) != 0) {
277 printf("%s: can't load control data DMA map, error = %d\n",
278 sc->sc_dev.dv_xname, error);
279 goto fail_3;
280 }
281
282 /*
283 * Create the transmit buffer DMA maps.
284 */
285 for (i = 0; i < FXP_NTXCB; i++) {
286 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
287 FXP_NTXSEG, MCLBYTES, 0, 0,
288 &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
289 printf("%s: unable to create tx DMA map %d, "
290 "error = %d\n", sc->sc_dev.dv_xname, i, error);
291 goto fail_4;
292 }
293 }
294
295 /*
296 * Create the receive buffer DMA maps.
297 */
298 for (i = 0; i < FXP_NRFABUFS; i++) {
299 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
300 MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
301 printf("%s: unable to create rx DMA map %d, "
302 "error = %d\n", sc->sc_dev.dv_xname, i, error);
303 goto fail_5;
304 }
305 }
306
307 /* Initialize MAC address and media structures. */
308 fxp_get_info(sc, enaddr);
309
310 printf("%s: Ethernet address %s, %s Mb/s\n", sc->sc_dev.dv_xname,
311 ether_sprintf(enaddr), sc->phy_10Mbps_only ? "10" : "10/100");
312
313 ifp = &sc->sc_ethercom.ec_if;
314
315 /*
316 * Get info about our media interface, and initialize it. Note
317 * the table terminates itself with a phy of -1, indicating
318 * that we're using MII.
319 */
320 for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
321 if (fp->fp_phy == sc->phy_primary_device)
322 break;
323 (*fp->fp_init)(sc);
324
325 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
326 ifp->if_softc = sc;
327 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
328 ifp->if_ioctl = fxp_ioctl;
329 ifp->if_start = fxp_start;
330 ifp->if_watchdog = fxp_watchdog;
331 ifp->if_init = fxp_init;
332 ifp->if_stop = fxp_stop;
333 IFQ_SET_READY(&ifp->if_snd);
334
335 /*
336 * We can support 802.1Q VLAN-sized frames.
337 */
338 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
339
340 /*
341 * Attach the interface.
342 */
343 if_attach(ifp);
344 ether_ifattach(ifp, enaddr);
345 #if NRND > 0
346 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
347 RND_TYPE_NET, 0);
348 #endif
349
350 /*
351 * Add shutdown hook so that DMA is disabled prior to reboot. Not
352 * doing do could allow DMA to corrupt kernel memory during the
353 * reboot before the driver initializes.
354 */
355 sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc);
356 if (sc->sc_sdhook == NULL)
357 printf("%s: WARNING: unable to establish shutdown hook\n",
358 sc->sc_dev.dv_xname);
359 /*
360 * Add suspend hook, for similar reasons..
361 */
362 sc->sc_powerhook = powerhook_establish(fxp_power, sc);
363 if (sc->sc_powerhook == NULL)
364 printf("%s: WARNING: unable to establish power hook\n",
365 sc->sc_dev.dv_xname);
366
367 /* The attach is successful. */
368 sc->sc_flags |= FXPF_ATTACHED;
369
370 return;
371
372 /*
373 * Free any resources we've allocated during the failed attach
374 * attempt. Do this in reverse order and fall though.
375 */
376 fail_5:
377 for (i = 0; i < FXP_NRFABUFS; i++) {
378 if (sc->sc_rxmaps[i] != NULL)
379 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
380 }
381 fail_4:
382 for (i = 0; i < FXP_NTXCB; i++) {
383 if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
384 bus_dmamap_destroy(sc->sc_dmat,
385 FXP_DSTX(sc, i)->txs_dmamap);
386 }
387 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
388 fail_3:
389 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
390 fail_2:
391 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
392 sizeof(struct fxp_control_data));
393 fail_1:
394 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
395 fail_0:
396 return;
397 }
398
399 void
400 fxp_mii_initmedia(struct fxp_softc *sc)
401 {
402
403 sc->sc_flags |= FXPF_MII;
404
405 sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
406 sc->sc_mii.mii_readreg = fxp_mdi_read;
407 sc->sc_mii.mii_writereg = fxp_mdi_write;
408 sc->sc_mii.mii_statchg = fxp_statchg;
409 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mii_mediachange,
410 fxp_mii_mediastatus);
411 /*
412 * The i82557 wedges if all of its PHYs are isolated!
413 */
414 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
415 MII_OFFSET_ANY, MIIF_NOISOLATE);
416 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
417 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
418 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
419 } else
420 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
421 }
422
423 void
424 fxp_80c24_initmedia(struct fxp_softc *sc)
425 {
426
427 /*
428 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
429 * doesn't have a programming interface of any sort. The
430 * media is sensed automatically based on how the link partner
431 * is configured. This is, in essence, manual configuration.
432 */
433 printf("%s: Seeq 80c24 AutoDUPLEX media interface present\n",
434 sc->sc_dev.dv_xname);
435 ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
436 fxp_80c24_mediastatus);
437 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
438 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
439 }
440
441 /*
442 * Device shutdown routine. Called at system shutdown after sync. The
443 * main purpose of this routine is to shut off receiver DMA so that
444 * kernel memory doesn't get clobbered during warmboot.
445 */
446 void
447 fxp_shutdown(void *arg)
448 {
449 struct fxp_softc *sc = arg;
450
451 /*
452 * Since the system's going to halt shortly, don't bother
453 * freeing mbufs.
454 */
455 fxp_stop(&sc->sc_ethercom.ec_if, 0);
456 }
457 /*
458 * Power handler routine. Called when the system is transitioning
459 * into/out of power save modes. As with fxp_shutdown, the main
460 * purpose of this routine is to shut off receiver DMA so it doesn't
461 * clobber kernel memory at the wrong time.
462 */
463 void
464 fxp_power(int why, void *arg)
465 {
466 struct fxp_softc *sc = arg;
467 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468 int s;
469
470 s = splnet();
471 switch (why) {
472 case PWR_SUSPEND:
473 case PWR_STANDBY:
474 fxp_stop(ifp, 0);
475 break;
476 case PWR_RESUME:
477 if (ifp->if_flags & IFF_UP)
478 fxp_init(ifp);
479 break;
480 case PWR_SOFTSUSPEND:
481 case PWR_SOFTSTANDBY:
482 case PWR_SOFTRESUME:
483 break;
484 }
485 splx(s);
486 }
487
488 /*
489 * Initialize the interface media.
490 */
491 void
492 fxp_get_info(struct fxp_softc *sc, u_int8_t *enaddr)
493 {
494 u_int16_t data, myea[ETHER_ADDR_LEN / 2];
495
496 /*
497 * Reset to a stable state.
498 */
499 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
500 DELAY(10);
501
502 sc->sc_eeprom_size = 0;
503 fxp_autosize_eeprom(sc);
504 if(sc->sc_eeprom_size == 0) {
505 printf("%s: failed to detect EEPROM size\n", sc->sc_dev.dv_xname);
506 sc->sc_eeprom_size = 6; /* XXX panic here? */
507 }
508 #ifdef DEBUG
509 printf("%s: detected %d word EEPROM\n",
510 sc->sc_dev.dv_xname,
511 1 << sc->sc_eeprom_size);
512 #endif
513
514 /*
515 * Get info about the primary PHY
516 */
517 fxp_read_eeprom(sc, &data, 6, 1);
518 sc->phy_primary_addr = data & 0xff;
519 sc->phy_primary_device = (data >> 8) & 0x3f;
520 sc->phy_10Mbps_only = data >> 15;
521
522 /*
523 * Read MAC address.
524 */
525 fxp_read_eeprom(sc, myea, 0, 3);
526 enaddr[0] = myea[0] & 0xff;
527 enaddr[1] = myea[0] >> 8;
528 enaddr[2] = myea[1] & 0xff;
529 enaddr[3] = myea[1] >> 8;
530 enaddr[4] = myea[2] & 0xff;
531 enaddr[5] = myea[2] >> 8;
532 }
533
534 /*
535 * Figure out EEPROM size.
536 *
537 * 559's can have either 64-word or 256-word EEPROMs, the 558
538 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
539 * talks about the existance of 16 to 256 word EEPROMs.
540 *
541 * The only known sizes are 64 and 256, where the 256 version is used
542 * by CardBus cards to store CIS information.
543 *
544 * The address is shifted in msb-to-lsb, and after the last
545 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
546 * after which follows the actual data. We try to detect this zero, by
547 * probing the data-out bit in the EEPROM control register just after
548 * having shifted in a bit. If the bit is zero, we assume we've
549 * shifted enough address bits. The data-out should be tri-state,
550 * before this, which should translate to a logical one.
551 *
552 * Other ways to do this would be to try to read a register with known
553 * contents with a varying number of address bits, but no such
554 * register seem to be available. The high bits of register 10 are 01
555 * on the 558 and 559, but apparently not on the 557.
556 *
557 * The Linux driver computes a checksum on the EEPROM data, but the
558 * value of this checksum is not very well documented.
559 */
560
561 void
562 fxp_autosize_eeprom(struct fxp_softc *sc)
563 {
564 u_int16_t reg;
565 int x;
566
567 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
568 /*
569 * Shift in read opcode.
570 */
571 for (x = 3; x > 0; x--) {
572 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
573 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
574 } else {
575 reg = FXP_EEPROM_EECS;
576 }
577 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
578 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
579 reg | FXP_EEPROM_EESK);
580 DELAY(4);
581 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
582 DELAY(4);
583 }
584 /*
585 * Shift in address, wait for the dummy zero following a correct
586 * address shift.
587 */
588 for (x = 1; x <= 8; x++) {
589 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
590 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
591 FXP_EEPROM_EECS | FXP_EEPROM_EESK);
592 DELAY(4);
593 if((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
594 FXP_EEPROM_EEDO) == 0)
595 break;
596 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
597 DELAY(4);
598 }
599 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
600 DELAY(4);
601 if(x != 6 && x != 8) {
602 #ifdef DEBUG
603 printf("%s: strange EEPROM size (%d)\n",
604 sc->sc_dev.dv_xname, 1 << x);
605 #endif
606 } else
607 sc->sc_eeprom_size = x;
608 }
609
610 /*
611 * Read from the serial EEPROM. Basically, you manually shift in
612 * the read opcode (one bit at a time) and then shift in the address,
613 * and then you shift out the data (all of this one bit at a time).
614 * The word size is 16 bits, so you have to provide the address for
615 * every 16 bits of data.
616 */
617 void
618 fxp_read_eeprom(struct fxp_softc *sc, u_int16_t *data, int offset, int words)
619 {
620 u_int16_t reg;
621 int i, x;
622
623 for (i = 0; i < words; i++) {
624 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
625 /*
626 * Shift in read opcode.
627 */
628 for (x = 3; x > 0; x--) {
629 if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) {
630 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
631 } else {
632 reg = FXP_EEPROM_EECS;
633 }
634 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
635 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
636 reg | FXP_EEPROM_EESK);
637 DELAY(4);
638 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
639 DELAY(4);
640 }
641 /*
642 * Shift in address.
643 */
644 for (x = sc->sc_eeprom_size; x > 0; x--) {
645 if ((i + offset) & (1 << (x - 1))) {
646 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
647 } else {
648 reg = FXP_EEPROM_EECS;
649 }
650 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
651 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
652 reg | FXP_EEPROM_EESK);
653 DELAY(4);
654 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
655 DELAY(4);
656 }
657 reg = FXP_EEPROM_EECS;
658 data[i] = 0;
659 /*
660 * Shift out data.
661 */
662 for (x = 16; x > 0; x--) {
663 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
664 reg | FXP_EEPROM_EESK);
665 DELAY(4);
666 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
667 FXP_EEPROM_EEDO)
668 data[i] |= (1 << (x - 1));
669 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
670 DELAY(4);
671 }
672 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
673 DELAY(4);
674 }
675 }
676
677 /*
678 * Start packet transmission on the interface.
679 */
680 void
681 fxp_start(struct ifnet *ifp)
682 {
683 struct fxp_softc *sc = ifp->if_softc;
684 struct mbuf *m0, *m;
685 struct fxp_cb_tx *txd;
686 struct fxp_txsoft *txs;
687 struct fxp_tbdlist *tbd;
688 bus_dmamap_t dmamap;
689 int error, lasttx, nexttx, opending, seg;
690
691 /*
692 * If we want a re-init, bail out now.
693 */
694 if (sc->sc_flags & FXPF_WANTINIT) {
695 ifp->if_flags |= IFF_OACTIVE;
696 return;
697 }
698
699 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
700 return;
701
702 /*
703 * Remember the previous txpending and the current lasttx.
704 */
705 opending = sc->sc_txpending;
706 lasttx = sc->sc_txlast;
707
708 /*
709 * Loop through the send queue, setting up transmit descriptors
710 * until we drain the queue, or use up all available transmit
711 * descriptors.
712 */
713 while (sc->sc_txpending < FXP_NTXCB) {
714 /*
715 * Grab a packet off the queue.
716 */
717 IFQ_POLL(&ifp->if_snd, m0);
718 if (m0 == NULL)
719 break;
720 m = NULL;
721
722 /*
723 * Get the next available transmit descriptor.
724 */
725 nexttx = FXP_NEXTTX(sc->sc_txlast);
726 txd = FXP_CDTX(sc, nexttx);
727 tbd = FXP_CDTBD(sc, nexttx);
728 txs = FXP_DSTX(sc, nexttx);
729 dmamap = txs->txs_dmamap;
730
731 /*
732 * Load the DMA map. If this fails, the packet either
733 * didn't fit in the allotted number of frags, or we were
734 * short on resources. In this case, we'll copy and try
735 * again.
736 */
737 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
738 BUS_DMA_NOWAIT) != 0) {
739 MGETHDR(m, M_DONTWAIT, MT_DATA);
740 if (m == NULL) {
741 printf("%s: unable to allocate Tx mbuf\n",
742 sc->sc_dev.dv_xname);
743 break;
744 }
745 if (m0->m_pkthdr.len > MHLEN) {
746 MCLGET(m, M_DONTWAIT);
747 if ((m->m_flags & M_EXT) == 0) {
748 printf("%s: unable to allocate Tx "
749 "cluster\n", sc->sc_dev.dv_xname);
750 m_freem(m);
751 break;
752 }
753 }
754 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
755 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
756 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
757 m, BUS_DMA_NOWAIT);
758 if (error) {
759 printf("%s: unable to load Tx buffer, "
760 "error = %d\n", sc->sc_dev.dv_xname, error);
761 break;
762 }
763 }
764
765 IFQ_DEQUEUE(&ifp->if_snd, m0);
766 if (m != NULL) {
767 m_freem(m0);
768 m0 = m;
769 }
770
771 /* Initialize the fraglist. */
772 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
773 tbd->tbd_d[seg].tb_addr =
774 htole32(dmamap->dm_segs[seg].ds_addr);
775 tbd->tbd_d[seg].tb_size =
776 htole32(dmamap->dm_segs[seg].ds_len);
777 }
778
779 FXP_CDTBDSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
780
781 /* Sync the DMA map. */
782 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
783 BUS_DMASYNC_PREWRITE);
784
785 /*
786 * Store a pointer to the packet so we can free it later.
787 */
788 txs->txs_mbuf = m0;
789
790 /*
791 * Initialize the transmit descriptor.
792 */
793 /* BIG_ENDIAN: no need to swap to store 0 */
794 txd->cb_status = 0;
795 txd->cb_command =
796 htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF);
797 txd->tx_threshold = tx_threshold;
798 txd->tbd_number = dmamap->dm_nsegs;
799
800 FXP_CDTXSYNC(sc, nexttx,
801 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
802
803 /* Advance the tx pointer. */
804 sc->sc_txpending++;
805 sc->sc_txlast = nexttx;
806
807 #if NBPFILTER > 0
808 /*
809 * Pass packet to bpf if there is a listener.
810 */
811 if (ifp->if_bpf)
812 bpf_mtap(ifp->if_bpf, m0);
813 #endif
814 }
815
816 if (sc->sc_txpending == FXP_NTXCB) {
817 /* No more slots; notify upper layer. */
818 ifp->if_flags |= IFF_OACTIVE;
819 }
820
821 if (sc->sc_txpending != opending) {
822 /*
823 * We enqueued packets. If the transmitter was idle,
824 * reset the txdirty pointer.
825 */
826 if (opending == 0)
827 sc->sc_txdirty = FXP_NEXTTX(lasttx);
828
829 /*
830 * Cause the chip to interrupt and suspend command
831 * processing once the last packet we've enqueued
832 * has been transmitted.
833 */
834 FXP_CDTX(sc, sc->sc_txlast)->cb_command |=
835 htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
836 FXP_CDTXSYNC(sc, sc->sc_txlast,
837 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
838
839 /*
840 * The entire packet chain is set up. Clear the suspend bit
841 * on the command prior to the first packet we set up.
842 */
843 FXP_CDTXSYNC(sc, lasttx,
844 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
845 FXP_CDTX(sc, lasttx)->cb_command &= htole16(~FXP_CB_COMMAND_S);
846 FXP_CDTXSYNC(sc, lasttx,
847 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
848
849 /*
850 * Issue a Resume command in case the chip was suspended.
851 */
852 fxp_scb_wait(sc);
853 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME);
854
855 /* Set a watchdog timer in case the chip flakes out. */
856 ifp->if_timer = 5;
857 }
858 }
859
860 /*
861 * Process interface interrupts.
862 */
863 int
864 fxp_intr(void *arg)
865 {
866 struct fxp_softc *sc = arg;
867 struct ethercom *ec = &sc->sc_ethercom;
868 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
869 struct fxp_cb_tx *txd;
870 struct fxp_txsoft *txs;
871 struct mbuf *m, *m0;
872 bus_dmamap_t rxmap;
873 struct fxp_rfa *rfa;
874 int i, claimed = 0;
875 u_int16_t len, rxstat, txstat;
876 u_int8_t statack;
877
878 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
879 return (0);
880 /*
881 * If the interface isn't running, don't try to
882 * service the interrupt.. just ack it and bail.
883 */
884 if ((ifp->if_flags & IFF_RUNNING) == 0) {
885 statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
886 if (statack) {
887 claimed = 1;
888 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
889 }
890 return (claimed);
891 }
892
893 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
894 claimed = 1;
895
896 /*
897 * First ACK all the interrupts in this pass.
898 */
899 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
900
901 /*
902 * Process receiver interrupts. If a no-resource (RNR)
903 * condition exists, get whatever packets we can and
904 * re-start the receiver.
905 */
906 if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
907 rcvloop:
908 m = sc->sc_rxq.ifq_head;
909 rfa = FXP_MTORFA(m);
910 rxmap = M_GETCTX(m, bus_dmamap_t);
911
912 FXP_RFASYNC(sc, m,
913 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
914
915 rxstat = le16toh(rfa->rfa_status);
916
917 if ((rxstat & FXP_RFA_STATUS_C) == 0) {
918 /*
919 * We have processed all of the
920 * receive buffers.
921 */
922 FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
923 goto do_transmit;
924 }
925
926 IF_DEQUEUE(&sc->sc_rxq, m);
927
928 FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
929
930 len = le16toh(rfa->actual_size) &
931 (m->m_ext.ext_size - 1);
932
933 if (len < sizeof(struct ether_header)) {
934 /*
935 * Runt packet; drop it now.
936 */
937 FXP_INIT_RFABUF(sc, m);
938 goto rcvloop;
939 }
940
941 /*
942 * If support for 802.1Q VLAN sized frames is
943 * enabled, we need to do some additional error
944 * checking (as we are saving bad frames, in
945 * order to receive the larger ones).
946 */
947 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
948 (rxstat & (FXP_RFA_STATUS_OVERRUN|
949 FXP_RFA_STATUS_RNR|
950 FXP_RFA_STATUS_ALIGN|
951 FXP_RFA_STATUS_CRC)) != 0) {
952 FXP_INIT_RFABUF(sc, m);
953 goto rcvloop;
954 }
955
956 /*
957 * If the packet is small enough to fit in a
958 * single header mbuf, allocate one and copy
959 * the data into it. This greatly reduces
960 * memory consumption when we receive lots
961 * of small packets.
962 *
963 * Otherwise, we add a new buffer to the receive
964 * chain. If this fails, we drop the packet and
965 * recycle the old buffer.
966 */
967 if (fxp_copy_small != 0 && len <= MHLEN) {
968 MGETHDR(m0, M_DONTWAIT, MT_DATA);
969 if (m == NULL)
970 goto dropit;
971 memcpy(mtod(m0, caddr_t),
972 mtod(m, caddr_t), len);
973 FXP_INIT_RFABUF(sc, m);
974 m = m0;
975 } else {
976 if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
977 dropit:
978 ifp->if_ierrors++;
979 FXP_INIT_RFABUF(sc, m);
980 goto rcvloop;
981 }
982 }
983
984 m->m_pkthdr.rcvif = ifp;
985 m->m_pkthdr.len = m->m_len = len;
986
987 #if NBPFILTER > 0
988 /*
989 * Pass this up to any BPF listeners, but only
990 * pass it up the stack it its for us.
991 */
992 if (ifp->if_bpf)
993 bpf_mtap(ifp->if_bpf, m);
994 #endif
995
996 /* Pass it on. */
997 (*ifp->if_input)(ifp, m);
998 goto rcvloop;
999 }
1000
1001 do_transmit:
1002 if (statack & FXP_SCB_STATACK_RNR) {
1003 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1004 fxp_scb_wait(sc);
1005 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1006 rxmap->dm_segs[0].ds_addr +
1007 RFA_ALIGNMENT_FUDGE);
1008 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1009 FXP_SCB_COMMAND_RU_START);
1010 }
1011
1012 /*
1013 * Free any finished transmit mbuf chains.
1014 */
1015 if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
1016 ifp->if_flags &= ~IFF_OACTIVE;
1017 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
1018 i = FXP_NEXTTX(i), sc->sc_txpending--) {
1019 txd = FXP_CDTX(sc, i);
1020 txs = FXP_DSTX(sc, i);
1021
1022 FXP_CDTXSYNC(sc, i,
1023 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1024
1025 txstat = le16toh(txd->cb_status);
1026
1027 if ((txstat & FXP_CB_STATUS_C) == 0)
1028 break;
1029
1030 FXP_CDTBDSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
1031
1032 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1033 0, txs->txs_dmamap->dm_mapsize,
1034 BUS_DMASYNC_POSTWRITE);
1035 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1036 m_freem(txs->txs_mbuf);
1037 txs->txs_mbuf = NULL;
1038 }
1039
1040 /* Update the dirty transmit buffer pointer. */
1041 sc->sc_txdirty = i;
1042
1043 /*
1044 * Cancel the watchdog timer if there are no pending
1045 * transmissions.
1046 */
1047 if (sc->sc_txpending == 0) {
1048 ifp->if_timer = 0;
1049
1050 /*
1051 * If we want a re-init, do that now.
1052 */
1053 if (sc->sc_flags & FXPF_WANTINIT)
1054 (void) fxp_init(ifp);
1055 }
1056
1057 /*
1058 * Try to get more packets going.
1059 */
1060 fxp_start(ifp);
1061 }
1062 }
1063
1064 #if NRND > 0
1065 if (claimed)
1066 rnd_add_uint32(&sc->rnd_source, statack);
1067 #endif
1068 return (claimed);
1069 }
1070
1071 /*
1072 * Update packet in/out/collision statistics. The i82557 doesn't
1073 * allow you to access these counters without doing a fairly
1074 * expensive DMA to get _all_ of the statistics it maintains, so
1075 * we do this operation here only once per second. The statistics
1076 * counters in the kernel are updated from the previous dump-stats
1077 * DMA and then a new dump-stats DMA is started. The on-chip
1078 * counters are zeroed when the DMA completes. If we can't start
1079 * the DMA immediately, we don't wait - we just prepare to read
1080 * them again next time.
1081 */
1082 void
1083 fxp_tick(void *arg)
1084 {
1085 struct fxp_softc *sc = arg;
1086 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1087 struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
1088 int s;
1089
1090 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1091 return;
1092
1093 s = splnet();
1094
1095 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
1096
1097 ifp->if_opackets += le32toh(sp->tx_good);
1098 ifp->if_collisions += le32toh(sp->tx_total_collisions);
1099 if (sp->rx_good) {
1100 ifp->if_ipackets += le32toh(sp->rx_good);
1101 sc->sc_rxidle = 0;
1102 } else {
1103 sc->sc_rxidle++;
1104 }
1105 ifp->if_ierrors +=
1106 le32toh(sp->rx_crc_errors) +
1107 le32toh(sp->rx_alignment_errors) +
1108 le32toh(sp->rx_rnr_errors) +
1109 le32toh(sp->rx_overrun_errors);
1110 /*
1111 * If any transmit underruns occured, bump up the transmit
1112 * threshold by another 512 bytes (64 * 8).
1113 */
1114 if (sp->tx_underruns) {
1115 ifp->if_oerrors += le32toh(sp->tx_underruns);
1116 if (tx_threshold < 192)
1117 tx_threshold += 64;
1118 }
1119
1120 /*
1121 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1122 * then assume the receiver has locked up and attempt to clear
1123 * the condition by reprogramming the multicast filter (actually,
1124 * resetting the interface). This is a work-around for a bug in
1125 * the 82557 where the receiver locks up if it gets certain types
1126 * of garbage in the syncronization bits prior to the packet header.
1127 * This bug is supposed to only occur in 10Mbps mode, but has been
1128 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
1129 * speed transition).
1130 */
1131 if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
1132 (void) fxp_init(ifp);
1133 splx(s);
1134 return;
1135 }
1136 /*
1137 * If there is no pending command, start another stats
1138 * dump. Otherwise punt for now.
1139 */
1140 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1141 /*
1142 * Start another stats dump.
1143 */
1144 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1145 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND,
1146 FXP_SCB_COMMAND_CU_DUMPRESET);
1147 } else {
1148 /*
1149 * A previous command is still waiting to be accepted.
1150 * Just zero our copy of the stats and wait for the
1151 * next timer event to update them.
1152 */
1153 /* BIG_ENDIAN: no swap required to store 0 */
1154 sp->tx_good = 0;
1155 sp->tx_underruns = 0;
1156 sp->tx_total_collisions = 0;
1157
1158 sp->rx_good = 0;
1159 sp->rx_crc_errors = 0;
1160 sp->rx_alignment_errors = 0;
1161 sp->rx_rnr_errors = 0;
1162 sp->rx_overrun_errors = 0;
1163 }
1164
1165 if (sc->sc_flags & FXPF_MII) {
1166 /* Tick the MII clock. */
1167 mii_tick(&sc->sc_mii);
1168 }
1169
1170 splx(s);
1171
1172 /*
1173 * Schedule another timeout one second from now.
1174 */
1175 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1176 }
1177
1178 /*
1179 * Drain the receive queue.
1180 */
1181 void
1182 fxp_rxdrain(struct fxp_softc *sc)
1183 {
1184 bus_dmamap_t rxmap;
1185 struct mbuf *m;
1186
1187 for (;;) {
1188 IF_DEQUEUE(&sc->sc_rxq, m);
1189 if (m == NULL)
1190 break;
1191 rxmap = M_GETCTX(m, bus_dmamap_t);
1192 bus_dmamap_unload(sc->sc_dmat, rxmap);
1193 FXP_RXMAP_PUT(sc, rxmap);
1194 m_freem(m);
1195 }
1196 }
1197
1198 /*
1199 * Stop the interface. Cancels the statistics updater and resets
1200 * the interface.
1201 */
1202 void
1203 fxp_stop(struct ifnet *ifp, int disable)
1204 {
1205 struct fxp_softc *sc = ifp->if_softc;
1206 struct fxp_txsoft *txs;
1207 int i;
1208
1209 /*
1210 * Turn down interface (done early to avoid bad interactions
1211 * between panics, shutdown hooks, and the watchdog timer)
1212 */
1213 ifp->if_timer = 0;
1214 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1215
1216 /*
1217 * Cancel stats updater.
1218 */
1219 callout_stop(&sc->sc_callout);
1220 if (sc->sc_flags & FXPF_MII) {
1221 /* Down the MII. */
1222 mii_down(&sc->sc_mii);
1223 }
1224
1225 /*
1226 * Issue software reset
1227 */
1228 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1229 DELAY(10);
1230
1231 /*
1232 * Release any xmit buffers.
1233 */
1234 for (i = 0; i < FXP_NTXCB; i++) {
1235 txs = FXP_DSTX(sc, i);
1236 if (txs->txs_mbuf != NULL) {
1237 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1238 m_freem(txs->txs_mbuf);
1239 txs->txs_mbuf = NULL;
1240 }
1241 }
1242 sc->sc_txpending = 0;
1243
1244 if (disable) {
1245 fxp_rxdrain(sc);
1246 fxp_disable(sc);
1247 }
1248
1249 }
1250
1251 /*
1252 * Watchdog/transmission transmit timeout handler. Called when a
1253 * transmission is started on the interface, but no interrupt is
1254 * received before the timeout. This usually indicates that the
1255 * card has wedged for some reason.
1256 */
1257 void
1258 fxp_watchdog(struct ifnet *ifp)
1259 {
1260 struct fxp_softc *sc = ifp->if_softc;
1261
1262 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1263 ifp->if_oerrors++;
1264
1265 (void) fxp_init(ifp);
1266 }
1267
1268 /*
1269 * Initialize the interface. Must be called at splnet().
1270 */
1271 int
1272 fxp_init(struct ifnet *ifp)
1273 {
1274 struct fxp_softc *sc = ifp->if_softc;
1275 struct fxp_cb_config *cbp;
1276 struct fxp_cb_ias *cb_ias;
1277 struct fxp_cb_tx *txd;
1278 bus_dmamap_t rxmap;
1279 int i, prm, save_bf, allm, error = 0;
1280
1281 if ((error = fxp_enable(sc)) != 0)
1282 goto out;
1283
1284 /*
1285 * Cancel any pending I/O
1286 */
1287 fxp_stop(ifp, 0);
1288
1289 /*
1290 * XXX just setting sc_flags to 0 here clears any FXPF_MII
1291 * flag, and this prevents the MII from detaching resulting in
1292 * a panic. The flags field should perhaps be split in runtime
1293 * flags and more static information. For now, just clear the
1294 * only other flag set.
1295 */
1296
1297 sc->sc_flags &= ~FXPF_WANTINIT;
1298
1299 /*
1300 * Initialize base of CBL and RFA memory. Loading with zero
1301 * sets it up for regular linear addressing.
1302 */
1303 fxp_scb_wait(sc);
1304 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1305 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE);
1306
1307 fxp_scb_wait(sc);
1308 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE);
1309
1310 /*
1311 * Initialize the multicast filter. Do this now, since we might
1312 * have to setup the config block differently.
1313 */
1314 fxp_mc_setup(sc);
1315
1316 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1317 allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
1318
1319 /*
1320 * In order to support receiving 802.1Q VLAN frames, we have to
1321 * enable "save bad frames", since they are 4 bytes larger than
1322 * the normal Ethernet maximum frame length.
1323 */
1324 save_bf = (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 1 : 0;
1325
1326 /*
1327 * Initialize base of dump-stats buffer.
1328 */
1329 fxp_scb_wait(sc);
1330 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1331 sc->sc_cddma + FXP_CDSTATSOFF);
1332 FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
1333 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR);
1334
1335 cbp = &sc->sc_control_data->fcd_configcb;
1336 memset(cbp, 0, sizeof(struct fxp_cb_config));
1337
1338 /*
1339 * This copy is kind of disgusting, but there are a bunch of must be
1340 * zero and must be one bits in this structure and this is the easiest
1341 * way to initialize them all to proper values.
1342 */
1343 memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
1344
1345 /* BIG_ENDIAN: no need to swap to store 0 */
1346 cbp->cb_status = 0;
1347 cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
1348 FXP_CB_COMMAND_EL);
1349 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1350 cbp->link_addr = 0xffffffff; /* (no) next command */
1351 cbp->byte_count = 22; /* (22) bytes to config */
1352 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1353 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1354 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1355 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1356 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1357 cbp->dma_bce = 0; /* (disable) dma max counters */
1358 cbp->late_scb = 0; /* (don't) defer SCB update */
1359 cbp->tno_int = 0; /* (disable) tx not okay interrupt */
1360 cbp->ci_int = 1; /* interrupt on CU idle */
1361 cbp->save_bf = save_bf;/* save bad frames */
1362 cbp->disc_short_rx = !prm; /* discard short packets */
1363 cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
1364 cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */
1365 cbp->nsai = 1; /* (don't) disable source addr insert */
1366 cbp->preamble_length = 2; /* (7 byte) preamble */
1367 cbp->loopback = 0; /* (don't) loopback */
1368 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1369 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1370 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1371 cbp->promiscuous = prm; /* promiscuous mode */
1372 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1373 cbp->crscdt = 0; /* (CRS only) */
1374 cbp->stripping = !prm; /* truncate rx packet to byte count */
1375 cbp->padding = 1; /* (do) pad short tx packets */
1376 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1377 cbp->force_fdx = 0; /* (don't) force full duplex */
1378 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1379 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1380 cbp->mc_all = allm; /* accept all multicasts */
1381
1382 FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1383
1384 /*
1385 * Start the config command/DMA.
1386 */
1387 fxp_scb_wait(sc);
1388 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
1389 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1390 /* ...and wait for it to complete. */
1391 i = 1000;
1392 do {
1393 FXP_CDCONFIGSYNC(sc,
1394 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1395 DELAY(1);
1396 } while ((le16toh(cbp->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1397 if (i == 0) {
1398 printf("%s at line %d: dmasync timeout\n",
1399 sc->sc_dev.dv_xname, __LINE__);
1400 return ETIMEDOUT;
1401 }
1402
1403 /*
1404 * Initialize the station address.
1405 */
1406 cb_ias = &sc->sc_control_data->fcd_iascb;
1407 /* BIG_ENDIAN: no need to swap to store 0 */
1408 cb_ias->cb_status = 0;
1409 cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
1410 /* BIG_ENDIAN: no need to swap to store 0xffffffff */
1411 cb_ias->link_addr = 0xffffffff;
1412 memcpy((void *)cb_ias->macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1413
1414 FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1415
1416 /*
1417 * Start the IAS (Individual Address Setup) command/DMA.
1418 */
1419 fxp_scb_wait(sc);
1420 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
1421 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1422 /* ...and wait for it to complete. */
1423 i = 1000;
1424 do {
1425 FXP_CDIASSYNC(sc,
1426 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1427 DELAY(1);
1428 } while ((le16toh(cb_ias->cb_status) & FXP_CB_STATUS_C) == 0 && --i);
1429 if (i == 0) {
1430 printf("%s at line %d: dmasync timeout\n",
1431 sc->sc_dev.dv_xname, __LINE__);
1432 return ETIMEDOUT;
1433 }
1434
1435 /*
1436 * Initialize the transmit descriptor ring. txlast is initialized
1437 * to the end of the list so that it will wrap around to the first
1438 * descriptor when the first packet is transmitted.
1439 */
1440 for (i = 0; i < FXP_NTXCB; i++) {
1441 txd = FXP_CDTX(sc, i);
1442 memset(txd, 0, sizeof(struct fxp_cb_tx));
1443 txd->cb_command =
1444 htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
1445 txd->tbd_array_addr = htole32(FXP_CDTBDADDR(sc, i));
1446 txd->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
1447 FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1448 }
1449 sc->sc_txpending = 0;
1450 sc->sc_txdirty = 0;
1451 sc->sc_txlast = FXP_NTXCB - 1;
1452
1453 /*
1454 * Initialize the receive buffer list.
1455 */
1456 sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
1457 while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
1458 rxmap = FXP_RXMAP_GET(sc);
1459 if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
1460 printf("%s: unable to allocate or map rx "
1461 "buffer %d, error = %d\n",
1462 sc->sc_dev.dv_xname,
1463 sc->sc_rxq.ifq_len, error);
1464 /*
1465 * XXX Should attempt to run with fewer receive
1466 * XXX buffers instead of just failing.
1467 */
1468 FXP_RXMAP_PUT(sc, rxmap);
1469 fxp_rxdrain(sc);
1470 goto out;
1471 }
1472 }
1473 sc->sc_rxidle = 0;
1474
1475 /*
1476 * Give the transmit ring to the chip. We do this by pointing
1477 * the chip at the last descriptor (which is a NOP|SUSPEND), and
1478 * issuing a start command. It will execute the NOP and then
1479 * suspend, pointing at the first descriptor.
1480 */
1481 fxp_scb_wait(sc);
1482 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
1483 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1484
1485 /*
1486 * Initialize receiver buffer area - RFA.
1487 */
1488 rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
1489 fxp_scb_wait(sc);
1490 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1491 rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
1492 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START);
1493
1494 if (sc->sc_flags & FXPF_MII) {
1495 /*
1496 * Set current media.
1497 */
1498 mii_mediachg(&sc->sc_mii);
1499 }
1500
1501 /*
1502 * ...all done!
1503 */
1504 ifp->if_flags |= IFF_RUNNING;
1505 ifp->if_flags &= ~IFF_OACTIVE;
1506
1507 /*
1508 * Start the one second timer.
1509 */
1510 callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
1511
1512 /*
1513 * Attempt to start output on the interface.
1514 */
1515 fxp_start(ifp);
1516
1517 out:
1518 if (error) {
1519 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1520 ifp->if_timer = 0;
1521 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1522 }
1523 return (error);
1524 }
1525
1526 /*
1527 * Change media according to request.
1528 */
1529 int
1530 fxp_mii_mediachange(struct ifnet *ifp)
1531 {
1532 struct fxp_softc *sc = ifp->if_softc;
1533
1534 if (ifp->if_flags & IFF_UP)
1535 mii_mediachg(&sc->sc_mii);
1536 return (0);
1537 }
1538
1539 /*
1540 * Notify the world which media we're using.
1541 */
1542 void
1543 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1544 {
1545 struct fxp_softc *sc = ifp->if_softc;
1546
1547 if(sc->sc_enabled == 0) {
1548 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
1549 ifmr->ifm_status = 0;
1550 return;
1551 }
1552
1553 mii_pollstat(&sc->sc_mii);
1554 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1555 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1556 }
1557
1558 int
1559 fxp_80c24_mediachange(struct ifnet *ifp)
1560 {
1561
1562 /* Nothing to do here. */
1563 return (0);
1564 }
1565
1566 void
1567 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1568 {
1569 struct fxp_softc *sc = ifp->if_softc;
1570
1571 /*
1572 * Media is currently-selected media. We cannot determine
1573 * the link status.
1574 */
1575 ifmr->ifm_status = 0;
1576 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1577 }
1578
1579 /*
1580 * Add a buffer to the end of the RFA buffer list.
1581 * Return 0 if successful, error code on failure.
1582 *
1583 * The RFA struct is stuck at the beginning of mbuf cluster and the
1584 * data pointer is fixed up to point just past it.
1585 */
1586 int
1587 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
1588 {
1589 struct mbuf *m;
1590 int error;
1591
1592 MGETHDR(m, M_DONTWAIT, MT_DATA);
1593 if (m == NULL)
1594 return (ENOBUFS);
1595
1596 MCLGET(m, M_DONTWAIT);
1597 if ((m->m_flags & M_EXT) == 0) {
1598 m_freem(m);
1599 return (ENOBUFS);
1600 }
1601
1602 if (unload)
1603 bus_dmamap_unload(sc->sc_dmat, rxmap);
1604
1605 M_SETCTX(m, rxmap);
1606
1607 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1608 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1609 if (error) {
1610 printf("%s: can't load rx DMA map %d, error = %d\n",
1611 sc->sc_dev.dv_xname, sc->sc_rxq.ifq_len, error);
1612 panic("fxp_add_rfabuf"); /* XXX */
1613 }
1614
1615 FXP_INIT_RFABUF(sc, m);
1616
1617 return (0);
1618 }
1619
1620 int
1621 fxp_mdi_read(struct device *self, int phy, int reg)
1622 {
1623 struct fxp_softc *sc = (struct fxp_softc *)self;
1624 int count = 10000;
1625 int value;
1626
1627 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1628 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1629
1630 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1631 && count--)
1632 DELAY(10);
1633
1634 if (count <= 0)
1635 printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname);
1636
1637 return (value & 0xffff);
1638 }
1639
1640 void
1641 fxp_statchg(struct device *self)
1642 {
1643
1644 /* Nothing to do. */
1645 }
1646
1647 void
1648 fxp_mdi_write(struct device *self, int phy, int reg, int value)
1649 {
1650 struct fxp_softc *sc = (struct fxp_softc *)self;
1651 int count = 10000;
1652
1653 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1654 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1655 (value & 0xffff));
1656
1657 while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1658 count--)
1659 DELAY(10);
1660
1661 if (count <= 0)
1662 printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname);
1663 }
1664
1665 int
1666 fxp_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1667 {
1668 struct fxp_softc *sc = ifp->if_softc;
1669 struct ifreq *ifr = (struct ifreq *)data;
1670 int s, error;
1671
1672 s = splnet();
1673
1674 switch (cmd) {
1675 case SIOCSIFMEDIA:
1676 case SIOCGIFMEDIA:
1677 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1678 break;
1679
1680 default:
1681 error = ether_ioctl(ifp, cmd, data);
1682 if (error == ENETRESET) {
1683 if (sc->sc_enabled) {
1684 /*
1685 * Multicast list has changed; set the
1686 * hardware filter accordingly.
1687 */
1688 if (sc->sc_txpending) {
1689 sc->sc_flags |= FXPF_WANTINIT;
1690 error = 0;
1691 } else
1692 error = fxp_init(ifp);
1693 } else
1694 error = 0;
1695 }
1696 break;
1697 }
1698
1699 /* Try to get more packets going. */
1700 if (sc->sc_enabled)
1701 fxp_start(ifp);
1702
1703 splx(s);
1704 return (error);
1705 }
1706
1707 /*
1708 * Program the multicast filter.
1709 *
1710 * This function must be called at splnet().
1711 */
1712 void
1713 fxp_mc_setup(struct fxp_softc *sc)
1714 {
1715 struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
1716 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1717 struct ethercom *ec = &sc->sc_ethercom;
1718 struct ether_multi *enm;
1719 struct ether_multistep step;
1720 int count, nmcasts;
1721
1722 #ifdef DIAGNOSTIC
1723 if (sc->sc_txpending)
1724 panic("fxp_mc_setup: pending transmissions");
1725 #endif
1726
1727 ifp->if_flags &= ~IFF_ALLMULTI;
1728
1729 /*
1730 * Initialize multicast setup descriptor.
1731 */
1732 nmcasts = 0;
1733 ETHER_FIRST_MULTI(step, ec, enm);
1734 while (enm != NULL) {
1735 /*
1736 * Check for too many multicast addresses or if we're
1737 * listening to a range. Either way, we simply have
1738 * to accept all multicasts.
1739 */
1740 if (nmcasts >= MAXMCADDR ||
1741 memcmp(enm->enm_addrlo, enm->enm_addrhi,
1742 ETHER_ADDR_LEN) != 0) {
1743 /*
1744 * Callers of this function must do the
1745 * right thing with this. If we're called
1746 * from outside fxp_init(), the caller must
1747 * detect if the state if IFF_ALLMULTI changes.
1748 * If it does, the caller must then call
1749 * fxp_init(), since allmulti is handled by
1750 * the config block.
1751 */
1752 ifp->if_flags |= IFF_ALLMULTI;
1753 return;
1754 }
1755 memcpy((void *)&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
1756 ETHER_ADDR_LEN);
1757 nmcasts++;
1758 ETHER_NEXT_MULTI(step, enm);
1759 }
1760
1761 /* BIG_ENDIAN: no need to swap to store 0 */
1762 mcsp->cb_status = 0;
1763 mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
1764 mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
1765 mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
1766
1767 FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1768
1769 /*
1770 * Wait until the command unit is not active. This should never
1771 * happen since nothing is queued, but make sure anyway.
1772 */
1773 count = 100;
1774 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
1775 FXP_SCB_CUS_ACTIVE && --count)
1776 DELAY(1);
1777 if (count == 0) {
1778 printf("%s at line %d: command queue timeout\n",
1779 sc->sc_dev.dv_xname, __LINE__);
1780 return;
1781 }
1782
1783 /*
1784 * Start the multicast setup command/DMA.
1785 */
1786 fxp_scb_wait(sc);
1787 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
1788 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START);
1789
1790 /* ...and wait for it to complete. */
1791 count = 1000;
1792 do {
1793 FXP_CDMCSSYNC(sc,
1794 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1795 DELAY(1);
1796 } while ((le16toh(mcsp->cb_status) & FXP_CB_STATUS_C) == 0 && --count);
1797 if (count == 0) {
1798 printf("%s at line %d: dmasync timeout\n",
1799 sc->sc_dev.dv_xname, __LINE__);
1800 return;
1801 }
1802 }
1803
1804 int
1805 fxp_enable(struct fxp_softc *sc)
1806 {
1807
1808 if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
1809 if ((*sc->sc_enable)(sc) != 0) {
1810 printf("%s: device enable failed\n",
1811 sc->sc_dev.dv_xname);
1812 return (EIO);
1813 }
1814 }
1815
1816 sc->sc_enabled = 1;
1817 return (0);
1818 }
1819
1820 void
1821 fxp_disable(struct fxp_softc *sc)
1822 {
1823
1824 if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
1825 (*sc->sc_disable)(sc);
1826 sc->sc_enabled = 0;
1827 }
1828 }
1829
1830 /*
1831 * fxp_activate:
1832 *
1833 * Handle device activation/deactivation requests.
1834 */
1835 int
1836 fxp_activate(struct device *self, enum devact act)
1837 {
1838 struct fxp_softc *sc = (void *) self;
1839 int s, error = 0;
1840
1841 s = splnet();
1842 switch (act) {
1843 case DVACT_ACTIVATE:
1844 error = EOPNOTSUPP;
1845 break;
1846
1847 case DVACT_DEACTIVATE:
1848 if (sc->sc_flags & FXPF_MII)
1849 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
1850 MII_OFFSET_ANY);
1851 if_deactivate(&sc->sc_ethercom.ec_if);
1852 break;
1853 }
1854 splx(s);
1855
1856 return (error);
1857 }
1858
1859 /*
1860 * fxp_detach:
1861 *
1862 * Detach an i82557 interface.
1863 */
1864 int
1865 fxp_detach(struct fxp_softc *sc)
1866 {
1867 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1868 int i;
1869
1870 /* Succeed now if there's no work to do. */
1871 if ((sc->sc_flags & FXPF_ATTACHED) == 0)
1872 return (0);
1873
1874 /* Unhook our tick handler. */
1875 callout_stop(&sc->sc_callout);
1876
1877 if (sc->sc_flags & FXPF_MII) {
1878 /* Detach all PHYs */
1879 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1880 }
1881
1882 /* Delete all remaining media. */
1883 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
1884
1885 #if NRND > 0
1886 rnd_detach_source(&sc->rnd_source);
1887 #endif
1888 ether_ifdetach(ifp);
1889 if_detach(ifp);
1890
1891 for (i = 0; i < FXP_NRFABUFS; i++) {
1892 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
1893 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
1894 }
1895
1896 for (i = 0; i < FXP_NTXCB; i++) {
1897 bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1898 bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
1899 }
1900
1901 bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
1902 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
1903 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1904 sizeof(struct fxp_control_data));
1905 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
1906
1907 shutdownhook_disestablish(sc->sc_sdhook);
1908 powerhook_disestablish(sc->sc_powerhook);
1909
1910 return (0);
1911 }
1912